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§1. Introduction

(1.1) History. The investigations in this paper are based on a celebrated result proved independently, and
published almost simultaneously, by Orlicz[10], Paley [11], and Sidon [16] in 1932, viz.: if (w(n))∞n=−∞ is
a sequence of complex numbers such that

∞∑

n=−∞

|w(n)φ̂(n)| <∞

for every continuous function φ on the line with period 2π, then

∞∑

n=−∞

|w(n)|2 <∞.

This is perhaps the final word on how large overall the Fourier coefficients of continuous periodic functions
can be. (See the remarks in Paley [11] on this point.) Helgason [5], Theorem 2, generalized the Orlicz–
Paley–Sidon theorem to all compact groups, Abelian and non–Abelian. An independent treatment of
the compact Abelian case appears in Edwards [3]. Hewitt and Ritter have given a slightly more general
theorem for systems of functions in [6], §4.

(1.2) The Present Problem. It is natural to ask, and is for certain applications (see §7) useful to know,
what the analogue of the Orlicz–Paley–Sidon theorem is for arbitrary locally compact Abelian groups.
On the real line, for example, what are the measurable functions w such that

∫ ∞

−∞

|w(y)φ̂(y)|dy <∞

for all continuous functions φ on the line with compact supports? We will answer this question for all
locally compact Abelian groups and along with it some related ones.

(1.3) Notation and Terminology. All notation and terminology not explained here are as in [7]. The
symbols N, Z, R, C, and T denote respectively the nonnegative integers, the integers, the real numbers,
the complex numbers, and the interval [−π, π] (with addition modulo 2π and the topology identifying
−π and π). The symbol G denotes an arbitrary locally compact Abelian group. The character group of
G will be denoted by X. We will constantly use the structure theorem for G and X (see e.g. [7], Vol. I,
Theorems (24.29) and (24.30)). That is, G has the form Ra ×H , where a is a nonnegative integer and
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where H is a locally compact Abelian group containing a compact open subgroup, say J . The group J
may or may not be unique. In any case, we pick one such subgroup J of H and fix it once and for all.

Write Y for the character group of H , A for the annihilator of J in Y, and Z for the (discrete) character
group of J . The character group X has the form Ra × Y, every element of X being a function

(x, t) → exp
(
i
( a∑

j=1

yjxj

))
χ(t) = exp(i〈y,x〉)χ(t). (1)

Here x = (x1, x2, . . . , xa) is a generic element of Ra, t is a generic element of H , y is a fixed element of
Ra, and χ is a fixed element of Y. The annihilator A is a compact open subgroup of Y, and the group Z

is isomorphic with the quotient group Y/A.

We take as Haar measure λ on G = Ra ×H the product of a–dimensional Lebesgue measure on Ra

and the Haar measure on H that assigns measure 1 to the compact open subgroup J . We take as Haar
measure θ on X = Ra × Y the product of a–dimensional Lebesgue measure on Ra and the Haar measure
on Y that assigns measure 1 to the compact open subgroup A. For a function f in L1(G), we define the

Fourier transform f̂ of f as the function on X

(y, χ) → f̂(y, χ) =

∫

H

∫

Ra

exp(−i〈y,x〉)χ(t)f(x, t) dxdt (2)

=

∫

G

exp(−i〈y,x〉)χ(t)f(x, t) dλ(x, t).

The symbol γ will denote a positive constant, whose exact value is unimportant and which may vary
from one assertion to another.

(1.4) Definition. For a set F(G) of complex–valued functions on G, let Fk(G) denote the set of func-
tions in F(G) that vanish λ–almost everywhere outside of compact sets. We shall be mainly concerned
with Ck(G), which is the space of continuous functions on G with compact supports, and with Lp,k(G)
(1 ≤ p < ∞). Where no confusion seems possible, we will write Ck and Lp,k for Ck(G) and Lp,k(G),
respectively. For a fixed compact subset F of G, we write F(F ) for the set of all functions in F(G)
that vanish λ–almost everywhere outside of F . Thus C(F ) is the set of all continuous complex–valued
functions on G with support contained in F .

(1.5) Definition. Let A be a subset of L1(G). The set of all complex–valued, θ–measurable functions w

on X such that wφ̂ belongs to L1(X) for all φ in A will be denoted by M(A). Functions in M(A) will be
called multipliers of A (strictly speaking they are Fourier multipliers). In the terminology of [7], Vol. II,

(35.1), these functions are (Â,L1(X))–multipliers.

(1.6) Remark. The spaces M(Ck) and M(Lp,k) (2 ≤ p < ∞) will be completely identified in this paper.
They turn out to be function spaces that have been studied by a number of authors over the past two
decades. They also bear a family resemblance to Wiener’s well–known space M1(R) (see for example [7],
Vol. II, (39.33)). A discussion of previous work is given in (1.16) infra.

(1.7) Definition. The following decomposition of the character group X will be used. For every sequence
n = (n1, n2, . . . , na) in Za, let Cn be the cube in Ra consisting of all y such that nj ≤ yj ≤ nj + 1 for all
j = 1, 2, . . . , a. For each coset χA of A in the group Y, we consider the “block”

Cn × (χA)

in X. Distinct blocks intersect in sets of θ–measure zero, their union is X, and each has θ–measure one.
We index the family B of all blocks in an arbitrary fashion, writing a block as Bι, so that the family B is
{Bι : ι ∈ I} for some index class I . Plainly I is countable if and only if X is σ–compact, i.e., if and only
if G is metrizable ([7], Vol. I, (24.48)). We make the following conventions. If G is discrete, then X is
compact and we have only one block, X itself. If G is nondiscrete and contains a compact open subgroup,
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then G = H , there are no cubes Cn, and the blocks that comprise the family B are the cosets of A. If
G contains no compact open subgroup, then the integer a is positive, and cubes Cn appear. If G = Ra,
then H and Y are one–element groups, and the family B consists exactly of the cubes Cn. We can now
make our basic definition.

(1.8) Definition. Let p be a real number greater than or equal to 1. Let Sp(X) be the set of all θ–
measurable, complex–valued functions w on X for which

‖w‖p
[p] :=

∑

ι∈I

(∫

Bι

|w| dθ
)p

<∞. (1)

It is trivial that S1(X) is L1(X). For the relations between the spaces Sp(X) and Lp(X) in general, see
(6.3) infra.

