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Abstract: Pollard showed for k-means clustering and a very broad class of sampling dis-
tributions that the optimal cluster means converge to the solution of the related population
criterion as the size of the data set increases. We extend this consistency result to k-parameters
clustering, a method derived from the heteroscedastic, elliptical classification model. It allows
a more sensitive data analysis and has the advantage of being affine equivariant. Moreover,
the present theory yields a consistent criterion for selecting the number of clusters in such
models.
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1 Introduction

The k–means algorithm, Steinhaus [32], enjoys great popularity in data analysis, knowledge
discovery, and vector quantization in order to partition a data set x = (x1, . . . , xn) ∈ R

d in a
given number g ≥ 2 of clusters. Let x1, . . . , xn be the data set to be clustered, let ℓi be the
label of the cluster of data point xi, 1 ≤ i ≤ n, and write ℓ = (ℓ1, . . . , ℓn). If xj(ℓ) stands
for the cluster mean and Wj(ℓ) =

∑
i:ℓi=j(xi − xj(ℓ))(xi − xj(ℓ))

⊤ for the SSP matrix (“sum
of squares and products”) of cluster j w.r.t. ℓ, this algorithm computes the Pooled Trace (or
Ward’s) criterion

argmin
ℓ

tr

g∑

j=1

Wj(ℓ) = argmin
ℓ

g∑

j=1

∑

ℓi=j

‖xi − xj(ℓ)‖2.

The partition created by it tends to produce spherical clusters of about equal size and about
equal scatter, if the data set allows this. In fact, Bock [5] revealed the criterion as the ML
estimator of a homoscedastic, isobaric, normal clustering model with spherical covariance
matrices, see also Bock [6]. Properties of estimator and algorithm are well known. In particu-
lar, MacQueen [25] showed that the k-means algorithm reduces the criterion (and coined its
name). Bryant and Williamson [8] studied the asymptotic behavior of a class of classification
ML estimators and applied their result to a univariate, homoscedastic mixture of normal
populations. Pollard [29, 30] proved for a very broad class of sampling distributions and ho-
moscedastic, isobaric, spherical statistical models that the optimal means converge as the size
of the data set increases. He also identified the limit as the solution to the related population
criterion. This means that the global maximum is the favorite solution if the data set is large.
His result is remarkable inasmuch as the sampling distribution may be very general and very
different from the model. This property is, however, not specific to the classification model.
In fact, White [35] proved consistency of ML estimators for independent observations coming
from an unspecified parent distribution.
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In vector quantization, application of Ward’s criterion and the k-means algorithm, here as-
cribed to Lloyd [24], is justified and standard. The engineer using optimal quantization takes
a geometric standpoint and decomposes a data set in subsets that unite nearby points and
separate distant ones w.r.t. some given metric. Their application is less justified in cluster
analysis where we search for causes that generate the data. To this end, we assume that the
causes manifest themselves in different populations that induce in the data set cohesive (com-
pact) clusters of possibly different sizes and extents and separated by location or sometimes
by scale. The engineer even decomposes a data set uniform on a square, the cluster analyst
finds that this data set bears no cluster structure, it originates from a single source. It is a
matter between quantity and quality. Generally accepted, logical, mathematical definitions
of the concepts of “cohesion” and “separation” based on the data set do not exist although
there are validation methods and tests that are useful in this respect. This is contrary to
mathematical topology where the analogous notion of a “connected component” is clearly
and logically defined. Both concepts appeal also to intuition.

In the event of elliptical, non–spherical clusters, Ward’s criterion (and, hence, the k-means
algorithm) may lead to a result unacceptable in cluster analysis. A typical example is presented
in Figure 1. The two-dimensional data set was sampled from two normal populations of equal
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Figure 1: Example of a partition obtained from improper use of Ward’s criterion. The esti-
mated means and scales are indicated by the two circles.

scales elongated in horizontal direction and lying side by side. Up to small probability, the
populations are separated by a horizontal line between them, but Ward’s criterion traces a
separator perpendicular to it as shown in Figure 1. The clusters obtained are neither isolated
nor cohesive as visual inspection shows. Moreover, the solution created by Ward’s criterion is
not only inappropriate in the above sense, it also does not reflect the partition induced by the
two original populations. The reason for the failure of Ward’s criterion in the sense of cluster
analysis is that the underlying populations are not spherical. Generally, an inappropriate,
narrow model may “create” a wrong structure in the data set. It is therefore important to
base cluster criteria on more general statistical models.

Such a model was proposed by Scott and Symons [31]. They used the likelihood paradigm
to derive a criterion for the heteroscedastic, isobaric, normal clustering model with arbitrary
covariance matrices applicable to such a more general situation, the heteroscedastic ML De-
terminant criterion

g∑

j=1

nj(ℓ) log det Sj(ℓ) (1)

to be minimized w.r.t. ℓ. Here, nj(ℓ) denotes the size of cluster j w.r.t. ℓ and Sj(ℓ) = Wj(ℓ)/nj
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is its scatter matrix.

This criterion works nicely in the case of elliptical clusters of about equal sizes but may
otherwise run into trouble. Symons [33] corrected this shortcoming in considering the labeling
ℓ not as a parameter (which it is not since its length increases with the data set) but as a
hidden variable drawn from the n-fold product π⊗· · ·⊗π, π = (π1, . . . , πg), on (1 . . g)(1 . . n). It
acts as a prior probability and, since the number g is small, can be estimated by an empirical
Bayesian procedure. Symons arrives at the heteroscedastic MAP Determinant criterion

nH
(n1(ℓ)

n , . . . ,
ng(ℓ)

n

)
+ 1

2

g∑

j=1

nj(ℓ) log detSj(ℓ), (2)

again to be minimized w.r.t. ℓ. The criterion differs from the heteroscedastic ML Determi-
nant criterion (1) in the entropy H(p1, . . . , pg) = −∑

j pj log pj of the cluster proportions
pj = nj(ℓ)/n which counteracts the tendency of the ML criterion to create clusters of about
equal sizes. This is the state of the art concerning the normal classification model of cluster-
ing. The related iterative relocation algorithm alternates between clustering and parameter
estimation. We call it the k-parameters algorithm. This name reminds of the k-means al-
gorithm but expresses the fact that it is not only means that are estimated but also other
parameters such as scale matrices and weights. The criterion can be extended to elliptical
basic models Eφ,m,V (x) = cφ

√
detV −1e−φ((x−m)TV −1(x−m)) with mean m, scale matrix V ,

and a normalizing factor cφ that depends only on the fixed radial function φ. The conditional
density becomes

f(ℓ,x | π,m,V) =

n∏

i=1

πℓi
Eφ,mℓi

,Vℓi
(xi) (3)

and its partial maximum w.r.t. π, m = (m1, . . . ,mg), and V = (V1, . . . , Vg) for fixed ℓ yields
the heteroscedastic Elliptical MAP criterion

nH
(n1(ℓ)

n , . . . ,
ng(ℓ)

n

)

+

g∑

j=1

{
nj(ℓ)

2 log detVj(ℓ) +
∑

ℓi=j

φ
(
(xi − mj(ℓ))

TVj(ℓ)
−1(xi − mj(ℓ))

)}
(4)

to be minimized w.r.t. ℓ. Here, mj(ℓ) and Vj(ℓ) are the ML estimates of mean and scale
matrix of cluster j w.r.t. ℓ and H stands again for the entropy. The heteroscedastic MAP
Determinant criterion (2) is easily retrieved for φ(t) = t/2 up to the constant nd/2.

Some care is, however, needed with the “minima” of these criteria. Strictly speaking, they do
not exist. First we have to assume that the data are in general position since, otherwise, some
determinant may vanish. It still vanishes when some cluster has a deficient size ≤ d. A remedy
would here be to use only those labelings that generate clusters of size ≥ d + 1, see Gallegos
and Ritter [13]. Some authors claim that it is the largest “local” maximum that should be
considered the solution. But this is often spurious. We will follow here another way that was
extensively used by Hathaway [16] in the context of mixture models and by Gallegos and
Ritter [11, 12] with mixture and classification models: HDBT constraints. This acronym was
coined by us to acknowledge the creation of the concept by Thompson, Beale, Dennis, and
Hathaway, in this chronological order. If we denote the Löwner (or semi–definite) ordering on
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the set of symmetric matrices by � then a set or tuple of positive definite matrices Vj satisfies
the HDBT constraints with HDBT constant 0 < c ≤ 1 if

Vj � cVℓ (5)

for all indices j, ℓ. In the univariate case, � just means the usual ordering of real numbers.
The constraints are affine equivariant and mean that the matrices Vj are not too different.
They generalize homoscedasticity, i.e., equality of all scale matrices, which they contain as
the special case c = 1. The smaller c is, the more different the Vj ’s may be. Let Vc denote the
set of all finite collections of positive definite matrices that satisfy the HDBT constraints with
constant c. Gallegos and Ritter [12] showed that the constraints guarantee a minimum ℓ ∈
(1 . . g)(1 . . n) in (2) and (4) if n ≥ gd+1 without having to restrict cluster sizes. In combination
with trimming, they lead to a robust criterion with a positive asymptotic breakdown point
and they are the basis for the method of “balanced scales” that offers some guidance towards
the estimation of a credible solution.

Bryant [7] proves consistency and asymptotic normality in a unified framework for some
mixture and classification models. He assumes that the parameter space is a closed sub-
space of some Euclidean space excluding interesting examples. Cuesta–Albertos et al. [9] and
Garćıa–Escudero et al. [14] investigate consistency of a likelihood based estimator for a nor-
mal clustering model with trimming. They use constraints on the scale structure that are
more restrictive than the HDBT constraints since they do not only restrict the deviation
from homoscedasticity but also that from sphericity. As a consequence the estimator lacks
equivariance w.r.t. variable rescaling, let alone affine equivariance.

