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Balanced partitions for Markov chains
Maŕıa Teresa Gallegos and Gunter Ritter

In memoriam Ed Hewitt

Abstract: We call a finite partition of the state space of a (discrete–time) Markov chain balanced if the flows

in both directions between any two of its classes are equal in equilibrium. If a Markov chain is reversible

then any finite partition is balanced. We use this notion in order to gain insight into the structure of the

stationary distributions of not necessarily reversible transition kernels. We illustrate our theory with an

asymptotic analysis of a non–reversible Markovian star network with loss.1

1 Introduction

1.1 Background and outline Markov chains are standard tools for modelling and ana-
lyzing stochastic algorithms and real–world dynamical systems containing randomness; ex-
amples are stochastic optimization algorithms, learning schemes, and queueing and commu-
nication networks. Many of their performance measures flow from their stationary distribu-

tions, since these describe the long term behavior of the chains. Computation of a stationary
distribution amounts to computing a left eigenvector of the eigenvalue 1 of the transition
kernel, a function on the square of the state space. Unfortunately, state spaces are often
astronomically large. This circumstance may make these distributions inaccessible and de-
termining the fine structure of a stationary distribution is often a discouraging task.

If the chain is reversible then access to the stationary distribution is easier but even then the
normalizing constant may pose a problem. Lumpabilities [3, 10] are concepts that allow to
aggregate the state space thus cutting down its size. However, these conditions are restrictive
and often not met. Therefore, additional approaches are necessary. The present paper deals
with such an approach, balanced partitions, cf. Section 2.2. In the case of a finite state
space, balanced partitions were introduced in the first author’s [4] doctoral dissertation
under the name Z–reversibility ; the method was shown to be strong enough to access the
thermodynamic limit of a certain learning scheme, reinforcement learning, for an arbitrary
finite number of coins. However, the range of applications of this notion goes far beyond. The
purpose of this communication is twofold: first, we extend the notion to an arbitrary state
space and, second, we apply it in order to analyze a non–reversible Markovian star network
with loss.

The outline of the paper is as follows. In the remainder of this section, we describe some
prerequisites on Markov chains necessary for the sequel. In Section 2, we introduce and
discuss balancedness of a (finite) partition of the state space of a Markov chain and give
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necessary and sufficient conditions for its validity. In Section 3, we show how balanced
partitions induce estimates of the stationary distributions of certain events. In Section 4, we
finally demonstrate the applicability of the approach by an analysis of a multiclass service
system with loss.

1.2 Notation and preliminaries The symbols N = {0, 1, 2, ...}, N> = {1, 2, 3, ...}, and
R stand for the sets of natural, strictly positive natural, and real numbers, respectively. We
denote the interval of natural numbers between m and n by m..n. Given a set F and n ∈ N,
(

F
n

)

denotes the system of all subsets of F with n elements.

The symbol S denotes an arbitrary measurable space, i.e., a set (which we also denote by S)
endowed with a σ–algebra B(S) on it. Measures on a measurable space are always assumed
to be σ–finite and will be denoted by lower case Greek letters. The point mass at a point
a is δa and the image measure of a measure ρ on S with respect to a measurable function
f : S → R is denoted by ρf . The symbol � denotes the stochastic ordering on the set of
probability distributions on R or Z; i.e., for two such probability distributions µ, ν, we have
µ � ν if their tail distributions satisfy the relation µ([t,∞[) ≤ ν([t,∞[) for all t ∈ R. For
general information and more details on measures we refer the reader to Bauer [2] or Hewitt
and Stromberg [5].

A measurable kernel L from a measurable space (S,B(S)) to another measurable space
(T,B(T )) is a mapping

L : S × B(T ) → R

such that L(·, B) is measurable for each B ∈ B(S) and L(x, ·) is a measure for each x ∈ S.
Associated with a measure µ on S and the kernel L there are two more measures, the tensor

product µ ⊗ L(dx, dy) = µ(dx)L(x, dy) on B(S) ⊗ B(T ) and the composition µL(dy) =
µ ⊗ L(S, dy) =

∫

S
µ(dx)L(x, dy) on B(T ). The kernel L is Markovian if L(x, ·) is even a

probability measure for each x ∈ S. If f : T → [0,∞] is measurable then the assignment
x 7→

∫

T
L(x, dy)f(y) defines a measurable function on S. The same is true if f is measurable,

real–valued, and bounded and if L is Markovian. If A ∈ B(S) and B ∈ B(T ) then L induces
in a natural way a kernel from A to B, the restriction LA,B of L to A× B.

In what follows, K denotes a Markov kernel from S to S. Together with any initial dis-

tribution µ on S, K generates an essentially unique Markov chain Xt : (Ω,F , P ) → S,
t ∈ N, on S; here (Ω,F , P ) is some suitable probability space. This means that X = (Xt)t

is a stochastic sequence in S such that X0 ∼ µ and, for all t ≥ 1 and all B ∈ B(S), the
conditional probabilities P [Xt+1 ∈ B | X0 = x0, · · · , Xt = xt] do not depend on x0, · · · , xt−1

for P(X0,...,Xt)–a.a (x0, . . . , xt) ∈ St+1; they are, in fact, all equal to K(xt, B). This Markov
chain X is homogeneous since the transition from t to t+ 1 is controlled by the same kernel
K no matter what the index t is. In order to indicate the initial distribution µ, we will use
the notations P µ and Eµ for probabilities of events and expectations of functionals of the
process.

A Markov chain X is called stationary, if the joint distribution of Xn, · · · , Xt+n does not
depend on n ∈ N for all t ∈ N. A distribution γ on S is called stationary with respect to
K if γK = γ. If the initial distribution of the Markov chain X is stationary then the whole
chain is stationary and vice versa. The stationary distributions are crucial to the study of



K and X since they control the long term behavior of X through various ergodic theorems.
A distribution γ on S is called reversible (with respect to K) if the tensor product γ ⊗ K
is symmetric on the product S×S with respect to swapping the two factors. Any reversible
distribution is plainly stationary.

There exists a refined theory of existence and uniqueness of stationary distributions on
discrete as well as on arbitrary state spaces S and we refer the interested reader to Meyn
and Tweedie’s [9] treatise. Let us briefly sketch the main ideas as far as they are related
to this paper. For a measurable subset B ⊆ S, let TB = inf{t ≥ 1/Xt ∈ B} be the first

return time of the chain X to B and define the return probabilities L(x,B) = P δx [TB <∞],
x ∈ S. The kernel K is called irreducible if there exists a nontrivial measure ϕ on S such
that L(x,B) > 0 for all x ∈ S whenever ϕ(B) > 0. In this case, there exists a (σ–finite or
probability) measure ψ on S which is maximal with respect to absolute continuity with this
property. Moreover, this maximal “irreducibility measure” ψ is unique up to equivalence.
The system B+(S) of measurable sets on S with strictly positive ψ–measure plays a central
rôle in the theory.

If K is irreducible then it possesses at most one stationary distribution. If there is one
(and K is irreducible) then K is called positive recurrent and the stationary distribution
is equivalent to ψ. The positive recurrent case is of particular interest since the long term
behavior of the chain is then independent of its initial distribution. If K is positive recurrent
then it is also recurrent, i.e.,

∑

Kn(x,B) = ∞ for all x ∈ S and all B ∈ B+(S). It follows
that L(x,B) = 1 for all such x and B.

For establishing a practical condition for the existence of stationary distributions a
topological structure on S is of great help. Thus, let S be endowed with a locally compact
and separable metric and denote its set of bounded, continuous real–valued functions by
Cb(S). The kernel K has the Feller property, if KCb(S) ⊆ Cb(S). The taboo kernel CK of K
with respect to a nonempty subset C ⊆ S is defined by CK(x,B) = K(x,B \ C), x ∈ S,
B ∈ B(S). There is the following classical theorem.

Lyapunov–Foster Criterion. Assume that

(α) K has the Feller property and

(β) there exists a nonempty, compact subset C ⊆ S and a measurable function
L : S → [0,∞] such that

(i) CKL is bounded on C, and
(ii) CKL ≤ L− 1 off C.

Then K has a stationary distribution.

In the sequel, we assume that K is positive recurrent with (unique) stationary distribution
γ. If not specified otherwise, essential infima ess inf and essential suprema ess sup are meant
with respect to a maximal irreducibility measure ψ (or γ).



