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Efficient Estimation of Neural Weights
by Polynomial Approximation

Gunter Ritter

Abstract—It has been known for some years that the uniform-
density problem for forward neural networks has a positive
answer: Any real-valued, continuous function on a compact
subset of RRRd can be uniformly approximated by a sigmoidal
neural network with one hidden layer. We design here algorithms
for efficient uniform approximation by a certain class of neural
networks with one hidden layer which we callnearly exponential.
This class contains, e.g., all networks with the activation functions
1=(1 + e�t), tanh (t), or et ^ 1 in their hidden layers. The
algorithms flow from a theorem stating that such networks attain
the order of approximation O (N�1=d), d being dimension and
N the number of hidden neurons. This theorem, in turn, is a
consequence of a close relationship between neural networks of
nearly exponential type and multivariate algebraic and exponen-
tial polynomials. The algorithms need neither a starting point
nor learning parameters; they do not get stuck in local minima,
and the gain in execution time relative to the backpropagation
algorithm is enormous. The size of the hidden layer can be
bounded analytically as a function of the precision required.

Index Terms—Approximation algorithms, complexity prob-
lem for neural networks, nearly exponential activation function,
neural network with one hidden layer, order of uniform approx-
imation.

I. INTRODUCTION

A. Background

A RTIFICIAL forward neural networks are nonlinear para-
metric expressions representing multivariate numerical

functions. In connection with such paradigms there arise
mainly three problems: adensityproblem, acomplexityprob-
lem, and analgorithmic problem. Thedensity problemdeals
with the following question: which functions can be approxi-
mated and, in particular, can all members of a certain class of
functions be approximated in a suitable sense. This problem
was satisfactorily solved in the late 1980’s [7], [15], and
[16]. Any continuous function on any compact subset of

can be uniformly approximated arbitrarily closely by a
neural network with one hidden layer. Moreover, the proof
given in [16] provides an intimate connection between forward
neural networks and polynomials. This observation suggested
to consider the remaining two problems, too, from this point
of view.
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In fact, more recently thecomplexity problemwhich deals
with the relationship between the size of an expression (i.e.,
the number of neurons) and its approximation capacity was
solved [32], [26], [25] for two classes of activation functions,
both including the popular logistic function and none of them
the Heaviside step function. The constructions in these papers
provide answers of Jackson’s type to the question: How closely
can acontinuousor -times differentiable function beuni-
formly approximated by a network with one hidden layer of a
given size? or, in other words, how many hidden units are suf-
ficient to approximate such a function uniformly with an error
not exceeding ? The order of approximation of a parametric
functional expression describes the asymptotic behavior of the
maximum approximation error with respect to a given class of
functions as the number of parameters in the expression tends
to infinity. It was shown that neural networks based on the
logistic and many other activation functions approximate any

-times differentiable function with a Lipschitz-continuous
th derivative of the order , being the size

of the input layer and the number of hidden neurons; cf.
Comment III-C a).

It remains to exploit the efficiency promised in the solution
of the complexity problem. The proofs given in [32], [26],
and [25] are based on polynomial approximation. Moreover,
they are constructive so that algorithms for approximation can
be derived from them. It is the main purpose of this paper to
turn the method of proof introduced in [32] into algorithms for
direct and effective uniform approximation. The most popular
method of neural-network training today is backpropagation,
i.e., gradient search in combination with the chain rule of
multivariate differential calculus. However, this method is
slow since it proceedsiteratively although some progress has
been made in the past; cf. [4], [19], [36], [1], and [30].
Moreover, it may get stuck in a local minimum, cf. [24]. The
algorithms proposed here arenoniterative, thereby avoiding
these disadvantages. Furthermore, they need no starting point
and no learning parameters. We note finally that Chen [5]
designed another efficient, noniterative algorithm but for a
different, more complex network architecture.