In the present paper, we generalize Pollard’s consistency to the important (affine equivariant)
model (3) under HDBT constraints, that is, the heteroscedastic HDBT constrained Elliptical
MAP criterion (4) in a parametric framework with variable number of clusters. We show that,
for a wide class of sampling distributions and radial functions, the estimates of π, m, and V

converge to the solution of the related population criterion as sample size tends to infinity,
Theorem 1. Besides the means mj, this makes it necessary to also consider the mixing rates
πj and the constrained scale matrices Vj. Finally, we apply the theory to shed some light on
model selection in the framework of the classification model, Corollary 1.

2 Asymptotic behavior

Let X = (Xi)i≥1 be an i.i.d. sequence of R
d-valued random variables with common distribution

µ. The most interesting parent µ’s are here mixtures of unimodal distributions. Taking the
partial maximum w.r.t. ℓ of the logarithm of (3) (parameters π, m, and V ∈ Vc fixed) and
dividing by n we obtain

1
n

n∑

i=1

max
1≤j≤g

log(πjEφ,mj ,Vj
(Xi)). (6)

The question arises whether the maximum of this expression w.r.t. the three parameters is
stable as n increases, that is, whether there is convergence of the optimal parameters π, m, and
V ∈ Vc and of the whole expression as n → ∞. In the consistency theorems for the mixture
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model, see Peters and Walker [28] and Kiefer [21], the limit is the parent distribution µ of
the data if it is a member of the given model. This cannot be expected here, see Remark 1(d)
below. But if we tentatively assume that the limit w.r.t. n and the maximum w.r.t. (π,m,V)
in (6) commute, then the strong law suggests that the limit might be

max
π,m,V

E max
1≤j≤g

log
(
πjEφ,mj ,Vj

(X1)
)
.

To confirm this, Pollard [29] proposed to use subsets A ⊆ R
d of size ≤ g instead of g-

tuples (a1, . . . , ag) ∈ R
gd of parameters (means, in his case). The subsets take account of

the unordered structure of mixture components. They also enable easy transition between
different numbers of components. It turns out that Pollard’s idea is favorable in the present
context of more general basic models and mixing rates, too. Thus, let Θ be the collection of
all nonempty, compact subsets of the Cartesian product ]0, 1] × R

d × PD(d) endowed with
the Hausdorff metric. Denote the three entries of a ∈]0, 1] × R

d × PD(d) by πa, ma, and Va,
respectively. For an integer g ≥ 1, define the subset

Θ≤g,c =
{

A ∈ Θ | 1 ≤ |A| ≤ g,
∑

a∈A

πa ≤ 1, (Va)a∈A ∈ Vc

}
⊆ Θ.

The relation “≤ 1” (instead of “= 1”) makes it an extension of the (HDBT constrained)
solution space. The reader may wonder why the definition of Θ≤g,c requires the sum to be ≤ 1
and not = 1. The reason is that the modification of the space Θ≤g,c defined with

∑
a∈A πa = 1

lacks the important compactness property that will be described in Lemma 1(b). To see this,
consider for simplicity a pure location model (no scales V ). Let am = (1/2,m), m ∈ R. For
m 6= 0, the set Am = {a0, am} ∈ Θ≤2,c has the property πa0

+ πam = 1 and converges w.r.t.
the Hausdorff metric to the singleton A0 = {a0} as m → 0. But πa0

= 1/2 and so the limit
is not a member of the modified space. To counteract this defect we complete the parameter
space for deficient mixing rates.

Now, define the functional

ta(x) = − log πa + 1
2 log detVa + φ

(
(x − ma)

TV −1
a (x − ma)

)
,

and denote the sampling criterion by

Φn(A) = 1
n

n∑

i=1

min
a∈A

ta(Xi), A ∈ Θ≤g,c. (7)

Up to the opposite sign this is the criterion introduced in (6). With the empirical probability
µn = 1

n

∑n
i=1 δXi

it has the representation Φn(A) =
∫

mina∈A ta(x)µn( dx). Its constrained
minimum w.r.t. the parameters A is the same as that of the heteroscedastic Elliptical MAP
criterion (4) w.r.t. ℓ. We also need the related population criterion

Φ(A) = E min
a∈A

ta(X1), A ∈ Θ≤g,c. (8)

It is well defined when log Eφ,m,V (X1) is integrable for all (m,V ). Although the definition of
Θ≤g,c allows deficient mixing rates, it is reassuring to observe that optimal solutions A∗ for
Φn and Φ do enjoy the property

∑
a∈A∗ πa = 1. Moreover, each parameter m appears only

once in A∗. The reason is the strict increase of the logarithm: As a typical example, let A =
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{(π11,m1), (π12,m1), (π2,m2)} with π11 6= π12 and p = π11 + π12 + π2 ≤ 1. The modification
A′ = {(π′

1,m1), (π
′
2,m2)} with π′

1 = (π11 + π12)/p and π′
2 = π2/p satisfies π′

1 + π′
2 = 1.

Moreover, log π′
1 > log π11 ∨ log π12 and log π′

2 ≥ log π2 and, hence, Φn(A′) < Φn(A) and
Φ(A′) < Φ(A):

min
a′∈A′

ta′ = min
a′∈A′

(− log πa′ − log fma′
)

=
(
− log π′

1 − log fm1

)
∧

(
− log π′

2 − log fm2

)

<
(
− log π11 − log fm1

)
∧

(
− log π12 − log fm1

)
∧

(
− log π2 − log fm2

)

= min
a∈A

ta.

If the scale matrices satisfy the HDBT constraints, if φ is large enough, and if the data are
in general position and n ≥ gd + 1, then the sampling criterion (7), Φn, has a minimum on
Θ≤g,c, that is, under HDBT constraints.

The remainder of this section is devoted to the question under which conditions the con-
strained minimizers (π,m,V) of the sampling criterion Φn converge as n → ∞. The related
population criterion (8), Φ, is well defined when φ(β‖X1‖2) is integrable for all β > 0. The
following lemma collects some properties of the quantities just defined.

Lemma 1 (a) The set Θ≤g,c is closed in Θ w.r.t. the Hausdorff metric.

(b) Let 0 < π0 ≤ 1 and R, ε > 0. The sub-collection of Θ≤g,c consisting of all sets of elements
a such that πa ≥ π0, ‖ma‖ ≤ R, and εId � Va � 1

εId is compact.

(c) If φ is continuous then the function A 7→ mina∈A ta(x) is continuous on Θ≤g,c for all
x ∈ R

d.

The proof of the following lemma needs the uniform strong law of large numbers (USLLN),
see for instance Bierens [4]: If g : T × K → R

d is a function defined on the product of a
measurable space T and a compact space K such that (i) g(x, ···) is continuous for all x ∈ T ;
(ii) g( ···, ϑ) is measurable for all ϑ ∈ K; (iii) ‖g(x, ϑ)‖ ≤ h(x) for all ϑ ∈ K and all x ∈ T
with some measurable, µ-integrable function h on T , and if Z1, Z2, . . . is an i.i.d. sequence of
random variables on (Ω, P ) with values in T and a common distribution µ, then

(a) P -a.s., we have 1
n

∑n
i=1 g(Zi, ϑ) −→

n→∞
Eg(Z1, ϑ) uniformly for all ϑ ∈ K.

(b) In particular, Eg(Z1, ···) =
∫
T g(x, ···)µ( dx) is continuous.

We will often replace V −1 with Λ.

Lemma 2 Assume that

(i) φ is increasing and continuous;

(ii) φ
(
β‖X1‖2

)
is integrable for all β ≥ 1.

Then, P -a.s., the sampling criterion (7), Φn, converges to the population criterion (8), Φ,
locally uniformly on Θ≤g,c. In particular, Φ is continuous.
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Proof 1 We verify the assumptions of the USLLN with g(x,A) = mina∈A ta(x). Continu-
ity (i) is just Lemma 1(c). In order to obtain the integrable upper bound (iii) it is sufficient to
consider elements a in the compact set Kε,R = [ε, 1]×BR(0)×{V ∈ PD(d) | εId � V � 1

εId}
for 0 < ε ≤ 1 and R > 0. Since φ is increasing, we estimate for ‖x‖ ≥ R

ta(x) = − log πa − 1
2 log detΛa + φ

(
(x − ma)

TΛa(x − ma)
)

≤ − log ε − d
2 log ε + φ

(
‖x − ma‖2/ε

)

≤ const + φ
(

2
ε

(
‖x‖2 + ‖ma‖2

))
≤ const + φ

(
4
ε‖x‖2

)
.

By assumption, the right–hand side is the requested µ-integrable upper bound. 2

Assumption (ii) of Lemma 2 requires that the density generator ϕ = e−φ should have a heavy
tail if µ does. It is satisfied if the radial function φ grows at most polynomially and φ

(
‖X1‖2

)

is integrable. The main idea of the consistency proof is to show that all optimal sets remain
in a compact subset of Θ≤g,c independent of n. The following lemma is a first step towards
this goal and prepares Lemma 4 which shows that the optimal scale parameters are bounded.

Lemma 3 Let α > 0 and assume that ‖X1‖2α is integrable. Then the minimum of

E min
a∈A

∣∣vT(X1 − ma)
∣∣2α

w.r.t. v, ‖v‖ = 1, and A ∈ Θ≤g,c exists. It is zero if and only if µ is supported by g parallel
hyperplanes.

