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Efficient Estimation of Neural Weights
by Polynomial Approximation

Gunter Ritter

Abstract—it has been known for some years that the uniform- In fact, more recently theomplexity problenwhich deals
density problem for forward neural networks has a positive with the relationship between the size of an expression (i.e.,
answer: Any real-valued, continuous function on a compact the number of neurons) and its approximation capacity was

subset of R? can be uniformly approximated by a sigmoidal . ;
neural network with one hidden layer. We design here algorithms solved [32], [26], [25] for two classes of activation functions,

for efficient uniform approximation by a certain class of neural Poth including the popular logistic function and none of them
networks with one hidden layer which we callnearly exponential the Heaviside step function. The constructions in these papers
This class contains, e.g., all networ!<s with thg activation functions provide answers of Jackson’s type to the question: How closely
1/(1 + e™), tanh (#), or ' A 1 in their hidden layers. The  can 4continuousor m-times differentiable function beuni-
algorithms flow from atheorem stating that such networks attain formlv approximated by a network with one hidden laver of a
the order of approximation O (N~'/%) d being dimension and ' y _pp . y . . y

N the number of hidden neurons. This theorem, in turn, is a 9iven size? or, in other words, how many hidden units are suf-
consequence of a close relationship between neural networks officient to approximate such a function uniformly with an error
nearly exponential type and multivariate algebraic and exponen- not exceeding:? The order of approximation of a parametric
tr'g'r f;oe{{;‘i%m'a::ré ;Zfef}s'_g?r:ghrgz rr‘]gted ert]esliﬂgli iar‘] lséigl'”rg"ﬁ?r'lgt functional expression describes the asymptotic behavior of the
and the gagi’npin executic;n tir¥1e relativge to the backpropagatior’1 max'm“m approximation error with respgct toagiven .CIaSS of
algorithm is enormous. The size of the hidden layer can be functions as the number of parameters in the expression tends
bounded analytically as a function of the precision required. to infinity. It was shown that neural networks based on the

Index Terms—Approximation algorithms, complexity prob- IOQI.S“C anq many other act|\-/at|on. functhns apprOX|mlate any
lem for neural networks, nearly exponential activation function, ?-lIMes differentiable function with a Lipschitz-continuous
neural network with one hidden layer, order of uniform approx- mth derivative of the orde®© (N ~("+1)/4) d being the size
imation. of the input layer andV the number of hidden neurons; cf.
Comment IlI-C a).

It remains to exploit the efficiency promised in the solution
of the complexity problem. The proofs given in [32], [26],
and [25] are based on polynomial approximation. Moreover,
A. Background they are constructive so that algorithms for approximation can

RTIFICIAL forward neural networks are nonlinear parabe derived from them. It is the main purpose of this paper to

metric expressions representing multivariate numericin the method of proof introduced in [32] into algorithms for
functions. In connection with such paradigms there arisbrect and effective uniform approximation. The most popular
mainly three problems: densityproblem, acomplexityprob- method of neural-network training today is backpropagation,
lem, and aralgorithmic problem. Thedensity problendeals i.e., gradient search in combination with the chain rule of
with the fo”owing question: which functions can be approximultivariate differential calculus. However, this method is
mated and, in particular, can all members of a certain classS¥$W since it proceedseratively although some progress has
functions be approximated in a suitable sense. This probld¥@en made in the past; cf. [4], [19], [36], [1], and [30].
was satisfactorily solved in the late 1980's [7], [15], and/loreover, it may get stuck in a local minimum, cf. [24]. The
[16]. Any continuous function on any compact subset @gorithms proposed here armniterative thereby avoiding
R? can be uniformly approximated arbitrarily closely by 4dhese disadvantages. Furthermore, they need no starting point
neural network with one hidden layer. Moreover, the prognd no learning parameters. We note finally that Chen [5]
given in [16] provides an intimate connection between forwaféesigned another efficient, noniterative algorithm but for a
neural networks and polynomials. This observation suggesféfferent, more complex network architecture.

to consider the remaining two problems, too, from this point
of view. B. Outline

I. INTRODUCTION

The organization of the paper is as follows. In Section II,
Manuscript received April 17, 1997; revised January 10, 1999. we derive Proposition 2.2, which is a result of Jackson’s type
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is based on the isotropic modulus of continuity, which isn this interval. These estimates are in termsnofind a
the appropriate measure ghiform approximability. Section measure of smoothness @#f—e.g., its modulus of continuity

