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A ROBUST METHOD FOR CLUSTER ANALYSIS

BY MARÍA TERESAGALLEGOS AND GUNTER RITTER

Universität Passau

Let there be given a contaminated list ofn R
d -valued observations

coming fromg different, normally distributed populations with a common
covariance matrix. We compute the ML-estimator with respect to a cer-
tain statistical model withn − r outliers for the parameters of theg pop-
ulations; it detects outliers and simultaneously partitions their complement
into g clusters. It turns out that the estimator unites both the minimum-
covariance-determinant rejection method and the well-known pooled deter-
minant criterion of cluster analysis. We also propose an efficient algorithm
for approximating this estimator and study its breakdown points for mean
values and pooled SSP matrix.

1. Introduction. The aim of cluster analysis is the partitioning of a data set
into g disjoint subsets or clusters with common characteristics. Besidesheuristics,
there are important approaches to this problem based onstatistical models, in
particular, approaches by the ML and Bayesian paradigms. The latter offer several
advantages. They allow one tocomputethe cluster criteria to be optimized and
they yieldalgorithmsthat effectively, and sometimes efficiently, reduce them; see
Schroeder (1976). Finally, a model serves as a guide for the user in which cases to
apply the method.

This paper deals with statistical cluster analysis in the potential presence of
contaminations. Statistical methods postulate that the data come from different
statistical populations. After clustering, the elements of the clusters may be used
in order to estimate the parameters of the underlying statistical laws. Since almost
all real data contain outliers, for the method to be useful in practice one will
have to allow that part of the data are contaminations or spurious elements.
Accommodating or discarding them in a previous step is necessary for robustly
estimating these parameters.

There are a great number of statistical techniques for the clustering problem
g ≥ 2 in theabsenceof outliers. One distinguishes betweenmixtureandclassi-
fication models; for an overview see Hartigan (1975) and the recent review pa-
per Fraley and Raftery (2002). Two (nowadays classical) statistical partitioning
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methods are the trace and determinant criteria of cluster analysis [Friedman and
Rubin (1967) and Scott and Symons (1971)]. In both criteria, the pooled within-
groups sum of squares and products (SSP) matrixW of the clustering, see (2),
plays a central role. These criteria postulate as estimators those partitions which
minimize the trace and the determinant ofW, respectively. Both methods are not
only heuristically motivated: the resulting partitions are maximum likelihood es-
timators of well-defined statistical models. Therefore, both methods perform well
whenever the data set is a realization of random variables obeying the underlying
statistical laws. The probabilistic model for which the trace criterion is optimal
assumes that all populations are normally distributed withunknownmean vectors
and the samesphericalcovariance matrix of unknown size. The determinant cri-
terion retains the assumption on equality of the covariance matrices, but is less
restrictive in dropping that on sphericity. As a consequence, the partition opti-
mal for the determinant criterion is invariant not only w.r.t. location but also w.r.t.
scale.

In the presenceof outliers and in the caseg = 1, the problem reduces to
outlier detection or robust parameter estimation and a great number of methods are
available; for a good overview see Barnett and Lewis [(1994), Chapter 7]. In the
caseg ≥ 2, mixture models with outliers have been well known for some time; see
again Fraley and Raftery (2002). With the aim of robustifying thetracecriterion,
Cuesta-Albertos, Gordaliza and Matrán (1997) introduced a trimmed version
which they calledimpartial trimming: given a trimming levelα ∈]0,1[ , find the
subset of the data of size�n(1− α)� which is optimal w.r.t. the trace criterion. They
also studied its consistency. Later, Garciá-Escudero and Gordaliza (1999) showed
robustness properties of the algorithm and, recently, Garciá-Escudero, Gordaliza
and Matrán (2003) presented a trimmedk-means algorithm for approximating the
minimum of the criterion.

We propose first a statistical clustering model with outliers which we call
the spurious-outliers model. The idea behind it is general enough to allow
the derivation of robust clustering criteria with trimming under all kinds of
distributional assumptions and cross-cluster constraints. In fact, in the case of
normal distributions with equal and spherical covariance matrices, one recovers
impartial trimming. Applying the method to equal but general covariance matrices
with rejection ofn− r elements, the ML-estimator leads us in Section 2 to a robust
version of thepooled determinantcriterion, thetrimmed determinant criterion
(TDC): choose a subset of sizer from then observations and partition it intog
clusters so that the pooled SSP matrix has minimum determinant. Not surprisingly,
the maximum likelihood estimate of the mean vectors of the different underlying
normal distributions are the sample mean vectors of the various clusters, whereas
that of the common covariance matrix is the pooled SSP matrix divided byr . In
the caser = n, the TDC simplifies to the classical determinant criterion of cluster
analysis.
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The numberr of regular objects of the model becomes a parameter of the
proposed algorithm, the number of retained elements. It turns out that the estimated
means and pooled covariance matrix are fairly insensitive to the choice of this
number as long as it is not chosen too large. Moreover, we propose in Section 5
a way of estimatingr by a method akin to aχ2 goodness-of-fit test: run the
algorithm several times with various values forr and choose the one for which
the output best fits the theoretical tail probabilities. This rule may be satisfactory,
so much the more as there is no rigorous and unified concept of “outlier,” let alone
a formal definition; see, for example, Barnett and Lewis (1994) or the introductory
discussion in Ritter and Gallegos (1997).

Apart from this parameter, we do not address the question of model finding.
Normality of the population distributions, the commonness of the covariance
matrix and the number of clusters are assumed as a priori given. This may yield
criticism. However, it is straightforward to carry over the method to otherlocation
and scale models, for example, elliptical distributions with a given radial behavior.
But the efficiency of the algorithm depends on that of the ML-estimator of the
population parameters and one reason for the popularity of the normal model is
the fact that ML-estimation of its parameters essentially reduces to summation.
We could also dispense withcommonnessof the covariance matrix. However,
the present model should be preferred in situations where each class arises from
noisy versions ofg prototypes and the noise affects each prototype in the same
way. Examples are the classification of phonemes in speech recognition and
the chromosome classification problem. In the former case, the prototypes are
the phonemes pronounced by a pure speaker and in the latter, they are clean
images of the chromosomes of the different biological classes of an organism.
In both cases, outliers play an important role; see, for example, Ritter and
Gallegos (1997). Moreover, different covariance matrices would require estimation
of more parameters and might need more observations than are actually available.
Estimation of thenumber of clustersis an important issue that would go beyond
the scope of this paper. Just as there is no clear definition of outlier, there is none of
“cluster” either. Nevertheless, both are useful concepts. More general distributions,
cross-cluster constraints and estimation of the number of clusters in a Bayesian
framework will be the subject matter of a forthcoming communication.

Minimizing the TDC requires computing a subset of sizer of then observations
and its subsequent partitioning intog clusters (one or several clusters produced
by our algorithm may be empty); we call such a partition together with the
subset aconfiguration. As in the case of the classical determinant criterion, its
computation is infeasible except for small data sets and approximation algorithms
which are desirable. In Section 3 we formulate a reduction step that, starting
from an arbitrary configuration, yields another configuration with lower or
equal determinant of the corresponding pooled SSP matrix; it is based on the
Mahalanobis distance. Iterative application of reduction steps until convergence
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and multistart optimization yield an efficient approximation to the required
minimum.

A measure of robustness of an estimator is itsbreakdown valueor breakdown
point: the minimum fraction of bad outliers needed to make it succumb. The
asymptotic breakdown valueis its limit as the number of observations increases
to infinity. Estimators with zero asymptotic breakdown value lack robustness. This
paper would be incomplete if it did not contain a word about this topic and, in
Section 4 we compute the breakdown values of the TDC for the mean vectors and
for the pooled SSP matrix. It turns out that the asymptotic breakdown value of
the SSP matrix is positive. Mean values, too, are robust w.r.t. data sets that meet
a certain condition of cluster separation to be specified in Section 4.2. Both facts
plead for robustness of the TDC.