Proof 2 Let Θ′
≤g stand for the collection of all nonempty subsets of R with at most g elements

and let µv be the projection of µ to the real line via x 7→ vTx. We prove that the minimum of
the finite functional

J(v,B) =

∫

R

min
b∈B

|y − b|2αµv( dy)

w.r.t. v, ‖v‖ = 1, and B ∈ Θ′
≤g exists. This is equivalent to the claim. Indeed, if B is related

to A by b = vTma or ma = bv then

∫

R

min
b∈B

|y − b|2αµv( dy) = E min
a∈A

∣∣vT(X1 − ma)
∣∣2α

.

The proof proceeds in three steps. In step (α), it is shown that sets B that contain only
remote points cannot have small values of the criterion. In the main step (β), the same is
shown for a mixture of nearby and remote points. Thus, sets of nearby points remain to
consider. The lemma follows in a third step. Let Br(0) = {x ∈ R

d | ‖x‖ ≤ r} be the centered
unit ball of radius r and let r > 0 be such that µ(Br(0)) > 0.

(α) If R > r satisfies

|R − r|2αµ(Br(0)) ≥
∫

Rd

‖x‖2αµ( dx) (9)
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then no set B ∈ Θ′
≤g contained in the complement of the interval [−R,R] can be optimal for

J :
Note µv(] − r, r[) ≥ µ(Br(0)) and use the Cauchy–Schwarz inequality to estimate

J(v,B) ≥
∫

]−r,r[
min
b∈B

|y − b|2αµv( dy) > |R − r|2αµv(] − r, r[)

≥ |R − r|2αµ(Br(0)) ≥
∫

Rd

‖x‖2αµ( dx)

≥
∫

Rd

|wTx|2αµ( dx) = J(w, {0}), ‖w‖ = 1.

The rest of the proof proceeds by induction over g. The claim for g = 1 immediately follows
from (α). Let g ≥ 2 and assume that the claim is true for g − 1. We distinguish between two
cases. If infv,B∈Θ′

≤g
J(v,B) = minv,B∈Θ′

≤g−1
J(v,B) then nothing has to be proved since the

largest lower bounds decrease with g. In the opposite case, let

ε = min
v,B∈Θ′

≤g−1

J(v,B) − inf
v,B∈Θ′

≤g

J(v,B) (> 0)

and let R > 0 satisfy

∫

‖x‖≥2R
‖2x‖2αµ( dx) < ε/2. (10)

(β) If B contains elements in both [−R,R] and the complement of [−5R, 5R] then its J-value
cannot be arbitrarily close to the largest lower bound:
We argue by contradiction. Let S1(0) = {x ∈ R

d | ‖x‖ = 1} be the centered unit sphere in R
d

and assume that there is (v,B) ∈ S1(0) × Θ′
≤g such that

(i) B contains a point b−, |b−| ≤ R, and a point b+, |b+| > 5R, and

(ii) J(v,B) − inf‖v′‖=1,B′∈Θ′
≤g

J(v′, B′) ≤ ε/2.

We compare the J-value of B with that of its subset B̃ = B ∩ [−5R, 5R] ∈ Θ′
≤g−1. As a

consequence of removing points from B, some set C of points have to be reassigned. If |y| < 2R
then |y − b−| < 3R < |y − b+|. Thus, the deletion of points in the complement of [−5R, 5R]
from B does not affect the assignment of points |y| < 2R, that is C ⊆ {y ∈ R | |y| ≥ 2R}. If
|y| ≥ 2R then |y − b−| ≤ |2y|. It follows

J(v, B̃) − J(v,B) =

∫

C
min
b∈ eB

|y − b|2αµv( dy) −
∫

C
min
b∈B

|y − b|2αµv( dy)

≤
∫

C
min
b∈ eB

|y − b|2αµv( dy) ≤
∫

|y|≥2R
min
b∈ eB

|y − b|2αµv( dy)

≤
∫

|y|≥2R
|y − b−|2αµv( dy) ≤

∫

|y|≥2R
|2y|2αµv( dy)

≤
∫

‖x‖≥2R
‖2x‖2αµ( dx) < ε/2.
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Recalling B̃ ∈ Θ′
≤g−1, we have found a contradiction to the definition of ε and (ii) above.

This proves (β).

Let R satisfy (9) and (10). Assertions (α) and (β) show that small values of J are attained
on Θ′

≤g only if B ⊆ [−5R, 5R]. The collection K of these sets B is compact for the Hausdorff
metric. The first claim finally follows from continuity of J on the compact space S1(0) ×K.

The expectation is zero if and only if the function mina∈A vT( ··· −ma) vanishes on the support
of µ for some pair (v,A). This means that the support of µ is contained in some set of the
form

⋃
a∈A{x | vT(x − ma) = 0}. 2

Lemma 4 Assume that

(i) µ is not supported by g parallel hyperplanes;

(ii) φ(t) ≥ b0 + b1t
α for some numbers b0 ∈ R, b1, α > 0;

(iii) φ(‖X1‖2) is integrable.

Then there are numbers 0 < c1 ≤ c2 such that, P -a.s., all scale parameters V ∗ of sets optimal
for Φn on Θ≤g,c, see (7), satisfy Id/c2 � V ∗ � Id/c1 for eventually all n.

Proof 3 First note that (iii) along with (ii) implies integrability of ‖X1‖2α. Let us show that
Φn(A) is large for eventually all n if an eigenvalue of the scale matrices of A is small or large.
Let A ∈ Θ≤g,c, and let a0 ∈ A such that detΛa0

is maximal. Using the SLLN, we estimate

Φn(A) = 1
n

n∑

i=1

min
a∈A

ta(Xi)

= 1
n

n∑

i=1

min
a∈A

{
− log πa − 1

2 log det Λa + φ
(
(Xi − ma)

TΛa(Xi − ma)
)}

≥ b0 − 1
2 log detΛa0

+ b1
n

n∑

i=1

min
a∈A

(
c(Xi − ma)

TΛa0
(Xi − ma)

)α

−→
n→∞

b0 − 1
2 log detΛa0

+ b1c
αE min

a∈A

(
(X1 − ma)

TΛa0
(X1 − ma)

)α
, P -a.s..

Let Λa0
=

∑
k λkvkv

T
k be the spectral decomposition. Since t 7→ tα is increasing and multi-

plicative,

(
(x − ma)

TΛa0
(x − ma)

)α
=

( ∑

k

λk

(
vT
k (x − ma)

)2
)α

≥ 1
d

∑

k

(
λk

(
vT
k (x − ma)

)2
)α

= 1
d

∑

k

λα
k

∣∣vT
k (x − ma)

∣∣2α
.

Inserting, we find

lim
n

Φn(A) ≥ b0 +
∑

k

{
− 1

2 log λk +
b1c

α

d
λα

k E min
a∈A

∣∣vT
k (X1 − ma)

∣∣2α
}

≥ b0 +
∑

k

{
− 1

2 log λk + κ
b1c

α

d
λα

k

}
(11)

9



with the constant κ = min
v∈S1(0),A

E mina∈A

∣∣vT(X1 − ma)
∣∣2α

> 0, see Lemma 3. Note that the

kth summand in (11) converges to ∞ as λk → 0 and, since λα
k beats log λk, also as λk → ∞.

It has, thus, a minimum for λk > 0. Therefore, if one summand converges to ∞ then so does
the whole sum. But one summand tends to ∞ under any of the two cases: (1) the largest of all
eigenvalues λk exceeds a certain value c2 and (2) λk < c2 for all k and the smallest eigenvalue
drops below another value c1. We conclude that

Φn(A) ≥ Φ({(1, 0, Id)}) + 1 (12)

for eventually all n if (1) or (2) is satisfied. Finally, a set A∗
n minimizing Φn satisfies

Φn(A∗
n) ≤ Φn({(1, 0, Id)}) −→

n→∞
Φ({(1, 0, Id)})

by (iii) and the SLLN. Combined with (12), this is the claim. 2

For A ∈ Θ≤g,c and a ∈ A, let Ca(A) be the set {x ∈ R
d | ta(x) ≤ tb(x) for all b ∈ A}. In order

to have disjoint, measurable sets, ties are broken by ordering A and favoring the smallest a.
The decomposition {Ca(A) | a ∈ A} of R

d in at most g measurable “cells” is defined by the
Bayes discriminant rule. The population criterion Φ(A) has the representation

Φ(A) =

∫

Rd

min
a∈A

ta dµ =
∑

a∈A

∫

Ca(A)
ta dµ.

The entropy inequality shows

Φ(A) =
∑

a∈A

{
− µ(Ca(A)) log πa −

µ(Ca(A))

2
log det Λa

+

∫

Ca(A)
φ
(
(x − ma)

TΛa(x − ma)
)
µ( dx)

}

≥ H(µ(Ca(A)) | a ∈ A) +
∑

a∈A

{
− µ(Ca(A))

2
log detΛa (13)

+

∫

Ca(A)
φ
(
(x − ma)

TΛa(x − ma)
)
µ( dx)

}
.

In particular, an optimal set A∗ satisfies πa = µ(Ca(A
∗)) for all a ∈ A∗. More-

over, equality obtains in (13) if and only if πa = µ(Ca(A
∗)) for all a ∈ A∗.

The following lemma states conditions ensuring that optimal means and mix-
ing rates are bounded. In view of its part (b) note that, under the assumptions
of Lemma 4, lim infn minA∈θ≤g,c

Φn(A) > −∞ and lim supn minA∈θ≤g,c
Φn(A) <

∞ for eventually all n. Indeed, minA∈θ≤g,c
Φn(A) ≥ −d

2 log c2 + b0 and
minA∈θ≤g,c

Φn(A) ≤ Φn({(1, 0, Id)}) → Φ({(1, 0, Id)}) by the SLLN.

