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Abstract

Recently, we proposed variants as a statistical model for treating ambiguity. If data are extracted
from an object with a machine then it might not be able to give a unique safe answer due to ambiguity
about the correct interpretation of the object. On the other hand, the machine is often able to produce
a finite number of alternative feature sets (of the same object) that contain the desired one. We call
these feature sets variants of the object. Data sets that contain variants may be analyzed by means of
statistical methods and all chapters of multivariate analysis can be seen in the light of variants. In this
communication, we focus on point estimation in the presence of variants and outliers. Besides robust
parameter estimation, this task requires also selecting the regular objects and their valid feature sets
(regular variants). We determine the mixed MAP–ML estimator for a model with spurious variants
and outliers as well as estimators based on the integrated likelihood. We also prove asymptotic results
which show that the estimators are nearly consistent.

The problem of variant selection turns out to be computationally hard; therefore, we also design
algorithms for efficient approximation. We finally demonstrate their efficacy with a simulated data
set and a real data set from genetics.
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1. Introduction

1.1. Variants—the general idea

We are constantly facing and effortless resolving a large amount of ambiguity without
even noticing it; see Mumford [21] for an interesting exposition on this subject. However,
ambiguity poses a major problem when objects such as acoustic signals, images, or ge-
ometric figures are to be processed with an automatic system, for example [27]. To this
end, the automaton usually begins with extracting characteristic features from the objects.
Feature extraction means abstraction and, thus, a reduction of complexity. Even if a ma-
chine is carefully programmed to react properly as soon as it faces ambiguities, it is often
not able to produce a unique set of features in a safe way since feature extraction from
a complex object depends also on the correct interpretation of the object. In complex sit-
uations, the interpretation may be ambiguous and finding the correct one may need the
features to be extracted—a deadlock arises. In such cases, one may resort to extracting
several (structurally equal) feature sets from the same object, one for each possible inter-
pretation. We call these feature sets variants of the object. The regular variant comes from
the (yet unknown) correct interpretation, the others are the irregular variants. The latter
appear as outliers relative to the object w.r.t. the task and the former, only, are of inter-
est. Doing this for several objects (of the same kind) results in a data set that represents
some or all objects by more than one row. That is, whereas an ordinary data set consists of
one row per object, a data set with variants contains as many rows per object as there are
variants extracted from it, cf. Table 1. The more ambiguous the object, the more variants
may be expected.

While the complexity is now reduced, the ambiguity is still conserved in the data set due
to the presence of the variants. This paper is about how to resolve it. Since we do not expect
the regular variants of the objects to be equal, this task is somewhat fuzzy and offers itself

Table 1
Three-dimensional data sets (a) without and (b) with variants. In (b), only one of the two variants of object 1 and
one of the three variants of object 2 is a valid representative of its object

(a)
object−1 5.37 1.62 2.45
object−2 4.11 2.21 2.13
object−3 3.34 4.54 5.46
object−4 8.35 6.76 7.78
object−5 1.36 2.48 1.41
object−6 5.76 7.61 2.15

(b)
object−1 2.37 3.62 4.41
object−1 1.14 1.21 3.12
object−2 3.30 5.62 7.33
object−2 8.11 6.29 7.13
object−2 3.11 4.21 3.13
object−3 6.54 5.22 8.46
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to statistical treatment. The regular variants are expected to be more densely concentrated
than the irregular ones and it seems natural to resolve the ambiguity by selecting the most
homogeneous variants across the objects as regular variants, thus determining the correct
interpretations and characteristic feature sets. Thus, one faces the task of

• selecting a section across given groups of observations (the variants of the same object)
that is as homogeneous and compact as possible.

In other words, one wishes to

• select representatives from the groups that match as far as possible the selected repre-
sentatives of all other groups. 1

Variants have recently been proposed [26,29,30] as a model for treating ambiguities. To
our knowledge, the general problem of variant selection has rarely been studied sys-
tematically from a theoretical and statistical point of view, before. The study of vari-
ants leads into the field of multivariate analysis but the concept itself seems to be new
there. Variants unify and extend several, apparently very different situations. By way
of explaining their meaning and range, we describe next four situations where they are
of benefit.

1.2. Motivating examples

(a) Approximate substring identification: Let there be given n strings of arbitrary lengths
�d over an alphabet A. We ask for a pattern of length d that is, at least approximately,
shared by all the strings. Each substring of length d of a string can be considered as a poten-
tial representative that flows from a specific interpretation of its string. In this sense, each
string is an ambiguous object. This task can be embedded in the framework of variants by
extracting from each string (object) the group of all its (overlapping) substrings of length d
(the variants). Any method that finds the regular variants solves the problem since these are
just defined to have the desired property. If we require exact instead of approximate match-
ing, possibly with wild cards, then this problem is well known in computer science under
the name “substring” or “factor matching” and possesses efficient solutions by dynamic
optimization, see [8]. The problem of approximate substring matching is more complex
and suggests to apply statistical methods.

An interesting and important application of this task is motif discovery in unaligned
genetic and polypeptide sequences. In the former case, the alphabet A = {a, g, c, t} consists
of the four nucleotides adenine, guanine, cytosine, and thymine, in the latter of the 20 amino
acids that make up natural proteins.We will discuss this example in more detail in Section 4.2
showing how our method works on a specific genetic data set.

Motif discovery makes sense also in structures other than strings, for example, in graphs
[10,37], where motifs are used for representing complex graphs.

(b) Analysis of polarity and shape: A second type of applications employs variants in
order to handle ambiguities when a visual object or an acoustic signal is to be interpreted,
in particular by a machine. The following example from biomedical image processing

1 This concept is contrary to that of a centroid which represents best the members of its group.
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Fig. 1. Four acrocentric chromosomes in metaphase (Homo sapiens, class 21). The two chromosomes on the left
need two variants each, the others even three.

actually triggered our interest in variants. A cell of a eukaryotic organism contains a number
of chromosomes constant within its species. A chromosome, visible under a microscope
during the metaphase of mitosis, is a usually oblong object with a symmetry axis that divides
it lengthwise into two so-called chromatids. Characteristics of a chromosome are, among
others, its area, its length, and the cosine coefficients of the profile associated with its band
pattern made visible by staining. Measuring the area is uncritical and easily performed by
counting. In order to extract the remaining features with an automatic system, the symmetry
axis has first to be determined by shape-analytical methods. It allows to measure the length
and the cosine coefficients of even order. The odd ones depend on polarity which is not
easily available from the shape alone, a first ambiguity, see the two chromosomes on the
left of Fig. 1. Our method suggests to continue the analysis by extracting two variants from
the object, one for each polarity.

The situation may be even more complex. One of the tasks of a chromosome is DNA
replication; it accomplishes this by splitting into its two chromatids. Shortly before they
are completely separated, they are joint merely at a region called centromere. Acrocen-
tric chromosomes, whose centromeres are close to one tip, appear Y-shaped at this stage
allowing even three possible shape interpretations, one for each branch of the Y, see the
two chromosomes on the right of Fig. 1. Elementary approaches to resolving the ambi-
guity at this stage are prone to errors, see [24]. Our method proposes to first extract the
corresponding variants and to combine the selection and estimation processes later by
means of statistical methods. Acro- and telocentric chromosomes give rise to additional
complications since, at the stage shortly before division, they may be confused with bent
chromosomes.

Application of variant analysis to automatic classification of segmented metaphase cells
[32–34] has substantially reduced the error rate compared with more classical
approaches.

(c) Segmentation problems: The idea of extracting several variants from one object has
been applied for some time in signal or image segmentation under the name “segmentation
hypotheses.” In fact, their consideration marks one of the main achievements in this field
in the last two decades, see [3]. As a simple example, look at Fig. 2. It shows on the left
side an object composed of two chromosomes in a human metaphase cell. Assume that
45 components have been found in the cell and that the other 44 have been identified as
clear chromosomes. Since a normal human cell contains 46 chromosomes, the fact that
this component is heavily bent leads to the conjecture that it might be composed of two. It
is, however, not clear what the two components should be and the correct decomposition
cannot be decided from the shape of the object alone. But the shape suggests two reasonable
interpretations that are also shown in Fig. 2. They are the two variants to be considered in
this example for further analysis.
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Fig. 2. A component of a metaphase as observed under a microscope (left). This object is ambiguous since it can
be interpreted in two different ways as composed of two chromosomes if its rectangular shape, only, is taken into
account (center and right). This gives rise to creating two variants of the object. The interpretation on the right is
correct.

Variants may, of course, also be applied when linear structures or random sequences have
to be segmented and interpreted. Such structures appear in speech recognition, optical char-
acter recognition [3], and computational biology, [9,15]. A very popular method applicable
to linear structures is the hidden Markov model (HMM) [25]. It may also be viewed as a
method for generating and resolving segmentation variants.