In Section 5 we offer a few simulation studies in order to assess the performance
of the proposed algorithm. The error rates obtained compare favorably even to
recent studies without outliers; see Coleman and Woodruff (2000).

1.1. General notation and preliminaries.Giveng ≥ 1 elementszj , 1≤ j ≤ g,
of a set F , z

g
1 stands for theg-tuple (z1, . . . , zg) ∈ Fg . We write A > 0

(A ≥ 0) in order to indicate that a symmetric matrixA ∈ R
d×d , d ≥ 1, is

positive (semi-)definite and we denote trace and determinant ofA by trA and
detA, respectively. Thed-dimensional identity matrix is denotedId . The symbol
Nd(µ,V) denotes both thed-variate normal distribution with mean vectorµ ∈ R

d

and covariance matrixV ∈ R
d×d and its Lebesgue density function.Nd(µ,V)(x)

denotes the value of this density atx ∈ R
d . Thesum of squares and products matrix

(SSP matrix)WE of a finite, nonempty subsetE ⊆ R
d with meanmE is the matrix

WE = ∑
x∈E

(x − mE)(x − mE)T .(1)

We next recall some definitions and notation in the theory of cluster analysis.
Let D = xn

1 = (x1,x2, . . . ,xn) be a list ofn observations∈ R
d . We will often

identify the observationxi with the corresponding indexi ∈ 1..n and a subset of
the list with the corresponding subset of 1..n. Given a finite setE, the notation(
E
r

)
stands for the system of all subsets ofE of sizer . Let g ≥ 1 be the number

of clusters. IfR is a nonempty, finite subset of 1..n, Cg(R) denotes the set of
all partitionsR = {R1,R2, . . . ,Rg} of R into g clusters (or subsets), that is, the
set of all configurations over the setR. Let R = {R1,R2, . . . ,Rg} ∈ Cg(R) be
such a configuration. We will often identifyRj with its indexj andR with the
integral interval 1..g. For a nonempty clusterRj , letmRj

be its sample mean vector
while, for all empty clustersRj , mRj

is some vector inRd given a priori. We write
mR := (mR1, . . . ,mRg) andmR(j) = mRj

. Thepooledor within-groups sum of
squares and products matrix(SSP matrix)WR of a configurationR is the sum of



ROBUST CLUSTER ANALYSIS 351

the SSP matrices (1) of all clusters,

WR =
g∑

j=1

∑
x∈Rj

(x − mRj
)(x − mRj

)T .(2)

2. The spurious-outliers model and its ML-estimator. Let r ≤ n be the
assumed number of regular observations. Both the numberg of clusters andr
are input parameters of the present clustering problem (concerning the choice ofr ,
see Section 5, in particular, Table 1).

2.1. The spurious-outliers model.This section extends the usual statistical
clustering setup; see Mardia, Kent and Bibby [(1979), Section 13.2], combining
it with Mathar’s [(1981), Section 5.2] outlier model.

Let (gψ)ψ∈� be some family of p.d.f.’s onRd . The parameter set of our
statistical model is

� :=
[ ⋃

R∈(1..n
r )

Cg(R)

]
× (Rd)g × {V ∈ R

d×d |V > 0} × �n︸ ︷︷ ︸
�1

.(3)

The first factor of� stands for the unknown configuration, the next two for
the unknown parameters of theg underlying normally distributed statistical
populations which generate the regular observations. Finally, the last factor of�

represents the unknown statistical laws that generate the outliers. LetXi , i ∈ 1..n,
ben independent,Rd -valued random variables and let their p.d.f.’s conditional on
the parameterθ = (R,µ

g
1,V,ψn

1 ), R = {R1, . . . ,Rg} ∈ Cg(R) be given by

f θ
Xi

=
{

Nd(µj ,V), i ∈ Rj ,

gψi
, i /∈ R.

The observationsxi are realizations of these random variables. Since both regular
observations and outliers come from Lebesgue-continuous populations, it is
natural to assume that the realizations are in general position (anyd + 1 elements
are affinely independent). If we additionally requirer > gd, then the pigeon hole
principle ensures that at least one cluster containsd + 1 or more elements, which
impliesWR > 0 for all configurationsR.

At the expense of the stronger condition 2r − n > gd instead ofr > gd, the
condition “data set in general position” could be relaxed to “r elements of the data
set in general position.” This, too, would guarantee nonsingularity of all pooled
SSP matricesWR. This modification would allow then − r outliers to possess
any pattern, for example, a regular one. It would, however, exclude examples with
many outliers from the beginning, such as in Fraley and Raftery [(2002), Figure 7].
We, therefore, stick to the former conditions. The user may want to screen the data
set for affine dependencies in a preprocessing step, at least if dimension is not high.
(Otherwise, one may run the algorithm removing affine dependencies as soon as a
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singular SSP matrix is detected.) Since the regular populations are assumed to be
Lebesgue continuous (even normal), such dependencies are the clearest indications
of outliers.

The likelihood function of the spurious-outliers model for the dataxn
1 is

Lxn
1
(R,µ

g
1,V,ψn

1 ) =
[ g∏

j=1

∏
i∈Rj

Nd(µj ,V)(xi)

][∏
i /∈R

gψi
(xi )

]
.(4)

The maximum likelihood estimate ofR, µ
g
1, V, ψn

1 is any element of the pa-
rameter set� which maximizes (4). The following proposition shows that the
ML-estimator exists and has a simple representation if the outlier model and the
data meet a certain condition (5). We were led to this condition and the method
of proof of the following proposition by a similar condition appearing in Ritter
and Gallegos (2002) in a different statistical context. The corollary following the
proposition exposes an outlier model for which this condition is independent of
data.

PROPOSITION2.1 (ML-estimator).

(a) If, for each subsetT ⊆ 1..n of size n − r , the function
∏

i∈T gψi
(xi )

possesses a maximum w.r.t. (ψi) ∈ �T , then the maximum likelihood estimator
of the spurious-outliers model exists.

Assume, in addition,

argmin
R∈⋃

R∈(1..n
r )

Cg(R)

detWR ⊆ argmax
R∈⋃

R∈(1..n
r )

Cg(R)

max
(ψ)n1

∏
i /∈R

gψi
(xi ).(5)

(Note that the“argmax”on the right-hand side of the inclusion exists and that the
product depends only on the choice of the outliers.) Then:

(b) The MLE of the configurationR ( for the given statistical model) is
determined by the TDC

min
R∈⋃

R∈(1..n
r )

Cg(R)
detWR

(
= min

R∈(1..n
r )

min
R∈Cg(R)

detWR

)
.(TDC)

(c) If we denote it byR� (if it is not unique, choose one), then the MLE of
(µ1, . . . ,µg) is (mR�(1), . . . ,mR�(g)) and that of the common covariance matrix

V is 1
r
WR� .

PROOF. By the assumptions and the discussion at the beginning of this
section, we haveWR > 0 for any R ∈ ⋃

R∈(1..n
r )

Cg(R). Therefore, classical

normal distribution theory [see Mardia, Kent and Bibby (1979), pages 103–105]
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shows

max
V

max
µ

g
1

g∏
j=1

∏
i∈Rj

Nd(µj ,V)(xi)

= max
V

(det 2πV)−r/2
g∏

j=1

exp−1
2 tr

(
V−1

∑
i∈Rj

(
xi − mR(j)

)(
xi − mR(j)

)T )
(6)

= max
V

(det 2πV)−r/2 exp−1
2 tr(V−1WR)

= K(det 2πWR)−r/2,

whereK is a constant independent ofR. The last equality is a direct application
of Mardia, Kent and Bibby [(1979), Theorem 4.2.1, page 104]. Finiteness
of
⋃

R∈(1..n
r )

Cg(R), (6), (4) and the hypothesis of (a) together imply

max
R

[
max

V
max
µ

g
1

g∏
j=1

∏
i∈Rj

Nd(µj ,V)(xi)max
ψn

1

∏
i /∈R

gψi
(xi )

]
(7)

= max
(R,µ

g
1,V,ψn

1 )
Lxn

1
(R,µ

g
1,V,ψn

1 ),

which proves part (a).
Now, by hypothesis (5), any configurationR that maximizes the first factor

in brackets in (7) also maximizes the second one. The maximum is, therefore,
attained at the minimum of detWR over all configurationsR. �

In order to minimize the criterion (TDC), one has to determine asubsetR ⊆ 1..n

of r elements, the set of estimatedregular observations and apartition R of it in
g clusters such thatWR has minimum determinant. Since

(6) =
g∏

j=1

∏
i∈Rj

Nd

(
mR(j),

1

r
WR

)
(xi ),

this may be restated as follows: in order to findR, compute the subset ofr
observations which is optimally explained byg normal populations with a
common sample covariance.