Lemma 5 Assume that

(i) the parent distribution µ is not supported by g parallel hyperplanes;

10



(ii) φ is increasing and φ(t) ≥ b0 + b1t
α for some numbers b0 ∈ R, b1, α > 0;

(iii) φ(‖X1‖2) is integrable.

Let g ≥ 1 and let A∗
n, n ≥ gd + 1, be optimal for Φn on Θ≤g,c. Then, P -a.s., we have:

(a) If a∗n ∈ A∗
n is such that πa∗

n
= µn

(
Ca∗

n
(A∗

n)
)
≥ ε > 0 then the sequence of means (ma∗

n
)n

is bounded.

(b) If g ≥ 2 and

lim sup
n

min
A∈Θ≤g,c

Φn(A) < lim sup
n

min
A∈Θ≤g−1,c

Φn(A)

then the mixing rates πa∗
n

of all a∗n ∈ A∗
n, n ≥ gd + 1, are bounded away from zero (and

all means ma∗
n

are bounded).

Proof 4 Let c1 and c2 be as in Lemma 4.
(a) This part claims that means of sets A∗

n optimal for Φn with lower bounded probabilities
of their cells are small. Let r > 0 be so large that µ(Br(0)) > 1 − ε/2. Using the estimates
c1Id � Λa � c2Id, see Lemma 4, we infer

Φn({(1, 0, Id)}) ≥ Φn(A∗
n) =

∫
min
a∈A∗

n

ta dµn =
∑

a∈A∗
n

∫

Ca(A∗
n)

ta dµn

≥
∑

a∈A∗
n

∫

Ca(A∗
n)

{
− 1

2 log detΛa + φ
(
(x − ma)

TΛa(x − ma)
)}

µn( dx)

≥ −d
2 log c2 + b0 + b1

∑

a∈A∗
n

∫

Ca(A∗
n)

(
c1‖x − ma‖2

)α
µn( dx)

≥ −d
2 log c2 + b0 + b1c

α
1

∫

Ca∗n
(A∗

n)∩Br(0)

(
‖x − ma∗

n
‖2α

)
µn( dx)

≥ −d
2 log c2 + b0 + b1c

α
1 | ‖ma∗

n
‖ − r|2αµn

(
Ca∗

n
(A∗

n) ∩ Br(0)
)

if ‖ma∗
n
‖ ≥ r. By the SLLN, we have µn(Br(0)) > 1 − ε/2 for eventually all n and, hence,

µn

(
Ca∗

n
(A∗

n)∩Br(0)
)
≥ ε/2 for these n. Therefore, an application of (iii) and the SLLN imply

Φ({(1, 0, Id)}) = lim
n

Φn({(1, 0, Id)})

≥ −d
2 log c2 + b0 +

b1c
α
1 ε

2
lim sup

n
| ‖ma∗

n
‖ − r|2α.

This defines a bound for all ma∗
n
.

(b) Since
∑

a∈A∗
n

πa = 1 there is an ∈ A∗
n such that πan ≥ 1/g, n ≥ gd + 1. Let R > 0,

R′ ≥ 2R, and u′ < 1/g be three constants to be specified later. According to part (a) we
may and do assume R ≥ ‖man‖, n ≥ gd + 1. Also assume that there is an element a′ ∈ A∗

n

with the property ‖ma′‖ > R′ or πa′ < u′ and delete all such elements from A∗
n to obtain a

set Ãn ∈ Θ≤g−1,c. Of course, an ∈ Ãn. Note that any x assigned to a ∈ Ãn w.r.t. A∗
n is also

assigned to a w.r.t. Ãn. Therefore, the sample space splits in two parts: The set
⋃

a∈ eAn
Ca(A

∗
n)

11



of points assigned to elements in Ãn w.r.t. both A∗
n and Ãn and the set C =

⋃
a∈An\ eAn

Ca(A
∗
n)

of points reassigned w.r.t. Ãn because they were originally assigned to points deleted from A∗
n.

We first show that the centered ball with radius 2R is contained in the complement of C. So
let ‖x‖ < 2R and let a′ ∈ A∗

n \ Ãn. We have

tan(x) = − log πan − 1
2 log detΛan + φ

(
(x − man)TΛan(x − man)

)

≤ log g − d
2 log c − 1

2 log detΛa′ + φ
(
c2(‖x‖ + R)2

)

≤ log g − d
2 log c − 1

2 log detΛa′ + φ
(
9c2R

2
)
. (14)

Now fix u′ and R′ in such a way that

log g − d
2 log c + φ

(
9c2R

2
)

< (b0 − log u′) ∧ φ
(
c1(R

′ − 2R)2
)
.

The element a′ has one of two properties. If πa′ < u′ then

(14) < b0 − log u′ − 1
2 log detΛa′ ≤ b0 − log πa′ − 1

2 log det Λa′ .

If ‖ma′‖ > R′ then R′ − 2R ≤ ‖ma′‖ − ‖x‖ ≤ ‖x − ma′‖ and

(14) < −1
2 log detΛa′ + φ

(
c1(R

′ − 2R)2
)
≤ −1

2 log detΛa′ + φ
(
c1‖x − ma′‖2

)
.

Hence, in both cases, tan(x) < ta′(x), that is, x is not assigned to a′ and B2R(0) ⊆ ∁C (the
complement of C) as claimed.

Observing the properties of the set C explained above, we obtain

Φn(Ãn) − Φn(A∗
n) =

∫

Rd

(
min
a∈ eAn

ta − min
a∈A∗

n

ta

)
dµn

=

∫

C

(
min
a∈ eAn

ta − min
a∈A∗

n

ta

)
dµn ≤

∫

C
tan dµn −

∫

C
min

a∈A∗
n\ eAn

ta dµn.

Now we have

tan(x) = − log πan − 1
2 log detΛan + φ

(
(x − man)TΛan(x − man)

)

≤ log g − d
2 log c1 + φ

(
c2‖x − man‖2

)

and ta(x) ≥ −d
2 log c2 + b0 for all a. Inserting and observing C ⊆ ∁B2R(0), we infer for all n

min
A∈Θ≤g−1,c

Φn(A) − min
A∈Θ≤g,c

Φn(A) ≤ Φn(Ãn) − Φn(A∗
n) (15)

≤
∫

C

{
log g − d

2 log c1 + φ
(
c2‖x − man‖2

)}
µn( dx) +

∫

C

{
d
2 log c2 − b0

}
µn( dx)

≤
{

log g + d
2 log c2

c1
− b0

}
µn(∁B2R(0)) +

∫

∁B2R(0)
φ
(
4c2‖x‖2

)
µn( dx).

From ta(x) ≥ −d
2 log c2 + b0 and the assumption of part (b), we also obtain

lim infn minA∈Θ≤g,c
Φn(A) ∈ R. Passing to the lim supn in (15) with the aid of the SLLN,

12



we therefore find

lim sup
n

min
A∈Θ≤g−1,c

Φn(A) − lim sup
n

min
A∈Θ≤g,c

Φn(A)

≤ lim sup
n

(
min

A∈Θ≤g−1,c

Φn(A) − min
A∈Θ≤g,c

Φn(A)
)

≤
{

log g + d
2 log c2

c1
− b0

}
µ
(
∁B2R(0)

)
+

∫

‖x‖≥2R
φ
(
4c2‖x‖2

)
µ( dx).

The assumption of part (b) says that the left–hand side is P–a.s. strictly positive. Since the
right–hand side vanishes as R → ∞, the assumption on the existence of a′ made at the
beginning cannot hold if R is large. This proves part (b). 2

Lemma 6 Let the assumptions of Lemma 2 be satisfied. If K ⊆ Θ≤g,c is compact and contains
some minimizer of the sampling criterion (7), Φn, for all n ≥ gd + 1, then

(a) K contains a minimizer of the population criterion (8), Φ;

(b) P -a.s., min Φn −→
n→∞

minΦ on Θ≤g,c.

Proof 5 Since Φ is continuous, the restriction Φ|K has a minimizer A∗. We have to show
that A∗ minimizes Φ on all of Θ≤g,c. Now, let A∗

n ∈ K be some minimizer of Φn. The uniform
convergence Φn → Φ on K, Lemma 2, implies

Φ(A∗) ≤ Φ(A) ≤ Φn(A) + ε, A ∈ K,

for eventually all n. Conversely, by optimality of A∗
n,

Φn(A∗
n) ≤ Φn(A∗) ≤ Φ(A∗) + ε

if n is large. Hence, Φn(A∗
n) → Φ(A∗) as n → ∞. Finally, the inequality Φn(A∗

n) ≤ Φn(A)
for all A ∈ Θ≤g,c shows that A∗ is a minimizer of Φ on all of Θ≤g,c. 2

The remainder of our analysis depends on the following notion.

Definition 1 An integer g ≥ 2 is a drop point of the population criterion Φ (under the
HDBT constant c, see (8)) if

inf
A∈Θ≤g,c

Φ(A) < inf
A∈Θ≤g−1,c

Φ(A).

Also g = 1 is defined as a drop point.

The number of drop points may be finite or infinite. The following lemma shows that all
optima of all sampling criteria Φn, n ≥ gd + 1, remain in a compact set if g is a drop point.
This is the basis for consistency. The lemma shows also that their minima behave reasonably.

Lemma 7 Assume that

13



(i) hyperplanes in R
d are µ-null sets;

(ii) φ is continuous and increasing;

(iii) φ(t) ≥ b0 + b1t
α for some numbers b0 ∈ R, b1, α > 0;

(iv) φp(β‖X1‖2) is integrable for some p > 1 and all β ≥ 1.