(d) A sociological example: A very simple example is this: suppose that we wish to
compare the quality of instruction between all school classes of a fixed grade in some state.
The survey is to be carried out by testing just one student from each class. Now, the result of
education depends both on instruction and on the students’ properties, e.g. on their IQ’s and
on their backgrounds. Therefore, in order to reduce dependence on the latter, one should
choose representatives whose properties and backgrounds are as homogeneous as possible.
Here, the objects are the school classes and the variants are their students.

In cases (a) and (d), all possible variants are taken into account, in cases (b) and (c),
the variants are created by means of special procedures from image processing. In all four
cases, feature sets can now be extracted from the generated variants. If the meaningful one
is among them, the object is regular and an outlier, otherwise. The original problem of
analyzing the objects has thus been transformed to the statistical problem of analyzing a
data set with variants and outliers. Statistical methods offer a reasonable way to select the
correct interpretation thus resolving the ambiguity problem. It is the purpose of this paper
to discuss this point in the context of parameter estimation.

1.3. Parameter estimation in the presence of variants and outliers

In a recent paper [30], we set out to study variants from a mathematical and statistical
perspective dealing first with pure variant selection.Assuming the distribution of the regular
population to be known, we studied the question whether the regular variant could be detected
among all variants by a method that uses essentially this distribution alone. We called such
a method a simple selector.

As we were investigating the pure selection problem, we realized that variants added
a new perspective to multivariate analysis. A substantial part thereof, such as parameter
estimation, discriminant analysis, clustering, regression analysis, factor analysis, and ro-
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bustness can be viewed in the light of variants. Some of these topics will be treated in further
communications. In the present paper, we deal with estimation of the unknown distribution
parameters of the regular variants in the presence of irregular variants and outliers. If the
positions of the regular variants among all variants were known for all objects then estima-
tion of their parameters would be a classical task. Insofar our method extends classical point
estimation. The main novelty is that these positions are hidden (or latent) and, in order to
achieve our goal, we have to simultaneously estimate the positions of the regular variants
and the parameters. There is a parallel to statistical clustering where both, class assignments
and parameters, have to be estimated at the same time.

Almost all real data sets contain outliers in the sense of observations that are far away from
the regular population. The classical point estimators usually break down in the presence of
outliers. Some protection against outliers is, therefore, necessary if the estimators are to be
useful in practice [5,28]. Since irregular variants may be viewed as outlying observations
within an object, they offer a simple and natural way of defining statistical outliers as objects
that lack the regular variant. This is our view here.

Thus, we assume that each object contains at most one regular variant and introduce
the spurious-variants and -outliers model, Section 2. It treats the irregular variants as
unpredictable—each irregular variant may obey its own distribution; they may or may
not depend on the regular variant of their objects if there is one. We identify weighted
maximum likelihood estimators, MAP w.r.t. variant selection and ML w.r.t. the parameters
and, for some distributional assumptions, MAP-estimators of the selection based on the
integrated likelihood w.r.t. the population parameters. The clear decision-theoretic back-
ground of such estimators leads to reasonable results in applications if the distributional
assumptions are met. Interestingly, we find trimming estimators that turn out to be exten-
sions of Rousseeuw’s [35] minimum covariance determinant estimator, MCD, to variants.
It does not seem to be well known that MCD is an ML-estimator w.r.t. some statistical
model, a fact that was noticed by Pesch [23]. This estimator is known [17] to have the max-
imum asymptotic breakdown point of 50% that an affine equivariant point estimator can
achieve.

Due to the presence of the irregular variants, our estimators are not exactly consistent.
However, in Section 3, we establish some sample asymptotic results for normal regular
populations that guarantee some kind of near consistency.

Although the criteria obtained are intuitively appealing they lead to computationally
hard optimization problems as a consequence of the combinatorial problems of selection
and trimming. Therefore, it is important to design efficient algorithms for approximate
solutions and a major part of the paper is devoted to this point. The spurious-variants
model leads to some straightforward algorithms, see Sections 2.3–2.6. The algorithms are
efficient if the underlying statistical model allows simple expressions for the maximum
likelihood estimates (m.l.e.) of the parameters. Examples are Gaussian and coin-tossing
models for which we formulate efficient reduction steps as least units in the estimation
process, Section 3. Section 4 contains a simulation study and an analysis of a well-known
real data set from genetics. Both demonstrate the efficacy of the methods. The appendices
contain some implementational issues and the proofs.

Other models with specific distributional assumptions on the irregular variants are, of
course, possible and will be studied on later occasions.
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1.4. General notation and preliminaries

The symbol E stands for a general sample space and fX (f�, f�) signifies the density
function of a random variable X : � → E (probability distribution � or �� on E) w.r.t. some
reference measure on E. We denote the m.l.e. of a parameter ϑ given the observation x by
MLϑ(x); this is in general a subset of the parameter set. Given an m-tuple (x1, . . . , xm), we
often abbreviate xm

1 = (xj )
m
j=1 = (x1, . . . , xm) and xk̂ = (x1, . . . , xk−1, xk+1, . . . , xm).

The symbol Sb denotes the group of all permutations of the index set 1..b.
Our basic data set is an n-tuple x = (x1, . . . , xn) of multiple observations xi =

(xi,1, . . . , xi,bi
) ∈ Ebi . The attribute “multiple” means that each object i, 1� i�n, is

observed by the bi �1 variants xi,1, . . . , xi,bi
; the number bi may depend on the object.

Given some sequence � ∈ ∏
i Sbi

of permutations, we write x�−1 =
(
(x1,�−1

1 (k)
)b1

k=1
, . . . ,

(x
n,�−1

n (k)
)bn

k=1

)
; this is the data set with the variants reordered according to �.

Owing to the outliers, our estimators require an input parameter r �n, r > 0, to be chosen
in advance. Its meaning is a lower bound on the number of regular objects contained in the
data set. Our methods will work smoothly only if the actual number of outliers does not
exceed n − r . We comment in Section 2.6(c) on how to choose r.

Central to our investigation is the notion of a (variant) selection h and its support l. The
selection is a partial function defined on r objects in 1..n, the support of h. We will view
the latter as a function l : 1..n → 0..1 that marks r objects in 1..n as regular (1) and call
any such function a support. The selection h = (hi)li=1 determines hi as the site of the
regular variant of the regular object i. A selection implicitly contains the information about
its support, that is, about its regular objects. For example, if r = 2, then ([object−1, 1],
[object−2, 3]) is a selection in the data set (b) of Table 1. This selection considers object 3
as an outlier. Our main objective is estimating the “true” selection.

We denote the cross section (xi,hi
)li=1 specified by a selection h by xh; it is a classical

data set with one row per object i s.th. li = 1. The cross section of the selection above is

object−1 2.37 3.62 4.41
object−2 3.11 4.21 3.13

We write the letter b to denote the maximum number of variants, max1� i �n bi , taken
over all objects of the data set and Fj , 1�j �b, stands for the set of all objects i that
contain at least j variants, bi �j . Plainly, F1 = 1..n and objects i ∈ F2 contain irregular
variants.

2. Spurious outliers and variants

In this section, we assume that the regular variants come from an unknown member of
some dominated, parametric statistical model (��)�∈� on E, while the irregular variants and
outliers are spurious [4], comparable with gross outliers which obey no statistical law. We
feel that the best way of handling this idea in a statistical (!) framework is by assuming that
each irregular variant and outlier comes from its own population. This model is appropriate
in situations where the irregular variants are unpredictable. The main aim is to estimate the
parameter of the regular population while the irregular variants are considered as irrelevant,
containing no information on the regular ones, and the outliers are ignored.
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(a) Regular and irregular variants: We first introduce the ordered model of a regular
object i, li = 1. Let Zi = (Zi,1, . . . , Zi,bi

) : (�, P ) → Ebi denote its bi variants in some
natural order with the regular variant Zi,1 in front. The law of Zi,1 is a member of the
parametric family (��)�∈�. The irregular variants of an object i ∈ F2 make up the vector
Zi,̂1 = (Zi,2, . . . , Zi,bi

) ∈ Ebi−1. The following is the main assumption on the spurious
irregular variants.

(SVr) The irregular variants Zi,̂1 of an object i ∈ F2 obey a parametric model with
parameter �i ∈ �i such that the likelihood integrated w.r.t. some prior measure �i on �i ,
satisfies∫

�i

fZi,̂1
[zi,̂1 | Zi,1 = zi,1, �i]�i (d�i ) = 1, (1)

that is, it does not depend on zi .
There are two important and sufficiently general situations where this is true.
(A) The state space E = Rd is Euclidean, �i = Ebi−1, the irregular variants obey a

location model

Zi,̂1 = Ui + �i

with some (unknown) random noise Ui : (�, P ) → Ebi−1, and �i is Lebesgue measure on
�i . Indeed, in this case, the conditional Lebesgue density is

fZi,̂1
[zi,̂1 | Zi,1 = zi,1, �i] = fUi

[zi,̂1 − �i | Zi,1 = zi,1]
and, hence,∫

�i

fZi,̂1
[zi,̂1 | Zi,1 = zi,1, �i] d�i = 1.