Il is devoted to neural networks of nearly exponential typer the sizes of its derivatives. Multivariate extensions of this
[32]. A neural activation functions : R — R is called theorem are due to Feinerman and Newman [12], Nikolskii
here nearly exponentialf, after suitable affine rescalings of[29], Soardi [35], and refinements to Ditzian and Totik [10]
abscissa and ordinate approximates the exponential functiorwho defined new moduli of continuity. Feinerman and New-
arbitrarily closely on the negative half line. This class ofman [12, corollaries on p. 102], also give constants involved
functions contains the functions/(1 + ¢~*), tanh (), and in the estimates.

et A 1. A neural network is ofnearly exponential typé all Let f be a real-valued function defined on a convex subset
hidden neurons carry nearly exponential activation functions.C R* and lets > 0. We will use theisotropic modulus of
The close and simple relationship between nearly exponentahtinuity of f, w(f,$), defined by

neural networks with one hidden layer and (multivariate) alge-

braic and exponential polynomials combined with Proposition w(f,6):= sup |[f(y) — f(=@)]. 1)

2.2 leads to a theorem on the order of approximation of a ly==ll<s

neural network of nearly exponential type, Theorem 3.1. In afhjs is the modulus of continuity introduced in [12, p. 87],
cases, we also trace the constants in the estimates. and in [35, p. 67]. By convexity of the domain ¢fand as a

As a corollary one immediately obtains estimates of th&nsequence of the triangle inequality, we have for any real
number of hidden units necessary for uniform approximatigfymper, > 0

in terms of the admissible error, see Corollary 3.2. In Comment

[1I-C b), we discuss the size of the weights. Finally, in Section w(f, p8) < [plw(f,8) < (p+ Lw(f,6). (2
IV, we derive two algorithms for efficient approximation

of continuous functions or finitely many scattered data bihe second inequality is strict if is not constant.

neural networks of nearly exponential type. The order of The functionf is called Lipschitz continuous if there exists
approximation of these algorithms is the same as that of theconstantL such that|f(y) — f(z)| < Ll|ly — | for all
method of polynomial approximation used. z,y € C. We then define

C. Notation L(f) := sup 11w = J@)]

= -z
We use the following notation. The symbd¥ R, and R, 2 |

stand for _the sets of nonnegative i_ntegers, real numbers, an¢ s Lipschitz continuous, them(f,8) < L(f)é. We denote
nonnegative real numbers, respectively. por € R, [p] (re-  the space of realj-variate algebraic polynomials ofiaximal
spectively,|p|) denotes the least (respectively, largest) integglegreen by P, (d). The following theorem can be derived

n > p (respectivelyn < p), andp V 7 (respectivelyp A7)  from Feinerman and Newman [12] or Soardi [35].
denotes the maximum (respectively, minimum) ofand 7.

. i i . d
Vectors inR" are denoted by lower case, boldface letters. The 11€0rem 2.1:For any continuous functioif : [0,1]° — R
symbol A stands for a finite subset @®"_. All operations on and alln € N, we have

vectors are meant coordinatewise. Thus if ( (@) < e(d) 1
Ll Po(@) < o £ 5 ©)
z':(.’L'l,"',.’L'd)ERd, y:(yla"'ayd)eRd 71+2
then, e.g., for some constant(d) depending on dimensiod, only. [
T i= (", e, Y= (22 There are two reasons for the denominater 2 instead of
. n in (3). First, it leads to a nicer estimate in Corollary 3.2.
if 2 > 0 forall k, andzy = (z191,- -, zqya). However, a . . .
. : Second, it can be shown, using tensor products of Korovkin's
dot denotes the inner produat;y = 3, zxyx. The Euclidean . . .
q . kernels [20, p. 75], that a possible constant in (3) is
norm on R" is denoted by|| - ||, and || - || designates the
supremum norm with metrid., on a space of bounded, real- 1 7r2\/_
or complex-valued functions. c(d) = 5t d.
Il. UNIFORM APPROXIMATION OF CONTINUOUS If f is Lipschitz continuous then
FUNCTIONS BY REAL EXPONENTIAL POLYNOMIALS 2 L(f)

s
doo(f. Pu(d)) < —Vd
A. Explanation 4 nt2

Jackson’s [18] well-known theorems estimate the uniforff- Ritter [32]. In the one-dimensional cagew 1, a result of
distance of a continuous functighon the interval0, 1] to the Korneicuk [21] implies the estimate

spaceP,, ([0, 1]) of polynomial functions of degre€ = r
£ o) 5 0(Fr 575 )

" 2 2
p(t) — Z a)\t)\ n -+
A=0 cf. Cheney [6, pp. 144 and 147].
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B. Exponential Sums and Polynomials