Then, for all g ≥ 1,

(a) P -a.s., each sampling criterion Φn, n ≥ gd + 1, has a minimizer A∗
n ∈ Θ≤g,c;

(b) if g is a drop point then there is a compact subset of Θ≤g,c that contains all minimizers
A∗

n of Φn for all n ≥ gd + 1;

(c) the population criterion Φ has a minimizer in Θ≤g,c;

(d) P -a.s., minA∈Θ≤g,c
Φn(A) −→

n→∞
minA∈Θ≤g,c

Φ(A).

Proof 6 By assumption (i), the data are P -a.s. in general position. Therefore, claim (a) is
proved in a similar way as Lemma 1 in Gallegos and Ritter [12]. For claims (b), (c), and (d)
we use induction over g ≥ 1. Let g = 1. By Lemmas 4, 5(a), and 1(b), there exists a compact
subset K1 ⊆ Θ≤1,c that contains all minimizers of all sampling criteria Φn, that is claim (b)
for g = 1. Claims (c) and (d) for g = 1 follow from Lemma 6.

Now let g ≥ 2. The following arguments need that infA∈Θ≤g,c
Φ(A) is finite. The proof is

similar to that of (11). Indeed, let a0 ∈ A such that det Λa0
is maximal and let Λa0

=∑
k λkvkv

T
k be the spectral decomposition. We have

Φ(A) ≥ −1
2 log detΛa0

+

∫
min
a∈A

φ
(
(x − ma)

TΛa(x − ma)
)
µ( dx)

≥ d
2 log c + b0 +

∑

k

(
− 1

2 log(cλk) + κ b1
d (cλk)

α
)

with the strictly positive constant κ = min
‖v‖=1,A

E mina∈A

∣∣vT(X1 − ma)
∣∣2α

. The claim follows

from the fact that each summand on the right–hand side is bounded below as a function of λk.

In view of the induction step g –1→ g let A∗
n be minimal for Φn on Θ≤g,c, n ≥ gd + 1. We

distinguish between two cases. First, assume πa ≥ ε > 0 for all a ∈ A∗
n and all such n. By

Lemmas 4, 5(a), and 1, there exists a compact subset Kg ⊆ Θ≤g,c which contains all minima
A∗

n. This is one half of claim (b) and claims (c) and (d) follow again from Lemma 6.

In the second case we may and do assume that there are elements an ∈ A∗
n such that πan =

µn(Can(A∗
n)) → 0 as n → ∞. Of course there is also at least one element a′n ∈ A∗

n such that
µn(Ca′

n
(A∗

n)) ≥ 1/g and Lemma 5(a) implies ‖ma′
n
‖ ≤ R for some R. By assumption (iv)
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and by Hölder’s inequality with 1
p + 1

q = 1, we obtain with c2 as in Lemma 4

∫

Can(A∗
n)

φ
(
(x − ma′

n
)TΛa′

n
(x − ma′

n
)
)
µn( dx)

≤
∫

Can(A∗
n)

φ
(
c2‖x − ma′

n
‖2

)
µn( dx) ≤

∫

Can (A∗
n)

φ
(
2c2

(
‖x‖2 + R2

))
µn( dx)

≤ µn

(
Can(A∗

n)
)1/q

(∫
|φ|p

(
2c2

(
‖x‖2 + R2

))
µn( dx)

)1/p

≤ µn

(
Can(A∗

n)
)1/q

(
|φ|p

(
4c2R

2
)

+

∫

‖x‖>R
|φ|p

(
4c2‖x‖2

)
µn( dx)

)1/p
−→
n→∞

0.

Since µn

(
Can(A∗

n)
){

log µn

(
Ca′

n
(A∗

n)
)

+ 1
2 log det Λa′

n

}
→ 0 we have

∫
Can (A∗

n) ta′
n

dµn → 0 as
n → ∞. Now write

Φn(A∗
n) =

∑

a∈A∗
n

∫

Ca(A∗
n)

ta dµn

=
∑

a6=an

∫

Ca(A∗
n)

ta dµn +

∫

Can (A∗
n)

tan dµn +

∫

Can (A∗
n)

ta′
n

dµn −
∫

Can (A∗
n)

ta′
n

dµn

and put A′
n = {a ∈ A∗

n | a 6= an} ∈ Θ≤g−1,c. The sum of the first and the third term on the
right is the µn-integral of a function pieced together from the functions ta, a ∈ A′

n. It is thus
≥

∫
mina∈A′

n
ta dµn = Φn(A′

n). Since tan is lower bounded, the lim infn of the second term is
≥ 0 and we have already seen that the lim supn of the last term vanishes. Therefore,

lim inf
n

min
A∈Θ≤g,c

Φn(A) = lim inf
n

Φn(A∗
n) ≥ lim inf

n
Φn(A′

n)

≥ lim inf
n

min
A∈Θ≤g−1,c

Φn(A) = min
A∈Θ≤g−1,c

Φ(A)

by the inductive hypotheses (c) and (d). Also, lim supn minA∈Θ≤g,c
Φn(A) ≤ lim supn Φn(A0) =

Φ(A0) for all A0 ∈ Θ≤g,c by the SLLN and, hence, lim supn minA∈Θ≤g,c
Φn(A) ≤

infA∈Θ≤g,c
Φ(A). We conclude

lim sup
n

min
A∈Θ≤g,c

Φn(A) ≤ inf
A∈Θ≤g,c

Φ(A) ≤ min
A∈Θ≤g−1,c

Φ(A).

Both estimates combine to show infA∈Θ≤g,c
Φ(A) = minA∈Θ≤g−1,c

Φ(A), that is, g is no drop
point in this case, the other half of claim (b). Moreover, claims (c) and (d) follow for g. 2

We are now prepared to prove consistency of k-parameters clustering in the HDBT constrained
Elliptical MAP classification model with the radial function φ.

Theorem 1 Let 0 < c ≤ 1. Let (Xi)i be i.i.d. with common distribution µ. Assume that

(i) hyperplanes in R
d are µ-null sets;

(ii) φ is continuous and increasing;

(iii) φ(t) ≥ b0 + b1t
α for some numbers b0 ∈ R, b1, α > 0;
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(iv) φp
(
β‖X1‖2

)
is P -integrable for some p > 1 and all β ≥ 1.

Then the following claims hold true for all g ≥ 1:

(a) P -a.s., each sampling criterion (7), Φn, n ≥ gd + 1, has a minimizer A∗
n ∈ Θ≤g,c;

(b) the population criterion (8), Φ, has a minimizer A∗ ∈ Θ≤g,c;

(c) we have
∑

a∈A∗
n

πa = 1, n ≥ gd + 1, and
∑

a∈A∗ πa = 1.

Moreover, if g is a drop point then

(d) P -a.s., any sequence of minimizers A∗
n of Φn on Θ≤g,c converges to the set of minimizers

of Φ on Θ≤g,c.

(e) In particular: If the minimizer A∗ of Φ on Θ≤g,c is unique then (A∗
n) converges P -a.s. to

A∗ for any choice of minimizers A∗
n.

Proof 7 Claims (a) and (b) are just Lemma 7(a),(c) and claim (c) was discussed after the
definitions of Φn and Φ at the beginning of this section. If g is a drop point then Lemma 7(b)
says that the optimal sampling parameters remain in a compact subset Kg ⊆ Θ≤g,c. By
Lemma 6, Kg contains at least one minimum of Φ. Denote the set of these minima by K
(⊆ Kg). For ε > 0 let Uε = {A ∈ Kg | Φ(A) ≤ minΦ + ε}. If U is any open neighborhood of
the compact set K in Kg then

⋂
ε>0 Uε \U = K \U = ∅. By compactness, Uε \U = ∅ for some

ε > 0, that is Uε ⊆ U . Hence, Uε forms a neighborhood base of K. Because of Lemma 2, all
minima of Φn lie in Uε for eventually all n. This is the consistency (d) and the consistency
(e) is a direct consequence. 2

Remarks 1 (a) Of course, analogues of Theorem 1 can be stated for normal and elliptical
submodels such as ones with diagonal or spherical scale matrices.

(b) Since we use sets A as parameters (and not tuples) there is no label switching and so,
it cannot cause the usual non-uniqueness of the minimizers of the population and sample
criteria. Yet, there may be non-uniqueness whenever different sets A can generate the same
minimum mina∈A ta. Non-uniqueness occurs even in the contrary case when the parent µ
bears symmetries. For instance, bivariate standard normals centered at the four vertices of a
square allow two equivalent minima of the population criterion (8) on Θ≤2,c. For these reasons
we state in Theorem 1(d) “converges to the set of minimizers of Φ.”

(c) If there is an uninterrupted chain of drop points 1, . . . , gmax then the claims of Theorem 1
hold true for g ∈ 1 . . gmax even with assumption (iv) relaxed to the assumption (ii) of Lemma 2:

φ
(
β‖X1‖2

)
is integrable for all β ≥ 1.

Indeed, in this case it is not necessary to resort to Lemma 7 in order to show that the
optimal sampling parameters remain in a compact subset of Θ≤g,c. The proof proceeds again
by induction over g ∈ 1 . . gmax : The case g = 1 is as in Lemma 7. For g ≥ 2, we verify
the assumption of Lemma 5(b). Let A0 ∈ Θ≤g,c such that Φ(A0) ≤ infA∈Θ≤g,c

Φ(A) + ε. By
convergence Φn → Φ, Lemma 2,

min
A∈Θ≤g,c

Φn(A) ≤ Φn(A0) ≤ Φ(A0) + ε ≤ inf
A∈Θ≤g,c

Φ(A) + 2ε
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if n is large. Since g is a drop point it follows

lim sup
n

min
A∈Θ≤g,c

Φn(A) ≤ inf
A∈Θ≤g,c

Φ(A)

< inf
A∈Θ≤g−1,c

Φ(A) = lim
n

min
A∈Θ≤g−1,c

Φn(A).