(B) The parameter set �i is singleton, the irregular variants of an object are independent
of the regular one, and the distribution of Zi,̂1 is taken as the reference measure for its
density. This case includes the idea of irregular variants “uniformly distributed” on some
domain.

(b) Outliers: We consider outliers as objects that lack a regular variant. The counterpart
of (SVr) for the outliers reads

(SVo) The outlier Zi ∈ Ebi , li = 0, obeys a parametric model with parameter �i ∈ �i

such that the likelihood integrated w.r.t. some prior measure �i on �i satisfies∫
�i

fZi
[zi | �i]�i (d�i ) = 1. (2)

The conditions (A) and (B) carry over to corresponding conditions for outliers.

We assume that the sequence of objects (Zi)
n
i=1 is statistically independent but not

necessarily i.i.d., not even in cases where all bi’s are equal and r = n. Let l be some
support. By the product formula, the likelihood for the data set z = (z1, . . . , zn) (of ordered
objects) is

fZ(z | l, �, �) =
∏

i:li=1

f�(zi,1)
∏
i∈F2

fZi,̂1
[zi,̂1 | Zi,1 = zi,1, �i]

∏
i:li=0

fZi
[zi | �i] (3)
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and, by (1) and (2), the likelihood integrated over the parameters of the irregular variants
and outliers w.r.t. to the prior measures �i is

fZ(z | l, �) =
∏

i:li=1

f�(zi,1). (4)

(c) Permutations and trimming. What we actually observe are the random vectors Zi

with their variants in (unobservable) disorder. We, thus, model the ith observation xi as a
realization of a random vector (Zi,Ti (1), Zi,Ti (2), . . . , Zi,Ti (bi )) with random permutations
Ti of 1..bi . Let us denote the random support by L : � → {l ∈ (0..1)n | ∑i li = r}. We
assume that it is uniformly distributed and that, given L, the Ti’s are independent and so are
T n

1 and Zn
1 . We also assume that the random variables Ti and L̂i are independent given Li ,

1� i�n.
Finally, we assume regularity of the permutations Ti as defined in [30, p. 318]. This

means that, for each regular object i (Li = 1), the probability P [Ti = �i |Li = 1], �i ∈
Sbi

, depends only on the site hi := �−1
i (1) of its regular variant. It may depend on the

object i itself. It is this regularity that, in combination with the condition (SVr), allows to
estimate the positions of the regular variants without having to care about the permutations.
Correspondingly, if i is an outlier, we say that Ti is regular if each permutation is equally
likely. Let qi,k denote the prior probability for the regular variant of the ith object to be
found at position k. Without loss of generality, we may assume qi,k > 0. Abbreviating
ch = ∏

i:li=1 biqi,hi
, we conclude the description of our model with the following lemma.

2.1 Lemma. We have P [T = � | L = l] = Cch with the constant C = ∏n
i=1

1
bi ! .

We next propose several estimators for h and �, a combined MAP–ML-estimator in the
context of a general population and MAP estimators based on the likelihood integrated
w.r.t. � in special cases, see Sections 2.7 and 3. In view of an MAP–ML-estimator, we
combine a maximum likelihood approach for estimating � ∈ � with maximum a posteriori
inference for estimating the regular objects and selecting the regular variants. This means
maximizing the joint conditional density fL,T ,X[l, �n

1, x | �] w.r.t. l, �n
1 ∈ ∏n

i=1 Sbi
, and

� ∈ �. Given a selection (hi)li=1, we will abbreviate f�(xh) = fl,�(xh) = ∏
i:li=1 f�(xi,hi

).
By the independences given L postulated above and by Lemma 2.1 and (4), it equals

fL,T ,X[l, �n
1, x | �] = fL,T ,Z� [l, �n

1, x | �] = fL,T ,Z[l, �n
1, x�−1 | �]

= P [L = l]P [T = �n
1 | L = l]fZ[x�−1 | l, �]

= const · ch

∏
li=1

f�(xi,hi
) = const · chfl,�(xh). (5)

We call the last expression a weighted likelihood. It depends on � and h and, therefore, also
on l. Its maximizer w.r.t. l, h, and �, which we call the weighted m.l.e., may be obtained by
the Principle of Dynamic Optimization in three steps. In order to ensure its applicability,
we require the data x to satisfy the condition

(GP1) the ML-estimate of � for the cross section xh exists for any selection (hi)li=1 ∈∏
li=1 1..bi .
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In the case of a Euclidean space E, this is often a condition on the affine geometry of the
data x. Denoting the ML-estimate of � for a given selection h by �(h) (= ML�(xh)), we
have the following theorem.

2.2 Theorem (The weighted m.l.e. for the spurious model). Assume the conditions (SVr),
(SVo), and (GP1), regularity of all permutations Ti , and all other assumptions made above.

(a) The weighted m.l.e. of the selection h ∈ ∏
li=1 1..bi of the positions of the regular

variants is determined by the maximum of the criterion

chfl,�(h)(xh) = ch max
�

fl,�(xh) = ch max
�

∏
li=1

f�(xi,hi
), (6)

taken over all selections h.
(b) If the maximizer is denoted by h� (if it is not unique, choose one) then the weighted

m.l.e. of the parameter � of the regular variants is �(h�).

Eq. (6) shows that it is the maximum value max� fl,�(xh) of the likelihood function that
is needed in order to determine the optimal selection. However, in general, this will require
the maximizer �(h).

If all prior probabilities qi are uniform, then ch does not depend on h and the ML-estimates
can be given another interpretation. Given i.i.d. random variables Xi , 1� i�r , distributed
according to an unknown “true” distribution �, the arithmetic means

1

r

r∑
i=1

− ln f�(Xi) and
1

r

r∑
i=1

ln
f�

f�
(Xi)

converge to the entropy −E ln f�(X1) of � and to the Kullback–Leibler divergence E ln
f�
f�

(X1) of � and �, respectively, P-a.s. Hence, given a finite sequence x1, . . . , xr of observa-
tions, the means

1

r

r∑
i=1

− ln f�(xi) and
1

r

r∑
i=1

ln
f�

f�
(xi)

are sample versions of these quantities. Neither of the two can be computed since f� is
unknown, but their sum 1

r

∑r
i=1 − ln f�(xi) is an expression of � alone. Theorem 2.2 says

that the m.l.e. of h and � minimizes this sum applied to xh. In other words, the m.l.e. chooses
a selection with a small sample entropy for which there exists at the same time a parameter
� with small sample divergence. If the parameter can be chosen in such a way that the
divergence vanishes (this is possible, for instance, if E is discrete) then the minimum is no
larger than the sample entropy of the regular variants selected.

Theorem 2.2 reduces the problem of estimating selections and parameters to a com-
binatorial optimization problem and to maximizing likelihood functions. Now, there are
astronomically many selections,

∑
C∈(1..n

r )

∏
i∈C bi ; enumerating all is not feasible except

for small instances and approximation algorithms are desirable. In the remainder of this
section, we design and substantiate a number of such algorithms.
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2.3. Local search

Our first algorithm is a local descent method called Glauber dynamics in statistical
physics. It is based on the criterion itself. Define a neighborhood structure on the set of
all selections by declaring two selections as neighboring if they either differ in the regular
variant of one regular object or if one outlier is declared as regular (with some regular
variant) and vice versa. We, thus, obtain the following reduction step. It is useful only if the
statistical model of the regular variants allows an efficient update formula for f�(h′)(xh′)
from f�(h)(xh) for any two neighboring selections h and h′; cf. Section 3.

The local reduction step
// Input: A selection h and its corresponding parameters �(h);
// Output: A selection hnew with larger Criterion (6) and �(hnew)

or the response “local maximum.”

(i) search for a neighbor h′ of h such that

ch′f�(h′)(xh′) > chf�(h)(xh) (7)

(e.g. the first occurrence, or the smallest value, or something in between);
(ii) if there is such an h′ then return hnew = h′ together with �(hnew);

// this value has been computed in (i)
else return “local maximum.”

Now, starting from an initial selection h=h(0) and iterating local reduction steps, we obtain
a sequence (h(t))Nt=0 of selections such that Criterion (6) increases, i.e.,

ch(t+1)f�(h(t+1))(xh(t+1) ) > ch(t)f�(h(t))(xh(t) ), t < N.

Since the number of possible selections is finite, this iterative process must reach a local
maximum after a finite number, say N, of steps; it is detected in step N + 1. We will discuss
in Section 2.6, how to improve the local optima. However, if n is large, the problem of
finding a global optimum is inherently hard and, like clustering, the problem of finding
an optimal string (the variant selection in our context) belongs to the class of intractable
problems well known in computer science.

The local reduction step has two disadvantages: first, it needs an update of the density f�(h)

for each trial in (i) even if it is unsuccessful and, second, it does not allow the simultaneous
swapping of more than one variant or more than one object. We, therefore, present two more
reduction steps that do not suffer from these shortcomings. The main idea of the subsequent
algorithms is contained in the next proposition.