B. Outline

The organization of the paper is as follows. In Section II,
we derive Proposition 2.2, which is a result of Jackson’s type
for approximation of continuous functions on the hypercube

by real exponential polynomials. Proposition 2.2 is
derived from a similar theorem for algebraic polynomials, cf.
Feinerman and Newman [12] and Soardi [35]. This theorem
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is based on the isotropic modulus of continuity, which is
the appropriate measure ofuniform approximability. Section
III is devoted to neural networks of nearly exponential type
[32]. A neural activation function is called
here nearly exponentialif, after suitable affine rescalings of
abscissa and ordinate,approximates the exponential function
arbitrarily closely on the negative half line. This class of
functions contains the functions , , and

. A neural network is ofnearly exponential typeif all
hidden neurons carry nearly exponential activation functions.
The close and simple relationship between nearly exponential
neural networks with one hidden layer and (multivariate) alge-
braic and exponential polynomials combined with Proposition
2.2 leads to a theorem on the order of approximation of a
neural network of nearly exponential type, Theorem 3.1. In all
cases, we also trace the constants in the estimates.

As a corollary one immediately obtains estimates of the
number of hidden units necessary for uniform approximation
in terms of the admissible error, see Corollary 3.2. In Comment
III-C b), we discuss the size of the weights. Finally, in Section
IV, we derive two algorithms for efficient approximation
of continuous functions or finitely many scattered data by
neural networks of nearly exponential type. The order of
approximation of these algorithms is the same as that of the
method of polynomial approximation used.

C. Notation

We use the following notation. The symbols, , and
stand for the sets of nonnegative integers, real numbers, and
nonnegative real numbers, respectively. For , (re-
spectively, ) denotes the least (respectively, largest) integer

respectively, , and respectively,
denotes the maximum (respectively, minimum) ofand .
Vectors in are denoted by lower case, boldface letters. The
symbol stands for a finite subset of . All operations on
vectors are meant coordinatewise. Thus if

then, e.g.,

if for all , and . However, a
dot denotes the inner product, . The Euclidean
norm on is denoted by , and designates the
supremum norm with metric on a space of bounded, real-
or complex-valued functions.

II. UNIFORM APPROXIMATION OF CONTINUOUS

FUNCTIONS BY REAL EXPONENTIAL POLYNOMIALS

A. Explanation

Jackson’s [18] well-known theorems estimate the uniform
distance of a continuous functionon the interval to the
space of polynomial functions of degree

on this interval. These estimates are in terms ofand a
measure of smoothness of—e.g., its modulus of continuity
or the sizes of its derivatives. Multivariate extensions of this
theorem are due to Feinerman and Newman [12], Nikolskii
[29], Soardi [35], and refinements to Ditzian and Totik [10]
who defined new moduli of continuity. Feinerman and New-
man [12, corollaries on p. 102], also give constants involved
in the estimates.

Let be a real-valued function defined on a convex subset
and let . We will use theisotropic modulus of

continuity of , , defined by

(1)

This is the modulus of continuity introduced in [12, p. 87],
and in [35, p. 67]. By convexity of the domain ofand as a
consequence of the triangle inequality, we have for any real
number

(2)

The second inequality is strict if is not constant.
The function is called Lipschitz continuous if there exists

a constant such that for all
. We then define

If is Lipschitz continuous, then . We denote
the space of real,-variate algebraic polynomials ofmaximal
degree by . The following theorem can be derived
from Feinerman and Newman [12] or Soardi [35].

Theorem 2.1:For any continuous function
and all , we have

(3)

for some constant depending on dimension, only.

There are two reasons for the denominator instead of
in (3). First, it leads to a nicer estimate in Corollary 3.2.

Second, it can be shown, using tensor products of Korovkin’s
kernels [20, p. 75], that a possible constant in (3) is

If is Lipschitz continuous then

cf. Ritter [32]. In the one-dimensional case, , a result of
Korneicuk [21] implies the estimate

cf. Cheney [6, pp. 144 and 147].
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B. Exponential Sums and Polynomials

A (real) exponential sumover a finite subset is an
expression of the form

(4)

In this context, the elements of are calledmulti-intensities,
and is the multivariate exponential function on defined
by the expression

(5)

. When the
index set in (4) is a subset of a lattice for some
we will speak of a (real) exponentialpolynomialover . An
exponential polynomial ofmaximal degree is of the
form

for some . The symbol stands for the set of all
real, -variate exponential polynomials of maximal degree
and arbitrary .