The last equality follows from the inductive hypothesis and from Lemma 6(b). This is the
assumption of Lemma 5(b) for g. The rest of the proof proceeds as in the theorem.

(d) As in Pollard’s theorem, the parent distribution µ in the consistency Theorem 1 does not
have to be a member of the collection of elliptical mixtures represented by the sets in Θ≤g,c.
On the other hand, even if µ is an elliptical mixture, it cannot be the mixture associated
with the limit. This is in contrast to the mixture model. No matter how well the components
are separated, think for instance of two, the proportions in the tails on the opposite side
of the separating hypersurface are assigned to the wrong cluster. Thus, the variances are
underestimated and the distance between the mean values is overestimated in the limit as
n → ∞, see Marriott [26] and Bryant and Williamson [8]. However, this bias disappears as
cluster separation grows since there is less overlap.

(e) This and the next remark concern modified versions of drop points. In Definition 1, they
have been defined w.r.t. the (MAP) population criterion (8). The criterion is accompanied
by an ML version, just delete the term − log πa from the definition of ta just before (7). If µ
has no discrete part, if φ(t) > φ(0) for all t > 0, and if the assumptions of the theorem are
satisfied ((iv) may again be relaxed to assumption (ii) of Lemma 2), it can be shown that the
ML version strictly decreases with increasing number of components g ≥ 1. This behavior is
actually not desirable in cluster analysis. If µ is a mixture of g well–separated components
then we would prefer that any solution with more than g components be rejected, at least up
to an a priori given upper bound. The ML criterion does not comply with this wish. Contrary
to the ML criterion, the MAP criterion may possess non–drop points. Examples are presented
after the proposition below.

(f) Drop points are accompanied by sample drop points g of the sampling criterion (7), Φn,

inf
A∈Θ≤g,c

Φn(A) < inf
A∈Θ≤g−1,c

Φn(A).

Also g = 1 is a sample drop point. The present classification model (3) is related to the
mixture model

∏n
i=1

∑
j πjEφ,mj ,Vj

(xi) via an approximation in the case of good cluster sep-
aration. A reviewer therefore asked us to compare the decrease of the minimum sampling
criterion (7) with the increase of the maximum log-likelihood values of the mixture model
along increasing values of g. Everything depends heavily on the scale constraints used. Be-
sides HDBT constraints, other popular scale constraints are compactness of the scale space or
lower bounds on the scale parameters, for instance boundedness of all eigenvalues away from
zero. A well–known theorem of Lindsay’s [22, 23] hinges on compactness of the parameter
space and states that the MLE of the mixing distribution can be represented by a discrete
probability supported by at most n points. It does not hold true under HDBT constraints
which guarantee the MLE to exist only for n ≥ gd + 1, see Gallegos and Ritter [11]. Now,
under compactness of the parameter space and general position of the data, minima of the
heteroscedastic elliptical criterion (4) and of the related sampling criterion (7), Φn, exist even
for all values of g up to n and not all have to be sample drop points. This is also true for the
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mixture model. Moreover, in both cases we do not have to look for g beyond n: Although the
mixture model still exists, the maximum likelihood does not improve according to Lindsay’s
theorem, and the classification model looses its sense because there cannot be more than n
nonempty clusters.

(g) The assumption (iii) of the theorem excludes radial functions φ of logarithmic growth.
Such functions define, for instance, distributions of Pearson’s type VII (or multivariate Student
t). Lemma 4 needs the multiplicativity of t 7→ tα which the logarithm does not share. It is,
however, possible to adapt the proof of Lemma 4 to radial functions φ(t) = η

2 log(1+t)+const ,
η > (d + 1)d, at the cost of introducing the assumption

inf
B∈Θ′

≤g
,‖v‖=1

∫
min
b∈B

log |vTx − b|µ( dx) ∈ R (16)

(the space Θ′
≤g is defined in the proof of Lemma 3) and of strengthening the condition (iii) to

integrability of φ(β‖X1‖2) for all β ≥ 1. Theorem 1 holds true for such φ if assumption (iii)
is replaced with (16). The optimum of the sampling criterion (7) exists if n ≥ gd

1−(d+1)d/η + 1.

Theorem 1(b) states that, under certain assumptions, the population criterion Φ has a min-
imum. The following theorem provides a tool to compute it. We will use it to verify the
subsequent examples but it is interesting in its own right since it is the population version of
the Elliptical MAP criterion (4).

Proposition 1 Let µ and φ satisfy the assumptions of Lemma 2 and the assumptions (i) and
(iii) of Theorem 1. Denote partitions of the sample space R

d in at most g measurable subsets
C such that µ(C) > 0 by the letter P. Let m = (mC)C∈P and V = (VC)C∈P.

(a) For each such partition P the minimum of

∑

C∈P

{
µ(C)

2 log detVC +

∫

C
φ
(
(x − mC)TV −1

C (x − mC)
)
µ( dx)

}

w.r.t. m and V ∈ Vc exists.

(b) The population criterion Φ has a minimum on Θ≤g,c if and only if

H(µ(C) | C ∈ P) (17)

+ min
m,V∈Vc

∑

C∈P

{
µ(C)

2 log det VC +

∫

C
φ
(
(x − mC)TV −1

C (x − mC)
)
µ( dx)

}

has a minimum w.r.t. all P. In this case, the minima coincide.

(c) In the homoscedastic, normal case φ(t) = t
2 + d

2 log 2π, denote the pooled covariance matrix
of µ w.r.t. P by V (P) =

∑
C∈P

V [X1;X1 ∈ C]. The minimum of Φ on Θ≤g,1 exists if and
only if the minimum of

H(µ(C) | C ∈ P) + d
2(1 + log 2π) + 1

2 log detV (P)

exists w.r.t. all P and, in this case, the minima are equal.
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Proof 8 (a) By the assumptions on µ and φ, the sum is continuous as a function of m =
(mC)C and V = (VC)C . Let ΛC =

∑
k λkvkv

T
k be the spectral decomposition. We have (x −

mC)TV −1
C (x−mC) =

∑
k λk(v

T
k (x−mC))2 and, by Theorem 1(iii) and the increase of t 7→ tα,

∫

C
φ
(
(x − mC)TΛC(x − mC)

)
µ( dx)

≥ b0µ(C) + b1

∫

C

( ∑

k

λk(v
T
k (x − mC))2

)α
µ( dx)

≥ b0µ(C) + b1
d

∫

C

∑

k

(
λk(v

T
k (x − mC))2

)α
µ( dx)

= b0µ(C) + b1
d

∑

k

λα
k

∫

C

∣∣vT
k (x − mC)|2αµ( dx)

≥ b0µ(C) + b1
d

∑

k

λα
k min
‖v‖=1,m

∫

C

∣∣vT(x − m)
∣∣2α

µ( dx).

The minimum exists since the integral is continuous as a function of m and v and converges
to ∞ as ‖m‖ → ∞. Moreover, by assumption Theorem 1(i) and µ(C) > 0 it is a strictly
positive constant κC . It follows

µ(C)
2 log det VC +

∫

C
φ
(
(x − mC)TΛC(x − mC)

)
µ( dx)

≥ b0µ(C) +
∑

k

{
− µ(C)

2 log λk + κC
b1
d λα

k

}
.

This expression converges to ∞ as λk → 0 or λk → ∞. It is, thus, sufficient to consider
matrices VC such that c1Id � ΛC � c2Id for two numbers 0 < c1 ≤ c2. Since φ(t) → ∞ as
t → ∞ by assumption (iii) of Theorem 1 and since µ(C) > 0, it follows that each integral
tends to ∞ as ‖mC‖ → ∞. It is therefore sufficient to restrict the range of each mC to a
compact subset of R

d and the claim follows from continuity.

(b) We have to show that, to each A ∈ Θ≤g,c, there corresponds some P for which (17) is no
larger than Φ(A) and vice versa. The first claim follows from (13). For the converse let P be
given and let m(C) and V (C) be the minimizers w.r.t. mC ∈ R

d and (VC)C ∈ Vc in (a). The
elements aC = (µ(C),m(C), V (C)), C ∈ P, satisfy {aC | C ∈ P} ∈ Θ≤g,c and we have

H(µ(C) | C ∈ P)

+ min
m,V∈Vc

∑

C∈P

{
µ(C)

2 log detVC +

∫

C
φ
(
(x − mC)TΛC(x − mC)

)
µ( dx)

}

=
∑

C∈P

∫

C

{
− log µ(C) + 1

2 log detV (C)

+ φ
(
(x − m(C))TΛC(x − m(C))

)}
µ( dx)

=
∑

C∈P

∫

C
taC

dµ ≥
∫

Rd

min
C

taC
dµ.

This is the desired inequality.

19



(c) The proof in the homoscedastic, normal case is similar to that of the Pooled Determinant
criterion: Let PD(d) denote the convex cone of all positive definite, symmetric d by d matrices.

min
m,V ∈PD(d)

∑

C∈P

{
µ(C)

2 log det V +

∫

C
φ
(
(x − mC)TΛ(x − mC)

)
µ( dx)

}

= 1
2 min

m,V ∈PD(d)

{
log detV + d log 2π +

∑

C∈P

∫

C
(x − mC)TΛ(x − mC)µ( dx)

}

= 1
2 min

V ∈PD(d)

{
log detV + d log 2π + tr(ΛV (P))

}

= 1
2

{
d(1 + log 2π) + log detV (P)

}
.