The great scientist to whom this paper is dedicated had a keen interest in measure theory.
Since probability theory is one of its major domains of application we hope that he would
have found something of interest in it.

2 Balanced partitions

Let Z = {S1, · · · , SN} be partition of S consisting of sets Sk ∈ B+(S) for all k ∈ 1..N
(so that γ(Sk) > 0). We will often identify Z with the interval 1..N and we will occasionally
need the canonical projection π : S → Z. We denote conditional distributions with respect
to Sk by γSk

, γSk
(B) = γ(B∩Sk)

γ(Sk)
. The stochastic matrix KZ ∈ RZ×Z defined by

KZ(k, l) =
1

γ(Sk)

∫

Sk

γ(dx)K(x, Sl), k, l ∈ Z,

is called the ideal aggregation of K with respect to Z (and γ), cf. [8], p. 140, [10], and
[3]. By the law of total probability, this is equivalent to KZ(k, l) = P γ[X1 ∈ Sl/X0 ∈ Sk].
Although KZ is a transition matrix for some Markov chain, it is not true in general that this
Markov chain is equivalent to the aggregated process X̂n = π(Xn); X̂n is not even necessarily
Markovian. It is well known that KZ is the transition matrix of the aggregated process if
the original chain has some lumpability property [3, 10]. Apart from this application, ideal
aggregation has not received much attention yet. The following proposition shows that KZ

possesses the unique stationary distribution γπ; for finite S, it was proved in [3], Satz 1.

2.1 Proposition Positive recurrence of K implies positive recurrence of KZ . Moreover,
γπ = (γ(S1), · · · , γ(SN)) is the stationary distribution of KZ .

Proof. Since

∑

k

γ(Sk)KZ(k, l) =

∫

S

γ(dx)K(x, Sl) = γ(Sl),

the stochastic matrix KZ has the stationary distribution γπ. In order to show that KZ is
irreducible, let k, l ∈ Z. Irreducibility of K and strict positivity of γ(Sl) imply L(x, Sl) > 0
for all x ∈ S. It follows that, for all x ∈ S, there exists an n ∈ N such that Kn(x, Sl) > 0. In
particular,

⋃

n≥1

{x ∈ Sk/K
n(x, Sl) > 0} = Sk

and from γ(Sk) > 0 we infer that there exists n ∈ N such that γ{x ∈ Sk/K
n(x, Sl) > 0} > 0.

This implies

∫

Sk

γ(dx0)

∫

E

K(x0, dx1)

∫

E

K(x1, dx2) · · ·

∫

E

K(xn−2, dxn−1)K(xn−1, Sl)

=

∫

Sk

γ(dx)Kn(x, Sl) > 0.



Since Z is a partition of S there is a finite sequence Sk = S0, S1, . . . , Sn = Sl, S
j ∈ Z, such

that

∫

S0

γ(dx0)

∫

S1

K(x0, dx1)

∫

S2

K(x1, dx2) · · ·

∫

Sn−1

K(xn−2, dxn−1)K(xn−1, S
n) > 0.

But this relation together with the fact that γ is stationary implies

γ(Sj)KZ(Sj , Sj+1)

=

∫

Sj

γ(dxj)K(xj , S
j+1)

=

∫

S

γ(dx0)

∫

S

K(x0, dx1) · · ·

∫

Sj

K(xj−1, dxj)

∫

Sj+1

K(xj , dxj+1) · · ·

∫

S

K(xn−2, dxn−1)K(xn−1, S)

> 0

for all j ∈ 0..(n− 1). Hence, there is a path from Sk to Sl with respect to KZ ; this finishes
the proof. 2

However, this knowledge does not help to gain information on γ in a direct way since the
definition of KZ needs the stationary distribution γ. The following notion appears in [4] in
the case of a finite Markov chain; it is called Z–reversibility there.

2.2 Definition Let Z = {S1, · · · , SN} be a partition of S into sets Sk ∈ B+(S) (so that
γ(Sk) > 0). We call Z balanced (with respect to K) if the stationary distribution γπ of the
ideal aggregation KZ is reversible.

Thus, balancedness of Z means

γ(Sk)KZ(k, l) = γ(Sl)KZ(l, k),

or, equivalently,

∫

Sk

γ(dx)K(x, Sl) =

∫

Sl

γ(dx)K(x, Sk),(1)

or also

P γ[X0 ∈ Sk, X1 ∈ Sl] = P γ[X0 ∈ Sl, X1 ∈ Sk]

for all k, l ∈ 1..N . The last two equalities can be interpreted as “balance of flow” between Sk

and Sl in equilibrium. Finally, ifKZ(k, l) > 0 or, equivalently, KZ(l, k) > 0 then balancedness
of Z implies

γ(Sk)

γ(Sl)
=

∫

Sl
γSl

(dx)K(x, Sk)
∫

Sk
γSk

(dx)K(x, Sl)
.(2)



2.3 Remarks (a) The stationary distribution γ of K is reversible if and only if any finite
partition of S is balanced. If S is finite then this is of course the case if and only if the finest
partition Z ≃ S is balanced.

(b) Any splitting into two measurable subsets is balanced. (This case appears implicitly
already in [7], Lemma 1.4.) It follows that balancedness of a partition does not imply that
the aggregated process is Markovian. It is sufficient to consider a 3×3–permutation matrix
and any partition into two classes.

(c) A notion related to balancedness is the recently introduced partition reversibility [1] of
an ergodic Markov jump processes. Transferred to a positive recurrent Markov matrix K on
a discrete state space, partition reversibility over Z = {S1, · · · , SN} would mean

γ(x)K(x, Sl) =
∑

y∈Sl

γ(y)K(y, x)

for all x ∈ Sk, k, l ∈ 1..N . Summing up over x ∈ Sk, we see that this notion of partition re-
versibility implies balancedness of Z. The converse is not true: A counterexample is furnished
by S = 1..3, Z = {{1, 2}, {3}}, and

K =





1/4 0 3/4
1/2 1/2 0
1/3 2/3 0



 .

The only stationary distribution is γ = 1
11

(4, 4, 3). As noted in (b), Z is balanced. Since
γ(1)K(1, S2) = γ(1)K(1, 3) 6= γ(3)K(3, 1), K is not partition reversible over Z.

The following Propositions 2.4 and 2.5 state conditions equivalent to balancedness.

2.4 Proposition For Z = {S1, · · · , SN} to be balanced it is sufficient (and necessary)
that

∫

Sk

γ(dx)K(x, Sl) ≤

∫

Sl

γ(dx)K(x, Sk)(3)

for all k, l ∈ Z such that k < l.

Proof. Let us show by induction on k that (1) holds for all l ≥ k. We first have

∑

l

∫

S0

γ(dx)K(x, Sl) = γ(S0) = (γK)(S0) =
∑

l

∫

Sl

γ(dx)K(x, S0).

A comparison of this equality with (3) shows the claim for k = 0. Assume now that the
claim has been proved up to some k < N . Similarly as above, we have

∑

l≤k

∫

Sk+1

γ(dx)K(x, Sl) +
∑

l>k

∫

Sk+1

γ(dx)K(x, Sl)

= γ(Sk+1)

= (γK)(Sk+1)

=
∑

l≤k

∫

Sl

γ(dx)K(x, Sk+1) +
∑

l>k

∫

Sl

γ(dx)K(x, Sk+1).



Since the inductive assumption implies for l ≤ k

∫

Sl

γ(dx)K(x, Sk+1) =

∫

Sk+1

γ(dx)K(x, Sl),

we have from (4)

∑

l>k

∫

Sk+1

γ(dx)K(x, Sl) =
∑

l>k

∫

Sl

γ(dx)K(x, Sk+1)

and the claim follows from (3). 2

A coarsening of Z is a partition consisting of unions of classes of Z. We call a coarsening
{C1, . . . , CM} of {S1, . . . , SN} increasing if i < j, Sk ⊆ Ci, and Sl ⊆ Cj imply k < l. We
deal next with heredity with respect to coarsenings of Z.

2.5 Proposition (a) Any coarsening of a balanced partition is balanced.

(b) (3-Lemma) A partition Z is balanced if and only if any increasing coarsening of Z
consisting of three classes is balanced.