(1.9) Remark. For 1 ≤ p < ∞, the set Sp(X) is a Banach space with pointwise linear operations and
with the norm ‖w‖[p].

(1.10) Definition. For 1 < p < ∞, let Tp(X) be the set of all θ–measurable, complex–valued functions v
on X such that

‖v‖p
(p) :=

∑

ι∈I

[ess sup{|v(y, χ)| : (y, χ) ∈ Bι}]
p <∞. (1)

(1.11) Remark. The set Tp(X) is a Banach space under pointwise linear operations and the norm ‖v‖(p).
For 1 < p <∞, write p′ for p/(p− 1). Then the space Tp′(X) can be identified in a natural way with the
conjugate space of Sp(X), the generic bounded linear functional Sp(X) having the form

w →

∫

X

wv dθ

for some v in Tp′(X).

The proofs of (1.9) and (1.11) are omitted.

We can now state our main theorems.

(1.12) First Main Theorem. The spaces M(Ck(G)) and M(Lq,k(G)) for 2 ≤ q < ∞ are all equal to
S2(X).

(1.13) Second Main Theorem. Let G be nondiscrete. For 1 < p < 2, the space M(Lp,k(G)) properly
contains Sp(X).

(1.14) Third Main Theorem. The space M(L1,k(G)) is equal to L1(X), up to functions vanishing
locally θ–almost everywhere.

(1.15) Remark. For the classical case G = R, (1.12) has the following simple form. If w is a measurable
function on R such that ∫ ∞

−∞

|w(y)φ̂(y)|dy <∞ (1)

for all φ ∈ Ck(R), then we have
∞∑

n=−∞

[∫ n+1

n

|w(y)|dy

]2

<∞. (2)

If (2) holds, then (1) holds for all measurable functions φ on R that vanish almost everywhere outside of
some compact set and are in L2(R).

We carry out the proofs of these three theorems in §§2–5. In §6, we give some examples and in §7, an
application to hyperbolic differential equations.
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(1.16) Previous work on Sp and Tp. Our spaces Sp(X) and Tp(X) are special cases on the Lp spaces with
mixed norm studied by Benedek and Panzone [1]: see also their references to yet earlier work. Benedek
and Panzone do not consider applications to harmonic analysis. Liu, van Rooij, and Wang in [9] define
function spaces on an arbitrary locally compact group L that are identical with the spaces Sp(X) and
Tp(X) for L = X. In their definition (loc. cit. p. 509), take their basic set K to be the set C(0,...,0) × A,
in the notation of (1.7). Then their space Vp is our space Sp(X) and their space Np is our Tp(X). The
proof of this is a routine computation. Proofs of (1.9) and (1.11) along with much else, is found in [9].
We are indebted to Kenneth A. Ross for drawing our attention to the paper [9].

Finbarr Holland [8] has studied a class of function spaces on R that contain Sp(R) and Tp(R) as
special cases, obtaining many interesting facts regarding harmonic analysis on these spaces, but not con-
sidering our theorems (1.12)–(1.14).

§2. Some Properties of Entire Functions of Exponential Type

(2.1) Preliminaries. We consider a fixed positive integer a and a–dimensional complex space Ca. For
z = (z1, . . . , za) ∈ Ca, we write ‖z‖ = max{|z1|, . . . , |za|}. We regard Ra as a subspace of Ca. We write
zj = xj + iyj with xj and yj real. We consider complex functions f : Ca → C that are entire (i.e.,
expansible in power series in the complex variables z1, . . . , za that converge everywhere in Ca) and that
are also of exponential type ≤ τ (τ > 0), i.e.,

|f(z)| ≤ C exp(τ(|z1| + · · · + |za|))

for all z ∈ Ca. (For other ways to define exponential type, see [14], Ch. 3, §1.)

Theorem (2.2) below is the basis for the proofs of our main theorems. A special case appears in [12],
2e Partie, Théorème III, p. 149. We shall use the following notation. Let ψ be a nondecreasing convex
function on R∪{−∞} with values in [0,∞[, and let Φ be the function ψ ◦ log, defined on [0,∞[ (we define
log(0) as −∞). Let {xα}α∈A be a subset of Ra ⊂ Ca such that for some positive real number δ, we have
‖xα − xβ‖ ≥ 2δ for distinct α and β.

(2.2) Theorem. Notation is as in (2.1). Suppose that

(i)
∫

R
Φ[|f(z1, . . . , zj−1, xj , zj+1, . . . , za)|]dxj <∞

for each j ∈ {1, 2, . . . , a} and each (z1, . . . , zj−1, zj+1, . . . , za) ∈ Ca−1. Then we have

(ii)
∑

α∈A Φ[|f(xα)| exp(−ατδ)] ≤
(

2
πδ

)a ∫
Ra Φ[|f(u)|] du.

Proof. Fixing z2, . . . , za, we obtain the function z1 7→ f(z1, z2, . . . , za) carrying C into C. It is shown in
[2], page 100, line 7 from the bottom that

Φ[|f(z1, . . . , za)| exp(−τ |y1|)] ≤ π−1

∫

R

Φ[|f(t1, z2, . . . , za)|]
|y1|

(x1 − t1)2 + y2
1

dt1. (1)

(We have added the absolute value to y1 on the right side of (1), which was plainly intended.) Now fix
z1, z3, . . . , za and consider the function

z2 → f(z1, z2, . . . , za) exp(−τ |y1|).

Since Φ is nondecreasing, the hypothesis (6.7.5) in [2], p. 98, holds, and so as with (1) we find that

Φ[|f(z1, z2, . . . , za)| exp(−τ(|y1| + |y2|))] (2)

≤π−1

∫

R

Φ[|f(z1, t2, z3, . . . , za)| exp(−τ |y1|)]
|y2|

(x2 − t2)2 + y2
2

dt2.