We transfer Theorem 2.1 to uniform approximation by
exponential polynomials. It is well known that the situation
differs from the algebraic case: Whereas is a finite-
dimensional vector space and there exists a best approximating
polynomial in this space, is neither a vector space nor
closed and an optimal polynomial does not exist in general. It
is sufficient to consider the sequence ;
it converges to the identity function as uniformly for

in any bounded subset of the real line.

Proposition 2.2: For any continuous function
and all , we have

with the constant appearing in Theorem 2.1.
Proof: First use Theorem 2.1 in order to approximate the

function by an algebraic polynomial

with an error

(6)

Given , define the univariate function

Its -dimensional extension, , is a topological
isomorphism of and the family converges to

the identity function uniformly on as . It is,
therefore, possible to chooseso small that

(7)

Note that is an exponential polynomial in . Using
(6) and (7), we obtain the estimates

Since is arbitrary the proposition follows.

III. U NIFORM APPROXIMATION OF CONTINUOUS FUNCTIONS

BY NEURAL NETWORKS WITH ONE HIDDEN LAYER

A. Neural Networks with One Hidden Layer

The functionality of a neural network with one hidden layer
is represented by an expression of the form

(8)

Here, is a variable taking values in (the input variable),
is the index set ofunits(neurons) in thehidden layer,
comprises allinput weightsof the hidden unit , is
its offset, its activation function, and its output weight.
The dot indicates the inner product. The activation function

is a univariate nonlinearity, usually ofsigmoidal
form, i.e., bounded and increasing. A graphical representation
of (8) is shown in Fig. 1.

For simplicity, we assume that all hidden units in (8) carry
the same nearly exponential activation function, i.e.,
for all . A neural network of the form

(9)

will be called of type .
By the exponential sigmoidal function we mean the function

. Any exponential sum ,
restricted to the positive hyperquadrant , is itself a neural
network of type , namely,

(10)

Looking at a neural network from this point of view, the
weights and offsets have a neat interpretation: The input
weights correspond to the intensities of an exponential sum,
the output weights and offsets to its coefficients. However, the
close relationship between neural networks and exponential
sums is not restricted to the exponential sigmoidal activation
function but can be extended. This is the purpose of the
following definition.
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Fig. 1. Graphical representation of a neural network with one hidden layer.

B. Nearly Exponential Functions

We call a function nearly exponentialif, for all
, there exist real numbers, , , such that

for all . This means that, after suitable linear rescal-
ings and shiftings of abscissa and ordinate, the function
approximates the exponential function arbitrarily closely on
the negative half line. In the sequel, we restrict ourselves to
nearly exponential activation functions and speak of a neural
network of nearly exponential type.

Both the logistic sigmoidal function
and the hyperbolic tangent are nearly exponential. To see this
in the former case it is sufficient to put , ,

, and to observe that

converges to uniformly in as . The
latter function is just . Of course, the
exponential sigmoidal function is nearly exponential and
Heaviside’s step function is not.

Given some activation function , will
denote the set of all sums of the form

(11)

with for some and with
independent of . Note that (10) may be put in the form

(12)

, a neural network
with output weights ; in particular, if then
(10) can be turned into a member of for some .

The following theorem approximates continuous functions
of variables by neural networks of nearly exponential type.

Its proof, being based on Proposition 2.2, exploits the intimate
relationship between neural networks of nearly exponential
type and exponential sums, cf.(10), and provides deeper insight
into the properties of neural networks. The functionwill
be defined on a compact, convex subset , and
we wish to control the error of uniform approximation by its
isotropic modulus of continuity. In order to be able to apply
Proposition 2.2, we have to extendto a hypercube contained
in without violating its modulus of continuity. This is the
reason why we assumeto be convex. We abbreviate

(13)

If is Lipschitz continuous with constant then

Theorem 3.1:Let be nearly exponential, let
be compact and convex, and let . For any continuous
function , we have .