Proof. (a) Let {N1, . . . , NM} be a partition of 1..N ≃ Z, let Ci =
⋃

k∈Ni
Sk, i ∈ 1..M , and

let Y = {C1, . . . , CM} a coarsening of Z. Then, we have

∫

Ci

γ(dx)K(x, Cj) =
∑

k∈Ni

∫

Sk

γ(dx)K(x,
⋃

l∈Nj

Sl) =
∑

k∈Ni

∑

l∈Nj

∫

Sk

γ(dx)K(x, Sl).

By balancedness of Z, the last expression is symmetric with respect to i and j.

(b) We have to show (1) for all k, l ∈ 1..N . Without loss of generality, let 1 ≤ k < l ≤ N
and consider first the partitions

Y1 := {
k
⋃

m=1

Sm,

l
⋃

m=k+1

Sm,

N
⋃

m=l+1

Sm} and Y2 := {
k
⋃

m=1

Sm,

l−1
⋃

m=k+1

Sm,

N
⋃

m=l

Sm}.

(a union over the empty index set is omitted). Plainly, both Y1 and Y1 are increasing coars-
enings of Z consisting of at most three classes. Now, the hypothesis together with the fact
that any splitting into two subsets in B+(S) is balanced shows that both Y1 and Y2 are
balanced. Hence,

∫

Sk
m=1 Sm

γ(dx)K(x,

l
⋃

m=k+1

Sm) =

∫

Sl
m=k+1 Sm

γ(dx)K(x,

k
⋃

m=1

Sm).

and

∫

Sk
m=1 Sm

γ(dx)K(x,

l−1
⋃

m=k+1

Sm) =

∫

Sl−1
m=k+1 Sm

γ(dx)K(x,

k
⋃

m=1

Sm).



Substracting corresponding sides, we obtain

∫

Sk
m=1 Sm

γ(dx)K(x, Sl) =

∫

Sl

γ(dx)K(x,

k
⋃

m=1

Sm).(4)

Consider next the partitions

Y3 := {
k−1
⋃

m=1

Sm,

l
⋃

m=k

Sm,

N
⋃

m=l+1

Sm} and Y4 := {
k−1
⋃

m=1

Sm,

l−1
⋃

m=k

Sm,

N
⋃

m=l

Sm}.

The same arguments as above yield

∫

Sk−1
m=1 Sm

γ(dx)K(x,
l
⋃

m=k

Sm) =

∫

Sl
m=k Sm

γ(dx)K(x,
k−1
⋃

m=1

Sm),

∫

Sk−1
m=1 Sm

γ(dx)K(x,

l−1
⋃

m=k

Sm) =

∫

Sl−1
m=k

Sm

γ(dx)K(x,

k−1
⋃

m=1

Sm),

and

∫

Sk−1
m=1 Sm

γ(dx)K(x, Sl) =

∫

Sl

γ(dx)K(x,

k−1
⋃

m=1

Sm).(5)

Subtracting finally (5) from (4) we obtain (1). 2

One obtains the following immediate corollary.

2.6 Corollary The stationary distribution γ is reversible if and only if any partition of
S into three subsets is balanced.

In order to verify balancedness of a partition Z via Definition 2.2 or via Propositions 2.4,
2.5, one needs γ. We deal next with conditions that are formulated solely in terms of K
and a maximal irreducibility measure of K, cf. 1.2. We first show that Kolmogorov’s [7],
p. 117, famous loop criterion for reversibility of a Markov matrix can be carried over to
balancedness. Contrary to the former case, our present condition is only sufficient in the
latter.

2.7 Proposition (generalized loop condition) Assume

K(x0, S
1)K(x1, S

2) . . .K(xn−1, S
n)K(xn, S

0)

= K(x0, S
n)K(xn, S

n−1) . . .K(x2, S
1)K(x1, S

0)(6)

for all n ∈ N, all choices S0, . . . , Sn ∈ Z, and for ψ⊗(n+1)–a.a. (x0, . . . , xn) ∈ S0 × . . .× Sn.
Then Z is balanced.



Proof. We show that the assumption implies the loop criterion for the ideal aggregation,
i.e.,

KZ(k0, k1)KZ(k1, k2) . . .KZ(kn, k0) = KZ(kn, kn−1)KZ(kn−1, kn−2) . . .KZ(k0, kn)

for all n ∈ N and all k0, ..., kn ∈ 1..N . Putting Si := π−1(ki), i ∈ 0..n, and Sn
0 = S0× ...×Sn,

we have

KZ(k0, k1)KZ(k1, k2) . . .KZ(kn−1, kn)KZ(kn, k0)

=
1

∏

i γ(Si)

∫

S0

γ(dx0)K(x0, S
1)

∫

S1

γ(dx1)K(x1, S
2) . . .

∫

Sn−1

γ(dxn−1)K(xn−1, S
n)

∫

Sn

γ(dxn)K(xn, S0)

=
1

∏

i γ(Si)

∫

Sn
0

γ(dx0)γ(dx1) . . . γ(dxn−1)γ(dxn)K(x0, S
1)K(x1, S

2) . . . K(xn−1, S
n)K(xn, S0)

=
1

∏

i γ(Si)

∫

Sn
0

γ(dx1)γ(dx2) . . . γ(dxn)γ(dx0)K(x1, S
0)K(x2, S

1) . . . K(xn, Sn−1)K(x0, S
n)

=
1

∏

i γ(Si)

∫

S1

γ(dx1)K(x1, S
0)

∫

S2

γ(dx2)K(x2, S
1) . . .

∫

Sn

γ(dxn)K(xn, Sn−1)

∫

S0

γ(dx0)K(x0, S
n)

= KZ(k1, k0)KZ(k2, k1) . . .KZ(kn, kn−1)KZ(k0, kn),

where the third equality follows from the generalized loop condition (6) and equivalence of
ψ and γ. This is the claim. 2

2.8 Notation Let us define a graph GZ
K = (1..N, EZ

K) on 1..N associated with K and Z
by putting

EZ
K := {(k, l) ∈ 1..N |∃x∈Sk

[K(x, Sl) > 0] or ∃x∈Sl
[K(x, Sk) > 0]}.

2.9 Corollary If GZ
K is a tree then Z is balanced.

Proof. Since GZ
K has no loops, the only way to have a chain x0, S

1, x1, S
2, . . . , xn−1, S

n, xn, S
0

as required on the left side of the generalized loop condition (6) is to balance each of its
links xk, S

l with its counterpart xl, S
k. But then, the assumption of 2.7 is plainly satisfied

since both products consist of the same factors. 2

The following immediate consequence of Corollary 2.9 concerns stochastic block-band matri-
ces.

2.10 Corollary With the notation S0 = SN+1 = ∅ assume that K(x, Sk) = 0 for all
x /∈ Sk−1 ∪ Sk ∪ Sk+1, 1 ≤ k ≤ N . Then Z is balanced.

The generalized loop condition is sufficient for balancedness. The following proposition deals
with its necessity. Let us call K lumpable for Z if, for all k, l ∈ Z and for ψ ⊗ ψ–a.a.
(x, y) ∈ Sk × Sk, we have

K(x, Sl) = K(y, Sl).(7)



2.11 Proposition If K is lumpable for Z then the following statements are equivalent.

(a) Z is balanced;

(b) the generalized loop condition (6) is satisfied for all n ∈ N, all choices S0, . . . , Sn ∈ Z,
and for (x0, . . . , xn) in some subset of S0×. . .×Sn of strictly positive ψ⊗(n+1)–measure;

(c) the generalized loop condition (6) is satisfied for all n ∈ N, all choices S0, . . . , Sn ∈ Z
and for ψ⊗(n+1)–a.a. (x0, . . . , xn) ∈ S0 × . . .× Sn.

Proof. Integrating (7) with respect to γSk
over y ∈ Sk we obtain first

K(x, Sl) =

∫

Sk

γSk
(dy)K(y, Sl) = KZ(k, l)(8)

for ψ–a.a. x ∈ Sk.