Combining (1) and (2), we find

Φ[|f(z)| exp(−τ(|y1| + |y2|))] ≤ π−2

∫

R

∫

R

Φ[|f(t1, t2, z3, . . . , za)|]
2∏

j=1

|yj |

(xj − tj)2 + y2
j

dt1dt2. (3)
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By induction, we find that

Φ
[
|f(z)| exp

(
− τ
( a∑

j=1

|yj |
))]

≤ π−a

∫

Ra

Φ[|f(t1, . . . , ta)|]
a∏

j=1

|yj |

(xj − tj)2 + y2
j

dt. (4)

Integrate both sides of (4) over Ra, as functions of x, and use Fubini’s theorem to find
∫

Ra

Φ
[
|f(x + iy)| exp

(
−

a∑

j=1

|yj |
)]

dx (5)

≤π−a

∫

Ra

Φ[|f(t)|]

∫

Ra

a∏

j=1

|yj |

(xj − tj)2 + y2
j

dx dt

=

∫

Ra

Φ[|f(t)|] dt

Suppose that all of the |yj | are less than or equal to δ. The hypothesis that Φ is nondecreasing and (5)
imply that ∫

Ra

Φ[|f(x + iy)| exp(−τaδ)] dx ≤

∫

Ra

Φ[|f(x)|] dx. (6)

As a nondecreasing convex function of a subharmonic function, each function

zj → Φ[|f(z1, . . . , zj , . . . , za)| exp(−τaδ)]

is subharmonic (the zk’s for k 6= j being fixed). A form of the minimum principle for subharmonic
functions asserts that the value of a subharmonic function at the center of a disc in C does not exceed its
integral mean value over the disc. Applying this version of the minimum principle repeatedly, we obtain

Φ[|f(x)| exp(−τaδ)] (7)

≤(πδ2)−1

∫

|w1|≤δ

Φ[|f(x1 + w1, x2, . . . , xa)| exp(−τaδ)] dw1

. . .

≤(πδ2)−a

∫

|wa|≤δ

. . .

∫

|w1|≤δ

Φ[|f(x1 + w1, . . . , xa + wa)| exp(−τaδ)] dw1 . . . dwa.

In the integrals appearing in (7), the variables wj are complex, and we integrate over discs in the plane.
Replacing these discs by circumscribing squares, and writing wj = uj + ivj , we infer from (7) that

Φ[|f(x)| exp(−τaδ)] (8)

≤(πδ2)−a

∫ δ

−δ

. . .

∫ δ

−δ︸ ︷︷ ︸
2a−fold integral

Φ[|f(x + u + iv)| exp(−τaδ)] du1 dv1 . . . dua dva.

We next set x = xα in (8) and sum over all α. After a linear change of variables in (8), we find that the
domains of integration for distinct α and β intersect in sets of Lebesgue measure 0, since ‖xα−xβ‖ ≥ 2δ.
It follows from (8) that

∑

α∈A

Φ[|f(xα)| exp(−τaδ)] (9)

≤(πδ2)−a

∫ δ

−δ

. . .

∫ δ

−δ︸ ︷︷ ︸
a−fold integral

[∫

Ra

Φ[|f(u + iv)| exp(−τaδ)] du

]
dv.

Combining (6) and (9), we find

∑

α∈A

Φ[|f(xα)| exp(−τaδ)] ≤(πδ2)−a

∫ δ

−δ

. . .

∫ δ

−δ︸ ︷︷ ︸
a−fold integral

∫

Ra

Φ[|f(u)|] du dv

=2a(πδ)−a

∫

Ra

Φ[|f(u)|] du,
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and this is (ii). 2

(2.3) Corollary. Let f and {xα}α∈A be as in (2.1) and let r be a positive real number. Suppose that

(i)
∫

R
|f(z1, . . . , zj−1, xj , zj+1, . . . , za)|

rdxj <∞

for all j and for all (z1, . . . , zj−1, zj+1, . . . , za) ∈ Ca−1. Then we have

(ii)
∑

α∈A |f(xα)|r ≤ exp(aτδr)2α(πδ)−a
∫

Ra |f(u)|r du.

Proof. In (2.2), take Φ(t) = tr = exp(r log(t)). 2

§3. Proof that Sp(X) ⊂ M(Lp,k(G))

(3.1) Explanation. We will first apply (2.3) to Fourier transforms of functions in Lp,k(Ra). Let φ be any
function in L1,k(Ra), vanishing almost everywhere outside of the compact subset K of Ra. The Fourier

transform φ̂ of φ is defined as in (1.3)(2) only on Ra, but admits an immediate extension over Ca:

φ̂(z) =

∫

K

exp(−i〈z,x〉)φ(x) dx. (1)

It is easy to see that φ̂ is entire of exponential type not exceeding a number τ that depends only on the
compact set K.

(3.2) Lemma. Let p be a real number such that 1 < p ≤ 2, and write q for the number p/(p− 1). Let K
be a compact subset of Ra, and let {xα}α∈A be as in (2.1). There is a constant γ depending only upon p,
δ, and K such that for all φ ∈ Lp(K), the inequality

(i)
∑

α∈A |φ̂(xα)|q ≤ γ‖φ̂‖q
q <∞

holds.

Proof. We use (2.3) with r = q and f = φ̂. We need only to verify (2.3)(i). We write z′ for the element
(z1, . . . , zj−1, zj+1, . . . , za) of Ca−1 and t′ similarly for the element (t1, . . . , tj−1, tj+1, . . . , ta) of Ra−1.
With a slightly inaccurate but useful notation, we may write

φ̂(z1, . . . , zj−1, xj , zj+1, . . . , za) = φ̂(xj , z
′) (1)

=

∫

R

[ ∫

Ra−1

exp(−i〈z′, t′〉)φ(tj , t
′) dt′

]
exp(−ixjtj) dtj .