Condition (5) is not very restrictive. It is satisfied if maxψ gψ(xi ) exists for alli
and does not depend oni. Two special, opposite cases are the following.

COROLLARY 2.1. The conclusions of Proposition2.1hold under each of the
following two conditions:

(a) � = R
d andgψ(x) = g(x−ψ) is a location model with a density functiong

having a maximum[e.g., g = Nd(0, Id) or g = 1
λd(B)

· 1B , whereB is some region
about the origin].
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(b) � is singleton andgψ is constant on a region that contains all data.

PROOF. In case (a), letM = maxg. Clearly, from the assumption,

max
ψn

1

∏
i /∈R

gψi
(xi ) = ∏

i /∈R

max
ψi

g(xi − ψi) = Mn−r

does not depend onR and Condition (5) of Proposition 2.1 is satisfied. The same
is obviously true in case (b).�

The corollary shows that the parameter set� may be of any size. If it contains
just one element, then all outliers belong toonepopulation. The model also allows
that each outlier comes from itsown population. This particularity justifies the
adjective “spurious.”

Criterion (TDC) is optimal (in the maximum likelihood sense) for the spurious-
outliers model 2.1 if condition (5) is satisfied, in particular, if the outliers are
generated from Corollary 2.1(a) or (b). Therefore, it performs well whenever the
data setxn

1 is a realization of random variables meeting this condition. However,
it is also a plausible descriptive tool per se. We formulate the case of one cluster
(robust parameter estimation) as a second corollary of Proposition 2.1. A similar
statement for normally distributed outliers appears in Pesch (2000) where Mathar’s
outlier model is already used.

COROLLARY 2.2. Assume that the dataxn
1 satisfies (5) [e.g., that the

family (gψ)ψ∈Rd is a location model]. Then Rousseeuw’s MCD is the maximum
likelihood estimator for the spurious-outliers model2.1with g = 1.

REMARKS. (a)Classical determinant criterion. Forr = n (the pure clustering
situation), criterion (TDC) reduces to the classical determinant criterion of cluster
analysis [Friedman and Rubin (1967) and Scott and Symons (1971)].

(b) Mixture model vs. classification model.There exist two approaches to clas-
sical (nonrobust) model-based clustering: mixture modeling and the classification
approach. It is well known that both are related; see Mardia, Kent and Bibby
[(1979), remark (4), page 365] and Fraley and Raftery (2002). The same can be
said about mixture modeling with outliers and the present robust classification
model 2.1. Indeed, define the parameter set of the mixture model with outliers as

�M :=
{
(π1, . . . , πg) ∈ [0,1]g

∣∣∣ g∑
j=1

πj = r

n

}
× �1,

where (π1, . . . , πg) are the mixing parameters and�1 is defined in (3). Let
Y1, . . . , Yn be i.i.d., 0..g-valued random variables whose common distribution
under the parameterθ = (π

g
1 ,µ

g
1,V,ψn

1 ) ∈ �M is given by P θ [Y1 = j ] = πj ,
j ∈ 1..g, andP θ [Y1 = 0] = 1 − r

n
. Furthermore, letXi,j , i ∈ 1..n, j ∈ 0..g, be
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n · (g + 1) independent,Rd -valued random variables, independent ofYn
1 and with

p.d.f. conditional onθ ,

f θ
Xi,j

=
{

Nd(µj ,V), j ∈ 1..g,

gψi
, j = 0.

The formula of total probability shows that theRd -valued random variables
X1,Y1, . . . ,Xn,Yn are independent and that the conditional p.d.f. ofXi,Yi

, i ∈ 1..n,
is given by the mixture

f θ
Xi,Yi

(x) =
g∑

j=1

πjNd(µj ,V)(x) +
(

1− r

n

)
gψi

(x)(8)

with mixing parametersπj . The dataxn
1 is now a realization of the random

variablesX1,Y1, . . . ,Xn,Yn . Note that 1− r
n

is the prior probability of occurrence
of an outlier. Hence, in this model the configurationR is an unobservable random
variable. In the special case of Corollary 2.1(b), one finds the mixture model
appearing in equation (11) of Fraley and Raftery (2002).

The aim of the statistical clustering model 2.1 and the mixture model is (robust)
clustering and estimation of the means of all subpopulations and of their common
covariance matrix. Whereas, in doing so, the former estimates (besides these
parameters) the optimal configurationR∗, the latter estimates the probabilities
of the observations to come from the different clusters. In this sense, both models
pursue the same aim. In the clustering model, the prior information of the existence
of n − r outliers is expressed by the constraint #�R = n − r . The mixture model
describes this fact by setting the probability of occurrence of a contamination to
1 − r

n
. Furthermore, once the ML-estimates(π̂

g
1 , µ̂

g
1, V̂) of the mixture (8) are

known, we can regard each distributionNd(µ̂j , V̂) as indicating a separate group,
and individuals are then assigned to clusters by Bayes’ allocation rule: assign
the ith observation,i ∈ 1..n, to the classj that maximizes the posterior density
π̂jNd(µ̂j , V̂)(xi ). The (estimated) set of regular observationsR consists of the
r observations with ther largest maxima. The corresponding optimal partition is
defined by the class assignments of the elements ofR. Similarly, once the optimal
configurationR∗ of the clustering model is known, we can estimate the mixing
parameters by the cluster sizes divided byn.

(c) Unequal cluster sizes. Being an ML-estimator, the pooled determinant
criterion can be interpreted as a maximum a posteriori estimator for mixtures with
equalmixing parameters. Therefore, it favors equal cluster sizes, although it can
deal with small deviations from the ideal situation. Forunequalmixing parameters,
an entropy correction has to be added to the criterion; see Symons (1981). The
same remark applies to the trimmed version. We will deal with this topic (and the
related question of the number of clusters) in another communication.
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3. An efficient approximation algorithm. Minimizing the trimmed determi-
nant criterion requires the computation of a subset of sizer out of then observa-
tions and its subsequent partitioning intog clusters. This task is infeasible, except
for small data sets, and an efficient approximation algorithm is desirable. In this
section we develop such a procedure. It is iterative and adapts the idea of mini-
mal distance partition, now classical in cluster analysis [see Schroeder (1976) for
a general version], to the case with outliers. In the classical case (without trim-
ming), one reduces the sum of the squared Mahalanobis distances w.r.t.WR for a
fixed “current” configurationR by reassigningsingle observationsto cluster cen-
ters with smaller Mahalanobis distances w.r.t.WR. Moreover, one shows that this
reduction also reduces the determinant of the SSP matrix. We prove below that
the same idea can be applied also to the trimmed determinant criterion; this exten-
sion is, however, not straightforward. The following theorem gives rise to the basic
reduction step of our algorithm.

THEOREM 3.1. Let R and Rnew be two configurations overr-element
subsetsR, Rnew⊆ 1..n, respectively, such that

g∑
j=1

∑
i∈Rnew,j

(
xi − mR(j)

)T W−1
R

(
xi − mR(j)

)
(9)

≤
g∑

j=1

∑
i∈Rj

(
xi − mR(j)

)T W−1
R

(
xi − mR(j)

)
.