2.4 Proposition. Assume (GP1) and let h and hnew be two selections such that∑
lnew,i=1

{
ln biqi,hnew,i + ln f�(h)(xi,hnew,i)

}
�
∑
li=1

{
ln biqi,hi

+ ln f�(h)(xi,hi
)
}
. (8)

(a) Then chnewf�(hnew)(xhnew)�chf�(h)(xh); cf. Criterion (6).
(b) If there is strict inequality in (8) then there is also strict inequality in (a).
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(c) Let there be equality in (a). If, for any set of observations, the m.l.e. ML(�) is unique
then we have �(hnew) = �(h). If, in addition, max� f�(z) depends on z = (z1, . . . , zn),
zi ∈ E, only by way of ML�(z) then we have also chnew = ch.

2.5. Reduction steps based on Proposition 2.4

Proposition 2.4 is the basis for reduction steps more efficient than the local one. Given
some selection h, the weights

uh(i, k) := − ln biqi,k − ln f�(h)(xi,k), i ∈ 1..n, k ∈ 1..bi . (9)

play a key role. Condition (8) is equivalent to∑
lnew,i=1

uh(i, hnew,i)�
∑
li=1

uh(i, hi). (10)

Note that, in contrast to (7), the parameters of the same selection h appear on both sides
of the estimate. Let us call the pair (i, hi) inconsistent with h if there exists a neighbor
(i′, k) such that uh(i′, k) < uh(i, hi). If a selection h possesses an inconsistency and some
or all of them are improved with result hnew then (10) holds with strict inequality and
Proposition 2.4 assures us that hnew improves Criterion (6). It is possible to improve one
or several inconsistencies at a time. Consequently, we formulate two more reduction steps.
Like the local reduction step, the first one looks for a better neighbor.

The single-point reduction step
// Input: A selection h;
// Output: A selection hnew with larger Criterion (6) or the response “stop.”

(i) Compute the estimate �(h) (using update formulae);
(ii) search for a neighbor h′ of h defined by a regular object i and a variant (j, k) (see

Section 2.3) such that uh(j, k) < uh(i, hi) (e.g. the first occurrence or uh(j, k) −
uh(i, hi) minimum and < 0);

(iii) if there are such a variant then return hnew = h′;
else “stop.”

The other extreme is to remove all inconsistencies at a time. This means minimizing the
sum ∑

i

uh(i, ki) (11)

over all selections k = (ki). Summation runs over all objects i regular w.r.t. the selection
k. In algorithmic terms, the corresponding reduction step reads as follows.

The multi-point reduction step
// Input: A selection h;
// Output: A selection hnew with larger Criterion (6) or the response “stop.”

(i) Compute the estimate �(h);
(ii) for each object i ∈ F2, determine an element hnew,i ∈ argmink∈1..bi

uh(i, k);
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(iii) determine the r objects i with minimum values uh(i, hnew,i) and call the corresponding
selection hnew;

(iv) if (11) has improved with k = hnew then return hnew;
else “stop.”

Now, starting from an initial selection h(0) and iterating reduction steps, we obtain a se-
quence (h(t))t �0 of selections such that

∑
i uh(t) (i, h

(t)
i ) decreases; by Proposition 2.4(a),

Criterion (6) increases. Since the number of selections is finite, the criterion must reach
equality after a finite number of steps and Proposition 2.4(b) shows that at latest then,
maybe earlier, the signal “stop” will appear. Let this happen in step N + 1,∑

i

uh(N) (i, h
(N+1)
i ) =

∑
i

uh(N) (i, h
(N)
i ). (12)

The selection h(N) is one approximation to the optimal solution. It is “self-consistent” in
the sense that (8) and (10) with h = h(N) cannot hold with strict inequality. It is also a
simple selector [29,30] for all regular objects i selected w.r.t. the estimated parameters.

The appearance of the stop signal in the single- and multi-point reduction steps does
not mean that a local maximum w.r.t. the selection graph is reached. If h(N+1) �= h(N),
Proposition 2.4 does, of course, not affirm ch(N+1)f�(h(N+1))(xh(N+1) ) = ch(N)f�(h(N))(xh(N) ).
As indicated above, we may well have ch(N+1)f�(h(N+1))(xh(N+1) ) > ch(N)f�(h(N))(xh(N) ), i.e.,

a local reduction step might improve the criterion. In other words, if h(N+1) is not unique
then selections equivalent w.r.t. the weights (9) may differ in the Criterion (6) and we might
try to continue the iteration. 2 However, this option is not taken into account since, in the
case of continuous distributions, this case has probability zero and since it would require
computation of the criterion as soon as the stop signal has appeared; this does not harmonize
with the philosophy of the algorithms designed in the present Section 2.5.

2.6. Overall algorithms and randomization

(a) The reduction steps discussed so far may, and often will, get stuck in some non-
optimal selection. A simple example with of a local, non-global optimum is this: let d = 1,
r = n = 2, b1 = b2 = 2, x1 = (−1, 3), x2 = (0, 5). Here, besides the global solution h =
(1, 1), the selection h′ = (2, 2) is a local maximum at a much lower level. Therefore, some
optimization method that overcomes local maxima must be employed. It turns out that, in the
present case, the application of multistart optimization to the foregoing iterative reduction
steps is sufficient; the limit selection with the best criterion is the proposed approximation.

(b) The reduction steps proposed so far are greedy in the sense that they iterate a certain
move that optimally exploits but local information. This move may be shortsighted since it
cannot take into account later developments. It is well known that, while greedy algorithms
serve as a basis for optimization also in the presence of hard problems, their convergence

2 An example of non-uniqueness is the following: let the regular population be Gaussian, d = 2, r = n = 4,

bi = 1 for i �= 4, b4 = 2, and let x1,1 = (1, 0), x2,1 = (−1, 0), x3,1 = (0, −1), x4,1 = (0, 1), x4,2 =
√

2
2 (1, 1).

Furthermore, let q4,1 = q4,2. There are two selections; start with h
(0)
4 = 1. Simple computations show that both

selections are possible outputs of the reduction step with input h(0) and that the other has a larger Criterion (6).
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is usually too slow in these cases. More efficient procedures for attaining low values add a
chaotic component that allows them to violate greediness. One way of accelerating the con-
vergence is randomization. Nowadays standard methods are the Metropolis algorithm [20]
and Gibbs sampling [6]. Both are theoretically well established. The former has the draw-
back of being rather sensitive to the choice of the “temperature” parameter, a positive real
number. In many cases, there is a best value that depends on the instance. It seems that there
is no practicable rule, let alone an applicable theory, how to find it and the value is usually
determined by trial and error. We noticed that the local algorithm combined with Metropolis
and multistart yields good results. Another way of introducing a chaotic component is to
just omit the current object when the parameters are updated in the single-point reduction
step. This modification, too, substantially accelerates the multistart method. It is akin to
Gibbs sampling.

(c) The number r0 of regular elements contained in the data set and, hence, a reasonable
input parameter r may be chosen by a test procedure. One performs the estimation for
sufficiently many values of r �n. The number of regular objects, r0, is chosen by validation
with a goodness-of-fit test that compares the selection found with the estimated distribution,
for instance �2 in the normal case, cf. Gallegos and Ritter [4]. We recommend the largest
r0 so that there is sufficient fit. If there is no r0 that fits well enough then the distributional
assumption on the regular population is questionable.

2.7. Using the integrated likelihood

Instead of estimating the combinatorial structure and the parameter � simultaneously
one may first integrate the likelihood w.r.t. a suitable prior measure � on the parame-
ter space �. It remains to maximize the integrated likelihood ch

∫
� fl,�(xh)� (d�) w.r.t.

all selections h. This may be performed by local search combined with multistart and/or
Metropolis as above. After the selection has been determined, the parameters may be di-
rectly estimated from the regular variants by classical methods. In some cases, we recover
the m.l.e. 2.2 in others something else, see the special distributions treated in the following
section.

3. Special regular populations

In order to concretize the foregoing theory, it is interesting to discuss it with respect to
standard models such as Gaussian families, elliptical symmetries, exponential families, and
coin tossing. The symbol R denotes the set of real numbers, Rd denotes d-dimensional
Euclidean space, and Id denotes the d × d identity matrix. We denote the trace and de-
terminant of a square matrix A by tr A and det A, respectively. The symbol Nd

m,V or
just Nm,V stands for the d-variate normal distribution with mean vector m and covari-
ance matrix V and also for its Lebesgue density. We introduce also the
notation

m1(h) = 1

r

∑
i

xi,hi
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and

V1(h) = 1

r

∑
i

(xi,hi
− m1(h))(xi,hi

− m1(h))T

for the sample mean vector and sample covariance matrix, respectively, of the cross section
xh. As before, summation runs over all objects i regular w.r.t. the selection h.