The function R → C:

tj →

∫

Ra−1

exp(−i〈z′, t′〉)φ(tj , t
′) dt′

appearing as the inner integral in (1) plainly vanishes almost everywhere outside of a compact set, as
this is true of the function φ(t1, . . . , ta). For every choice of z′, this function is in Lp(R). To see this,
estimate as follows:

|

∫

Ra−1

exp(−i〈z′, t′〉)φ(tj , t
′) dt′| ≤Γ(z′)

∫

Ra−1

|φ(tj , t
′)| dt′

≤Γ(z′)γ[

∫

Ra−1

|φ(tj , t
′)|p dt′]1/p, (2)

Γ being a positive function of z′ and γ being a constant determined by Hölder’s inequality. Thus (2)
yields ∫

R

|

∫

Ra−1

exp(−i〈z′, t′〉)φ(tj , t
′) dt′|p dtj ≤ γ

∫

R

∫

Ra−1

|φ(tj , t
′)|p dt′ dtj <∞. (3)
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The Hausdorff–Young theorem now gives (2.3)(i) for the present case. The inequality (i) is just
(2.3)(ii). 2

(3.3) Theorem. Let p, q, K and φ be as in (3.2). For n ∈ Za, let Cn be the cube defined in (1.7). There
is a positive constant γ (depending upon p and K) such that

(i)
∑

n∈Za

[
maxy∈Cn

|φ̂(y)|
]q

≤ γ‖φ̂‖q
q <∞.

Proof. For each n in Za, let xn be a point in Cn such that

|φ̂(xn)| = max
y∈Cn

{|φ̂(y)|}.

Let ε = (ε1, . . . , εa) be a sequence of length a consisting only of 0’s and 1’s. Let Iε be the subset of Za

consisting of exactly those sequences n = (n1, . . . , na) for which nj is even if εj is 0 and nj is odd if εj is
1. If m and n are distinct elements of Iε, it is clear that ‖xn −xm‖ ≥ 1. By (3.2)(i) with δ = 1

2 , we have

∑

n∈Iε

|φ̂(xn)|q ≤ γ‖φ̂‖q
q <∞. (1)

Since card(Iε) = 2a, we may add (1) over all ε to find (i) with γ multiplied by 2a. 2

(3.4) Explanation. We now consider a group G = Ra ×J , where J as in (1.1) is a compact Abelian group
with (discrete) character group Z. Let L be a compact subset of Ra × J , and K the (obviously compact)
projection of L into Ra. As before, p is a real number such that 1 < p ≤ 2, and q is equal to p/(p− 1).
The sets Cn are as in (1.7).

(3.5) Theorem. There is a constant γ depending only upon L and p such that for all φ in the space
Lp(L), we have

(i)
∑

n∈Za

∑
χ∈Z

[
maxy∈Cn

{|φ̂(y, χ)|}
]q

≤ γ‖φ̂‖q
q <∞.

Proof. For each x ∈ Ra and χ ∈ Z, write

ψχ(x) =

∫

J

φ(x, t)χ(t)dt, (1)

where dt denotes integration with respect to normalized Haar measure on J . For each y ∈ Ra, we define
ψ̂χ(y) by

ψ̂χ(y) =

∫

Ra

exp(−i〈y,x〉)ψχ(x) dx. (2)

From (1), (2), and (1.3)(2), it is clear that

ψ̂χ(y) = φ̂(y, χ) for all (y, χ) ∈ Ra × Z. (3)

It is plain that ψχ(x) vanishes almost everywhere outside of K. Also we have

|ψχ(x)| ≤

∫

J

|φ(x, t)|dt =

∫

J

1···|φ(x, t)|dt ≤
[ ∫

J

|φ(x, t)|pdt
]1/p

···(1)1/q . (4)

Raising both ends of (4) to the pth power and integrating over Ra, we find that each function ψχ is in
Lp(R

a). We may thus apply (3.3)(i) to each function ψχ, obtaining

∑

n∈Za

[max
y∈Cn

{|ψ̂(y)|}]q ≤ γ

∫

Ra

|ψ̂χ(y)|q dy. (5)
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Applying (3) and summing (5) over all χ ∈ Z, we obtain (i). 2

(3.6) Explanation. We now consider an arbitrary nondiscrete locally compact Abelian group G, having
the form Ra × H , as in (1.3), H being a locally compact Abelian group containing a compact open
subgroup J . Let K be a compact subset of Ra. The symbols p, q, and Cn are as in (3.4). Blocks Bι in
X are defined as in (1.7).

(3.7) Theorem. Let φ be a function in Lp(K×(u1J)) for some u1 ∈ H. There is a constant γ depending
only upon K and p such that

(i) ‖φ̂‖(q) ≤ γ‖φ̂‖q.

Proof. The translate T(0,u1)φ, whose value at (x, t) is φ(x, u1t), vanishes almost everywhere outside of
the compact set K × J . Furthermore, we have

(T(0,u1)φ)b(y, ω) =

∫

Ra

∫

H

φ(x, u1t)ω(t)dt exp(−i〈y,x〉) dx

=

∫

Ra

∫

H

φ(x, t)ω(u−1
1 t)dt exp(−i〈y,x〉) dx

=ω(u1)φ̂(y, ω) (1)

for all (y, ω) ∈ X = Ra × Y. We apply (3.5)(i) to the function T(0,u1)φ, noting that Z can be identified
with Y/A. We thus obtain

∑

n∈Za

∑

χA∈Y/A

[max
y∈Cn

{|(T(0,u1)φ)b(y, χA)|}]q ≤ γ‖(T(0,u1)φ)b‖q
q . (2)

By (1), we have

|φ̂(y, ω)| = |(T(0,u1)φ)b(y, ω)| for all (y, ω) ∈ X.

As each block Bι has the form Cn × (χA), (2) immediately yields (i). 2

We can now prove part of Theorem (1.12).

(3.8) Theorem. Let p be a real number such that 1 < p ≤ 2, and let G be an arbitrary locally compact
Abelian group. Then we have

(i) Sp(X) ⊂ M(Lp,k(G)).