(a) We havedetWRnew ≤ detWR with equality if and only ifWRnew = WR.
(b) Let us putmRnew(j) := mR(j) for all j ∈ 1..g such thatRnew,j = ∅.

If there is equality in(a), then we have alsomRnew = mR.

PROOF. At the beginning of the proof of Proposition 2.1, we have already used
the fact that the determinant ofWR is a constant multiple of a negative power of
the product

g∏
j=1

∏
i∈Rj

Nd

(
mR(j),

1

r
WR

)
(xi ).

Claim (a) will, therefore, follow if we prove

g∏
j=1

∏
i∈Rnew,j

Nd

(
mRnew(j),

1

r
WRnew

)
(xi ) ≥

g∏
j=1

Nd

(
mR(j),

1

r
WR

)
(xi ).
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Now, passing to likelihoods, we have

g∏
j=1

∏
i∈Rnew,j

Lxi

(
mRnew(j),

1

r
WRnew

)

≥
g∏

j=1

∏
i∈Rnew,j

Lxi

(
mR(j),

1

r
WR

)

= exp
∑
j

∑
i∈Rnew,j

lxi

(
mR(j),

1

r
WR

)
(10)

≥ exp
∑
j

∑
i∈Rj

lxi

(
mR(j),

1

r
WR

)

=
g∏

j=1

∏
i∈Rj

Lxi

(
mR(j),

1

r
WR

)
.

In this chain the first inequality follows from ML-estimation and the second is just
the assumption. This proves the first part of (a).

If the two determinants are equal, so are both ends of the above chain. Equality
in (10) follows and uniqueness of the ML-estimator impliesWRnew = WR and
mRnew(j) = mR(j) for all j ∈ 1..g such thatRnew,j �= ∅. This concludes the
proofs of parts (a) and (b).�

Let R be any configuration. With the squared Mahalanobis distances

dR(i, j)2 := (
xi − mR(j)

)T W−1
R

(
xi − mR(j)

)
, i ∈ 1..n, j ∈ 1..g.(11)

Inequality (9) may be rewritten as

g∑
j=1

∑
i∈Rnew,j

dR(i, j)2 ≤
g∑

j=1

∑
i∈Rj

dR(i, j)2.(12)

Theorem 3.1 is the basis of the following building block for our algorithm:
starting from a configurationR, look for another configurationRnew such that
the corresponding sum of distance squares w.r.t.the givenR is smaller than the
current one; see (12). The theorem assures that this new configuration is a better
approximation to the minimum of the TDC.

Plainly, a configurationRnew that minimizes the sum

g∑
j=1

∑
i∈Pj

dR(i, j)2(13)
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over all configurations{P1, . . . ,Pg} ∈ Cg(P ), P ∈ (1..n
r

)
, satisfies (12). Fortu-

nately, computing this minimum is very simple: it is sufficient to assign each ob-
servationi to a clusterj ∈ 1..g which minimizes the distance squaredR(i, j)2

with respect to the fixed configurationR. Let us call each clusterj ∈ 1..g that
minimizesdR(i, j)2 optimal for the ith observation,i ∈ 1..n, with respect to the
given partitionR. Since we must restrict our choice tor observations, the optimal
ones are those with ther smallest distances to their optimal clusters. These ideas
are made precise in the following corollary of Theorem 3.1.

COROLLARY 3.1. Let R be a configuration and letRnew be a subset of1..n

consisting ofr observations with the smallest Mahalanobis distances to their
optimal clusters w.r.t. R (in general, Rnew is unique). Let Rnew be the partition
of Rnew obtained by assigning eachi ∈ Rnew to its optimal cluster w.r.t. R. Then:

(a) Rnew minimizes the objective function(13)over the set of all configurations
{P1, . . . ,Pg} ∈ Cg(P ), P ∈ ( 1..n

r

)
.

(b) The conclusions of Theorem3.1hold.

In the case of one class,g = 1, Corollary 3.1(b) is the basis of Rousseeuw and
Van Driessen’s C-step [Rousseeuw and Van Driessen (1999), Theorem 1]. For
n = r , (the noncontaminated situation) Corollary 3.1(b) reduces to Späth [(1985),
Theorem 3.5]. We next formulate the reduction step in algorithmic terms.

3.1. The reduction step. Input: A configurationR together with its mean
vectorsmR and its SSP matrixWR;

Output: A configurationRnew such that detWRnew ≤ detWR.

(i) Compute the distance squaresdR(i, j)2, i ∈ 1..n, j ∈ 1..g, defined in (11).
(ii) For each i ∈ 1..n, determine an optimal clusterji ∈ R, that is, ji ∈

argminj∈1..g dR(i, j)2.
(iii) Determine a permutationκ : 1..n → 1..n that satisfies

dR
(
κ(1), jκ(1)

)2 ≤ dR
(
κ(2), jκ(2)

)2 ≤ · · · ≤ dR
(
κ(n), jκ(n)

)2
.(14)

(iv) Put Rnew = {κ(1), . . . , κ(r)} and, for eachj ∈ 1..g, put Rnew,j = {i ∈
1..r|jκ(i) = j}. Finally, letRnew := {Rnew,1, . . . ,Rnew,g}.

3.2. Iteration and discussion.Now, starting from an initial configurationR0
and iterating reduction steps, we obtain a sequence of configurations(Rk)k≥0
such that detWRk+1 ≤ detWRk

for all k. Since there are only a finite number of
configurations, this iterative process must become stationary after a finite number
of steps, sayL, with detWRL+1 = detWRL

(> 0). By Corollary 3.1, we have
WRL+1 = WRL

andmRL+1 = mRL
. Therefore,dRL

(i, j) = dRL+1(i, j), i ∈ 1..n,
j ∈ 1..g, and, ifRL is unique, a further reduction step yields a configuration with
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sum (13) and the TDC unchanged. IfRL is not unique, then a further step may
improve the TDC, but not (13). (An example of nonuniqueness in the complex
plane isxk = eiπk/4, k ∈ 1..8, r = 4, g = 1 andR0 = {x1,x3,x5,x7}.)

The configurationRL is oneapproximation to the minimum. Now, multistart
optimization is applied to the foregoing iterative process; the limit configuration
with the least value of the determinant of the corresponding SSP matrix is the final
approximation to the minimum.

If a configurationR is aglobal minimumof the TDC, then a reduction step with
input mR andWR yields an equivalent configuration.

3.3. The initial configuration. We indicate two methods for generating ran-
dom initial configurations. Both are natural extensions of the ones proposed by
Rousseeuw and Van Driessen [(1999), Section 4.1]:

(a) Draw a random configuration consisting of nonempty clusters.
(b) Choose at random a subset of 1..n with at leastgd + 1 elements. Construct

a random partitionD of the subset ing clusters and compute its mean vectorsmD

and its SSP matrixWD . Iterate a reduction step to obtain an initial configuration
R0.

We conclude this section with a result concerning some geometrical properties
of any limit configuration of our algorithm. This result extends Corollary 1 of
Rousseeuw and Van Driessen (1999) to robust clustering and the well-known
geometric separation property of discriminant analysis, see Mardia, Kent and
Bibby [(1979), Theorem 11.2.1], to clustering in the presence of outliers.

COROLLARY 3.2. Let R = {R1, . . . ,Rg} be a limit configuration of the
reduction step iteration, for example, the optimal configuration.

(a) Each nonempty clusterRj , j ∈ 1..g, is separated from the estimated set
�⋃g

j=1 Rj of outliers by an ellipsoid.
(b) Two different, nonempty clustersRj andRl are separated by the hyperplane

hjl(xi ) = 0, wherehjl :Rd → R is the linear form

hjl(y) := 2
[
y − 1

2

(
mR(j) + mR(l)

)]T W−1
R

(
mR(j) − mR(l)

)
, y ∈ R

d .