3.1. The full Gaussian model Nd
m1,V1

Here, (GP1) means that, for all selections h, the set {xi,hi
| li = 1} ⊆ Rd contains

at least d + 1 elements in general position. As parameter �, the pair consisting of the
expectation m1 and the covariance matrix V1 is appropriate. Moreover, the theory of normal
parameter estimation shows that, up to a constant factor, max(m1,V1)

∏
i Nd

m1,V1
(xi,hi

) equals

det V1(h)− r
2 with unique optimal estimates m1(h) and V1(h). Thus, Criterion (6) becomes

maxh ch det V1(h)− r
2 . By the properties of the determinant, the optimum selection h� is

invariant with respect to affine transformations and the estimates m1(h�) and V1(h�) are
equivariant. In the absence of irregular variants, but presence of outliers, the present criterion
becomes Rousseeuw’s [35] minimum covariance determinant, MCD, and the multi-point
reduction step reduces to the alternating algorithm proposed in [36,22].

Update formulae for m1(h) and V1(h)−1 useful in the first parts of the local and single-
point reduction steps are presented in Appendix A. We have

uh(i, k) = consth − ln biqi,k + 1
2 (xi,k − m1(h))T V1(h)−1(xi,k − m1(h))

with a constant that depends only on V1(h). For Part (ii) of the single-point reduction step,
the formula

uh(i, k) − uh(i, hi)

= ln
qi,hi

qi,k

+ 1

2

(
(xi,k − m1(h))T V1(h)−1(xi,k − m1(h))

− (xi,hi
− m1(h))T V1(h)−1(xi,hi

− m1(h))
)

= ln
qi,hi

qi,k

+ 1

2
(xi,k − xi,hi

)T V1(h)−1(xi,k + xi,hi
− 2m1(h))

is useful.
We next determine the Bayesian estimator of the selection w.r.t. Jeffreys’ invariant prior

measure � (dm1, dV1) = dm1 det V
− d+2

2
1 dV1. According to (5),

fL,T ,X(l, �n
1, x) = Cch

∫
fm1,V1(xh)� (dm1, dV1).

If W denotes the scatter matrix of z1, . . . , zr ∈ Rd , standard computations using Steiner’s
formula first show

fm1,V1(z
r
1) = r− d

2 det(2�V1)
− r

2 + 1
2 exp

{
− 1

2 tr V −1
1 W

}
Nd

0,V1/r (z̄ − m1).
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Integration w.r.t. m1 removes the last factor so that, after multiplication with det V
− d+2

2
1

and up to a constant factor, the Lebesgue density of an inverted Wishart distribution with
parameter r remains. Integration w.r.t. V1 thus shows that the Bayesian estimator coincides
with the weighted m.l.e. argmaxh ch det V1(h)−r/2 derived from Theorem 2.2(a) for the
present statistical model.

A simple example with two variants and Zi ∼ N0,1 ⊗ UNI[−10,10] convinces the reader
that the m.l.e. of the parameters of the regular population is not consistent. However, the
inconsistency is controlled and vanishes gradually as the population of irregular variants is
more and more spread in space and the actual number of outliers does not exceed n − r .
These are the contents of our next theorem which applies to the location model (A) stated
at the beginning of Section 2.

3.2 Theorem. Assume that regular objects i are defined by Zi,1 ∼ Nd
m1,V1

and Zi,̂1 =
�1Ui + �i with some centered, square integrable, Lebesgue continuous random vector
Ui : � → R(bi−1)d and that irregular objects i are defined by Zi = �0Ui + �i with
analogous random vectors Ui : � → Rbid .

(a) Let 3d +1�r �n and let Zi , 1� i�n, be an independent array of regular and irregular
objects. If it contains at least r regular objects then, P-a.s., the m.l. selector H�(n) w.r.t.
the general normal model selects r regular objects and their first variants as regular if
�1, �0 ��(n, 	) are large enough.

(b) Let Zi , i�1, be an independent sequence of regular and irregular objects. If the number
r0(n) of regular objects among 1..n tends to infinity as n → ∞ and if the parameter
r = r0(n) is chosen for estimation with the objects 1..n for all n then, P-a.s.,

lim
n→∞ lim

�1,�0→∞ m1(H�(n)) = m1 and lim
n→∞ lim

�1,�0→∞ V1(H�(n)) = V1.

(c) If Zi , i�1, is an independent sequence of regular objects and the estimation is under-
stood without outliers (that is, r = n) then the limits in (b) are again valid.

The reader may wonder why we require r = r0(n) instead of r < r0(n) in part (b). The
hypothesis r = r0(n) there guarantees that the supports of the selections form an increasing
sequence as n grows. Therefore, the strong law may be applied to their union. In the case
r < r0(n), the supports would be random r-element subsets of 1..n.

Theorem 3.2 may be generalized by replacing the parameter �1 with d by d diagonal
matrices Dh with diagonal entries �1,h,1, . . . , �1,h,d , h ∈ 2..b. Put

Zi,h = DhUi,h + �i,h, h ∈ 2..bi .

The theorem remains true if we require r �(b + 2)d + 1 and that the diagonal elements of
each matrix converge to infinity with their quotients bounded.

3.3. The spherical Gaussian model Nd
m1,v1Id

We next assume that the regular variants belong to a normal population with unknown
mean vector m1 ∈ Rd and spherical covariance matrix v1Id of unknown size v1 (> 0).
Here, (GP1) is satisfied if and only if any cross section of r elements in the data set con-
tains at least two different variants. As parameter �, the pair consisting of the expectation
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m1 ∈ Rd and the size v1 of the covariance matrix is appropriate. Moreover, the theory of nor-
mal parameter estimation shows that, up to a constant factor, max(m1,v1)

∏
i Nd

m1,v1Id
(xi,hi

)

equals tr V1(h)− rd
2 with unique optimal parameters m1(h) and v1(h) = tr V1(h)/d. Thus,

Criterion (6) becomes ch tr V1(h)− rd
2 , here. An update formula for m1(h) useful in the first

parts of the local and single-point reduction steps appears in Appendix A. From (14), it also
follows

tr V1(h′) − tr V1(h) = 1

r

(
‖xj,k‖2 − ‖xi,hi

‖2
)

−
(
‖m1(h′)‖2 − ‖m1(h)‖2

)
= 1

r

(
‖xj,k‖2 − ‖xi,hi

‖2
)

−
(

2m1(h) + 1

r
(xj,k − xi,hi

),
1

r
(xj,k − xi,hi

)

)
,

where h′ is the neighbor of h defined by inserting k �= hi as the regular variant of the regular
object i = j or by declaring the outlier j as regular with regular variant k and i as an outlier.
This is an efficient way of updating the trace tr V1(h) since the quantity 1

r
(xj,k − xi,hi

) is
the increment of the mean already computed and the norms may be computed at the very
beginning and stored. The computational cost is about 3d elementary operations. We also
have

uh(i, k) = consth − ln biqi,k + d

2 tr V1(h)
‖xi,k − m1(h)‖2

with a constant that depends only on v1(h). The expression

uh(i, k) − uh(i, hi)

= ln
qi,hi

qi,k

+ d

2 tr V1(h)

[
‖xi,k − m1(h)‖2 − ‖xi,hi

− m1(h)‖2
]

= ln
qi,hi

qi,k

+ d

2 tr V1(h)
(xi,k − xi,hi

)T (xi,k + xi,hi
− 2m1(h))

for the weight difference is useful in Part (ii) of the single-point reduction step.
As in the full Gaussian model, the Bayesian estimator of the selection w.r.t. Jeffreys’

invariant prior measure

� (dm1, dv1) = dm1v
− d

2 −1
1 dv1

coincides with the weighted m.l.e. derived from Theorem 2.2. It reads here

argmaxh ch tr V1(h)−rd/2.

The following theorem is the analogue of Theorem 3.2 for the spherical normal model.

3.4 Theorem. Theorem 3.2 remains valid if v1Id is substituted for V1 and estimation is
w.r.t. the spherical normal model. In part (a), r �4 is sufficient.

Roughly speaking, Theorems 3.2(c) and 3.4(c) state that, if n is kept fixed and large
enough, then the two estimates are close to the correct parameters if the irregular popula-
tions are sufficiently diffuse in space, the degree depending on n. The following theorem



1238 M. Teresa Gallegos, G. Ritter / Journal of Multivariate Analysis 97 (2006) 1221–1250

differs from these statements in that the order of the two limits is reversed. It states that, if
the diffusion of the irregular population is kept fixed at a sufficiently high level, then the
estimates are close to the correct values for all sufficiently large n. We restrict matters to
data sets without outliers, r = n, here.

3.5 Theorem. Let (Zi)i �1 be an independent sequence of regular objects satisfying (SVr),
and assume that the sequence (bi)i of numbers of variants is generated by tossing a (pos-
sibly) biased, b-sided coin distributed according to (s1, . . . , sb). Assume that Zi,1, i�1, is
d-dimensional standard normal and that all subsequences (Zi)bi=j , j ∈ 1..b, are identically
distributed. Then, for all ε > 0, there exists 
 > 0 such that

lim sup
n

‖m1(H∗(n))‖�ε and 1 − ε� lim inf
n

v1(H∗(n))� lim sup
n

v1(H∗(n))�1,

P -a.s.,

P-a.s., if fZî1
[zî1 | Zi1 = zi1]�
 for all z ∈ Rbid .