A (real) exponential sunover a finite subseA C Ri

expression of the form

E aNCX-

ACA

is an

(4)

In this context, the elements df are calledmulti-intensities
ande, is the multivariate exponential function & defined
by the expression

d

ex(®) = H e MNTE = oA

k=1

()

A= (A, ) €A &= (21, --,24) € R When the
index setA in (4) is a subset of a latticeN* for somea > 0
we will speak of a (real) exponentigblynomialover A. An
exponential polynomial ofnaximal degreen € N is of the
form

ACa(0---n)4
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the identity functiono uniformly on [0,1]¢ asa — 0. It is,
therefore, possible to chooseso small that

lp 0N —pomollee < & (7)

Note thatpor, is an exponential polynomial iR (d). Using
(6) and (7), we obtain the estimates

P ona = flloo L lPoNa—pom0llec +lpon0 — flleo
1

< e(d )+ 2.

< )w(f,n+2)+ e

Sincee > 0 is arbitrary the proposition follows. O

I1l. UNIFORM APPROXIMATION OF CONTINUOUS FUNCTIONS
BY NEURAL NETWORKS WITH ONE HIDDEN LAYER

A. Neural Networks with One Hidden Layer

The functionality of a neural network with one hidden layer
is represented by an expression of the form

for somea > 0. The symbolPZ(d) stands for the set of all
real, d-variate exponential polynomials of maximal degree
and arbitraryc.

We transfer Theorem 2.1 to uniform approximation b
exponential polynomials. It is well known that the situatio

Z A0y (—Ay - 2+ by).

wel

(8)

Yiere,z is a variable taking values iR’ (the input variable)l/
' the index set ofinits (neuron$ in thehidden layer A, € R

differs from the algebraic case: WhereBs(d) is a finite-

dimensional vector space and there exists a best approxima

polynomial in this spaceP”(d)

is sufficient to consider the sequene@ — ¢=*/%) € PE(1);
it converges to the identity function &s— oo uniformly for
z in any bounded subset of the real line.

Proposition 2.2: For any continuous functiofi: [0, 1]¢ — R
and alln € N, we have

doo (£, P (d)) < e(d)w <f " i 2)

with the constant(d) appearing in Theorem 2.1.

Proof: First use Theorem 2.1 in order to approximate the

function f by an algebraic polynomial

d
E : Ak
CL,\HaZk

A€(0---n)¢ k=1

p(x) =

with an error

O ) ARG

Given « > 0, define the univariate function

11—

na(x) = m, T € [0, 1]

comprises allinput weightsof the hidden unitw € U, b, is

ﬂg%ffset o, its activation function anda,, its output weight

) IS neither a vec.tor.space NOTThe dot indicates the inner product. The activation function
closed and an optimal polynomial does not exist in general. It

o, : R — Ris a univariate nonlinearity, usually sfgmoidal
form, i.e., bounded and increasing. A graphical representation
of (8) is shown in Fig. 1.

For simplicity, we assume that all hidden units in (8) carry
the same nearly exponential activation functign.e.,c, = o
for all w € U. A neural network of the form

D auo(=Au -+ by).

wel

(9)

will be called of type o.

By the exponential sigmoidal function we mean the function
o = expAl. Any exponential sump = Y7, axca,
restricted to the positive hyperquadraﬁfr, is itself a neural
network of types”, namely,

p(x) = Z axo (=X ). (10)

AEA

Looking at a neural network from this point of view, the

weights and offsets have a neat interpretation: The input
weights correspond to the intensities of an exponential sum,
the output weights and offsets to its coefficients. However, the
close relationship between neural networks and exponential
sums is not restricted to the exponential sigmoidal activation

Its d-dimensional extensionz — 7.(z), is a topological function but can be extended. This is the purpose of the
isomorphism of[0, 1]¢ and the family(n,).~0 converges to following definition.
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Fig. 1. Graphical representation of a neural network with one hidden layer.

B. Nearly Exponential Functions Its proof, being based on Proposition 2.2, exploits the intimate
relationship between neural networks of nearly exponential
type and exponential sums, cf.(10), and provides deeper insight
into the properties of neural networks. The functigrwill

lyo(Ct+B)+p—c'|<e be defined on a compact, convex sub&etC [0,1]¢, and

) ) ) we wish to control the error of uniform approximation by its
for all ¢ < 0. This means that, after suitable linear rescajgoropic modulus of continuity. In order to be able to apply
ings and shiftings of abscissa and ordinate, the function pqnsition 2.2, we have to exterfido a hypercube contained
approximates the exponential function arbitrarily closely ofy r? \yithout violating its modulus of continuity. This is the

the negative half line. In the sequel, we restrict ourselves Q<o why we assunt&to be convex We abbreviate
nearly exponential activation functions and speak of a neural

network of nearly exponential type ca(fin) = c(d)w <f, L ) (13)
Both the logistic sigmoidal functioar”(t) = 1/(1 + ¢™*) o _ _ _ n+2
and the hyperbolic tangent are nearly exponential. To see tHis/ is Lipschitz continuous with constat(f) then