Proof: Let denote the Euclidean projection
The function is a continuous extension of to the unit
hypercube with the same modulus of continuity as that
of . Proposition 2.2 produces an exponential polynomial

(14)

such that

Let

Another representation of is

with and independent of ; cf. (12).
Now, since is nearly exponential, we may approximate

the exponential function by an expression
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uniformly on the negative half line up to the error .
The sum

belongs to and its uniform distance to does not exceed
the value . (Here, we have assumed ; the
contrary case is similar.) This proves the theorem.

The following corollary of Theorem 3.1 determines a num-
ber of hidden neurons sufficient for uniform approximation of
a continuous function up to an error . It says in particular
that neurons are sufficient if is Lipschitz continuous.

Corollary 3.2: Let be nearly exponential and let
be compact and convex.

a) For any continuous function and all
there is a neural network (11) with at most

hidden neurons uniformly
approximating up to an error not exceeding.

b) is Lipschitz continuous then

neurons suffice.

Proof:
a) If is such that then, according to Theorem

3.1, there exists a neural network such that
. This neural network contains at most

hidden neurons.
b) Let us distinguish two cases. If then

for all . Hence, the minimum in a) is in this case.
If we put . We have

and , hence

Thus the minimum in a) is at most
in this case.

C. Comments

a) Since a neural network of class has at most
hidden neurons, Theorem 3.1 says, among

other things, that the optimal order of approximation
of any Lipschitz-continuous function with respect to

is at least , being the number of
hidden neurons. The exponent and constant involved in
this asymptotic statement depend on dimension. If
is times differentiable with a Lipschitz-continuous

th derivative then similar arguments, again
based on Jackson’s theorems, show that the order of
approximation is at least ; cf. Soardi [35,

p. 94], concerning approximation by polynomials. The
approximation operators underlying the present methods
are continuous. Since a network of hidden neurons
has real-valued parameters, a theorem due to
DeVore, Howard, and Micchelli [9] implies that nocon-
tinuous(linear or nonlinear) approximation operator can
improve these asymptotic estimates. (For a discussion
of the classicallinear case, cf. also Schumaker [33, p.
96], and Feinerman and Newman [12, pp. 97, 84, 85].)
However, it seems to be unknown whether there exist
(discontinuous) approximation operators with a better
rate of approximation.

Barron [2] proves a rate-of-approximation result re-
lated to Theorem 3.1. He uses an integral representation
by means of indicator functions of half spaces in order
to show that the order of uniform approximation of any
function with Fourier representation

such that is integrable is at least .
This describes neatly a class of functions for which a
dimension-independent approximation order holds (the
constantsinvolved in the estimates depend on dimen-
sion). However, the interpretation of this result and
its comparison to the present result need some care.
Barron’s class is described in terms of aglobal property
of its Fourier transforms. The largest space defined
by differentiability properties and contained in it is

, a space depending on dimension. As stated
above, the order of uniform approximation of a function

is also at least .
Barron [2] shows also that the order ofmean-square

approximation (with respect to any probability measure
with bounded support) of a member of the said class
is at least ; cf. also [3], where a geometric
argument in Hilbert space is used. An extension to spaces
of -times integrable functions, , as well as a
treatment of incremental approximants appear in Darken
et al. [8]. These theorems are particularly useful in the
context of statistical classification problems where the
inputs come as independent realizations of a distribution.
Mhaskar and Micchelli [28, Theorem 2.4], show that
this describes again the optimal order attainable by any
continuousmean-square approximation operator on Bar-
ron’s class. A result related to [3] for activation functions
with bounded “supports” but Lipschitz-continuous target
functions appears in [17, Theorem 3].

b) There is a tradeoff between size of hidden layer and
sizes of weights. The approach taken in Proposition
2.2 and Theorem 3.1 is chosen so as to achieve a
neural network with a small number of neurons. The
weights in (8) may, however, be very large and
have alternating signs, possibly making this network
numerically unstable. Even if the coefficients of the
polynomial in the proof of Proposition 2.2 are small
or of moderate size, insertion of the function into
this polynomial increases the output weights if a very
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small has to be chosen for close approximation or if
the degree of is large.