Proof. Suppose first that φ ∈ Lp,k(G) and that φ vanishes almost everywhere outside of some set
Ra × (u1J). For w ∈ Sp(X), we have

∫

X

|wφ̂| dθ =
∑

ι∈I

∫

Bι

|wφ̂| dθ

≤
∑

ι∈I

max{|φ̂(y, ω)| : (y, ω) ∈ Bι}

∫

Bι

|w| dθ

≤
[∑

ι∈I

[max{|φ̂(y, ω)| : (y, ω) ∈ Bι}]
q
]1/q[∑

ι∈I

[

∫

Bι

|w| dθ]p
]1/p

. (1)

Applying (3.7)(i) to (1), we find that

∫

X

|wφ̂| dθ ≤ γ‖w‖[p]‖φ̂‖q ≤ γ‖w‖[p]‖φ‖p <∞. (2)
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Every function ψ in Lp,k(G) is a finite linear combination of functions φ of the sort already considered,

and so we have proved that wψ̂ ∈ L1(X) for all w ∈ Sp(X). 2

(3.9) Remark. Theorem (3.7) holds for all functions φ in L1,k(G) such that φ̂ ∈ Lq(X) for 1 ≤ q <∞. As
we do not need this fact for the present paper, and as the proof would lead us somewhat afield, we omit it.

§4. The Inclusion M(Ck(G)) ⊂ S2(X)

In this section we prove that M(Ck(G)) ⊂ S2(X). The proof is carried out by reducing it to the compact
case, which we have already cited in §1.

(4.1) Definition. We will choose once and for all a certain compact subset F of G. If G is compact, we
set F = G. If G contains a compact open subgroup, so that G has the form H as in (1.3), we take F to
be the compact open subgroup J that we selected in (1.3). Suppose finally that G contains no compact
open subgroup, so thatG = Ra×H with a > 0. In this case, we write I = [−π, π]a and we define F as I×J .

(4.2) Lemma. Let w be a function in M(Ck(G)). There is a positive constant γ such that the inequality

(i)
∫
X
|wφ̂| dθ ≤ γ‖φ‖∞

holds for all φ ∈ C(F ). The infimum of all numbers γ for which (i) holds will be written as ‖w‖.

Proof. We use the closed graph theorem, regarding the mapping

φ→ wφ̂ (1)

as a linear mapping of C(F ) into L1(X). Thus suppose that (φn)∞n=1 is a sequence in C(F ) converging in

the uniform norm to a function φ ∈ C(F ). Suppose that the sequence (wφ̂n)∞n=1 converges to some func-

tion f ∈ L1(X). It is clear that (wφ̂n)∞n=1 converges pointwise on X to the function wφ̂. A subsequence

of the sequence (wφ̂n)∞n=1 converges θ–almost everywhere to the function f . Hence f is equal in L1(X)

to wφ̂. That is, the mapping (1) has a closed graph and so is continuous. This is just (i). 2

An essential part of our argument is the following lemma, which is simple enough although rather
unwieldy to state.

(4.3) Definition. Let K be the set of all a–tuples k = (k1, . . . , ka) of nonnegative integers. For x ∈ Ra

and k ∈ K, write xk for the number
xk1

1 x
k2

2 . . . xka

a .

Write k! for the number
k1!k2! . . . ka!.

Write |k| for the number
k1 + k2 + · · · + ka.

Recall that G is a general group Ra ×H . For φ ∈ C(F ), let φk be the function on G defined by

(i) (x, t) → (−i)|k|xkφ(x, t).

It is obvious that φk belongs to C(F ) and that

(ii) ‖φk‖∞ ≤ π|k|‖φ‖∞.
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In what follows, all sums
∑

k
mean summation in any order over all k ∈ K.

(4.4) Lemma. Let G be a general group of the form Ra × H with a > 0. For φ ∈ C(F ), for y and u

elements of Ra, and χ ∈ Y, we have

(i) φ̂(y + u, χ) =
∑

k
φ̂k(y, χ)u

k

k! ,

the series on the right side of (i) converging absolutely and uniformly over all compact subsets of Ra ×
Ra × Y.

Proof. We compute as follows:

φ̂(y + u, χ) =

∫

F

exp(−i〈y + u,x〉)χ(t)φ(x, t) dλ(x, t) (1)

=

∫

J

∫

I

exp(−i〈y,x〉)

(
∑

k

(−i)|k|ukxk

k!

)
φ(x, t) dxχ(t)dt.

The multiple series appearing in (1) converges uniformly for x ∈ I for each u ∈ Ra. Hence we have

∫

I

exp(−i〈y,x〉)

(
∑

k

(−i)|k|
ukxk

k!

)
φ(x, t) dx (2)

=
∑

k

uk

k!

∫

I

exp(−i〈y,x〉)(−i)|k|xkφ(x, t) dx

=
∑

k

uk

k!

∫

I

exp(−i〈y,x〉)φk(x, t) dx.

Since

|

∫

I

exp(−i〈y,x〉)φk(x, t) dx| ≤ φ|k|‖φ‖∞

for each t ∈ J , we can insert (2) in (1), interchange
∫

J
and

∑
k
, and thus obtain (i). The uniform and

absolute convergence of the series in (i) is evident. 2

(4.5) Theorem. Let G be a general group of the form Ra × H with a > 0. Let w be a function in
M(Ck(G)). Then w is in S2(X).

Proof. Consider an arbitrary block Bι = Cn × (χA) in the character group X of G. Let φ be a function
in C(F ). By (4.4)(i), we have

φ̂(n, ω) =
∑

k

1

k!
φ̂k(y, ω)(n − y)k

for all y ∈ Ra and all ω ∈ Y. Note that φ̂k(y, ω) = φ̂k(y, ω′) if ω and ω′ lie in the same coset of A. Since
each block Bι has the form Cn × (χA), we may compute as follows:

[ ∫

Bι

|w(y, ω)| dθ(y, ω)
]
|φ̂(n, χ)|

≤
∑

k

1

k!

∫

χA

∫

Cn

|w(y, ω)| |φ̂k(y, ω)||(n − y)k| dy dω

≤
∑

k

1

k!

∫

χA

∫

Cn

|w(y, ω)| |φ̂k(y, ω)| dy dω. (1)
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Now sum both ends of (1) over all blocks Bι (since φ̂ vanishes outside of a σ–compact subset of X, only
countably many ι can yield a nonzero contribution). We obtain

∑

ι∈I

(∫

Bι

|w(y, ω)| dθ(y, ω)
)
|φ̂(n, χ)| ≤

∑

k

1

k!