We now show that (a) implies (b). Given sets Si ∈ Z, i ∈ 0..n, balancedness and (8) imply

∏

k

γ(Sk) ·K(x0, S
1)K(x1, S

2) . . .K(xn−1, S
n)K(xn, S

0)

=
∏

k

γ(Sk) ·KZ(S0, S1)KZ(S1, S2) . . .KZ(Sn−1, Sn)KZ(Sn, S0)

=
∏

k

γ(Sk) ·KZ(S0, Sn)KZ(Sn, Sn−1) . . .KZ(S2, S1)KZ(S1, S0)

=
∏

k

γ(Sk) ·K(x0, S
n)K(xn, S

n−1) . . .K(x2, S
1)K(x1, S

0)

and, hence, (6) for ψ⊗(n+1)–a.a. (x0, . . . , xn) ∈ S0 × . . .× Sn.

If (b) holds then (8) implies (6) ψ⊗(n+1)–almost everywhere, i.e., (c). The fact that (c) implies
(a) was proved in Proposition 2.7.

3 Estimation of probabilities of events

Our main interest in balanced partitions is their ability to furnish lower and upper estimates
of the stationary distribution γ. While ideal aggregation cuts down the size of the state
space and would thus be useful for efficiently analyzing the stationary distribution, the crux
with it is that it needs this very distribution for its definition. If we want to gain lower and
upper estimates of the fractions

γ(Sk)
γ(Sl)

, k, l ∈ 1..N, k 6= l, without knowing the stationary
distribution γ then the equality γK = γ always yields

∫

Sk

γ(dx)K(x, Sl) +

∫

Sl

γ(dx)K(x, Sl) ≤ γ(Sl)(9)

or, equivalently,

∫

Sk

γ(dx)K(x, Sl) ≤

∫

Sl

γ(dx)(1 −K(x, Sl)).



Passing to the conditional distributions γSk
and γSl

, elementary algebraic operations show

γ(Sk)

γ(Sl)
≤

∫

Sl
γSl

(dx)(1 −K(x, Sl))
∫

Sk
γSk

(dx)K(x, Sl)
≤

1 − ess infx∈Sl
K(x, Sl)

ess infx∈Sk
K(x, Sl)

=
ess supx∈Sl

K(x, ∁Sl)

ess infx∈Sk
K(x, Sl)

and an analogous lower estimate of γ(Sk)/γ(Sl). The following statements show how bal-
ancedness allows to improve these estimates. The idea behind them is simple but the method
turns out to be very useful for the analysis of stationary distributions of Markov chains. We
deal with upper bounds of γ(Sk)/γ(Sl), only, since lower bounds follow easily from them by
swapping k and l. Let us abbreviate Sk,l = {x ∈ Sk/K(x, Sl) > 0}, k, l ∈ Z.

3.1 Proposition Let Z be balanced.

(a) If k, l ∈ Z are such that KZ(k, l) > 0 or KZ(l, k) > 0 then we have γ(Sk,l) > 0 and
γ(Sl,k) > 0. Moreover,

γ(Sk,l)

γ(Sl,k)
=

∫

Sl,k
γSl,k

(dx)K(x, Sk)
∫

Sk,l
γSk,l

(dx)K(x, Sl)
.(10)

(b) If µ and ν are two distributions on R such that (γSl,k
)K(·,Sk) � µ and ν � (γSk,l

)K(·,Sl)

then E µ > 0 and we have the estimate

γ(Sk,l)

γ(Sl,k)
≤
E µ

E ν
(the right side may be infinite).(11)

Proof. (a) Strict positivity of KZ(k, l), balancedness of Z, and the standing assumption
γ(Sk) > 0 together imply KZ(l, k) > 0, i.e., we have KZ(l, k) > 0 in any case. Now, the
estimate

0 < KZ(l, k) =
1

γ(Sl)

∫

Sl

γ(dx)K(x, Sk) =
1

γ(Sl)

∫

Sl,k

γ(dx)K(x, Sk).(12)

shows that γ(Sl,k) > 0. By symmetry, we also have γ(Sk,l) > 0. In order to prove (10) note
that, by balancedness (1) of Z, we have

1 =

∫

Sl
γ(dx)K(x, Sk)

∫

Sk
γ(dx)K(x, Sl)

=

∫

Sl,k
γ(dx)K(x, Sk)

∫

Sk,l
γ(dx)K(x, Sl)

=
γ(Sl,k)

∫

Sl,k
γSl,k

(dx)K(x, Sk)

γ(Sk,l)
∫

Sk,l
γSk,l

(dx)K(x, Sl)
.

This is the claim.

(b) The claim on strict positivity in (b) follows from (12) and the assumption (γSl,k
)K(·,Sk) �

µ. For proving (11), use (10) to estimate

γ(Sk,l)

γ(Sl,k)
=

∫

Sl,k
γSl,k

(dx)K(x, Sk)
∫

Sk,l
γSk,l

(dx)K(x, Sl)
=
E(γSl,k

)K(·,Sk)

E(γSk,l
)K(·,Sl)

≤
Eµ

Eν
. 2

Note that, in (11), we have nothing lost yet: by (2), there is equality in (11) for µ =
(γSl,k

)K(·,Sk) and ν = (γSk,l
)K(·,Sl). However, these measures depend on the stationary dis-

tribution and it remains the problem to find suitable distributions ν and µ that allow to
control their expectations. Our following propositions exploit two general choices.



3.2 Proposition Let Z be balanced. If k, l ∈ Z are such that KZ(l, k) > 0 then the
number ess supx∈Sl,k

K(x, Sk) is strictly positive and we have the estimate

γ(Sk,l)

γ(Sl,k)
≤

ess supx∈Sl,k
K(x, Sk)

ess infx∈Sk,l
K(x, Sl)

=
ess supx∈Sl

K(x, Sk)

ess infx∈Sk,l
K(x, Sl)

(the bound may again be infinite).

Proof. Strict positivity follows from (12). For the first bound, put µ = δess supx∈Sl,k
K(x,Sk)

and ν = δess infx∈Sk,l
K(x,Sl) and use Proposition 3.1(b). For the second bound, note that

ess supx∈Sl,k
K(x, Sk) = ess supx∈Sl

K(x, Sk). 2

Our next proposition needs a few preliminaries.

3.3 Lemma Let ρ and σ be two finite measures on the real line such that ρ ≤ σ, i.e.,
∫

dρf ≤
∫

dσf for all positive, measurable functions f on R.

(a) If the interval [s,∞[ is a support of σ then

ρ+ (σ(R) − ρ(R))δs � σ.

(b) If the interval ] −∞, s] is a support of σ then

σ � ρ+ (σ(R) − ρ(R))δs. 2

3.4 Notation and explanation Let K be recurrent and let B ∈ B+(S). The first return
distribution of the chain X into B starting from x ∈ B is the Markovian kernel

KB(x, F ) =
∑

t≥1

P δx [Xt ∈ F, TB = t], F ⊆ B.

This kernel describes the motion of the chain X in B. Its stationary distribution is thus γB,
γBKB = γB. Now, for t ≥ 2 and F ⊆ B, we have

P δx [Xt ∈ F, TB = t]

= P δx [X1 ∈ ∁B, . . . , Xt−1 ∈ ∁B,Xt ∈ F ]

=

∫

∁B×...×∁B

P δx [X1 ∈ dy1, . . . , Xt−1 ∈ dyt−1, Xt ∈ F ]

=

∫

∁B×...×∁B

K(x, dy1)K(y1, dy2) . . .K(yt−2, dyt−1)K(yt−1, F )

=

∫

∁B×∁B

K(x, dy1)K
t−2
∁B,∁B

(y1, dyt−1)K(yt−1, F )

= KB,∁BK
t−2
∁B,∁B

K∁B,B(x, F ).



Hence, the first return distribution to B has the analytic representation

KB = KB,B +KB,∁B(
∑

t≥0

(K∁B,∁B)t)K∁B,B.

For n ≥ 0, let us abbreviate

KB;n = KB,B +KB,∁B(
∑

t<n

(K∁B,∁B)t)K∁B,B.

KB;n is a sub–Markovian kernel on B and, as n tends to ∞, the sequence KB;n increases to
KB. The following proposition uses the kernels KSk,l;n for estimating γ.

3.5 Proposition Let Z be balanced and let k, l ∈ Z such that KZ(l, k) > 0. For all u ≥ 0,
the numerator on the following right side is strictly positive and we have for all u, v ≥ 0

γ(Sk,l)

γ(Sl,k)

≤
ess supx∈Sl,k

(KSl,k;uKSl,k,Sk
)(x, Sk) + (1 − ess infx∈Sl,k

KSl,k;u(x, Sl,k))ess supx∈Sl,k
K(x, Sk)

ess infx∈Sk,l
(KSk,l;vKSk,l,Sl

)(x, Sl) + (1 − ess supx∈Sk,l
KSk,l;v(x, Sk,l))ess infx∈Sk,l

K(x, Sl)
.