We call a functions : R — R nearly exponentiaif, for all
e > 0, there exist real numberg, ¢, /3, p such that

in the former case it is sufficient to pt = 1, p = 0, < old L(f)
v = 1/0"(3), and to observe that ca(f;n) < o )n+2'
olt+8) _ eto 11— cf| < |t — | Theorem 3.1:Let o be nearly exponential, let C [0, 1]¢
ol () etth 41 - be compact and convex, and lete N. For any continuous

function f : C — R, we haved..(f, R%(d)) < ca(f,n).

Proof: Let = denote the Euclidean projectiof, 1]¢ —C.
The functionf o 7 is a continuous extension ¢f to the unit
hypercub€0, 1]¢ with the same modulus of continuity as that
of f. Proposition 2.2 produces an exponential polynomial

converges to0 uniformly in ¢ < 0 as 3 — —oo. The
latter function is justtanht = 20"(2t) — 1. Of course, the
exponential sigmoidal function® is nearly exponential and
Heaviside’s step functiong, is not.

Given some activation function : R — R, RZ(d) will

denote the set of all sums of the form plE)= >, axe?® (14)
A€a(0---n)¢
> dao(—A-z+by) (1) ieh that
AcA

: : pic = flloo < IPjo,1)e — f o 7lloe < calf,n) +e.
with A C a(0---n)¢ for somea > 0 and witha > 0 Ipie | 7o, | (f:m)

independent of\. Note that (10) may be put in the form Let
f— . .. d
p@) = Y asign(aof(-A -z b)) (12) A={real0 ) /a7 0}
ax#0 Another representation gf is
a = maxaca |aa|, bx = In(Jar|/a) < 0, a neural network pla) = tae=tH
with output weightsta; in particular, if A C «(0---n)¢ then AcA
(10) can be turned into a memberﬁff(d) for somen. with by < 0 anda > 0 independent of\; cf. (12).

The following theorem approximates continuous functions Now, sinces is nearly exponential, we may approximate
1 of d variables by neural networks of nearly exponential typ¢he exponential functiom® by an expressiono((t + 3) + p
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uniformly on the negative half line up to the errgf(a#A).
The sum

> dayo(—CA-z+Cha+ )
AeAN\{0}

+ <ia’YU(Cbo +B8)+p> ia)

ACA

belongs tdR?(d) and its uniform distance tf does not exceed
the valuecy(f,n) + 2¢. (Here, we have assumdde A; the
contrary case is similar.) This proves the theorem. O

The following corollary of Theorem 3.1 determines a hum-
ber of hidden neurons sufficient for uniform approximation of
a continuous functiorf up to an errok. It says in particular
thatO (¢~¢) neurons are sufficient jf is Lipschitz continuous.

Corollary 3.2: Let o be nearly exponential and l&t C
[0,1]¢ be compact and convex.
a) For any continuous functiorf : ¢ — R and all
e > 0 there is a neural network (11) with at most
min{(n + 1)¢/c4(f,n) < €} hidden neurons uniformly
approximatingf up to an error not exceeding
b) f is Lipschitz continuous then

o102 )

neurons suffice.
Proof:

a) If n is such that,(f,n) < e then, according to Theorem
3.1, there exists a neural netwogk € R%(d) such that
deo(g, f) < e. This neural network contains at mast + 1)¢
hidden neurons.

b) Let us distinguish two cases. dfd)L(f)/e < 1 then

L £
caliin) s el < =

for all n > 0. Hence, the minimum in a) i4 in this case.
If ¢(d)L(f)/e > 1 we putn = |c(d)L(f)/e] — 1. We have
n > 0andn + 2 > c¢(d)L(f)/e, hence
L(f)
< 7
Cd(fvn) = C(d)n+2 <e
Thus the minimum in a) is at moét + 1) = |c(d)L(f)/e]¢
in this case. O