3.6. Elliptical symmetry

The tail of the normal distribution is too light to fit some real-world distributions occur-
ring in practical applications; cf., e.g., [31]. A remedy is the use of elliptically symmetric
distributions. They are specified by three quantities: a radial function � : R+ → R+
describing the tail decay, usually strictly decreasing, the mean vector m1, and the covari-
ance matrix V1. The radial function is normalized and assumed to be given. The density is

fZi,1(z) = det V −1/2
1 �

(√
(z − m1)T V −1

1 (z − m1)

)
.

Three cases may be distinguished: − ln � convex, linear, or concave. In the normal case,
− ln �(s) = s2/2 + const is convex, in the exponential case, − ln �(s) = �s + const is
linear, and for Pearson’s type-VII family, e.g., − ln �(s) = �

2 ln(1 + s2/
) is concave. The
last-mentioned family has the heaviest tail.

For the parameter �, we choose again the pair (m1, V1) as in the full normal case.
Maronna [19] showed that the ML-estimators of these two parameters exist under the
same assumption made for the normal family. In general, its computation is much more
demanding and requires a fixed-point algorithm. Since the computational cost of MLm1 and
MLV1 cannot be neglected, the naive estimators m1(h) and V1(h), which result from the
method of moments, may be employed as a heuristic, instead.

As in the normal case, the optimum selection h� is invariant with respect to affine trans-
formations and the estimates of m1 and V1 are equivariant. Finally, we have

uh(i, k) = consth − ln biqi,k

− ln �
(√

(xi,k − MLm1(xh))T ML
V −1

1
(xh)(xi,k − MLm1(xh))

)
.

with a constant that depends only on V1(h).

3.7. Exponential families

A Lebesgue-continuous exponential family with natural parameter � ∈ � ⊆ Rq is speci-
fied by the Lebesgue densities

f�(z) = c−1
� e−�·S(z),
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where S : Rd → Rq is the generating statistic of the family and c� = ∫
Rd e−�·S(z) dz

is the partition function, the normalizing constant. For details, we refer the reader to the
monography [2].

All members f� of an exponential family are measure-theoretically equivalent. Let R be
their joint support and assume that the exponential family has full rank. The closed convex
hull C = conv R of R plays a key role. The ML-estimate of � for z exists if and only if S(z)

lies in its interior. Therefore, (GP1) is satisfied if and only if, for any selection h, the cross
section xh belongs to this interior. If, moreover, the cumulant transform ln c(�) is steep then
the m.l.e. �(h) is determined by the moment equation E�(h)S = S(xh). Moreover, we have

uh(i, k) = consth − ln biqi,k + �(h)S(xi,k)

with a constant that depends only on �(h).
The Bayesian estimator of the selection h w.r.t. the conjugate prior density with parameter

s ∈ Rq , fs(�) = c−1
� e−�·s , is given by the criterion

argmaxh ch

∫
�

c−2
� fs+S(xh)(�) d�.

3.8. A coin-tossing model

We next consider a discrete model with sample space E = (1.. s)d . The regular variants
are generated by tossing d independent, possibly biased, s-sided coins. Here, condition
(GP1) is always satisfied. The parameter � is an s × d table p of real numbers py,m �0
whose columns sum to 1. Each variant x ∈ E generates a path in this table that visits each
column exactly once. Its probability is the product of the entries along the path,

fp(x) =
d∏

m=1

pxm,m.

Given a selection h, let ny,m(h) = #{i | xi,hi ,m=y} be the frequency of the outcome y
at entry m taken over the r selected variants. The frequencies sum up to rd. The m.l.e. of
the table consists of the relative frequencies ny,m(h)/r , y ∈ 1..s, m ∈ 1..d, and, up to a
multiplicative constant, the maximum value of the log-likelihood function, maxp ln fp(xh),
equals their negative entropy. Thus, the ML-estimate of h is the selection that minimizes
this entropy. The quantities uh(i, k) become

uh(i, k) = − ln biqi,k −
∑
m

ln
nxi,k,m,m(h)

r
.

Reasonable methods for optimizing the likelihood are proposed in 2.6(b), in particular
multistart iteration of local reduction steps combined with Metropolis. It means replacing
in uh the relative frequencies ny,m/r with n′

y,m/(r −1), where the prime indicates omission
of the “current” line. Note that the probability estimates are now based on r−1 observations.
It becomes even more efficient if, instead of the maximum likelihood, Laplace’s Law of
Succession is used for estimating the probabilities py,m. Then the numbers (n′

y,m + 1)/
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(r − 1 + s) replace the relative frequencies n′
y,m/(r − 1). In the extreme case of a data set

consisting of one line one obtains the unbiased prior 1/s.
Let us compare the criterion obtained in Theorem 2.2 with the MAP-criterion based on

the integrated likelihood. In view of (5), we have with the notation above

fp(xh) =
n∏

i=1

d∏
m=1

pxi,hi ,m
,m =

d∏
m=1

∏
y∈1..s

p
ny,m(h)
y,m . (13)

Geometrically, the parameter space is the d-fold product of (s − 1)-dimensional unit sim-
plices. It is reasonable to endow it with the uniform prior. Up to the factor s!d , the integral
of (13) w.r.t. this prior equals

∫
fp(xh) dp ∝

d∏
m=1

∫ s∏
y=1

p
ny,m(h)
y,m dpm.

Integration on the right-hand side extends over the (s − 1)-dimensional unit simplex {pm |∑
y py,m �1, py,m �0}. Iterated integration of the beta function w.r.t. py,m shows that

these integrals equal 1
(r+s)!

∏s
y=1 ny,m(h)!. Hence, the integrated likelihood is

fT,X(�n
1, x) ∝ ch

∫
fp(xh) dp ∝ ch

d∏
m=1

s∏
y=1

ny,m(h)!.

This criterion differs from Theorem 2.2 which, in the present case, is the exponential of the
negative entropy.

4. Two studies

4.1. A simulation study with normal data

This simulation study applies the multi-point algorithm to four simulated five-
dimensional data sets, each consisting of 500 objects with up to four variants. The regular
variants are drawn from N5

m1,I5
with m1 = 0, 2e1 and the irregular variants are determin-

istic and defined by xi,h,k =  sin(ihk), i ∈ 1..500, h ∈ 1..bi , k ∈ 1..5, and  = 3, 5. In
all cases, the best target value is reached in one iteration of three or four reduction steps.
Our implementation in C++ requires 0.01 s on a 1 GHz processor. No more than 10% of
the estimated regular variants were actually generated as irregular ones; they happened to
lie close to the center of the regular population. The parameters of the estimated regular
variants are shown in Table 2.

4.2. A problem from functional genetics

We consider the well-known problem of motif discovery in genetics. It has received
much attention since the genomes of a number of species, among them Homo sapiens,
have become known in recent years. The genomes of pro- and eukaryotic species are DNA
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Table 2
Means and scatter matrices of the optimal solutions attained for the test runs described in Section 4.1

m1 = [0 0 0 0 0 ] m1 = [2 0 0 0 0 ]

[0.061 0.014 −0.013 0.062 −0.046] [1.977 0.007 −0.013 0.050 −0.043]

 = 3

⎡
⎢⎢⎢⎣

0.884
0.023 0.942
0.087 0.007 0.986

−0.043 0.042 −0.047 0.955
0.037 −0.013 0.075 −0.019 0.992

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1.074
0.020 0.970
0.058 0.002 1.001

−0.051 0.035 −0.048 0.946
0.014 −0.013 0.038 −0.020 0.953

⎤
⎥⎥⎥⎦

[0.047 −0.002 −0.014 0.046 −0.047] [2.000 0.002 −0.013 0.042 −0.047]

 = 5

⎡
⎢⎢⎢⎣

0.945
0.031 0.979
0.067 0.005 0.998

−0.065 0.032 −0.049 0.959
0.035 −0.002 0.046 −0.024 0.970

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1.040
0.025 0.992
0.056 0.007 1.015

−0.046 0.021 −0.038 0.965
0.022 0.002 0.035 −0.013 0.963

⎤
⎥⎥⎥⎦

strings made up of many copies of the purine-pyrimidine base pairs (adenine, thymine) (a,t)
and (guanine, cytosine) (g,c). They contain the genes as special substrings. The genes hold
the coding information for the production of specific proteins. Protein synthesis involves
an intermediate step, the transcription of DNA into “messenger” RNA. It is catalyzed by
an enzyme, the RNA polymerase. The spaces between genes are believed to have mainly
regulatory function. The regions preceding the genes, the promoters, contain small specific
gene precursor segments that serve as binding sites for special proteins, transcription factors
that enhance or inhibit transcription and for the RNA polymerases. Among these segments
are the classical boxes, for instance, the Pribnow box TATAAT in prokaryotes located 10
base pairs upstream of the initiation point of transcription and the perfect palindrome 3

TATA in eukaryotes. In few instances, these motifs are fully reproduced, in the others at
least to a high degree. The monography [7] offers a good account of the genetic background.