The problem of large weights is intrinsic. It is plain
that approximation of a large function needs a neural
network with large weights if a small number of neurons
is to be used. But there are small functions that also
need large weights. The simple example of the iden-
tity function on the interval suffices to expose
this. It can be approximated by a neural network with
one hidden neuron of type to arbitrary precision.
However, approximation with uniform error needs
an output weight of the order of at least , as an
elementary computation shows. This is the price for
reducing the number of neurons. In contrast, Mhaskar
and Micchelli [27, Theorem 5.1 and Lemma 5.3(b)]
show that summands of size can
approximate a Lipschitz-continuous function with error
(put in the notation of [27]). This means that close
approximation by neural networks with small weights is
possible with about the square of the minimum number
of neurons given in Corollary 3.2.

There is an intermediate way which is sketched as
Algorithm 4.2 below; it still guarantees the optimal
order of continuous approximation while just needing
a larger constant in (13) because of the appearance of
the logarithm in 4.2 i). This method does not need small
values of (and hence a small denominator in) for
precise approximation.

c) It is striking that the method presented here uses the
convex part of the sigmoidal shape of, only.

IV. A LGORITHMIC IMPLICATIONS

The method of proof leading to Theorem 3.1 and its
corollary is constructive. It can be combined with algorithms
for approximation or interpolation by algebraic polynomials
for efficient, noniterative estimation of weights and offsets of
neural networks. We consider algorithmic solutions of two
related tasks, viz.,

a) approximation of a continuous function on a hyperrect-
angle in specified by some functional expression by
a sigmoidal neural network, and

b) approximation of finitely many data ,
, by a sigmoidal neural network.

The latter problem is also calledfitting a -dimensional
surface to given dataand is related to theregression problemof
statistics. Sometimes, the points lie on a regular (e.g., rect-
angular) grid, but the most important case is that of data points
coming from irregularly scattered statistical measurements.

It is possible to reduce Task a) to Task b) by sampling
data from the functional expression given in a). This,
however, means loss of information. The data pointsmay
be chosen in such a way as to catch the characteristics of the
given function. Reciprocally, Task b) can be reduced to solving
Task a) by preliminary approximation or interpolation. Here,
any method yielding a reasonable functional expression, such
as triangulation, Shepard’s method, radial basis functions, or

other multivariate splines may be used. The interested reader
is referred to Schumaker [34], Powell [31], Franke [14], or
Lancaster and̆Salkauskas [22].

The method developed in Sections II and III requires
polynomial approximation of the function a) or of the data
points b) as a first step. This is the content of Subsection A.

A. Algorithms for Polynomial Approximationand Interpolation

Approximation of continuous functions:Approximation
of a continuous function defined on a hyperrectangle in
by polynomials can be based on the fast Fourier transform
(FFT) algorithm. After an affine substitution we may assume
that the domain of definition of is the hypercube .
The details are as follows.

i) Define an even, -periodic function by
putting

ii) Choose (according to the precision required)
and compute the coefficients

(15)

where the hat denotes the Fourier transform

Computation of is most efficiently performed by
means of the FFT algorithm applied to discretely sam-
pled values of . The multipliers in (15)
improve the approximation; other multipliers such as
Fej́er’s , de la Valĺee-Poussin’s, or
Korovkin’s [20] could be used. The real coefficients

enjoy the property for all sign
combinations. Similarly, the trigonometric polynomial

(16)

uniformly approximates the function and has the
property .
The coefficients in (16) have the representation

where is the number of nonzero entries in the multi-
frequency .
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iii) Using the expansion

, , we obtain from (16) the representation

(17)

of as a polynomial in with certain coefficients
.

iv) The substitution in (17) yields an
algebraic polynomial

This procedure is optimal in the sense thatrealizes the
order of uniform approximation to claimed by Jackson’s
[18] theorems, cf. Comment III-C a).