The observationsi in clusterRj are those satisfyinghjl(xi ) ≥ 0.

PROOF. The application of a reduction step to the configurationR yields
R itself as possible output. Thus, the set of regular observationsR = ⋃g

j=1 Rj

may be written as{κ(1), κ(2), . . . , κ(r)}, where κ : 1..n → 1..n is a permu-
tation satisfying (14), whereas the set of outliers is given by{κ(r + 1),

κ(r + 2), . . . , κ(n)}. In order to prove part (a), letj ∈ 1..g such thatRj �= ∅. All
observationsi ∈ Rj satisfydR(i, j)2 ≤ max1≤m≤r dR(κ(m), j)2 =: Kj , whereas
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all i /∈ R satisfydR(i, ji)
2 ≥ Kj [evendR(i, ji)

2 ≥ dR(κ(r), jκ(r))
2]. The ellip-

soid

Ej = {
x ∈ R

d |(x − mR(j)
)T W−1

R

(
x − mR(j)

)≤ Kj

}
containsRj and�R is contained in the closure of�Ej .

For two observationsi1 and i2 in the j th and in thelth cluster, respectively,
we havedR(i1, j)2 ≤ dR(i1, l)

2 anddR(i2, l)
2 ≤ dR(i2, j)2. Part (b) now follows

from standard matrix operations.�

4. The breakdown values.

4.1. Preliminaries. Besides the asymptotic breakdown value of an estimator
Hampel (1968, 1971), there exists also a finite-sample version, Hodges (1967) and
Donoho and Huber (1983). Loosely speaking, the latter measures the minimum
fraction of bad outliers that cancompletelyspoil the estimate. More precisely, let
� be a locally compact parameter space, for example, the intersection of an open
and a closed subset of some Euclidean space and consider an estimatorδ :A → �.
Here,A ⊆ R

n·d is the system of all data setsadmissiblefor δ (“in general position”
in our case). We say that(x′

1, . . . ,x′
n) ∈ A is anm-modification,m ≤ n, of a data

set(x1, . . . ,xn) ∈ A if it arises from(x1, . . . ,xn) by replacingm observationsxi

with arbitrary elementsx′
i ∈ R

d in an admissible way. An estimatorδ :Rn·d → �

breaks downunderm replacements with a data set(x1, . . . ,xn) ∈ A if the set of
estimates

{δ(x′
1, . . . ,x′

n)|(x′
1, . . . ,x′

n) is anm-modification of(x1, . . . ,xn)} ⊆ �

is not relatively compact in�. Theindividual breakdown pointfor xn
1 is defined as

β(δ,xn
1) = min

1≤m≤n

{
m

n

∣∣∣{δ(M)|M} is not relatively compact in�
}
;

here M runs over allm-modifications ofxn
1. It is the minimum fraction of

replacements inxn
1 that may causeδ to break down.

Depending on a specific data set, this is not a useful notion per se. Therefore,
Donoho and Huber define a value that we call theuniversal breakdown valueβ(δ)

of δ: it is the minimum relative amount of replacements that causesδ to break
down withsomedata setxn

1 ∈ A:

β(δ) = min
xn

1∈A
β(δ,xn

1).(15)

According to this definition, the estimator breaks down at the first integerm for
which there existssomexn

1 such that the estimate becomes arbitrarily bad for some
suitable modificationM .

The universal breakdown value is the minimal individual one; it depends on the
estimator and its parameters alone, not on data. It is pessimistic in considering the
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worst caseand modifications of this notion are conceivable. One may argue that
the existence of asingledata setxn

1 and possibly veryspecialbad modificationsM
may not suffice to indicate lack of robustness of an estimator. A more relaxed
definition would require the criterion to break down forsufficiently manydata
setsxn

1. We will introduce such a modification in Section 4.2. Another less stringent
definition would require all components of the estimate to break down [such as all
means in Definition 4.1(a)].

The present task is, among other things, estimating mean vectors and an SSP
matrix by means of the TDC. In the first case,� = R

g·d and in the second,� is
the set of all positive-definited by d matrices, an open subset of

(d+1
2

)
-dimensional

Euclidean space.
Our definitions and analyses need the following facts. IfA ≤ B, then trA ≤ tr B

by linearity and detA ≤ detB (see Lemma A.2). Letλmin(A) (λmax(A)) be the
least (largest) eigenvalue of a matrixA ≥ 0. Then

λmin(A) = min‖x‖=1
xT Ax ≤ min‖x‖=1

xT Bx = λmin(B)

and, similarly,

λmax(A) ≤ λmax(B).

Let E ⊆ F be nonempty, finite subsets ofR
d and letmE andmF be their means.

Then their SSP matricesWE and WF [in the simple sense (1)] satisfyWE =
WE(mE) ≤ WE(mF ) ≤ WF (mF ) = WF . Hence, also trWE ≤ trWF , detWE ≤
detWF , λmin(WE) ≤ λmin(WF ) andλmax(WE) ≤ λmax(WF ).

In the present situation, corruption of the estimates is reflected by an arbitrarily
large value of at least one sample mean or by an arbitrarily large or small
eigenvalue of the pooled SSP matrix of the optimal configuration; see Donoho
and Huber (1983). Transferring definition (15) to the present situation, we obtain
the following.

DEFINITION 4.1. Letn, r, g, d be such thatn ≥ r ≥ gd + 1 as before. Given
a data setM ⊆ R

n·d of observations in general position, letM� denote its optimal
configuration w.r.t. the TDC.

(a) Theuniversal breakdown valueof the TDC for themean vectorsis

βmean(n, r, g) = min
xn

1

min
1≤m≤n

{
m

n

∣∣∣sup
M

max
j∈1..g

‖mM�(j)‖ = ∞
}
;

herexn
1 runs over all data sets in general position andM over allm-modifications

of xn
1 in general position.

(b) Theuniversal breakdown valueof the TDC for the SSP matrix is

βSSP(n, r, g) = min
xn

1

min
1≤m≤n

{
m

n

∣∣∣sup
M

max
(
λmax(WM�),

1

λmin(WM�)

)
= ∞

}
,

wherexn
1 andM are as stated in (a).
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We first show that, in general, theuniversal breakdown value of the TDC
w.r.t. the mean vectors is low. We need two lemmas; the first—a geometrical
interpretation of the SSP matrix—is of general interest and the second is
combinatorial and of a technical nature. The parallelepiped spanned byk+1 points
y0, . . . ,yk ∈ R

d , k ≤ d, is the subset

P(y0, . . . ,yk) =
{

y0 +
k∑

i=1

λi(yi − y0)|0 ≤ λi ≤ 1

}
⊆ R

d .

Its d-dimensional volume is independent of the order of the pointsyi .

LEMMA 4.1. Let E = {x0, . . . ,xd} ⊆ R
d . We have the equalitydetWE =

1
d+1 volume2 P(E).

PROOF. Let m = 1
d+1

∑d
i=0 xi . Putting

A =
(

1 · · · 1

x0 − m · · · xd − m

)
∈ R

(d+1)×(d+1),

we obtain the claim from

volume2 P(x0, . . . ,xd)

= det2(x1 − x0, . . . ,xd − x0)

= det2 A = detAdetAT = det
(

1 · · · 1

x0 − m · · · xd − m

)
1 (x0 − m)T

...
...