The binding of a biomolecule and a DNA segment is a complex process governed by
the 3D molecular shapes, by van der Waals, electrostatic, and hydrophobic forces and by
hydrogen bonds. It is surprising that the binding sites can be captured to a high degree
by simple statistical models. About 20 years ago, a motif in the genome of Escherichia
coli aroused the interest of some statisticians and computational biologists: the binding
sites for the cyclic AMP receptor protein (CRP) in the promoters of 18 genes of E. coli,
[38]. Experimental methods have identified 24 CRP-binding sites of length d = 22, all
approximate representatives of their consensus pattern ***tgtga******tcaca***, a perfect
palindrome, see Table 3. The central segment of length 16 contains two highly conserved
regions of length five, each. The asterisks indicate positions of little sequence preference.
Although these sites cannot be discerned by the human eye, it is possible to characterize
and locate them by statistical and computational means.

3 A genetic pattern is called a palindrome if its reverse equals its complement defined by swapping a ↔ t,
c ↔ g.
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Table 4
Table of estimated probabilities of the central 16 bases for the ML- and the MAP-estimator with integrated
likelihood

a 0.00 0.00 0.06 0.11 0.89 0.33 0.33 0.06 0.39 0.06 0.28 0.00 0.06 0.78 0.06 0.78
c 0.11 0.11 0.06 0.06 0.11 0.28 0.22 0.22 0.00 0.22 0.22 0.00 0.83 0.00 0.83 0.11
g 0.00 0.72 0.00 0.78 0.00 0.17 0.28 0.33 0.22 0.56 0.17 0.22 0.00 0.22 0.06 0.06
t 0.89 0.17 0.89 0.06 0.00 0.22 0.17 0.39 0.39 0.17 0.33 0.78 0.11 0.00 0.06 0.06

As indicated in the Introduction, this problem may be viewed in the light of variant
selection. We estimate the starting positions of the central segments of length 16 of the
binding sites. It is sufficient to extract all 90 substrings of length 16 from each of the
18 strings as variants. We use the standard model of inhomogeneous, independent, biased
four-sided coins discussed in Section 3.8 in a slightly more general context for the regular
variants. Since there is no prior information on the positions of the binding sites, a natural
choice for the priors qi is uniformity. Each of the algorithms of Sections 2.3 and 2.5 may
be applied in order to estimate the 4 by 16 table of parameters⎛

⎜⎜⎝
pa,1 · · · pa,16
pc,1 · · · pc,16
pg,1 · · · pg,16
pt,1 · · · pt,16.

⎞
⎟⎟⎠ .

Each column sums to 1 and corresponds to a coin and an entry in the motif. Our model
actually finds those substrings as regular variants that produce the minimum empirical
entropy. A similar model was already used in this context in [38]. However, our algorithms
are different. They, too, readily find 16 of the experimentally determined binding sites in
18 rows, missing two and, of course, the double occurrences. Note that our algorithms are
also applicable to strings of different lengths.

The estimated regular variants w.r.t. ML and the MAP-criterion with the integrated like-
lihood coincide. Hence, the same is true for the probability tables. The common table is
Table 4. The maximum entries in each column yield the correct consensus sequence. Both
estimators erroneously determine the two patterns starting from base pairs 54 and 23 in
lines 7 and 8, respectively, as binding sites. Dedicated methods based on finer statistical
models that take into account also the background noise identify between 16 and all ob-
served binding sites. The authors of [11–13,16] propose Gibbs-sampling strategies, Bailey
and Elkan [1] design a clustering algorithm, and an overview is contained in [14].

After the table of parameters has been estimated, other occurrences of the motif can be
located as segments of high probability.
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Appendix A. General update formulae

We compile here some update formulae that are basic for the efficiency of the single-
point algorithms. Let x = (x1, . . . , xr ) be a data set and let xy = (x1, . . . , xr , y) be
obtained from x by attaching one more point y. It is well known and easily verified that the
update of the sample mean is m(xy) = m(x)+ 1

r+1 (y −m(x)) and that of the SSP matrix is

W(xy) = W(x)+ r+1
r

(y−m(xy))(y−m(xy))
T . Let h′ be the neighbor of h in the selection

graph, Section 2.3, defined by inserting k �= hi as the regular variant of the regular object
i = j or by declaring the outlier j as regular with regular variant k and i as an outlier. Two
applications of each of these formulae yield the updates of the sample mean and the sample
covariance matrix for the transition from h to a h′.

(a) Sample mean:

m1(h′) = m1(h) + 1

r
(xj,k − xi,hi

). (14)

(b) Sample covariance:
V1(h′) − V1(h)

= 1

r − 1
(xj,k − m1(h′))(xj,k − m1(h′))T

− 1

r − 1
(xi,hi

− m1(h))(xi,hi
− m1(h))T . (15)

(c) Inverse of sample covariance:
Let A be a regular d by d matrix, let b ∈ Rd , and let � ∈ R. According to [18], A.2.4(V),

if the inverse of (A + �bbT )−1 exists, then it is computed from A−1 and b in the following
way:

(A + �bbT )−1 = A−1 − 1
1

�
+ bT (A−1b)

(A−1b)(A−1b)T . (16)

The number of elementary operations (+,–,*,/) needed for (16) is 3 d2 + O(d). According
to (15), a double application of this identity yields an update formula for the inverse of
the new sample covariance matrix V1(h′). Therefore, the cost of computing V1(h′)−1 from
V1(h)−1 is 6 d2 + O(d).

(d) Determinant of sample covariance:
The update is obtained from (15) and (16) again by a double application of the identity

det(A + �bbT ) = (1 + �bT (A−1b)) det A.

There is essentially no additional computational cost after the inverse has been computed.

Appendix B. Proofs

Proof of Lemma 2.1. Regularity of Ti for a regular object i implies

P [Ti = �i | Li = 1] = qi,hi

(bi − 1)!
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for all �i such that �−1
i (1) = hi . On the other hand,

P [Ti = �i | Li = 0] = 1

bi ! .

By independence of the family (Ti)i given L and by the independence of the permutations
Ti and the L

î
’s given Li , we have

P [T = � | L = l] =
n∏

i=1

P [Ti = �i | L = l] =
n∏

i=1

P [Ti = �i | Li = li]

=
∏

i:li=1

qi,hi

(bi − 1)!
∏

i:li=0

1

bi ! = C ch. �

Proof of Theorem 2.2. Since there are only finitely many sequences h and by assumption
(GP1), we may apply the Principle of Dynamic Optimization to the weighted likelihood (5)
to write

max
l,h,�

chfl,�(xh) = max
l,h

ch max
�

fl,�(xh) = max
l,h

chfl,�(h)(xh). �

Proof of Proposition 2.4. The first inequality in the chain

chnewf�(hnew)(xhnew)�chnewf�(h)(xhnew)�chf�(h)(xh) (17)

follows from m.l. estimation f�(hnew)(xhnew)�f�(h)(xhnew) and the second is just inequal-
ity (8). Hence, Parts (a) and (b).

If there is equality in (a) then the first inequality in (17) is an equality. Hence, f�(hnew)

(xhnew) = f�(h)(xhnew) and the first part of Claim (c) follows from the uniqueness assump-
tion. If fML�(z)(z) = max� f�(z) depends only on ML�(z) then �(hnew) = �(h) implies
f�(hnew)(xhnew) = f�(h)(xh) and, hence, the remaining claim. �

Proof of Theorem 3.2. (a) Let r0 �r be the number of regular objects actually contained
in the data set of n elements. Without loss of generality, they are the first r0 objects. Let
h = (hi)li=1 be some fixed selection. Let P−1 := {i ∈ 1..r0 | li = 1, hi = 1}, P1 := {i ∈
1..r0 | li = 1, hi �= 1}, P0 := {i ∈ (r0 + 1)..n | li = 1}, a partition of the support of h.
If #P−1 > 0, let Z−1 be the random (sample) mean of all Zi,1 such that i ∈ P−1 and, if
#Pj > 0, j ∈ 0..1, let Zj , Uj and �j be the random (sample) mean of all Zi,hi

, Ui,hi
and

�i,hi
such that i ∈ Pj . Our proof is based on the identity

V1(h) = 1

r

1∑
j=−1

∑
i∈Pj

(Zi,hi
− Zj )(Zi,hi

− Zj )
T

+
∑

−1� j<k �1

#Pj

r

#Pk

r
(Zj − Zk)(Zj − Zk)

T ,

(
∑

∅ := 0) which follows from [4, LemmaA.3], applied to the partition {P−1, P1, P0} of the
support of h. In terms of the random vectors Zi,1 and Ui , 1� i�n, this
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equality reads

V1(h) = 1

r

∑
i∈P−1

(Zi,1 − Z−1)(Zi,1 − Z−1)
T

+1

r

1∑
j=0

∑
i∈Pj

[
�j (Ui,hi

− Uj) + �i,hi
− �j

][
�j (Ui,hi

− Uj) + �i,hi
− �j

]T

+#P−1

r

1∑
j=0

#Pj

r

(
Z−1 − �jUj − �j

)(
Z−1 − �jUj − �j

)T

+#P1

r

#P0

r

[
(�1U1 − �0U0) + (�1 − �0)

][
(�1U1 − �0U0) + (�1 − �0)

]T

.