∫

X

|w(y, ω)| |φ̂k(y, ω)| dθ(y, ω). (2)

Applying (4.2)(i) and (4.3)(ii) to (2), we obtain

∑

ι∈I

(∫

Bι

|w(y, ω)| dθ(y, ω)
)
|φ̂(n, χ)| ≤

∑

k

1

k!
‖w‖π|k|‖φ‖∞ = ‖w‖‖φ‖∞ exp(aπ) <∞. (3)

We now regard the function φ as being in C(Ta×J), vanishing outside of the open subset A =]−π, π[a×J .
The inequalities (3) show that the function

(n, χA) →

∫

Cn×(χA)

|w| dθ (4)

is a multiplier for the function space C(F ) considered as a linear subspace of C(Ta × J).

The general form of the Orlicz–Paley–Sidon theorem proved in [6], §4, admits the following corollary.
Let L be a compact Abelian group and A any nonvoid open subset of L. If w is a function on the
character group Λ of L that acts as a multiplier for all continuous functions on L vanishing outside of A,
then w is in l2(Λ). Hence the function (4) is in l2, that is, the function w is in S2(X). 2

(4.6) Theorem. Let G be a group of the form H, containing a compact open subgroup J . If w belongs
to M(Ck(G)), then w also belongs to S2(X).

Proof. Consider any continuous φ on G with support contained in J . The function φ̂ is constant on cosets
χA of A in Y. We have

∞ >

∫

Y

|w(ω)φ̂(ω)| dω =
∑

χA∈(Y/A)

(∫

χA

|w(ω)| dω
)
|φ̂(χA)|,

and so the function χA →
∫

χA
|w| dθ belongs to M(C(J)). The generalized Orlicz–Paley–Sidon theorem

[6] shows that w ∈ S2(X).

(4.7) Note. Theorem (4.6) contains as a trivial subcase the case in which G discrete. Here S2(X) is
L1(X), which is obviously equal to M(Ck(G)).

§5. Completion of the Proofs of the Main Theorems

(5.1) We have
Ck(G) ⊂ Lq,k(G) ⊂ L2,k(G) (1)

for 2 < q ≤ ∞, and so the inclusions

M(L2,k(G)) ⊂ M(Lq,k(G)) ⊂ M(Ck(G)) (2)

obtain. By Theorem (3.8), S2(X) is a subset of the set on the left of (2). By Theorem (4.5), it is a
superset of the set on the right of (2). It follows that all of the sets appearing in (2) are equal to S2(X).
Thus Theorem (1.12) is proved.

(5.2) We turn next to (1.13). The number p is such that 1 < p < 2. Let G be nondiscrete. Write G in
the form Ra ×H , and consider the related compact group Ta × J . Since G is nondiscrete, we have either
a > 0 or J is infinite, and so Ta × J is an infinite compact Abelian group. Its character group Za × Z is
infinite and contains at least 2ℵ0 infinite dissociate sets (see for example [7], Vol. II, (37.18)). Let ∆ be
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a countably infinite dissociate subset of Za × Z. Since ∆ is a Sidon set (loc. cit. (37.15)), it is a Λ2–set
(loc. cit. (37.10)). As proved loc. cit. (37.9), we have

∑

n×(χA)∈∆

|ĝ(n, χA)|2 <∞ (1)

for all g ∈ Lp(T
a × J). Let ψ be a complex–valued function on Za × Z that vanishes outside of ∆, is in

l2(Z
a × Z), and is in no space lη(Za × Z) for η < 2. For (y, ω) ∈ Ra × Y, define

w(y, ω) = ψ(n, χA) if nj ≤ yj < nj + 1 (j = 1, . . . , a) and ω ∈ χA. (2)

If G contains no factor Ra, there are obvious alterations to be made in the definition of ψ and w.

Now consider functions g ∈ Lp(R
a×H) that vanish λ–almost everywhere outside of [−π, π]a×J = F .

As above, we denote the set of these functions by Lp(F ). We may identify Lp(F ) with Lp(T
a×J). Hence

(1) holds for all g ∈ Lp(F ). From the definitions of ψ and w, we have

∑

(n,χA)∈∆

|w(n, χA)| |ĝ(n, χA)| <∞ (3)

for all g ∈ Lp(F ). As in the proof of Lemma (4.2), the closed graph theorem shows that there is a positive
real number α such that ∑

(n,χA)∈∆

|w(n, χA)| |ĝ(n, χA)| ≤ α‖g‖p (4)

for all g ∈ Lp(F ). We will not repeat the details.

We will show that ĝw ∈ L1(X) for all g ∈ Lp,k(G). All such functions g are linear combinations of
translates of functions in Lp(F ). Hence we may suppose without loss of generality that g ∈ Lp(F ). We
borrow the notation of (4.3), the result of (4.4), and the proof of (4.5), to compute as follows:

∫

Cn×(χA)

|wĝ| dθ =|ψ(n, χA)|

∫

χA

∫

Cn

|ĝ(y, ω)| dy dω

=|ψ(n, χA)|

∫

Cn

|ĝ(y, χA)| dy

=|ψ(n, χA)|

∫

Cn

|
∑

k

1

k!
ĝk(n, χA)(y − n)k| dy

≤
∑

k

|ψ(n, χA)|
1

k!
|ĝk(n, χA)|. (5)

Sum both ends of (5) over all (n, χA) in ∆, note that ‖gk‖p ≤ (2π)|k|‖g‖p, and use (4). We find that

∫

X

|wĝ| dθ ≤
∑

k

1

k!

∑

(n,χA)∈∆

|ψ(n, χA)||ĝk(n, χA)|

≤
∑

k

1

k!
α(2π)|k|‖g‖p

≤α exp(2πa)‖g‖p

<∞.

The definitions of ψ and w show that w is in no space Sp(X) for p < 2, while at the same time it is in
all of the spaces M(Lp,k(G)) for 1 < p ≤ 2. This fact and Theorem (3.8) show that Sp(X) is a proper
subspace of M(Lp,k(G)) for all nondiscrete G, that is, (1.13) holds.