Interpolation and approximation of data given on a
rectangular grid:If the data are given on the rectan-
gular grid , , say, then there exists a
uniqueinterpolatingmultivariate polynomial of maximum
degree . However, it is well known that the resulting surface
may be too undulating to be acceptable, cf. [34].

This shortcoming is not observed if Bernstein polynomials
are used forapproximation. The Bernstein polynomial
associated with the data points , , is
specified by the following formulas:

(18)

(19)

(20)

In general, this method does not attain the optimal rate
of continuous approximation possible for continuous and dif-
ferentiable functions. The class of functions with order of
approximation was determined by Ditzian and Zhou
[11].

Of course, all methods suitable for approximatingscattered
data may be applied to the present situation as well. However,
their rate of approximation is not covered by the theory in
Sections II and III. Two of them are briefly addressed next
since they yield good results.

Polynomial approximation of scattered data:There are
two popular approaches to least-squares approximation of

given scattered data , , by linear
combinations of -variate monomials .

– Construction of anorthonormal basisin the linear span
of with respect to the inner product

e.g., by the Gram–Schmidt procedure.

– The normal equations specified by

. Extensions of the method of normal
equations that are also applicable in the presence of
rank deficiencies and constraints are thematrix methods;
cf. Lawson and Hanson [23], Forsytheet al. [13], and
Lancaster and̆Salkauskas [22].

These methods have the advantage over the methods) and
) that not all monomials up to a certain maximum degree

have to be used.

B. Algorithms for Weight Estimation

Here are two algorithms for efficient, noniterative estimation
of weights and offsets of a nearly exponential neural network
for approximation of continuous functions defined on the
hypercube or of scattered data .
The resulting overall algorithms, including the polynomial ap-
proximation, contain numerical operations such as integration
and matrix inversion and symbolic (algebraic) operations such
as substitutions and expansions of trigonometric expressions.
The simplest method is a least-squares technique. All proce-
dures can be easily implemented numerically. Both algorithms
conserve the order of approximation by polynomials given in
Section IV-A, cf. also Theorem 3.1.

In order to gain some flexibility, we extend the homeomor-
phism appearing in the proof of Proposition 2.2
to different ’s in the coordinate directions. Thus let

It follows

Algorithm 4.1:

i) Approximate uniformly or approximate the given data
by an algebraic polynomial ; cf.

Section IV-A.
ii) Choose some vector with

so small that approximates the identity
function well enough on the unit hypercube . The
expression is a multivariate exponential poly-
nomial and a neural network of type approximating

on or the data ; cf. Proposition 2.2.
iii) If necessary and suitable, a pruning method may be

applied in order to reduce the network size, e.g., by
canceling all units with small output weights.
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TABLE Ip
MSE/(EXECUTION TIME IN SECONDS) FOR APPROXIMATION OF THE FUNCTIONS f AND g DISPLAYED IN FIG. 2 BY MEANS

OF THE METHOD INDICATED IN THE FIRST ROW. EMPTY ENTRIES ARE DUE TO EXCESSIVE RUNTIME REQUIREMENTS

(BACKPROPAGATION) OR TO NUMERICAL INSTABILITIES (LEAST SQUARES). TRAINING SAMPLES ARE EVENLY SPACED

iv) If some other nearly exponential activation function
is to be used in the hidden layer then the expo-

nentials appearing in must
subsequently be approximated by a suitable transform
of ; cf. Section III-B and Theorem 3.1. In the logistic
case, e.g., they are replaced by the function

for some fixed number depending
on the precision required.

Algorithm 4.2:

i) Choose some vector
and approximate the function uniformly
for or approximate the transformed data

by an algebraic polynomial ;
cf. Section IV-A. The approximation improves if the
vector is chosen such that the modulus of continuity

becomes as small as possible.
ii) The exponential polynomial and neural network of type

, , approximates on or the data
; cf. also Comment III-C b).

Steps iii) and iv) are the same as in Algorithm 4.1.