With the abbreviation �̂i,hi
:= �i,hi

− �j , it implies the following two estimates valid for
j ∈ 0..1:

rV1(h) �
∑
i∈Pj

[
�j (Ui,hi

− Uj) + �̂i,hi

][
�j (Ui,hi

− Uj) + �̂i,hi

]T

� �j

⎡
⎣�j

∑
i∈Pj

(Ui,hi
− Uj)(Ui,hi

− Uj)
T

+
∑
i∈Pj

(
�̂i,hi

UT
i,hi

+ Ui,hi
�̂

T

i,hi

)⎤⎦ (18)

and

V1(h) � 1

r

∑
i∈P−1

(Zi,1 − Z−1)(Zi,1 − Z−1)
T

+#P−1#Pj

r2

(
Z−1 − �jUj − �j

)(
Z−1 − �jUj − �j

)T

. (19)

We need two important consequences of Lebesgue continuity and independence of the
random vectors Ui , 1� i�n. If j ∈ 0..1 is such that #Pj �d+1 then we have

∑
i∈Pj

(Ui,hi
−

Uj)(Ui,hi
− Uj)

T > 0, P-a.s. and, if #Pj �1, then Uj �= 0, P-a.s. These assertions are
also true for Zi,1 instead of Ui,hi

.
Now, assume that h does not have the desired property, that is, assume #P−1 < r . If

#P−1 �d then #Pj �d + 1 for j = 0 or j = 1 by the assumption r �3d + 1 and by the
pigeon hole principle. Due to the first consequence above, the first matrix on the right in
(18) converges to infinity as �j → ∞, P-a.s. Therefore, in this case, we have V1(h) → ∞
as �j → ∞, P-a.s. In the opposite case (#P−1 �d + 1), equality (19), P-a.s. regularity of
the random (sample) covariance matrix S−1 of all Zi,1 such that i ∈ P−1, and equality (16)
in [4] imply

det V1(h) � det

(
#P−1

r
S−1

)[
1 + #Pj

r

(
Z−1 − �jUh − �j

)T

×S−1
−1

(
Z−1 − �jUj − �j

)]
, P -a.s. (20)
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Now, by assumption, we have #Pj �1 for some j ∈ 0..1 and the second consequence above
implies Uj �= 0 P-a.s. Therefore, the (random) vector Y := Z−1 − �jUj − �j tends to
infinity P-a.s as �j → ∞. Furthermore, denoting the largest eigenvalue of S−1 by � > 0,
we have YT S−1

−1Y ��−1‖Y‖2 → ∞ and (20) → ∞ as �j → ∞, P-a.s. This completes our
proof since V1(1r ) is finite and det V1(1r ) < ∞, P-a.s., by square integrability of Zi,1.

The assumption r = r0(n) of part (b) guarantees that, at stage n, estimation of m1 and V1
is carried out with all regular objects up to n. Therefore, its proof is a standard application
of the strong law of large numbers. Part (c) follows from (b). �

A proof of Theorem 3.4 proceeds in the same way as that of Theorem 3.2 with the trace
replacing the determinant. For a proof of Theorem 3.5, we first state and prove three lemmas.

Lemma 1. If Y1 is d-dimensional standard normal and if  > 0 then the function

m �→ P [‖Y1 − m‖�] = PY1(B(m)), m ∈ Rd

decreases continuously and strictly to zero as ‖m‖ → ∞.

Proof. For d = 1, the claims follow from continuity, symmetry, and monotonicity of
the normal density function. The continuity being plain for all d, it remains to prove the
decreasing property for d �2. Let Y1 = (X, U), X d-1-dimensional, U scalar (both standard
normal and independent). By point symmetry, it is sufficient to compare m1, m2 ∈ Rd of
the form mk = (0, . . . , 0, m′

k), 0�m′
1 < m′

2. By independence of X and U, we have

P [‖(X, U) − (0, . . . , 0, m′
2)‖�] = P [‖X‖2 + |U − m′

2|2 �2]
=
∫ 2

0
P [|U − m′

2|2 �2 − t]P‖X‖2 (dt). (21)

Using the claim for d = 1, we may conclude

(21)<

∫ 2

0
P [|U−m′

1|2 �2−t]P‖X‖2 (dt)=P [‖(X, U)−(0, . . ., 0, m′
1)‖�]. �

Lemma 2. Let Y1 be d-dimensional standard normal. For any ε > 0, there exists 0 > 0
such that, for all m ∈ Rd , we have∫ 0

0
P [‖Y1 − m‖2 > ] d�d − ε.

Proof. The claim follows from Lemma 1 and∫ 0

0
P [‖Y1 − m‖2 > ] d�

∫ 0

0
P [‖Y1‖2 > ] d −→

0→∞ E‖Y1‖2 = d. �

Lemma 3. Let Y = (Y1, . . . , Yb) be a bd-dimensional random vector such that Y1 is d-
dimensional standard normal. For all ε > 0, there exists 
 > 0 such that, for all m ∈ Rd ,
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we have

E min
h

‖Yh − m‖2 �d − ε

if fŶ1
[ŷ1 | Y1 = y1]�
 for all y ∈ Rbd .

Proof. We first compute (∧ indicates the minimum of two numbers)

E

(
‖Y1 − m‖2 ∧ min

h�2
‖Yh − m‖2

)

=
∫ ∞

0
P [‖Y1 − m‖2 ∧ min

h�2
‖Yh − m‖2 > ] d

=
∫ ∞

0
E

(
1[‖Y1−m‖2>]P

[
min
h�2

‖Yh − m‖2 >  | Y1

])
d. (22)

Now, let 0 be as in Lemma 2 and choose 
 > 0 so small that P [minh�2 ‖Yh−m‖2 �0 |
Y1] < ε for all m ∈ Rd . It follows P [minh�2 ‖Yh − m‖2 � | Y1] < ε for all �0 and,
hence,

(22) �
∫ 0

0
E

(
1[‖Y1−m‖2 �]P

[
min
h�2

‖Yh − m‖2 >  | Y1

])
d

� (1 − ε)

∫ 0

0
P [‖Y1 − m‖2 > ] d�(1 − ε)(d − ε)

for all m ∈ Rd . �

Proof of Theorem 3.5. Given a selection h ∈ ∏∞
i=1 1..bi and a vector m ∈ Rd , let

v
(n)
1 (h, m) = 1

nd

n∑
i=1

‖Zi,hi
− m‖2,

the trace divided by d of the scatter matrix about m of the first n variants selected. Let
Gj = {i ∈ 1..n | bi = j} and let nj = #Gj . Plainly, limn nj /n = sj . If h∗ is optimal for
(Z1, . . . , Zn), we have for all m

v
(n)
1 (h∗, m) = 1

nd

n∑
i=1

‖Zi,h∗
i
− m‖2 =

b∑
j=1

nj

n

1

njd

∑
i∈Gj

‖Zi,h∗
i
− m‖2

=
b∑

j=1

nj

n

1

njd

∑
i∈Gj

min
h

‖Zi,h − m‖2

−→
n→∞

1

d

b∑
j=1

sjE min
h

‖Zi,h − m‖2 (23)

P-a.s. by the strong law. According to Lemma 3, there exists 
 > 0 s.th. the right side is at
least 1 − ε for all m ∈ Rd if the conditional density fZî1

[zî1 | Zi1 = zi1] is less than 
.
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Since v
(n)
1 (H∗(n)) = minm v

(n)
1 (h, m), we have shown the lower estimate in the claim on

the variance. The upper estimate follows from lim supn v1(H∗(n))� limn v1(1n) = 1.
The claim on the mean value follows from the result just proved and Steiner’s formula.

Indeed, from (23) applied with m = 0, we first infer

d v
(n)
1 (h∗, 0) −→

n→∞

b∑
j=1

sjE min
h

‖Zi,h‖2 �E‖Zi,1‖2 = d

and conclude

‖m1(H∗(n))‖2 = 1

n

n∑
i=1

‖Zi,h∗
i
‖2 − 1

n

n∑
i=1

‖Zi,h∗
i
− m1(H∗(n))‖2

= dv
(n)
1 (h∗, 0) − dv1(H∗(n))�d + ε − (d − ε) = 2ε

if n is large enough. �
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