Proof. In view of Proposition 3.1(b), define

µ =
(

γSl,k
KSl,k;u

)

K(·,Sk)
+
(

1 − (γSl,k
KSl,k;u)(Sl,k)

)

δess supx∈Sl,k
K(x,Sk) and

ν =
(

γSk,l
KSk,l;v

)

K(·,Sl)
+
(

1 − (γSk,l
KSk,l;v)(Sk,l)

)

δess infx∈Sk,l
K(x,Sl).

By 3.4, γSl,k
KSl,k;u ≤ γSl,k

KSl,k
= γSl,k

and, hence, (γSl,k
KSl,k;u)K(·,Sk) ≤ (γSl,k

)K(·,Sk).

Since the interval
[

ess infx∈Sl,k
K(x, Sk), ess supx∈Sl,k

K(x, Sk)
]

is a support of (γSl,k
)K(·,Sk),

Lemma 3.3(b) implies (γSl,k
)K(·,Sk) � µ. Similarly, (γSk,l

KSk,l;v)K(·,Sl) ≤ (γSk,l
)K(·,Sl) and

[

ess infx∈Sk,l
K(x, Sl), ess supx∈Sk,l

K(x, Sl)
]

is a support of (γSk,l
)K(·,Sl). Hence, Lemma 3.3(a)

implies ν � (γSk,l
)K(·,Sl). Furthermore, we have

Eµ =

∫

(γSl,k
KSl,k;u)(dx)K(x, Sk) + (1 − (γSl,k

KSl,k;u)(Sl,k))ess sup
x∈Sl,k

K(x, Sk)

=

∫

γSl,k
(dx)(KSl,k;uKSl,k,Sk

)(x, Sk) +

(

1 −

∫

γSl,k
(dx)KSl,k;u(x, Sl,k)

)

ess sup
x∈Sl,k

K(x, Sk)

≤ ess sup
x∈Sl,k

(KSl,k;uKSl,k,Sk
)(x, Sk) + (1 − ess inf

x∈Sl,k

KSl,k;u(x, Sl,k))ess sup
x∈Sl,k

K(x, Sk)

and

Eν =

∫

(γSk,l
KSk,l;v)(dx)K(x, Sl) + (1 − (γSk,l

KSk,l;v)(Sk,l))ess inf
x∈Sk

K(x, Sl)

=

∫

γSk,l
(dx)(KSk,l;vKSk,l,Sl

)(x, Sl) +

(

1 −

∫

γSk,l
(dx)KSk,l;v)(x, Sk,l)

)

ess inf
x∈Sk,l

K(x, Sl)

≥ ess inf
x∈Sk,l

(KSk,l;vKSk,l,Sl
)(x, Sl) + (1 − ess sup

x∈Sk,l

KSk,l;v(x, Sk,l))ess inf
x∈Sk,l

K(x, Sl).

The claim now follows from Proposition 3.1(b). 2



3.6 Use of shortest paths The bounds given in Propositions 3.2 and 3.5 are meaningless
if the denominators vanish. There is sometimes a way to efficiently improve given estimates
of quotients and to create additional bounds. This allows to draw a finer picture of γ. The
improvement uses an algorithm for the shortest path problem in a directed graph and may, in
particular, be applied to parameter–free transition kernels. Let γ(B)

γ(C)
≤ U(B,C) ≤ ∞, B,C ∈

S be the given upper bounds. (If Proposition 3.1, 3.2, or 3.5 is used for the initial bounds
then S = {Sk,l ∈ B+(S)/1 ≤ k, l ≤ N, k 6= l}. If there is no finite bound then U(B,C) is
defined as ∞.) Lower bounds are again treated by symmetry. Consider the weighted, directed
graph G defined by the set S of vertices, the links (B,C) if there is a finite estimate U(B,C),
and the corresponding weights logU(B,C). If Tk1 , · · · , Tkn

, Tk1 is any (directed) cycle in G
then its length (= sum of weights) is ≥ 0 since logU(Tk1 , Tk2) + · · · + logU(Tkn

, Tk1) ≥

log
γ(Tk1

)

γ(Tk2
)
+ · · ·+ log

γ(Tkn )

γ(Tk1
)

= 0. In this situation, if there is a (directed) path from B to C in

G then there is a shortest one, cf. [6]. The length of this shortest path may be smaller than
logU(B,C), no matter whether (B,C) is a link or not. Its exponential is an upper bound of

the quotient γ(B)
γ(C)

.

By way of example, consider S = 1..4, the irreducible transition matrix

K =
1

4









1 3 0 0
1 1 1 1
0 2 1 1
0 1 1 2









,

and S1 = {1}, S2 = {2}, S3 = {3, 4}. The stationary distribution is γ = 1
41

(5, 15, 9, 12). The
generalized loop condition shows that Z is balanced and Proposition 3.2 yields the bounds

1

3
≤
γ(1)

γ(2)
≤

1

3
and

1

2
≤

γ(2)

γ(3, 4)
≤ 1.

Applying shortest paths, we obtain the additional bounds

1

6
≤

γ(1)

γ(3, 4)
≤

1

3
.

4 An application to systems analysis

In order to illustrate the versatility of the previous approach, we apply it to derive a fairness
property of a non–reversible Markovian system discussed by communication and queueing
theorists.

4.1 A multiclass service system with loss Alexopoulos, El-Tannir, and Serfozo [1]
analyze a continuous-time service system with customer classes and class–dependent loss
(they call it “blocking” but the quality of the system operation is rather that of a loss
system). We deal here with a similar discrete–time system. It has the advantage of allowing
(independent) arrival streams with arbitrary distributions. Our system operates as follows. It
serves r ≥ 2 classes or types of customers. At each time t ∈ N> there arrive a random number
Ak,t : (Ω, P ) → N of customers of class k ∈ 1..r at the system. We assume that the Ak,t’s are



integrable and that the r processes (Ak,t)t∈N are all i.i.d., independent of one another, and
independent of the initial number of customers, X0, on the system. Moreover, we assume
that the system can hold only one class of customers at any time. When customers of one
class are served, any arrivals of other classes are rejected. Moreover, when the system is
empty and customers of different classes arrive simultaneously then a random and uniformly
distributed ”coin” decides which class enters the system. The system has m servers: if there
are x ∈ N customers on the system, then x ∧m of them are served at the same time. The
service times of all customers are independent and geometrically distributed with rate qk. In
order to describe the departure process, let us introduce the independent and binomialx,m,qk

–

distributed random variables D
(x)
k,t : (Ω, P ) → 0..(x ∧m), x, t ∈ N, k ∈ 1..r, independent of

the Ak,t’s. If, at time t ∈ N, there are x customers of class k on the system then the number

of customers leaving the system at time t is D
(x∧m)
k,t .

Denoting the k th unit vector in N
r by ek, k ∈ 1..r, we define the state space S =

⋃r
k=1 Nek,

where Nek = {0, ek, 2ek, · · ·}. From the description above it is clear that the customer
class and number of customers on the system at time t ∈ N may be represented by an
r–dimensional random variable Xt : (Ω, P ) → S. By the assumptions of independence, the
process (Xt)t≥0 is a Markov chain. It cannot transfer from a state xek to a state yel, x, y > 0,
l 6= k, unless it passes through 0. In particular, with the notation Rk = N>ek, the state space
S is the star {0}∪

⋃r
k=1Rk with center 0 and rays Rk, k ∈ 1..r. The transition graph consists

of forward arrows of possibly arbitrary lengths (depending on the distribution of Ak,0) and
backward arrows of lengths at most m in each set {0} ∪ Rk.