1 (xd − m)T


= det

(
d + 1 0

0 WE

)
= (d + 1)detWE. �

LEMMA 4.2. Let g ≥ 2, p ≥ 2, q ≥ g − 2 andr = p + g be natural numbers
and let

F = {x1, . . . , xp} ∪ {y1, y2} ∪ {z1, . . . , zq}
with pairwise disjoint elementsxi , yk andzl . Any partitionR of a subset ofF of
sizer in g classes is either of the form

R� = {{x1, . . . , xp}, {y1, y2}, g − 2 one-point classes from thezl ’s
}

or possesses a classC which contains some pair{xi, yk} or some pair{zl, u},
u �= zl .
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PROOF. Let #rx, #ry and #rz be the numbers ofxi ’s, yk ’s and zl ’s,
respectively, that make up the configurationR. By assumption, #rx +#ry +#rz =
r and, hence,

#rz = r − #rx − #ry ≥ r − p − 2= g − 2.

The claim being trivial if #rz > g, we consider the three remaining cases #rz = g,
g − 1 andg − 2 separately. Now, #rz = g implies #rx + #ry = r − g = p ≥ 2;
therefore, if there are no twozl ’s in one class, then one class must contain somezl

together with anxi or ayk . If #rz = g − 1, then #rx + #ry = r − g + 1 = p + 1;
sincep ≥ 2, at least onexi and oneyk must belong to the configuration. A simple
counting argument shows the claim in this case. Finally, if #rz = g − 2, then
#rx + #ry = r − g + 2 = p + 2, that is, allxi ’s and all yk ’s belong to the
configuration. If allzl ’s form one-point classes, then thexi ’s andyk ’s must share
the remaining two classes. If they are separated, thenR = R�. In the opposite
case, some class contains both anxi and ayk . �

For 0 �= y ∈ R
d , the rank-one matrixyyT has the simple eigenvalue‖y‖2.

Therefore, det(Id + yyT ) = 1+ ‖y‖2, y ∈ R
d . Hence, if A ∈ R

d×d is positive
definite, then we have

det(A + yyT ) = det
√

A(Id + A−1/2yyT A−1/2)
√

A = (1+ yT A−1y)detA,(16)

an equality that we will repeatedly use in the sequel.
In the following theorem we assume that, in the case of ties, an optimal solution

is chosen for which the trace of the between-groups SSP matrix is minimum.
This applies, in particular, to one-point clusters since these can be exchanged with
discarded observations without any change of cost.

THEOREM 4.1 (Universal breakdown point of the TDC for the means).

(a) If n ≥ r + 1 andr ≥ gd + 2, then the means remain bounded by a constant
that depends only on the data as one observation is arbitrarily replaced.

(b) If g ≥ 2 andr ≥ g + 2 (besides the standard assumptionr ≥ gd + 1), then
there is a data set such that one mean breaks down if two particular observations
are suitably replaced.

(c) If g ≥ 2, n ≥ r + 1, andr ≥ gd + 2, thenβmean(n, r, g) = 2
n
.

PROOF. (a) It suffices to show that an optimal configurationR∗ discards a
remote replacement. The mean vectors of all clusters ofR∗ will then remain
within the convex hull of the dataxn

1. Arguing by contradiction, let us assume that
there is an optimal configurationR∗ which contains the replacementy in a cluster
C ∈ R∗. If the replacement is far away, then this cluster must contain at least one
other point since, otherwise, it would be exchanged with a discarded original point
by the convention agreed upon just before the theorem. This point must, of course,
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be an original observation. It follows thatu := y − mC → ∞ asy → ∞. Since
r ≥ gd + 2, any subset ofr elements, in particular the union of the members of
R∗, contains at leastr − 1 ≥ gd + 1 original points. Therefore, one cluster,C1,
contains a subsetE consisting ofd + 1 original points. The affine span ofE is the
whole space and, whetherC1 = C or not, we have

WR∗ ≥ WE

(
mC1

)+ (yi − mC)(yi − mC)T ≥ WE + uuT .

Therefore, by (16),

detWR∗ ≥ det(WE + uuT ) = (1+ ‖W−1/2
E u‖2)detWE −→

u→∞∞.

This contradicts the fact that the maximum cost of any configuration that discards
the replacement is finite.

(b) Let us construct a data setD = {x1, . . . ,xr−g,w1,w2, z1, . . . , zn−r+g−2}.
First note thatr − g ≥ d + 1 (distinguish betweend = 1 andd ≥ 2). Hence, we
may chooser −g elements{x1, . . . ,xr−g} = F in general position with mean zero
and SSP matrixId .

We next use induction to construct the pointsz1, . . . , zn−r+g−2 if n− r +g > 2.
Suppose thatz1, . . . , zl have already been constructed for somel,0 ≤ l < n − r +
g − 2. Let Fl be the system of all hyperplanesH spanned byd of the points in
Ml = F ∪ {z1, . . . , zl} each. Since the set of all directions inR

d parallel to some
H ∈ Fl is a (d − 1)-dimensional subspace ofR

d , there is a direction not parallel
to any of the hyperplanes. By running in such a direction, we findzl+1 so far from
each hyperplaneH that

volumeP(zl+1,u1, . . . ,ud) ≥√2(d + 1)(17)

for all {u1, . . . ,ud} ∈ (Ml

d

)
and such that(

1+ 1
2(zl+1 − u)T W−1

E (zl+1 − u)
)
detWE ≥ 2(18)

for all u ∈ Ml and allE ∈ (F\{u}
d+1

)
. After all xi ’s andzl ’s have been constructed, the

two pointsw1,w2 are chosen in the centered unit ball so thatD is in general
position. Irrespective of the optimal configuration, theg estimated means are
within the convex hull ofD.

Now, mimicking the construction of onezl , we replace the two pointsw1 and
w2 with a twin pairy1 �= y2 such that‖y2 − y1‖ ≤ 1,

volumeP(E) ≥√2(d + 1)(19)

for all setsE ∈ ((D\{w1,w2})∪{y1,y2}
d+1

)
that contain at least oneyk except forE =

{y1,y2} if d = 1, and such that

detWE

(
1+ 1

2(yk − u)T W−1
E (yk − u)

)≥ 2, k = 1,2,(20)

for all u ∈ D \ {y1,y2} and allE ∈ (F\{u}
d+1

)
.
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We claim that the optimal configuration isR� = {F, {y1,y2}, {z1}, . . . , {zg−2}}.
Indeed, by (16), its cost is

detWR� = det
(
WF + 1

2(y2 − y1)(y2 − y1)
T )

= det
(
Id + 1

2(y2 − y1)(y2 − y1)
T )

= 1+ 1
2‖y2 − y1‖2 ≤ 3

2.

Moreover, Lemma 4.2 tells us that any clusteringR not equivalent withR�

(equivalent in the sense that somezl ’s are exchanged) possesses some clusterC

(choose it of maximum size) containing either some pair{xi ,yk} or some
zl together with any other element. Let us denote these two elements bya andb.
If C is of size at leastd + 1, then we choose a(d + 1)-element subsetE ⊆ C

containing{a,b} and estimate

detWR ≥ detWC ≥ detWE ≥ 1

d + 1
volume2 P(E) ≥ 2

according to Lemma 4.1, (17) and (19).
Otherwise, we haved ≥ #C ≥ 2 and there exists a clusterR of size≥ d + 1

which contains no pair{xi ,yk} and nozl . We haveR �= C and fromd ≥ 2, it
follows that R ⊆ F . Choosing a(d + 1)-element subsetE ⊆ R, we use (18),
(20) and (16) to estimate

detWR ≥ det
(
WE + W{a,b}

)= detWE det
(
1+ 1

2(b − a)T W−1
E (b − a)

)≥ 2.

In order to conclude the proof of part (b), it is sufficient to observe that the norm
of the mean vector of the cluster{y1,y2} may be arbitrarily large.

Part (c) follows immediately from (a) and (b).�

4.2. Restricted breakdown point and the separation property.Theorem 4.1
says that the asymptotic universal breakdown value for the means is zero; this
is a negative result and somewhat unsatisfactory in the framework of a trimming
algorithm. One reason is the strength of the universal breakdown value. We may
rescue the situation by introducing a relaxed version of it, therestricted breakdown
valueβ(δ,K) w.r.t. a subclassK ⊆ A of data sets admissible forδ. It lies between
the individual and the universal breakdown values, Section 4.1, and we define
it as the minimum fraction of replacements that causeδ to break down with
somexn

1 ∈ K ,

β(δ,K) = min
xn

1∈K
β(δ,xn

1).