<&

C. Comments
a) Since a neural network of clasg?(d) has at most

(n + 1)¢ hidden neurons, Theorem 3.1 says, among b)

other things, that the optimal order of approximation
of any Lipschitz-continuous function with respect to
RZ(d) is at leastO (N~Y/4), N being the number of
hidden neurons. The exponent and constant involved in
this asymptotic statement depend on dimensiotf f

is m times differentiable with a Lipschitz-continuous
mth derivative(m > 0) then similar arguments, again

based on Jackson’s theorems, show that the order of

approximation is at leagd (N —(m+1)/4); cf, Soardi [35,
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p. 94], concerning approximation by polynomials. The
approximation operators underlying the present methods
are continuous. Since a network of hidden neurons
has(d + 2)N real-valued parameters, a theorem due to
DeVore, Howard, and Micchelli [9] implies that ramn-
tinuous(linear or nonlinear) approximation operator can
improve these asymptotic estimates. (For a discussion
of the classicalinear case, cf. also Schumaker [33, p.
96], and Feinerman and Newman [12, pp. 97, 84, 85].)
However, it seems to be unknown whether there exist
(discontinuous) approximation operators with a better
rate of approximation.

Barron [2] proves a rate-of-approximation result re-
lated to Theorem 3.1. He uses an integral representation
by means of indicator functions of half spaces in order
to show that the order of uniform approximation of any
function f : [~1,1]¢ — R with Fourier representatiofi

f@) = [ c=iwdy

such that|jy||f(y) is integrable is at leasD (N~1/2).
This describes neatly a class of functions for which a
dimension-independent approximation order holds (the
constantsinvolved in the estimates depend on dimen-
sion). However, the interpretation of this result and
its comparison to the present result need some care.
Barron’s class is described in terms ofji@bal property

of its Fourier transforms. The largest space defined
by differentiability properties and contained in it is
Cltd+3)/21 g space depending on dimensibrAs stated
above, the order of uniform approximation of a function
f e Cl¥?~1 is also at leasO(N~*/2).

Barron [2] shows also that the order wfean-square
approximation (with respect to any probability measure
with bounded support) of a member of the said class
is at leastO (N—1/2); cf. also [3], where a geometric
argument in Hilbert space is used. An extension to spaces
of p-times integrable functiond, < p < ~, as well as a
treatment of incremental approximants appear in Darken
et al. [8]. These theorems are particularly useful in the
context of statistical classification problems where the
inputs come as independent realizations of a distribution.
Mhaskar and Micchelli [28, Theorem 2.4], show that
this describes again the optimal order attainable by any
continuousmean-square approximation operator on Bar-
ron’s class. A result related to [3] for activation functions
with bounded “supports” but Lipschitz-continuous target
functions appears in [17, Theorem 3].

There is a tradeoff between size of hidden layer and
sizes of weights. The approach taken in Proposition
2.2 and Theorem 3.1 is chosen so as to achieve a
neural network with a small number of neurons. The
weights a,, in (8) may, however, be very large and
have alternating signs, possibly making this network
numerically unstable. Even if the coefficientg of the
polynomial p in the proof of Proposition 2.2 are small
or of moderate size, insertion of the functigg into

this polynomial increases the output weights if a very
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small « has to be chosen for close approximation or ibther multivariate splines may be used. The interested reader
the degree ofy is large. is referred to Schumaker [34], Powell [31], Franke [14], or
The problem of large weights is intrinsic. It is plainLancaster andalkauskas [22].

that approximation of a large function needs a neural The method developed in Sections Il and Il requires
network with large weights if a small number of neuronpolynomial approximation of the function a) or of the data
is to be used. But there are small functions that algmwints b) as a first step. This is the content of Subsection A.
need large weights. The simple example of the iden-

tity function on the interval—1, 1] suffices to expose A. Algorithms for Polynomial Approximationand Interpolation
this. It can be approximated by a neural network with
one hidden neuron of typganh to arbitrary precision.
However, approximation with uniform errof needs
an output weight of the order of at least'/2, as an

«) Approximation of continuous functiong&pproximation
of a continuous functiorf defined on a hyperrectangle R
by polynomials can be based on the fast Fourier transform

elementary computation shows. This is the price f
reducing the number of neurons. In contrast, Mhask
and Micchelli [27, Theorem 5.1 and Lemma 5.3(b)]
show thatO (e~ (24+2)) summands of size) (1) can
approximate a Lipschitz-continuous function with error
(putk = 0in the notation of [27]). This means that close
approximation by neural networks with small weights is

(iFFT) algorithm. After an affine substitution we may assume
hat the domain of definition of is the hypercubd—1, 1]¢.
fhe details are as follows.

i) Define an even2r-periodic functionh : R* — R by

putting
h(sp) := f(cos(p)).

possible with about the square of the minimum number i) Choosen € N (according to the precision required)

of neurons given in Corollary 3.2.