Let us define the blocks

B0(k) = {0}, Ba(k) = {((a− 1)m+ 1) ek, . . . , am ek},

k ∈ 1..r, a > 0, and the intervals

Bc
b(k) =

c
⋃

j=b

Bj(k), B∞
b (k) =

⋃

j≥b

Bj(k),

0 ≤ b ≤ c. If it is clear from the context which k is referred to we often omit it. Some entries
of the transition matrix are

K(0, 0) =
r
∏

k=1

P [Ak,0 = 0] and

K(xek, yek) = P [Ak,0 −D
(x∧m)
k,0 = y − x], y ≥ 0,(13)

for all x ≥ 1 and all k ∈ 1..r. Moreover, for these x, k and all a ≥ 0, we have

K(xek, Ba(k)) = P [Ak,0 −D
(x∧m)
k,0 ∈ Ba(k) − x](14)

and

K(xek, B
∞
a (k)) = P [Ak,0 −D

(x∧m)
k,0 ∈ B∞

a − x].(15)



Finally, if a ≥ 1 then

K(0, B∞
a (k)) = P [Ak,0 ∈ B∞

a ]

[

r−1
∑

l=0

1

l + 1

(

∑

J∈(1..r\{k}
l )

∏

j∈J

P [Aj,0 > 0]
∏

j /∈J∪{k}

P [Aj,0 = 0]

)]

(16)

As usual, we write ρk = EAk,0/ED
(m)
k,0 = EAk,0/(mqk), k ∈ 1..r. If

0 < P [Ak,0 = 0] < 1 and 0 < qk < 1 for all k ∈ 1..r(17)

then K is irreducible. We assert that it is positive recurrent if, in addition,

ρk < 1, k ∈ 1..r.(18)

Let us prove this assertion by means of the Lyapunov–Foster Criterion. Let
C = B0 ∪

⋃r
k=1B1(k) and let L : S → R+ be defined by L(xek) = x for all x ∈ N, k ∈ 1..r.

First, note that

(CKL)(0) =

r
∑

k=1

∑

x>0

CK(0, xek)L(xek) ≤
r
∑

k=1

∑

x>0

P [Ak,0 = x]x =

r
∑

k=1

EAk,0 <∞.

Moreover, simple algebraic manipulations based on (13) show

(CKL)(xek)

=
∑

y>m

K(xek, yek)L(yek)

=
∑

y>m

x∧m
∑

j=0

P [Ak,0 = y − x+ j]P [D
(x∧m)
k,0 = j]y

=

x∧m
∑

j=0

P [D
(x∧m)
k,0 = j]

∑

z>m−x+j

P [Ak,0 = z](z + x− j)

≤
x∧m
∑

j=0

P [D
(x∧m)
k,0 = j](EAk,0 + x− j)

= EAk,0 + x− ED
(x∧m)
k,0

= L(xek) + EAk,0 − ED
(x∧m)
k,0

if x ≥ 1. Hence, if 1 ≤ x ≤ m then we have (CKL)(xek) ≤ L(xek) + EAk,0 − ED
(x)
k,0 < ∞

and if x > m then (CKL)(xek) − L(xek) ≤ EAk,0 − ED
(m)
k,0 < 0 for all k ∈ 1..r by

assumption (18). Thus, both Conditions (i),(ii) of the Lyapunov–Foster Criterion are
satisfied. Therefore, under (17) and (18), the system has a unique stationary distribution γ.



Kolmogorov’s loop criterion shows that γ is not reversible in general. However, Corollary 2.9
implies that the partitions

Za(k) = {R1, . . . , Rk−1, B
a
0 (k), B∞

a+1(k), Rk+1, . . . , Rr},

are balanced for all a ∈ N and all k ∈ 1..r. We use all these partitions in combination with a
recursion over the blocks in order to prove the asymptotic result that, as r increases to infinity,
each of the rays Rk receives a fair share of the equilibrium probability, viz., under some mild
conditions on the expectations of arrival and service times we have infr≥1 r infk∈1..r γ(Rk) > 0,
cf. Theorem 4.9.

We subdivide the proof of this main theorem in a series of lemmas, some of them of separate
interest on their own. In order to apply Section 3, we first compute some minima and maxima
of the transition probabilities.

4.2 Lemma Let a ≥ 1.

(a) We have

min
x∈Ba+1

K(x,Ba) = min
x∈B1

K(x,B0) = P [Ak,0 −D
(m)
k,0 = −m] = P [Ak,0 = 0]qm

k ;(19)

max
x∈B1

K(x,B0) = P [Ak,0 −D
(1)
k,0 = −1] = P [Ak,0 = 0]qk;(20)

max
x∈Ba+1

K(x,Ba) = P [Ak,0 −D
(m)
k,0 ∈ (−m)..(−1)].(21)

(b) For all 1 ≤ a < b we have

min
x∈Ba

K(x,B∞
b ) =

{

P [Ak,0 −D
(1)
k,0 ≥ (b− 1)m], a = 1,

P [Ak,0 −D
(m)
k,0 ≥ (b− a)m], a ≥ 2;

(22)

max
x∈Ba

K(x,B∞
b ) = P [Ak,0 −D

(m)
k,0 ≥ (b− a− 1)m+ 1].(23)

(c) The sequences

(

K(0, B∞
a ),max

x∈B1

K(x,B∞
a ), · · · , max

x∈Ba−1

K(x,B∞
a )

)

and

(

K(0, B∞
a ),min

x∈B1

K(x,B∞
a ), · · · , min

x∈Ba−1

K(x,B∞
a )

)

are increasing.



Proof. The claims follow from (13), (14), (15) and the assumption of independence between
the various random variables if one takes into account the relations

D
(1)
k,0 � . . . � D

(m)
k,0 and D

(1)
k,0 − 1 � . . . � D

(m)
k,0 −m.(24)

Specifically, the minima (19) are assumed at the states x = (a+1)m and x = m, respectively,
the maximum (20) at the state x = 1, that in (21) at x = am + 1, the minimum (22) at
x = (a− 1)m+ 1, and the maximum (23) at x = am.

As a sample proof, let us derive (22). By (15),

min
x∈Ba

K(x,B∞
b ) = min

x∈Ba

P [Ak,0 − (Dx∧m
k,0 − x) ∈ B∞

b ].

Now, since the random variables Dx∧m
k,0 − x are stochastically decreasing as x ∈ Ba increases

the sequence (Ak,0 − (Dx∧m
k,0 − x))x∈Ba

is stochastically increasing; this proves the claim. 2

The normalizations of the following measures µL
k and µU

k on N will turn out to be lower and
upper stochastic bounds of the coarsening with respect to the blocks of the restriction of γ
to Rk. We define these measures recursively.

4.3 Definitions Let k ∈ 1..r.

(a) Let µL
k (0) = 1. If µL

k (0), · · · , µL
k (a) are defined, let

µL
k (a+ 1) =

∑a
b=0 µ

L
k (b) minx∈Bb

K(x,B∞
a+1)

maxx∈Ba+1 K(x,Ba)
.(25)

(b) Let µU
k (0) = 1. If µU

k (0), · · · , µU
k (a) are defined, let

µU
k (a+ 1) =

∑a
b=0 µ

U
k (b) maxx∈Bb

K(x,B∞
a+1)

minx∈Ba+1 K(x,Ba)
.(26)

4.4 Lemma For all a ∈ N we have

µL
k (a+ 1)

µL
k (0..a)

≤
γ(Ba+1)

γ(Ba
0 )

≤
µU

k (a+ 1)

µU
k (0..a)

,(27)

µL
k (a)

µL
k (0..a)

≤
γ(Ba)

γ(Ba
0)

≤
µU

k (a)

µU
k (0..a)

,(28)

(

µL
k (b)

µL
k (0..a)

)

b∈0..a

�

(

γ(Bb)

γ(Ba
0 )

)

b∈0..a

�

(

µU
k (b)

µU
k (0..a)

)

b∈0..a

,(29)

and

µL
k (a) ≤

γ(Ba)

γ(B0)
≤ µU

k (a).(30)



Proof. By symmetry, it is sufficient to prove the right hand sides of the estimates, only. We
first prove (28), (29), and (27) simultaneously using mathematical induction. The estimates
(28) and (29) are trivial for a = 0. In order to prove (27) for a = 0, we apply Proposition 3.2
with Sk := B∞

1 and Sl := B0. By (13), Sk,l = B1 and Sl,k = B0. Therefore,

γ(B1)

γ(B0)
≤

K(0, B∞
1 )

minx∈B1 K(x, 0)
=
µU

k (1)

µU
k (0)

,

which is (27) for a = 0. Suppose now that the three estimates have already been proved for
all b < a. Claim (28) for a follows immediately from (27) for a − 1. In order to show (29),
we estimate

(

γ(Bb)

γ(Ba
0 )

)

b∈0..a

=

(

γ(Ba−1
0 )

γ(Ba
0 )

(

γ(Bb)

γ(Ba−1
0 )

)

b<a

,
γ(Ba)

γ(Ba
0)

)

�

(

µU
k (0..(a− 1))

µU
k (0..a)

(

µU
k (b)

µU
k (0..(a− 1))

)

b<a

,
µU

k (a)

µU
k (0..a)

)

=

(

µU
k (b)

µU
k (0..a)

)

b∈0..a

;

here, the “�” relation follows from the induction hypothesis together with the just proved
estimate (28).