(5.3) Proof of (1.14). Let w be any function in M(L1,k(G)), G being an arbitrary locally compact Abelian
group. Let F be a compact subset of G. As in (4.2), we prove easily that there is a positive number α
such that ∫

X

|wĝ| dθ ≤ α‖g‖1 (1)
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for all g ∈ L1(F ). Let F now be a compact set whose interior contains the identity element of G. As
shown in [7], Vol. II, Theorem (33.11), there is a net {hκ}κ∈K of continuous functions on G with supports

contained in F such that ‖h‖1 = 1, all Fourier transforms ĥ are real and nonnegative, and limκ ĥκ(χ) = 1,
uniformly on compact subsets of X. Thus, given a compact subset φ of X and a positive number η < 1,
we find a member κ of the net K such that

η

∫

φ

|w| dθ ≤

∫

φ

|wĥκ| dθ ≤

∫

X

|wĥκ| dθ ≤ α. (2)

The inequalities (2) prove that

sup{

∫

Φ

|w| dθ : Φ compact in X} ≤ α. (3)

It is elementary to show from (3) that w differs from a function in L1(X) by a function that is locally θ–null.

§6. Examples and Remarks

(6.1) Explanation. Applying the inequalities of Hausdorff–Young and Hölder, we see at once that
Lp(X) ⊂ M(Ck(G)) for 1 ≤ p ≤ 2. It is easy to see that the sum L1(X)+L2(X) = {g1 + g2 : gj ∈ Lj(X) for
j = 1, 2} is the smallest linear space containing all of the spaces Lp(X) (1 ≤ p ≤ 2). One might conjecture
that M(Ck(G)) = L1(X) + L2(X). We will show that this is not the case unless G is compact or discrete.

(6.2) Lemma. Let (X,M, µ) be an arbitrary measure space. Let p be a real number greater than 1. Let h
be a bounded, complex–valued, M–measurable function on X such that h = f + g with f ∈ L1(X,µ) and
g ∈ Lp(X,µ). Then both of the functions f and h are also in Lp(X,µ).

Proof. Write
h0 = max{Reh, 0}, h1 = max{Imh, 0},
h2 = −Reh+ h0, h3 = −Imh+ h1.

Let f0, f1, f2, f3, and g0, g1, g2, g3 be the analogous decompositions of f and g respectively. Plainly the
functions hl, fl, and gl are nonnegative, the hl’s are bounded, and also the identities

h0 − h2 = Reh = (f0 + g0) − (f2 + g2) (1)

h1 − h3 = Imh = (f1 + g1) − (f3 + g3)

obtain. We also have
min{w0, w2} = min{w1, w3} = 0

for w any of our functions h, f , and g. From this fact and (1) we infer that

hl ≤ fl + gl (l = 0, 1, 2, 3). (2)

Let ψl be the function equal to hl(fl + gl)
−1 where fl + gl > 0 and zero where fl + gl = 0. It is plain that

hl = ψlfl + ψlgl (3)

and that ψlfl ∈ L1(X,µ) and ψlgl ∈ Lp(X,µ). Since ψlgl is nonnegative, ψlfl is bounded. Being bounded
and in L1(X,µ), ψlfl is in Lp(X,µ). From (3) we infer that hl is in Lp(X,µ), and since

h =

3∑

l=0

ilhl,

it follows that h is in Lp(X,µ). 2

(6.3) We will construct bounded functions in
⋂

1<p≤2 Sp(X) that are not in L1(X)+L2(X), for all character
groups X that are neither compact nor discrete. Suppose that X = Ra × Y with a > 0. In this case, we
define w on Ra × Y by:

w(u1, . . . , ua, χ) =





1 if for some n ∈ N, we have n ≤ u1 ≤ n+ n−1,

0 ≤ uj ≤ 1 for j = 2, . . . , a, and χ ∈ A;

0 for all other points (u1, . . . , ua, χ) in Ra × Y.
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It is plain that ∫

Bι

|w| dθ =

{
1
n for the blocks Bι on which w 6= 0,

0 for all other blocks Bι.

Thus we have
∑

ι∈I

[ ∫

Bι

|w| dθ
]p

=

∞∑

n=1

n−p <∞,

that is, w is in all of the spaces Sp(X) with p > 1. It is also clear that
∫
X
|w|2 dθ =

∑∞
n=1 n

−1 = ∞. By
Lemma (6.2), w does not have the form f + g for f ∈ L1(X) and f ∈ L2(X).

Next, suppose that G has the form H , where the compact open subgroup J of H is infinite. This
implies that the quotient group Y/A, which is isomorphic with the character group of J , is also infinite.
Each block Bι is a coset χA. Choose a countably infinite family {χnA}∞n=1 of distinct cosets. In each
coset χnA, select a measurable subset Γn such that θ(Γn) = n−1. Define the function w as

∑∞
n=1 ξΓn

. A
simple computation as above shows that w ∈ Sp(X) for all q > 1 while w /∈ L1(X) + L2(X).

(6.4) There is a considerable latitude in the choice of the blocks Bι. First, as noted in (1.3), J can be
any compact open subgroup of H . (There may be exactly one such subgroup, or there may, as in the
case for example of the p–adic numbers, be an infinite number of such subgroups.) The annihilator A of
J in Y plainly varies with the choice of J . Second, the sets Cn in Ra need not be translates of the unit
hypercube. In fact, they need not be cubes at all. Let α = (α1, . . . , αa) be any sequence of positive real
numbers, and let Dn = {y ∈ Ra : njαj ≤ yj ≤ (nj + 1)αj for j = 1, 2, . . . , α}. Our entire proof goes
through unaltered if we replace Cn by Dn throughout. Only some details need to be changed.

(6.5) Remark. Theorem (1.12) admits a small extension, as follows. Let G be arbitrary, and let A be
any open subset of G such that 0 < λ(A) < ∞. It is easy to show, using partitions of unity, that every
function in Ck(G) is a finite linear combination of translates of continuous functions vanishing outside of
A. From this it follows that M(C(A)) = S2(X).

(6.6) Another Proof of Gronwall’s Theorem. In 1921, Gronwall published the following theorem. Let ω
be any nonnegative real–valued function on [0,∞[ such that limt→∞ ω(t) = ∞. There exists a function
f ∈ C(T) such that

∞∑

n=1

|f̂(n)|2ω(|f̂(n)|−1) = ∞.