There is an intermediate way which is sketched as
Algorithm 4.2 below; it still guarantees the optimal
order of continuous approximation while just needing
a larger constant in (13) because of the appearance of
the logarithm in 4.2 i). This method does not need small
values ofa (and hence a small denominatorsp) for
precise approximation.

c) It is striking that the method presented here uses the
convex part of the sigmoidal shape of only.

IV. ALGORITHMIC IMPLICATIONS

The method of proof leading to Theorem 3.1 and its
corollary is constructive. It can be combined with algorithms
for approximation or interpolation by algebraic polynomials
for efficient, noniterative estimation of weights and offsets of
neural networks. We consider algorithmic solutions of two
related tasks, viz.,

a) approximation of a continuous function on a hyperrect-
angle inR* specified by some functional expression by
a sigmoidal neural network, and

b) approximation of finitely many dat@e;, ;) € R® x R,
1 <4 <], by a sigmoidal neural network.

The latter problem is also callefitting a d-dimensional
surface to given datand is related to theegression problerof
statistics. Sometimes, the pointslie on a regular (e.g., rect-
angular) grid, but the most important case is that of data points
coming from irregularly scattered statistical measurements.

It is possible to reduce Task a) to Task b) by sampling
data(z;,y;) from the functional expression given in a). This,
however, means loss of information. The data poiftsnay
be chosen in such a way as to catch the characteristics of the
given function. Reciprocally, Task b) can be reduced to solving
Task a) by preliminary approximation or interpolation. Here,
any method yielding a reasonable functional expression, such
as triangulation, Shepard’'s method, radial basis functions, or

and compute the coefficients

d
/.7 E Ak
ay = h()\)kl:llcos<2n+1>,
A=(Ag,. ..

,Ad) € (=n---n)* (15)

where the hat denotes the Fourier transform

. 1 N
hA) = @) /[—77 i TN () dep

_ # /[_ Lo )hlp)d

Computation ofh is most efficiently performed by
means of the FFT algorithm applied to discretely sam-
pled values ofh. The multiplierscos (525 ) in (15)
improve the approximation; other multipliers such as
Fejer's 1 — |Ax|/(n + 1), de la Valke-Poussin’s, or
Korovkin’s [20] could be used. The real coefficients
ay enjoy the propertyz’(jEAl 7777 i) = a), for all sign
combinations. Similarly, the trigonometric polynomial

ap)i= Y

AE(—n--n)d

d
_ § al)\ H AR PR

AE(—n---n)d k=1

d
= Z ai{Hcos()\kwk)

AC(O--m)d k=1

ai\c“\"”

(16)

uniformly approximates the function and has the

propertyQ(i<p17 LR i()Od) = (J((p)v Y= (4,01, CERE Qad)
The coefficientsyy in (16) have the representation

ay = 2Ma)

wheren, is the number of nonzero entries in the multi-
frequency .
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iii) Using the expansion given scattered datér;, ;) € R* x R, 1 < i <, by linear
combinations ofd-variate monomialg.y, ..., un.
A A—21 2 l . . . .
cos (Ap) = Z 9l (cos @)1 —cos” p) — Construction of arorthonormal basisin the linear span
I<A/2 of p1,---, un With respect to the inner product
AEN, R, we obtain from (16) the representation al
€ peR w i (16) p i o Z Fag(z
ad@)= > axn]]cos™ ex 7) e.g., by the Gram—Schmidt procedure.
AE(0-n)¢ B=1 — Thenormal equationsA” Aa = ATy specified by
of ¢ as a polynomial ircos ¢ with certain coefficients A= (py(®:) 1<i<t
1<;<N
ay. =i=
iv) The substitutiony; = arc cos(x) in (17) yields an Yy = (¥i)i<i<i- Extensions of the method of normal
algebraic polynomiap € P, (d) equations that are also applicable in the presence of
rank deficiencies and constraints are thatrix methods
ple) = > aaet--apt cf. Lawson and Hanson [23], Forsyth al. [13], and
AE(0--n)4 Lancaster andalkauskas [22].

These methods have the advantage over the metBpdsd
~) that notall monomials up to a certain maximum degree
have to be used.