It remains to prove (27). Let us apply Proposition 3.1(a) to the balanced partition Z = Za

and to Sk := B∞
a+1 and Sl := Ba

0 . First, (13) implies Sk,l = Ba+1 and Sl,k = Ba
0 . Since we have

K(x,Ba
0 ) = K(x,Ba) for all x ∈ Ba+1, Proposition 3.1(a), (29), and Lemma 4.2(c) yield

γ(Ba+1)

γ(Ba
0)

=

∑

x∈Ba
0
γBa

0
(x)K(x,B∞

a+1)
∑

x∈Ba+1
γBa+1(x)K(x,Ba

0 )
≤

∑a
b=0

γ(Bb)
γ(Ba

0 )
maxx∈Bb

K(x,B∞
a+1)

minx∈Ba+1 K(x,Ba)

≤

∑a
b=0

µU
k

(b)

µU
k

(0..a)
maxx∈Bb

K(x,B∞
a+1)

minx∈Ba+1 K(x,Ba)
.

By (26), this is the right hand side of (27) and the induction is finished.

The claim (30) is trivial for a = 0 and for a > 0 we use (27) to estimate

γ(Ba)

γ(B0)
=

γ(Ba)

γ(Ba−1
0 )

a−1
∏

b=1

γ(Bb
0)

γ(Bb−1
0 )

=
γ(Ba)

γ(Ba−1
0 )

a−1
∏

b=1

(1 +
γ(Bb)

γ(Bb−1
0 )

)

≤
µU

k (a)

µU
k (0..(a − 1))

a−1
∏

b=1

(1 +
µU

k (b)

µU
k (0..(b − 1))

) =
µU

k (a)

µU
k (0..(a − 1))

a−1
∏

b=1

µU
k (0..b)

µU
k (0..(b − 1))

=
µU

k (a)

µU
k (0)

. 2

Had we tried to use Proposition 3.2 instead of 3.1(a), we would have had to define the
measures

µ̃U
k (a+ 1) =

maxx∈Ba
K(x,B∞

a+1)

minx∈Ba+1 K(x,Ba)
=

P [Ak,0 −D
(m)
k,0 ≥ 1]

P [Ak,0 −D
(1)
k,0 = −m]

.



But these measures do not provide insight into the structure of γ since they are infinite. We
next show that the measures µU

k are finite. We introduce first some notation.

4.5 Notation Let k ∈ 1..r.

(a) Fk(a) =

{

K(0, B∞
a (k)), a ≥ 1,

0, a ≤ 0.

(b) GL
k (a) =







minx∈B1(k)K(x,B∞
a+1(k)), a ≥ 1,

− maxx∈B1(k)K(x,B0(k)), a = 0,
0, a < 0;

HL
k (a) =







minx∈B2(k)K(x,B∞
a+2(k)), a ≥ 1,

− maxx∈B2(k)K(x,B1(k)), a = 0,
0, a < 0.

(c) HU
k (a) =







maxx∈B1(k)K(x,B∞
a+1(k)), a ≥ 1,

− minx∈B1(k)K(x,B0(k)), a = 0,
0, a < 0.

(d) For all j ≤ m, let A
(j)
k,0 : (Ω, P ) → N be the random variable defined by

A
(j)
k,0 =

{

0, if Ak,0 ∈ 0..(j − 1),
a, if Ak,0 ∈ Ba(k) + j − 1, a ≥ 1.

Plainly, we have A
(j)
k,0 > a if and only if Ak,0 ≥ am+ j and, hence,

EA
(j)
k,0 =

∑

a≥0

P [Ak,0 ≥ am+ j].(31)

Moreover, since (A
(j)
k,0 − 1)m+ j ≤ Ak,0 ≤ A

(j)
k,0m+ j − 1, we have for j ≤ m

EAk,0 − j + 1

m
≤ EA

(j)
k,0 ≤

EAk,0 − j +m

m
.(32)

For abbreviation, let us denote the factor in brackets on the right hand side of (16) by p(r, k),
r ∈ N>, k ∈ 1..r. It is the conditional probability for arriving customers of class k to enter
the system.

4.6 Lemma We have

p(r, k)
EAk,0

m
≤

∑

a Fk(a) ≤ p(r, k)
EAk,0 + m − 1

m
,(33)

∑

a GL
k (a) = −1 +

∑

a≥0

P [Ak,0 − D
(1)
k,0 ≥ am],(34)

EAk,0 − ED
(m)
k,0 + 1 − m

m
≤

∑

a HL
k (a) = −1 +

∑

a≥0

P [Ak,0 − D
(m)
k,0 ≥ am] ≤

EAk,0 − ED
(m)
k,0

m
,(35)

∑

a HU
k (a) ≤

EAk,0 − ED
(m)
k,0 − 1 + m

m
.(36)



Proof. By (16) and (31), we have

∑

a≥0

Fk(a) =
∑

a≥1

K(0, B∞
a ) = p(r, k)

∑

a≥0

P [Ak,0 > am] = p(r, k)EA
(0)
k,0.

and the two estimates on Fk follow from (32). Moreover, by (20) and (22) we have

∑

a≥0

GL
k (a)

= −P [Ak,0 −D
(1)
k,0 = −1] +

∞
∑

a=1

P [Ak,0 −D
(1)
k,0 ≥ am]

= −1 +
∑

a≥0

P [Ak,0 −D
(1)
k,0 ≥ am],

i.e., (34).

Turning to (35), use (21), (22), and (31) to compute

HL
k (0) +

∞
∑

a=1

HL
k (a)

= − max
x∈B2(k)

K(x,B1(k)) +

∞
∑

a=1

min
x∈B2(k)

K(x,B∞
a+2(k))

= −P [Ak,0 −D
(m)
k,0 ∈ (−m)..(−1)] +

∞
∑

a=1

P [Ak,0 −D
(m)
k,0 ≥ am]

= −1 +
∑

a≥0

P [Ak,0 −D
(m)
k,0 ≥ am]

= −1 +
∑

j≤m

P [D
(m)
k,0 = j]

∑

a≥0

P [Ak,0 ≥ am+ j]

= −1 +
∑

j≤m

P [D
(m)
k,0 = j]EA

(j)
k,0.

The claims now follow from (32).

We, finally, use (19), (23), (31), and (32) to estimate

HU
k (0) +

∞
∑

a=1

HU
k (a)

= − min
x∈B1(k)

K(x,B0(k)) +
∞
∑

a=1

max
x∈B1(k)

K(x,B∞
a+1(k))

= −P [Ak,0 − D
(m)
k,0 = −m] +

∞
∑

a=0

P [Ak,0 − D
(m)
k,0 ≥ am + 1]



= −P [D
(m)
k,0 = m]P [Ak,0 = 0] + P [D

(m)
k,0 = m]

∞
∑

a=0

P [Ak,0 ≥ (a + 1)m + 1]

+
m−1
∑

j=0

P [D
(m)
k,0 = j]

∞
∑

a=0

P [Ak,0 ≥ am + j + 1]

= −P [D
(m)
k,0 = m]P [Ak,0 = 0] − P [D

(m)
k,0 = m]P [Ak,0 > 0] + P [D

(m)
k,0 = m]EA

(1)
k,0

+
m−1
∑

j=0

P [D
(m)
k,0 = j]EA

(j+1)
k,0

≤ −P [D
(m)
k,0 = m] + P [D

(m)
k,0 = m]

EAk,0 − 1 + m

m
+

m−1
∑

j=0

P [D
(m)
k,0 = j]

EAk,0 − j − 1 + m

m

=

m
∑

j=0

P [D
(m)
k,0 = j]

EAk,0 − j − 1 + m

m

=
EAk,0 − ED

(m)
k,0 − 1 + m

m
. 2

4.7 Lemma

(a) If ED
(m)
k,0 − EAk,0 > 0 then p(r, k)

EAk,0

ED
(m)
k,0 −EAk,0−1+m

≤
∑

a>0 µ
L
k (a) <∞.