The universal breakdown value is justβ(δ,A). The restricted breakdown value,
too, is a characteristic of an estimator. It provides information on the structure that
a data set must have so that the estimator still acts reasonably after contamination.
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Let us now compute the restricted breakdown value of (TDC) for the mean
values w.r.t. a certain class of data sets that we describe next. It is necessary to
first introduce some notation. LetP = {P1, . . . ,Pg} be a partition of some data
setS, let EP

j be the set of all mean values of nonempty subsets ofPj , 1≤ j ≤ g,

let SP be the set of all subconfigurations ofP comprising at mostr elements
and possessing at least one cluster of size≥ d + 1, and letWP be the set of all
pooled SSP matrices generated by elements ofSP . Given g ≥ 2 andu ≥ 1, we
definekg,u = �max{2r−n,(g−1)gd+1,n−u+1}

(g−1)g
� (> d) and Kg,u as the system of all

d-dimensional data setsS of lengthn in general position that have theseparation
property

S possesses a partitionP in g subsets of sizes at leastu (≤ �n/g�) such that

min
W∈WP

min
mj∈EP

j

mk∈EP
k

j �=k

(mk − mj )
T W−1(mk − mj ) > 2 · maxW∈WP detW

min
C ∈ ( Pj

kg,u

)
1 ≤ j ≤ g

#Pj ≥ kg,u

detWC

.(21)

Both sides of this estimate are invariant with respect to location and scale and their
quotient describes a measure ofvalidity of the partitionP , a combination of cluster
compactness(detW) and clusterseparation(the Mahalanobis distance squared).
A great number of such indices are widely in use for assessing the quality of a
partition; see Bezdek, Keller, Krisnapuram and Pal (1999).

A data set satisfying condition (21) possesses a marked cluster structure. Note
that the left-hand side of (21) increases as the different clusters inP are moved
away from each other, whereas the right-hand side remains unchanged under this
operation. It is, therefore, easy to construct examples of data sets that satisfy the
separation property.

Note that the classesKg,u decrease asu increases. The SSP matrixWP is
larger than all matrices inWP w.r.t. the positive semi-definite ordering; therefore,
substituting minmj ,mk

(mk − mj )
T W−1

P (mk − mj ) for the left-hand side of (21)
and detWP for maxW∈WP detW defines a narrower class. It is easier to verify this
condition than (21).

LEMMA 4.3. Let S ∈ Kg,1 (with associated partitionP ) and let R be a
partition of some finite subsetR ⊆ R

d such that:

(i) some clusterRk ∈ R contains elements of at least two differentPj ’s;
(ii) there are a clusterRl ∈ R and somej ∈ 1..g such that#(Rl ∩ Pj ) ≥ kg,u.

Then we havedetWR > maxW∈WP detW.

PROOF. Without loss of generality, the twoPj ’s appearing in (i) areP1 andP2.
We first consider the casek = l. Puttingaj = #(Rk ∩ Pj ), we use Lemma A.3 to
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estimate

WR ≥ WRk
= ∑

x∈Rk

(
x − mRk

)(
x − mRk

)T

=
g∑

j=1

∑
x∈Rk∩Pj

(
x − mRk

)(
x − mRk

)T

=
g∑

j=1

WRk∩Pj
+ ∑

1≤j<h≤g

ajah

#Rk

(
mRk∩Pj

− mRk∩Ph

)(
mRk∩Pj

− mRk∩Ph

)T
= WRk∩P + ∑

1≤j<h≤g

ajah

#Rk

(
mRk∩Pj

− mRk∩Ph

)(
mRk∩Pj

− mRk∩Ph

)T ;

here we have abbreviatedRk ∩ P = (Rk ∩ P1, . . . ,Rk ∩ Pg). Applying

Lemma A.1(b) withA = WRk∩P andyjh :=
√

aj ah

#Rk
(mRk∩Pj

− mRk∩Ph
), 1≤ j <

h ≤ g, we infer

detWR ≥
(

1+ ∑
1≤j<h≤g

ajah

#Rk

(
mRk∩Pj

− mRk∩Ph

)T W−1
Rk∩P

(
mRk∩Pj

− mRk∩Ph

))

× detWRk∩P

>

( ∑
1≤j<h≤g

ajah

#Rk

)
min

Rk∩Pj ,Rk∩Ph �=∅

1≤j<h≤g

(
mRk∩Pj

− mRk∩Ph

)T
× W−1

Rk∩P

(
mRk∩Pj

− mRk∩Ph

)
detWRk∩P

≥ 1

2
min

Rk∩Pj ,Rk∩Ph �=∅

1≤j<h≤g

(
mRk∩Pj

− mRk∩Ph

)T W−1
Rk∩P

(
mRk∩Pj

− mRk∩Ph

)
× detWRk∩P ;

the last inequality follows from Lemma A.4 and (i). SinceRk ∩ P ∈ SP by (ii)
and sincemRk∩Ph

∈ EP
h , 1≤ h ≤ 2, we may apply the lower bound (21) to the last

line above to obtain

detWR >
maxW∈WP detW

min
C ∈ ( Pj

kg,u

)
1≤ j ≤ g

#Pj ≥ kg,u

detWC

detWRk∩P ≥ max
W∈WP

detW.

If k �= l, we start with

WR ≥ WRl
+ WRk

≥ WRl∩P + ∑
1≤j<h≤g

ajah

#Rk

(
mRk∩Pj

− mRk∩Ph

)(
mRk∩Pj

− mRk∩Ph

)T
.
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The remainder of the proof is similar, as before.�

If a data set meets the separation property, then (TDC) is much more robust than
predicted by Theorem 4.1.

THEOREM 4.2 (Restricted breakdown point of the TDC for the means).Let
g ≥ 2, let r > (g − 1)gd, and letu > n − r be an integer.

(a) The restricted breakdown value of(TDC) for the mean values w.r.t. Kg,u

satisfiesβmean(n, r, g,Kg,u) ≥ 1
n

min{n − r + 1, r − (g − 1)gd, r + u − n}.
(b) If

(i) 2r − n > (g − 1)gd and
(ii) u > 2(n − r),

thenβmean(n, r, g,Kg,u) = 1
n
(n − r + 1).

PROOF. (a) Let S ∈ Kg,u with partition P and letM be any set obtained
from S by modifying at mostρ = min{n − r, r − (g − 1)gd − 1, r + u − n − 1}
elements. Our proof proceeds in several steps.

(α) Any configurationR in M has at least one cluster withd + 1 original
observations:

Indeed, by definition ofρ, R = ⋃
R has at leastr − ρ > (g − 1)gd ≥ gd

original observations and the claim follows from the pigeon hole principle.
Let R now be the optimal configuration ofM . We will show that the mean

values of all clusters ofR are bounded by a number that depends solely on the
original dataS.

(β) detWR is bounded by a number that depends only onS:
In fact, we have

detWR ≤ max
W∈WP

detW.(22)

Indeed, letR′ ⊆ M consist of r original points and letR′ = R′ ∩ P =
(R′ ∩ P1, . . . ,R

′ ∩ Pg); then R′ ∈ SP , WR′ ∈ WP and detWR ≤ detWR′ by
optimality.

(γ ) If Rj containsd + 1 or more original observations, then its meanmj is
bounded by a number that depends only onS:

To this end, define

λmax(S) := max{λ|λ eigenvalue ofWC , C ⊆ S and #C ≥ d + 1},
bmin(S) := min{detWC |C ⊆ S,#C ≥ d + 1}.
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These quantities are bounded above and below (away from 0) and depend only
onS. Now, by Steiner’s identity,

WR ≥ ∑
x∈Rj∩S

(
x − mRj

)(
x − mRj

)T
= WRj∩S + #(Rj ∩ S)

(
mRj

− mRj∩S

)(
mRj

− mRj∩S

)T
≥ WRj∩S + (mRj

− mRj∩S

)(
mRj

− mRj∩S

)T
.