This is claim (c). 2

In parts (b) and (c) of the proposition it is obviously sufficient to take the minimum w.r.t. a
collection of partitions P that is known to contain the optimal one. The following examples
show that the minimum of the population criterion (8), Φ, regarded as a function on Θ≤g,c,
does not always decrease as the number of components, g, increases. In other words, there
are non–drop points.

Example 1 Let µ = N0,Id
and let the approximating model be the normal location

and scale family, that is, φ(t) = (d/2) log 2π + t/2. For g = 1, the entropy inequal-
ity shows that the optimal solution in Θ≤1,c is {(1, 0, Id)}. Let now g ≥ 2, A =
{(π1,m1, V1), . . . , (πg,mg, Vg)} ∈ Θ≤g,c, (mj, Vj) pairwise distinct,

∑
πj = 1, Λj = V −1

j ,

fj(x) = (2π)−d/2
√

det Λje
−(x−mj )TΛj(x−mj)/2, and abbreviate tj = t(πj ,mj ,Vj). We have∑

j πjfj > maxj πjfj and, hence, − log
∑

j πjfj < minj tj . The entropy inequality shows

Φ(A) =

∫
min

j
tj dµ > −

∫
log

∑

j

πjfj dµ ≥ −
∫

log N0,Id
dµ = Φ({(1, 0, Id)}).

Thus, the only optimal solution in Θ≤g,c is the singleton {(1, 0, Id)}. No genuine mixture of
normals is superior. This is true for any HDBT constant c ≤ 1.

Example 2 Example 1 raises the question whether the population criterion Φ can decrease
after having been constant for at least two (consecutive) values of g. The answer is yes.
Consider the homoscedastic normal classification model, that is c = 1, and the distribution µ
on the real line with Lebesgue density

f0(x) =





1/(8α), |x ± 1| < α,

1/(4α), |x| < α,

0, otherwise,

for 0 < α < 1/3. The optimal solution for g = 1 w.r.t. the population criterion Φ is {(1, 0, v)}
with v = 1

2 + α2

3 and Φ({(1, 0, v)}) = 1
2(log 2π + 1 + log v).

In order to see that there is no better solution in Θ≤2,1 note that any solution A∗ = {a1, a2},
a1 6= a2, is specified by some cut s∗ ∈] − 1 − α, 1 + α[ that separates Ca1

(A∗) from Ca2
(A∗).
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Let F be the cumulative distribution function belonging to f0 and let R = 1 − F be its
tail distribution. According to Proposition 1(c) it is sufficient to run across all cuts s and to
compute entropy and pooled covariance

v(s) =

∫ s

−∞
(x − m1(s))

2f0(x) dx +

∫ ∞

s
(x − m2(s))

2f0(x) dx,

with the conditional expectations

m1(s) = E[X1 | X1 < s] = 1
F (s)

∫ s

−∞
xf0(x) dx,

m2(s) = E[X1 | X1 > s] = 1
R(s)

∫ ∞

s
xf0(x) dx.

Omitting the addend 1
2 log(2π) in Φ, the integral version of Lemma A.3 in Gallegos and

Ritter [10], a formula of Steiner’s type, asserts that

Φ(As) = H(F (s), R(s)) + 1
2

(
1 + log v(s)

)

= H(F (s), R(s)) + 1
2 + 1

2 log
(
v − F (s)R(s)(m2(s) − m1(s))

2
)
,

where As = {a1(s), a2(s)}, a1(s) = (F (s),m1(s), v(s)), a2(s) = (R(s),m2(s), v(s)), and where
v is the total variance above. The difference between this value and the optimum for g = 1 is

Φ(As) − Φ({(1, 0, v)})

= H(F (s), R(s)) + 1
2 log

(
1 − F (s)R(s)

(m2(s) − m1(s))
2

v

)
. (18)

We have to show that this number is strictly positive for all s ∈] − 1 − α, 1 + α[ and begin
with s ∈] − 1 − α,−1 + α[. The conditional expectations are m1(s) = 1

2(s − 1 − α) and

m2(s) = (1+α)2−s2

14α−2(s+1) . Hence,

m2(s) − m1(s) = 4α
1 + α − s

7α − (s + 1)
≤ 4

3

since α < 1/3. Inserting in (18) and observing v > 1/2 yields

Φ(As) − Φ({(1, 0, v)}) ≥ H(F (s), R(s)) + 1
2 log

(
1 − 32

9 F (s)R(s)
)
.

The derivatives w.r.t. F of the functions −F log F and −R log R, R = 1 − F , are strictly
decreasing on ]0, 1/4[. The same is true for log

(
1 − 32

9 FR
)

since

d

dF
log

(
1 − 32

9 (1 − F )F
)

= −32
9

1 − 2F

1 − 32
9 (1 − F )F

and since 32
9 (1 − F ) ≥ 2 for F ≤ 1

4 . Hence, the function H(F,R) + 1
2 log

(
1 − 32

9 FR
)

is
strictly concave. Since it vanishes at F = 0 and has the value −

(
3
4 log 3

4 + 1
4 log 1

4

)
+ 1

2 log 1
3 =

log 4 − 5
4 log 3 = 0.01302 . . . at F = 1/4, it is strictly positive for 0 < F ≤ 1/4. That

is, Φ(As) > Φ({(1, 0, v)}) for −1 − α < s ≤ −1 + α, the first claim. The value obtained
for s = −1 + α persists on the interval [−1 + α,−α] since F (s) = 1/4, m1(s) = −1 and
m2(s) = 1/3 do not depend on s.
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For reasons of symmetry we are done if we verify the claim for s ∈] − α, 0]. In this case,

F (s) = 1
2 + s

4α , R(s) = 1
2 − s

4α , F (s)m1(s) = s2−α2

8α − 1
4 = −R(s)m2(s), and m2(s)−m1(s) =

R(s)m2(s)
F (s)R(s) . Hence

R(s)F (s)(m2(s) − m1(s))
2 =

(R(s)m2(s))
2

R(s)F (s)
=

(s2 − α2 − 2α)2

4(4α2 − s2)
.

For 0 < α ≤ 0.3 the right–hand side is ≤ 1/3. Indeed, 3(α2 − s2) + 12α < 4 and, hence,

3(2α + α2 − s2)2 = 12α2 +
(
3(α2 − s2) + 12α

)
(α2 − s2)

< 12α2 + 4(α2 − s2) = 4
(
4α2 − s2

)
.

Inserting in (18) yields

Φ(As) − Φ({(1, 0, v)})
≥ H(F (s), R(s)) + 1

2 log
(
1 − 2F (s)R(s)(m2(s) − m1(s))

2
)

≥ H
(

1
4 , 3

4

)
+ 1

2 log 1
3 .

This is again the strictly positive number computed above. We have shown that the optimum
number of components up to two is one and that Φ is bounded below on Θ≤2,c by a number
independent of α. The minimum of Φ on Θ≤3,c is smaller than that on Θ≤2,c, at least for
small α. It is in fact unbounded below as α → 0.

We finally remark that the situation changes completely as we consider the uniform sampling
distribution on the set [−1−α,−1+α]∪ [−α,α]∪ [1−α, 1+α]. Here the optimal solution for
g = 1 is no longer optimal for g ≤ 2. By weak continuity it is sufficient to consider the weak
limit as α → 0, the discrete probability µ = 1

3(δ−1 + δ0 + δ1). The optimal solution for g = 1
is

{(
1, 0, 2

3

)}
, its population criterion being (up to the constant (log 2π)/2) Φ

({(
1, 0, 2

3

)})
=

1
2

(
1 + log 2

3

)
= 0.2972 . . . . A solution for g = 2 is A2 = {a1, a2} with a1 =

(
1
3 ,−1, 1

6

)
and

a2 =
(

2
3 , 1

2 , 1
6

)
. Its criterion is Φ(A2) = H

(
1
3 , 2

3

)
+ 1

2

(
1 + log 1

6

)
= 0.2406 . . . .

Example 3 This example shows that g is a drop point of a homoscedastic mixture of g ≥ 2
normal distributions on R

d if there is sufficient separation. It can be extended to more general
mixtures but we want to use Proposition 1(c). The example holds for all dimensions d but
our proof for d ≥ 2 is somewhat technical and we confine ourselves to d = 1. For v > 0,
m1 < m2 < · · · < mg, and πj > 0 such that

∑
πj = 1, consider the homoscedastic, normal

mixture µv =
∑g

j=1 πjNmj ,v. We denote the population criterion (8) w.r.t. µv by Φv(A) =∫
mina∈A ta dµv and show that its minimum over A ∈ Θ≤g−1,1 remains bounded below, while

that over A ∈ Θ≤g,1 becomes arbitrarily small as v → 0.

By Proposition 1(c), minA∈Θ≤h,1
Φv(A) is the minimum of

H(µt(C) | C ∈ P) + 1
2(1 + log 2π) + 1

2 log Vv(P) (19)

taken over all partitions P of R in at most h measurable subsets. Here, Vv(P) is the pooled
variance of P w.r.t. µv. Any partition P of R in h < g subsets contains at least one subset
Cv where two different components of µv contain probability ≥ 1/h. Indeed, the stochastic
matrix (Nmj ,v(C) | 1 ≤ j ≤ g,C ∈ P) with indices j and C has g rows and h columns. So,
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each row contains an entry ≥ 1/h and, since there are more rows than columns, the pigeon
hole principle shows that one column must contain two such entries. In other words, there are
two different components that load some subset Cv ∈ P with probability at least 1/h, each.
Since all elements mj are different, a moment of reflection shows that the conditional variance
w.r.t. Cv and, hence, the pooled variance Vv(P) remain bounded away from zero as v → 0.
By Proposition 1(c), (19) is bounded below and so is Φv(A) uniformly for A ∈ Θ≤g−1,1, the
first half of the claim.