For the history of the theorem, see the discussion in [6], §3. Gronwall’s theorem was extended in [6], §3
to all nondiscrete locally compact Abelian groups G, as follows.

Let ω be a Lebesgue measurable function mapping ]0,∞[ into some half line [α,∞[ with the property
that limt→∞ ω(t) = ∞. There is a function φ ∈ Ck(G) such that

∫

X

|φ̂|2ω(|φ̂|−1) dθ = ∞. (1)

The proof in [6] of this theorem is explicit but it is also complicated. Since the theorem follows easily
from Theorem (1.12), it seems worthwhile to sketch the proof here. We follow Paley [11], p. 122, who
pointed out that Gronwall’s original theorem follows from the Orlicz–Paley–Sidon theorem (1.1).

First define a function Ω on ]0,∞[ by

Ω(x) = xω(x−1).

Replacing ω if necessary by a smaller function, we may arrange matters so that Ω is continuous, strictly
increasing, and also has the property that limx→0 Ω(x) = 0. We omit the details. We define Ω(0) as 0.
Let Ψ be the inverse function to Ω. It is easy to see that

lim
y→0

Ψ(y)y−1 = 0. (2)
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A simple geometric argument shows that

βγ ≤ βΨ(β) + γΩ(γ) (3)

for all nonnegative real numbers β and γ. On account of (2), there is a sequence (βn)∞n=1 of positive real
numbers such that

∞∑

n=1

β2
n = ∞ (4)

and
∞∑

n=1

βnΨ(βn) <∞. (5)

Since the group G is nondiscrete, there is an infinite sequence (Bn)∞n=1 of pairwise disjoint blocks in the
character group X. Define a function v on X by

v =

∞∑

n=1

βnξBn
.

By (4), v does not belong to the space S2(X). By Theorem (1.12), there exists a function φ in Ck(G)
such that ∫

X

v|φ̂| dθ = ∞. (6)

Using (6) and (3), we write

∞ =

∫

X

v|φ̂| dθ ≤

∫

X

vΨ(v) dθ +

∫

X

|φ̂|Ω(|φ̂|) dθ =
∑

n

βnΨ(βn) +

∫

X

|φ̂|Ω(|φ̂|) dθ.

Referring to (5) and the definition of Ω from ω, we see that (1) holds for the above choice of φ.

§7. An Application to Hyperbolic Differential Equations

(7.1) Explanation and Notation. Let D
′(Ra) denote the space of all distributions on Ra and S

′(Ra) the
space of all temperate distributions on Ra. Let P be a polynomial in the space C[X1, . . . , Xa] of complex
polynomials in a indeterminates. Let P (D1, . . . , Da) be the corresponding linear differential operator
with constant coefficients on Ra (as usual, Dk is −i ∂

∂xk

). Let P0 be the principal part of P , and b a

nonzero element of Ra. Let Hb denote the set {y ∈ Ra : 〈y,b〉 ≥ 0}. We shall need the following theorem
of L. G̊arding (see for example [4], p. 407).

(7.2) Theorem. Let P (D1, . . . , Da) be any differential operator as in (7.1). The following are equivalent:

(i) there is an elementary solution E of P (D1, . . . , Da) for which supp(E) ∩Hb = {0};

(ii) we have P0(B) 6= 0 and there is a real number t0 such that P (y+itb) 6= 0 for all t > t0 and all y ∈ Ra.

(7.3) As is well known (see for example [4], 5.18.5, p. 407) the differential operator P (D1, . . . , Da) is
called hyperbolic if it has an elementary solution E whose support is contained in a proper cone with
vertex at 0. In [13], Ritter has given a sufficient condition that such an E should be a Radon measure.
With the use of Theorem (1.12) above, the result of [13] can be sharpened.

(7.4) Theorem. Let P (D1, . . . , Da) be hyperbolic, and let E be an elementary solution whose support is
contained in a proper cone with vertex at 0 and for which supp(E)∩Hb = {0}. Let t0 be as in (7.2). For
t > t0, the following are equivalent:

(i) the function y → [P (y + itb)]−1 belongs to S2(R
a);
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(ii) the elementary solution E is a Radon measure with the property that for all φ ∈ Ck(Ra), we have

(a) E ∗ φ(y) = exp(−t〈y,b〉)f̂(y)

for some f ∈ L1(R
a) and all y ∈ Ra.

Proof. Let F be the distribution
exp(t〈···,b〉)E.

We have
F̂ (y) = [P (y + itb)]−1. (1)

From [4], (5.18.10), p. 406, we infer that F̂ is bounded. Therefore F̂ and F are in S′(Ra).

Suppose that (i) holds. By Theorem (1.12), we have

φ̂[P (··· + itb)]−1 ∈ L1(R
a) (2)

for all φ ∈ Ck(Ra). From (1), (2), and [4], (5.15.28), p. 388, we find

F̂ ∗ φ = F̂ φ̂ ∈ L1(R
a)

and so
F ∗ φ ∈ L̂1(R

a) ⊂ C0(R
a). (3)

A classical theorem of L. Schwartz (see [15], p. 192) implies that F is a Radon measure. Hence E is also
a Radon measure. On the other hand, if φ ∈ Ck(Ra), we have

E ∗ φ(x) =

∫

Ra

φ(x − s) dE(s)

=

∫

Ra

φ(x − s) exp(−t〈s,b〉) dF (s)

= exp(−t〈x,b〉)

∫

Ra

φ(x − s) exp(t〈x − s,b〉) dF (s)

= exp(−t〈x,b〉)
[
F ∗ (exp(t〈···,b〉)φ)

]
(x).

From (3) we infer that E ∗ φ has the form

exp(−τ〈···,b〉)f̂

for some f ∈ L1(R
a).

Suppose conversely that (ii) holds. Property (a) and the argument just used show that

F ∗ φ ∈ L̂1(R
a) for all φ ∈ Ck(Ra).

Thus we have
φ̂[P (··· + itb)]−1 = F̂ φ̂ = F̂ ∗ φ ∈ L1(R

a).

By (1.12), the function [P (··· + itb)]−1 belongs to S2(R
a). 2
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