The following procedure can sometimes improve the effec-
tiveness of Algorithm 4.2. Suppose the target functionhas
small modulus of continuity except near one corner of the
hypercube. The transformation applied to some of
the coordinates maps into a function with small modulus
of continuity off the origin. Now apply Algorithm 4.2 to .
The modulus of continuity of the function appearing
in Step i) of this algorithm can be reduced by choosing large

’s. Finally, the resulting neural network approximating

is transformed into a neural network approximatingby
inverting the transformation above.

In theorems of Jackson’s type for algebraic and exponential
polynomials, cf. Theorem 2.1 and Proposition 2.2, the expo-
nents and intensities are essentially fixed. In neural networks,
the corresponding weights of hidden units are considered to be
variable parameters. In both algorithms we do not fully exploit
this flexibility, but gain some freedom by considering not only
integral weights but also weights in a rectangular lattice of the
form with and .

C. Examples

For the sake of illustration, we compare in Table I mean-
square errors (MSE) and execution times for different methods
applied to the univariate function and the bivariate func-
tion displayed in Fig. 2. The adequate error measure here
would be themaximumerror; however, since backpropagation
minimizes the MSE this was chosen. The methods are

i) backpropagation,
ii) approximation by Bernstein polynomials, cf. Sections

IV-A ) and IV-B,
iii) least-squares polynomial approximation, cf. Sections

IV-A ) and IV-B.

The quality of the approximation by the method of Fourier
transformation, cf. Section IV-A ), is similar to that of the
least-squares method; the results are not reproduced here.
The results for the backpropagation algorithm are typical val-
ues obtained from the “Stuttgart Neural Network Simulator”
(SNNS) and the other algorithms were implemented in the
programming language C. All tests were run on a workstation
SUN SPARC 10.
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(a)

(i) (ii)

(iii) (iv)

(b)

Fig. 2. (a) Approximations of the univariate functionf(x) = (1 � j4x � 2j)+; 0 � x � 1, by networks with one hidden layer of 31 logistic neurons.
Solid line: Original functionf ; dotted line: backpropagation, 91 evenly spaced training data, runtime 80 s; solid line: Bernstein’s method, 31 evenly spaced
training data, runtime 0.05 s; dashed line: least squares method, 91 evenly spaced training data, runtime 0.22 s. Algorithm 4.1 with� = 0:01 was used for
Bernstein’s and least squares methods. (b) Approximations of the bivariate functiong(x; y) = (1� j4x � 2j)+(1� j4y � 2j)+; 0 � x; y � 1; by neural
networks with one hidden layer. (i) Original functiong; (ii) backpropagation, 81 logistic neurons in hidden layer, 625 evenly spaced training data, runtime
60 000 s; (iii) Bernstein’s method, 441 logistic neurons in hidden layer, runtime 0.073 s; (iv) least squares method, 81 logistic neurons in hidden layer, 625
evenly spaced training data, runtime 4.3 s. Algorithm 4.1 with� = 0:01 was used in Cases (iii) and (iv).
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V. DISCUSSION

Methods for direct, noniterative estimation of neural weights
for certain activation functions have been proposed. They
are based on polynomial approximation. The most efficient
of them uses the linear least-squares method. Runtimes of
the methods are minimal. The practitioner, used to gradient
search, may be astonished by the fact that the input weights
(and offsets) are essentially set in advance. However, the
simulations presented in Section IV.C indicate that the results
may often be better than those obtained by gradient search.
Moreover, this design allows application of the theories of
linear least-squares approximation and normal equations which
have a long tradition in approximation theory.

If gradient search finds an optimal solution then the ap-
proximation will, of course, be better than that of the proposed
methods, but we cannot easily predict its runtime. On the other
hand, we cannot predictwhetherit will find an optimal solution
and, if it does not,what we will get.

From experience, a solution found by backpropagation
usually has small weights. However, gradient search may not
be able to find an optimal solution with large weights. This
is not a problem with the proposed methods. But this is also
their weakness: they do not control the sizes of output weights,
so unnecessarily large weights and numerical instabilities may
arise. Their strengths are short and predictable runtimes and,
as was shown in Sections II and III, predictability of accuracy
from elementary properties of the target function.
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