This procedure is optimal in the sense thatrealizes the
order of uniform approximation tg® claimed by Jackson’s
[18] theorems, cf. Comment III-C a).
#) Interpolation and approximation of data given on a
rectangular grid: If the data(zm, ym) are given on the rectan- 5- Algorithms for Weight Estimation
gular gridz,, = m/n, m € (0---n)%, say, then there exists a Here are two algorithms for efficient, noniterative estimation
unigueinterpolatingmultivariate polynomialL,, of maximum of weights and offsets of a nearly exponential neural network
degreen. However, it is well known that the resulting surfacdor approximation of continuous functions defined on the
may be too undulating to be acceptable, cf. [34]. hypercubel0, 1]¢ or of scattered datdz;,y;),z; € [0,1]¢.
This shortcoming is not observed if Bernstein polynomialhe resulting overall algorithms, including the polynomial ap-
are used forapproximation The Bernstein polynomial3,, proximation, contain numerical operations such as integration
associated with the data poin{®,.,vm), m € (0---n)%, is and matrix inversion and symbolic (algebraic) operations such

specified by the following formulas: as substitutions and expansions of trigonometric expressions.
The simplest method is a least-squares technique. All proce-
P.(m,z) = (” )(1 — )™ dures can be easily implemented numerically. Both algorithms
m conserve the order of approximation by polynomials given in
_ Z ) rn( )(” - m>x1 Section IV-A, cf. also Theorem 3.1.
= [ - ’ In order to gain some flexibility, we extend the homeomor-

0<m<n, 0<z<1 (18) Phismz — o,(z) appearing in the proof of Proposition 2.2
to differenta’s in the d coordinate directions. Thus let

d
,EP" s ) m(z)zll_%, acRy, zel01"
m = (my,...,mg) € (0---n)%, It follows
x = (1, ) [0,1)¢ (19) ol (t) = In1-(1-¢ “)t)’ € [0,1]%
B,(z) = Z UmP(m, z). (20) —a
me(0---n)¢ i
Algorithm 4.1
In general, this method does not attain the optimal rate i) Approximatef uniformly or approximate the given data
of continuous approximation possible for continuous and dif- (x;,¥;) by an algebraic polynomiap € P,(d); cf.
ferentiable functions. The class of functions with order of Section IV-A.
approximationO (n ') was determined by Ditzian and Zhou ii) Choose some vectoox = (ay,---,aq) € R* with
[11]. ar > 0 so small thatn, approximates the identity
Of course, all methods suitable for approximatsaattered function well enough on the unit hypercufgg 1]¢. The
data may be applied to the present situation as well. However,  expression(n.(2)) is a multivariate exponential poly-
their rate of approximation is not covered by the theory in nomial and a neural network of type” approximating
Sections Il and lll. Two of them are briefly addressed next f on[0,1]¢ or the data(z;, y;); cf. Proposition 2.2.
since they yield good results. iii) If necessary and suitable, a pruning method may be
~) Polynomial approximation of scattered dat@ihere are applied in order to reduce the network size, e.g., by

two popular approaches to least-squares approximation of  canceling all units with small output weights.
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TABLE |
v MSE/(EXECUTION TIME IN SECONDSY FOR APPROXIMATION OF THE FUNCTIONS f AND g DISPLAYED IN FiG. 2 BY MEANS
OF THE METHOD INDICATED IN THE FIRST Row. EMPTY ENTRIES ARE DUE TO EXCESSIVE RUNTIME REQUIREMENTS
(BACKPROPAGATION) OR TO NUMERICAL INSTABILITIES (LEAST SQUARES). TRAINING SAMPLES ARE EVENLY SPACED

size N of number | of training backpropagation | Bernstein | least squares
hidden layer | samples for BP and LS | logistic activation | Alg. 4.1 Alg. 4.1
11 npeurons 31 0.028/15 0.158/0.01 | 0.024/0.03
f { 21 neurons 61 0.027/20 0.107/0.03 | 0.022/0.13
31 neurons 91 0.030/80 0.082/0.05 | 0.019/0.22
25 neurons 169 0.067/400 0.127/0.02 | 0.075/0.17
81 neurons 625 0.045/60000 0.106/0.04 | 0.026/4.3
441 neurons 3721 e 0.073/0.06 —

iv) If some other nearly exponential activation functions transformed into a neural network approximatifigby
o is to be used in the hidden layer then the expdnverting the transformation above.
nentials ex(z) = ¢~ appearing inp(n.(z)) must In theorems of Jackson’s type for algebraic and exponential
subsequently be approximated by a suitable transfopolynomials, cf. Theorem 2.1 and Proposition 2.2, the expo-
of o; cf. Section 1lI-B and Theorem 3.1. In the logisticnents and intensities are essentially fixed. In neural networks,
case, e.g., they are replaced by the funcédr{—X\ - the corresponding weights of hidden units are considered to be
z+3)/oL() for some fixed numbes < 0 depending variable parameters. In both algorithms we do not fully exploit
on the precision required. this flexibility, but gain some freedom by considering not only
Algorithm 4.2: integral weights but also weights in a rectangular lattice of the