(b) If ED
(m)
k,0 − EAk,0 > m− 1 then

∑

a>0 µ
U
k (a) ≤ p(r, k)

EAk,0−1+m

ED
(m)
k,0 −EAk,0+1−m

.

Proof. (a) The hypothesis implies that γ is finite; therefore, finiteness of µL
k follows imme-

diately from (30). Next, it is straightforward to verify using 4.5 that (25) can be rewritten
as the convolution equation

(Fk(a) −HL
k (a)) + µL

k (1)(GL
k (a− 1) −HL

k (a− 1)) + (µL
k ⋆ H

L
k )(a) = 0, a ≥ 0.

Let the measure νL
k be equal to µL

k with the 1 at the origin replaced with a 0. This measure
satisfies the convolution equation

(νL
k ⋆ H

L
k )(a) = νL

k (1)
(

HL
k (a− 1) −GL

k (a− 1)
)

− Fk(a), a ≥ 0.

By Lemma 4.6, all sequences appearing here have finite sums; summation yields

∑

a

HL
k (a)

∑

a

νL
k (a) = νL

k (1)

(

∑

a

HL
k (a) −

∑

a

GL
k (a)

)

−
∑

a

Fk(a).

Now, from Lemma 4.6 and (24) we have
∑

a H
L
k (a) ≤

∑

a G
L
k (a) and, hence,

∑

a≥0

HL
k (a)

∑

a>0

µL
k (a) ≤ −

∑

a≥0

Fk(a).



The lower estimate in Part (a) now follows from (33) and (35); note that, by assumption,
∑

a H
L
k (a) is negative.

In order to prove Part (b), first use Lemma 4.2 in order to rewrite the recursion (26) in the
form

µU
k (a+ 1)HU

k (0) + µU
k (0)Fk(a+ 1) +

a
∑

b=1

µU
k (b)HU

k (a + 1 − b) = 0

or, equivalently,

Fk(a+ 1) +
a+1
∑

b=1

µU
k (b)HU

k (a+ 1 − b) = 0, a ≥ 0.

Using 4.5(a), we extend this to the convolution equation

(νU
k ⋆ HU

k )(a) = −Fk(a), a ≥ 0,(37)

where the measure νU
k is equal to µU

k except at the origin where it is zero. Since, by assumption
and by (36),

∑

a≥0 H
U
k (a) is strictly negative we obtain, summing up (37),

−
∑

a≥0

Fk(a) =
∑

a≥0

(νU
k ⋆ HU

k )(a) =
∑

a≥0

HU
k (a)

∑

b>0

µU
k (b).(38)

Since
∑

a≥0 Fk(a) is finite by (33) this relation shows that both sums
∑

a≥0H
U
k (a) and

∑

b>0 µ
U
k (b) are finite. Claim (b) finally follows from (38) and Lemma 4.6. 2

4.8 Lemma (a) For all r ∈ N> and all k ≤ r, we have r p(r, k) ≥ 1.

(b) For all r ∈ N> and all h, k ≤ r, we have p(r, h) ≤ 2 p(r, k).

Proof. (a) By the definition of p(r, k) we have

r p(r, k) =
r−1
∑

l=0

r

l + 1







∑

J∈(1..r\{k}
l )

∏

j∈J

P [Aj,0 > 0]
∏

j /∈J∪{k}

P [Aj,0 = 0]







≥
r−1
∑

l=0

∑

J∈(1..r\{k}
l )

∏

j∈J

P [Aj,0 > 0]
∏

j /∈J∪{k}

P [Aj,0 = 0]

= 1.

(b) Let j, k ∈ 1..r, j 6= k. The same argument leading to formula (16) yields the equalities

K1 := P [X1 ∈ Rk/X0 = 0, Ah,0 > 0, Ak,0 > 0]

=

r−2
∑

l=0

1

l + 2







∑

I∈(1..r\{h,k}
l )

∏

i∈I

P [Ai,0 > 0]
∏

i/∈I∪{h,k}

P [Ai,0 = 0]







=

r−2
∑

l=0

1

l + 2
q(r, l)



and

K2 := P [X1 ∈ Rk/X0 = 0, Ak,0 > 0, Aj,0 = 0]

=

r−2
∑

l=0

1

l + 1







∑

I∈(1..r\{h,k}
l )

∏

i∈I

P [Ai,0 > 0]
∏

i/∈I∪{h,k}

P [Ai,0 = 0]







=
r−2
∑

l=0

1

l + 1
q(r, l),

where q(r, l) stands for the sum in parantheses. Plainly, K1 ≤ K2 ≤ 2K1. Now, the formula
of total probability together with the independence assumptions between the various random
variables specifying the system shows

p(r, j) = P [X1 ∈ Rj/X0 = 0, Aj,0 > 0]

= P [X1 ∈ Rj/X0 = 0, Aj,0 > 0, Ak,0 > 0]P [Ak,0 > 0]

+P [X1 ∈ Rj/X0 = 0, Aj,0 > 0, Ak,0 = 0]P [Ak,0 = 0]

= K1P [Ak,0 > 0] +K2P [Ak,0 = 0]

and, similarly,

p(r, k) = K1P [Aj,0 > 0] +K2P [Aj,0 = 0]

and the claim follows from

K1P [Ak,0 > 0] +K2P [Ak,0 = 0] ≤ K2 ≤ 2K1P [Aj,0 > 0] + 2K2P [Aj,0 = 0]. 2

We are now prepared to prove the main asymptotic result of this section.

4.9 Theorem (Fairness) If

(i) infk≥1 ρk > 0 and

(ii) infk≥1

(

ED
(m)
k,0 − EAk,0

)

> m− 1

then we have

inf
r≥1

r inf
k∈1..r

γ(Rk) > 0.

Proof. We start with (30) obtaining

µL
k (N>) ≤ γ(Rk)/γ({0}) ≤ µU

k (N>).(39)



Summing the upper estimate in (39) over all k ≤ r and adding 1, we find that γ({0})
is bounded below by 1/(1 +

∑

k≤r µ
U
k (N>)). Thus, by the lower estimate in (39) and by

Lemma 4.7, we have

γ(Rk) ≥ µL
k (N>)/(1 +

∑

j≤r

µU
j (N>)) ≥

p(r, k)
EAk,0

ED
(m)
k,0 −EAk,0−1+m

1 +
∑

j≤r p(r, j)
EAj,0−1+m

ED
(m)
j,0 −EAj,0+1−m

.

Now, let ρ := infk≥1 ρk and δ := infk≥1

(

ED
(m)
k,0 − EAk,0

)

−m + 1; by the assumptions (i)

and (ii), both constants are strictly positive. Moreover, δ < 1,

EAk,0

ED
(m)
k,0 − EAk,0 − 1 +m

=
ρkED

(m)
k,0

ED
(m)
k,0 − EAk,0 − 1 +m

≥
ρk

2(1 − ρk)
≥

ρ

2(1 − ρ)
,

and

EAj,0 − 1 +m

ED
(m)
j,0 − EAj,0 + 1 −m

≤
m

δ
− 1.

Collecting the last three assertions and applying Lemma 4.8, we finally obtain

r γ(Rk) ≥
r p(r, k) ρ

2(1−ρ)

1 +
(

m
δ
− 1
)
∑

j≤r p(r, j)
≥

1

2

ρ

1 − ρ

1

1 + 2
(

m
δ
− 1
) .

This proves the theorem. 2

4.10 Remark The system is non–reversible even in the single–server case, m = 1. Nev-
ertheless, in this case, the estimates in Lemmas 4.4, 4.6, and 4.7 become equalities since all
blocks are one–point sets. In particular, we have

µL
k (a) =

γ(Ba)

γ(B0)
= µU

k (a)

and, after summation, Lemma 4.7 shows

γ(Rk)

γ({0})
= µL

k (N>) = p(m, k)
ρk

1 − ρk
.

This formula leads to a representation of the equilibrium probabilities of the idle state and
the rays analogous to the estimates in the proof of Theorem 4.9.
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