Now let h = g. We construct a partition P with a small value of (19). Let 3r > 0 be the
minimum distance between any two means mj. For 1 ≤ j < h, let Cj = [mj − r,mj + r] ⊆ R,
let Ch be the complement of

⋃
j<h Cj in R, and let P be the partition {C1, . . . , Ch}. As v → 0,

Nmj ,v concentrates on the neighborhood of mj ∈ Cj and, therefore, the pooled variance Vv(P)
converges to zero. Hence, (19) diverges to −∞ as v → 0 and, again by Proposition 1(c), so
does the minimum of Φv on Θ≤g,1, the second half of the claim. We have shown that g is a
drop point if v is small enough.

3 Model selection

The parameters subject to estimation in the foregoing theory are the HDBT constant c, the
number of clusters, g, and the set A itself. Some authors claim that the solutions are often
ambiguous, see Gondek [15], p. 245, “Data contains many plausible clusterings” and p. 249.
Jain et al. [18] even feel that clustering is a subjective process. We, therefore, do not always
expect a unique solution.

Besides the set A, the HDBT constant c, too, is unknown. Since set and constant depend
on each other, it is reasonable to combine their estimation. For this purpose, Gallegos and
Ritter [11, 12] introduced for the mixture and classification models the affine invariant method
of “balanced scales.” It is inspired by the HDBT constraints and postulates as an additional
statistical assumption that a valid solution to a clustering problem requires not only good
fit, that is a small criterion, but also sufficiently balanced cluster scales, expressed by not too
small an HDBT constant c in order to avoid spurious clusters. The two objectives are often
in conflict which has then to be resolved by biobjective optimization. For further information
on this subject, we refer the interested reader to the two papers cited above.

The problem of estimating g continues to be a subject of discussion. Examples 1 and 3 indicate
that the number of components of a clear mixture will often be a drop point. But the last
paragraph of Example 2 shows that not every drop point can be considered a valid number
of components. Given an upper bound gmax ≥ 1, we may consider the set A∗ of smallest
size that minimizes the population criterion (8), Φ, on Θ≤gmax,c a reasonable solution. Its size
g∗ = |A∗|, the largest drop point up to gmax, is a candidate for the “number of components”
that make up µ.

What we actually observe are not (population) drop points but sample drop points, see Re-
mark 1(f). Because of random fluctuation, a population drop point may not be a sample
drop point and vice versa. The following result says that a small (but unknown) distortion of
Φn converts the largest sample drop point up to gmax to the desired estimate of the number
of components, at least asymptotically. Denote the sequence of (population) drop points by
1 = g1 < g2 < · · · .
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Corollary 1 Let gmax ≥ 2 and let (s1, . . . , sgmax
) be any strictly increasing gmax-tuple of real

numbers. If the assumptions of Theorem 1 are satisfied then there exists ε0 > 0 such that, for
any 0 < ε ≤ ε0, the maximum (population) drop point up to gmax is given by

argmin
1≤g≤gmax

(
min

A∈Θ≤g,c

Φn(A) + εsg

)
,

for eventually all n.

Proof 9 Write g∗ = maxgj≤gmax
gj and hg = minA∈Θ≤g,c

Φ(A). We have h1 ≥ · · · ≥ hg∗−1 >
hg∗ = hg∗+1 = · · · = hgmax

. If g∗ = 1 then we choose an arbitrary ε0 > 0. If g∗ > 1 then there
is ε0 > 0 such that

hg + ε0sg > hg∗ + ε0sg∗

for all 1 ≤ g < g∗. This relation continues to hold for all strictly positive ε ≤ ε0 and, of
course, also for g > g∗. The corollary now follows from minA∈Θ≤g,c

Φn(A) → hg as n → ∞,
see Lemma 6(b). 2

We have obtained a penalized (MAP) sampling criterion. The proof shows that the penalty
term is needed because of the random fluctuation of the nth minimum minA∈Θ≤g,c

Φn(A) for
g beyond the maximum drop point g∗. Being defined by the population criterion Φ, the point
g∗ is an asymptotic quantity that also depends on the choice of the HDBT constant c. If the
constraints are omitted, then, beyond g∗, the sampling criterion usually splits some cluster
or splits off clusters of small or even deficient size producing spurious solutions.

The corollary should be compared with the traditional elbow criterion and its refinement by
Tibshirani et al. [34] and, in particular, with model selection criteria for finite mixture models
such as AIC, see Akaike [1], and the Bayesian information criterion BIC for finite mixtures,
see Keribin [19, 20] and Nishi [27] in a more general context. Akaike, Keribin, and Nishi
require that the penalty term strictly increase with model dimension and that it converge
to zero with n. (Note that, in their notation, the criterion is not divided by n.) Their first
requirement corresponds to the increase of our finite sequence (sg) and the way it strictly
increases is not important since all authors consider only a finite range of models. Instead of
convergence to zero with n we have the small quantity ε.

We finally illustrate theorem and corollary with a data set of size 3,000 sampled from the two-

dimensional normal mixture 0.27N(−3,4),V1
+0.27N(3,4),V2

+0.46N(0,−3),I2 with V1 =

(
4
−3 4

)

and V2 =

(
4
3 4

)
. In order to observe the behavior of the sampling criterion for increasing

n we also draw random sub-samples of sizes n = 30, 100, 300, and 1,000. The sub-sample
with n = 100 points is plotted in Figure 2. In order to handle the notorious non-uniqueness
of solutions, even for a fixed number of clusters, partitions globally optimal according to the
method of “balanced scales” indicated above were chosen under the HDBT constant c = 0.4.
For this purpose, we used our C++ program that implements among others the HDBT
constrained heteroscedastic MAP Determinant criterion (2).

Table 1 shows the first four digits of the minima of the sampling criteria minA∈Θ≤g,c
Φn(A)

under normality for the five values of n and g ∈ 1 . .4. In the present case, the entries remain
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Figure 2: The sub-sample of 100 points.

n 30 100 300 1000 3000
g

1 5.163 4.995 5.084 5.181 5.164
2 4.257 4.191 4.438 4.545 4.536
3 4.067 4.009 4.248 4.330 4.330
4 3.800 3.976 4.243 4.330 4.330

Table 1: The minimal values of the constrained sampling criteria Φn for various sub-sample
sizes and numbers of clusters.

stable from n =1,000 and g = 3 on and so we conclude g∗ = 3. This happens to be the
number of components that were used to generate the data. The method can be applied to
general data sets that are large enough, just draw sub-samples. It should also be repeated
with different sub-samples to confirm the result.

The proof of the corollary says ε0 < ming<g∗
hg−hg∗

sg∗−sg
. Letting sg = g and approximating the

optimal population criterion Φ with the optimal sampling criterion Φn according to Lemma 2
and Lemma 7(d) we obtain for the five values of n the approximations 0.19, 0.182, 0.19, 0.214,
and 0.205 to this minimum. They do not fluctuate too much. An appropriate value of ε0 is
therefore about 0.2, here. Applying the corollary with ε = 0.1 we see that three clusters are
obtained for n = 100, 300, 1000, and 3000. The estimate obtained from the smallest subset
is at least four. Note that the cluster sizes for three components are here about ten and a
two-dimensional normal sample of such a small size has usually several interpretations as a
clustered data set.

A caveat: Blind faith in the results of any clustering method is not advisable. All statistical
methods face many opponents but they grow when we are dealing with clustering. The data
set may be too small, the model chosen may be too far away from truth, there may be
too few variables or too many irrelevant ones, it may contain outliers that will hamper the
analysis. Most of these problems have been tackled in the past. Nevertheless, any clustering
result should be validated. Are the clusters obtained cohesive ? Have different clusters been
returned as a single one ? Is the data set clustered at all ? Goodness–of–fit and normality tests,
for instance, can be used to answer these questions. Moreover, various validation methods are
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of benefit in checking the soundness of a proposed solution, for instance Bailey and Dubes’s [2]
Cluster Validity Profiles or Bertrand and Bel Mufti’s [3] and Hennig’s [17] cluster stability
methods.
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[10] Maŕıa Teresa Gallegos and Gunter Ritter. A robust method for cluster analysis. Ann.
Statist., 33:347–380, 2005.
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[13] Maŕıa Teresa Gallegos and Gunter Ritter. Using combinatorial optimization in model-
based trimmed clustering with cardinality constraints. Computational Statistics and Data
Analysis, 54:637–654, 2010. DOI 10.1016/j.csda.2009.08.023.

26



[14] Luis Angel Garćıa-Escudero, Alfonso Gordaliza, Carlos Matrán, and Agust́ın Mayo-Iscar.
A general trimming approach to robust cluster analysis. Ann. Statist., 36:1324–1345,
2008.

[15] David Gondek. Non-redundant data clustering. In Sugatu Basu, Ian Davidson, and
Kiri L. Wagstaff, editors, Constrained Clustering, Data Mining and Knowledge Discovery
Series, chapter 11, pages 245–283. Chapman & Hall/CRC, Boca Raton, London, New
York, 2009.

[16] Richard J. Hathaway. A constrained formulation of maximum-likelihood estimation for
normal mixture distributions. Ann. Statist., 13:795–800, 1985.

[17] Christian Hennig. Cluster-wise assessment of cluster stability. Computational Statistics
and Data Analysis, 52:258–271, 2007.

[18] Anil K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM Comput.
Surveys, 31:264–323, 1999.

[19] Christine Keribin. Estimation consistante de l’ordre de modèles de mélange. C.R. Acad.
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