) 4 form a1 (0---n) X -+ X ag(0---n) with n € N anday, > 0.
i) Choose some vectae = («y,---,aq) € R, oy > 0,

and approximate the functign— f(n,1(¢)) uniformly
for t € [0,1]¢ or approximate the transformed dat
(na(z;),y;) by an algebraic polynomigh € P,(d);
cf. Section IV-A. The approximation improves if the For the sake of illustration, we compare in Table | mean-
vectore is chosen such that the modulus of continuitpauare errors (MSE) and execution times for different methods
1 applied to the univariate functiofi and the bivariate func-
w<fo77;1, —> tion ¢ displayed in Fig. 2. The adequate error measure here
nt2 would be themaximumerror; however, since backpropagation
becomes as small as possible. minimizes the MSE this was chosen. The methods are
ii) The exponential polynomial and neural network of type
o, p(na(x)), approximatesf on [0,1]¢ or the data
(2;,y;); cf. also Comment IlI-C b).

T. Examples

i) backpropagation,

ii) approximation by Bernstein polynomials, cf. Sections
IV-A 73) and IV-B,

iii) least-squares polynomial approximation, cf. Sections
IV-A ~) and IV-B.

Steps iii) and iv) are the same as in Algorithm 4.1.

The following procedure can sometimes improve the effec-
tiveness of Algorithm 4.2. Suppose the target functfohas The quality of the approximation by the method of Fourier
small modulus of continuity except near one corner of theansformation, cf. Section IV-Ay), is similar to that of the
hypercube. The transformation— 1 — z applied to some of least-squares method; the results are not reproduced here.
the coordinates mapg into a functionf with small modulus The results for the backpropagation algorithm are typical val-
of continuity off the origin. Now apply Algorithm 4.2 t¢. ues obtained from the “Stuttgart Neural Network Simulator”
The modulus of continuity of the functiofio n;! appearing (SNNS) and the other algorithms were implemented in the
in Step i) of this algorithm can be reduced by choosing larggogramming language C. All tests were run on a workstation
ay’s. Finally, the resulting neural network approximatiffg SUN SPARC 10.
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Fig. 2. (a) Approximations of the univariate functigifz) = (1 — |42 — 2|)*, 0 < = < 1, by networks with one hidden layer of 31 logistic neurons.

Solid line: Original functionf; dotted line: backpropagation, 91 evenly spaced training data, runtime 80 s; solid line: Bernstein’'s method, 31 evenly spaced
training data, runtime 0.05 s; dashed line: least squares method, 91 evenly spaced training data, runtime 0.22 s. Algorithmy 4&10wWithwas used for
Bernstein’s and least squares methods. (b) Approximations of the bivariate fuption) = (1 — |42 — 2)T(1 — |4y — 2))*, 0 < 2,y < 1, by neural
networks with one hidden layer. (i) Original functien (ii) backpropagation, 81 logistic neurons in hidden layer, 625 evenly spaced training data, runtime
60 000 s; (iii) Bernstein’s method, 441 logistic neurons in hidden layer, runtime 0.073 s; (iv) least squares method, 81 logistic neurons indridé2s lay
evenly spaced training data, runtime 4.3 s. Algorithm 4.1 with= 0.01 was used in Cases (iii) and (iv).
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V. DISCUSSION [10]

Methods for direct, noniterative estimation of neural weightg)
for certain activation functions have been proposed. Thﬁ){/2
are based on polynomial approximation. The most efficie
of them uses the linear least-squares method. Runtimes[x3f
the methods are minimal. The practitioner, used to gradient
search, may be astonished by the fact that the input Weigﬁ'@]
(and offsets) are essentially set in advance. However, the
simulations presented in Section IV.C indicate that the resulfs!
may often be better than those obtained by gradient search.
Moreover, this design allows application of the theories @¢16]
linear least-squares approximation and normal equations which
have a long tradition in approximation theory. [17]

If gradient search finds an optimal solution then the ap-
proximation will, of course, be better than that of the propos%gg]
methods, but we cannot easily predict its runtime. On the other
hand, we cannot predivthetherit will find an optimal solution  [19]
and, if it does notwhat we will get.

From experience, a solution found by backpropagatideo]
usually has small weights. However, gradient search may 19{]
be able to find an optimal solution with large weights. Thi
is not a problem with the proposed methods. But this is also
their weakness: they do not control the sizes of output Weigh%z,]
so unnecessarily large weights and numerical instabilities may
arise. Their strengths are short and predictable runtimes af¥g]
as was shown in Sections Il and lll, predictability of accuracy,
from elementary properties of the target function.
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