Hence, by (16) and the assumption made onRj ,

detWR ≥ detWRj∩S

(
1+ (mRj

− mRj∩S

)T
W−1

Rj∩S

(
mRj

− mRj∩S

))
>

bmin(S)

λmax(S)

∥∥mRj
− mRj∩S

∥∥2

and the claim now follows from (β).
(δ) If Rj contains between one andd original observations, then its meanmj

is bounded by a number that depends only onS:
By (α), there is a clusterk �= j containingd + 1 original observations. We have

WR ≥ WRk
+ WRj

≥ WRk∩S + WRj∩S + #(Rj ∩ S)
(
mRj

− mRj∩S

)(
mRj

− mRj∩S

)T
≥ WRk∩S + (mRj

− mRj∩S

)(
mRj

− mRj∩S

)T
by assumption onRj ; hence,

detWR ≥ detWRk∩S

(
1+ (mRj

− mRj∩S

)T
W−1

Rk∩S

(
mRj

− mRj∩S

))
and the proof terminates as that of (γ ).

In view of (γ ) and (δ), the proof of part (a) will be finished if we show that
(ε) eachRj contains at least one original point.
Assume, on the contrary, thatR contains some cluster that consists solely

of replacements. We show that, as a consequence,R and R must satisfy the
hypotheses of Lemma 4.3. By definition ofρ, R has at leastr − (r + u− n− 1) =
n + 1 − u original elements; that is,

∑g
j=1 #R ∩ Pj > n − u. Taking into account

that eachPj has at leastu elements, a simple counting argument shows that each
of the g setsPj intersectsR. By assumption, there is someRh omitted by all
Pj ’s and the pigeon hole principle shows Lemma 4.3(i). Again by assumption, the
original observations inR are distributed over at most(g − 1)g (disjoint) sets of
the formRl ∩ Pj ; the definition ofkg,u and another application of the pigeon hole
principle show that some setRl ∩ Pj contains at leastkg,u original observations;
this is Lemma 4.3(ii).

The conclusion of Lemma 4.3 contradicts (22), which completes the proof of
part (a).
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(b) The individual breakdown value of (TDC) for the mean vectors w.r.t. any
admissible data setxn

1 is ≤ n−r+1
n

. Indeed, letM be a set obtained fromxn
1 by

modifying at leastn − r + 1 of its elements. Then each subset ofM of size r

contains at leastr − (n − (n − r + 1)) = 1 replacements. Part (b) now follows
from (a), (i) and (ii). �

In the caseg = 1, (TDC) reduces to Rousseeuw’s MCD; see Corollary 2.2.
Rousseeuw (1985) proves that the asymptotic breakdown value of MCD with
r = �(1 − α)n� is α if α < 0.5; see also Lopuhaä and Rousseeuw (1991), where
the analogous estimator MVE is treated in more detail. This is in harmony with
the foregoing theorem, although it is not a corollary of it: the separation property
and part (ε) of its proof are not applicable ifg = 1.

Theorem 4.2(b) asserts that the algorithm can withstand exactly the number of
outliers generated by the model 2.1 if the hypotheses of (b) are satisfied.

EXAMPLE 4.1. By way of discussing Theorems 4.1, 4.2 and the separation
property, it is interesting to take a look at an instructive example. Let us
consider the one-dimensional data setx1, . . . , x10 shown in Figure 1 with gap
a > 1. Its “natural” partition has theg = 2 clustersR1 = {x1, . . . , x5} andR2 =
{x6, . . . , x10}, and the means are 0 anda + 4. It is reasonable to choose this
partition for P andu = 5. The assumptions of both theorems are met with the
parameterr = 8 (i.e., the algorithm discards two observations). The first theorem
says that (TDC) will resist one arbitrary outlier for alla > 1, whereas the second
promises that it will tolerate even two such outliers ifa > 20. There is actually a
transition from the breakdown value 0.2 to 0.3 at a much smaller value ofa. Let
us compute this critical value. A decisive pair of replacements is(x7, x8). As we
replace these two observations by very large, close numbersx′

7, x′
8 with SSPε,

two configurations compete for optimality: the configurationsR′
1 = {x1, . . . , x6},

R′
2 = {x′

7, x
′
8} (x9 andx10 removed, one mean breaks down) andR′′

1 = {x1, . . . , x5},
R′′

2 = {x6, x9, x10} (replacements removed, means are 0 anda + 13
3 ). The first

FIG. 1. 1D data set, replacementsx′
7, x′

8; breakdown at2 replacements ifa < 1.225 and at3 if
a ≥ 1.225.
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has SSP 10+ 5
6(a + 2)2 + ε, which is smaller than that of the second,56

3 , if

a <
√

52
5 − 2 ≈ 1.225. Hence, this is the critical parameter that separates the

breakdown values 0.2 and 0.3. This indicates that (TDC) is actually more robust
than predicted by Theorem 4.2, let alone Theorem 4.1.

We next show that, ifn > r and if r/n is large enough, the TDC is robust w.r.t.
the SSP matrix. We actually show that it breaks down simultaneously for each data
set as the fraction of bad outliers slightly exceeds 1− r/n.

THEOREM 4.3 (Universal breakdown point of the TDC for the pooled SSP
matrix).

(a) Suppose that2r ≥ n + g(d + 1). If at mostn − r + g − 1 points of the data
setD are replaced in an arbitrary way, then the eigenvalues of the SSP matrix of
any admissible configuration remain bounded away from zero by a constant that
depends only onD andd.

(b) Suppose that2r ≥ n + g(d + 1). If at mostn − r + g − 1 points ofD are
replaced in an arbitrary way, then the eigenvalues of the SSP matrix of the optimal
configuration remain bounded by a constant that depends only onD andd.

(c) Given t > 0, n − r + g elements of anyD may be replaced so that the
largest eigenvalue of the SSP matrix exceedst .

(d) If 2r ≥ n + g(d + 1), thenβSSP(n, r, g) = n−r+g
n

.

PROOF. We begin with two remarks. (i) LetD be any subset ofRd of sizen

in general position and letWE be the SSP matrix of a subsetE ⊆ D. SinceD is in
general position, the number

α = min
E∈( D

d+1)
λmin(WE)

is strictly positive and depends onD andd, only.
(ii) Let M be any set obtained fromD by modifying at mostn − r + g − 1

elements and letR be any subset ofM consisting ofr elements. If 2r ≥ n +
g(d + 1), thenR contains at leastr − (n − r + g − 1) = 2r − n − g + 1≥ gd + 1
original observations inD. By the pigeon hole principle, any clustering ofR in g

parts has at least one memberC that containsd + 1 such points. We now prove
(a)–(d).

(a) The least eigenvalue of the SSP matrix ofC in (ii) is ≥ α and, by Section 4.1
the same is true for the SSP matrix of any admissible clustering of the modified set
M .

(b) Sincer − g + 1 points inD remain unchanged by the replacement, the
modified setM has an admissible configurationM with one cluster consisting of
r − g + 1 original data andg − 1 one-point clusters. Hence, the SSP matrix of the
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optimal configurationM� of M cannot have a determinant larger than that ofM,
that is,

detWM� ≤ detWM.

The SSP matrixWM is that of ther − g + 1 original points and, hence, depends
only on D. Therefore, its determinant is bounded by a constantγ that again
depends only onD. By (ii), at least one cluster ofM� contains at leastd + 1
original points. The claim, therefore, follows from the estimates

λmax(WM�)αd−1 ≤ λmax(WM�)λmin(WM�)d−1 ≤ detWM� ≤ detWM ≤ γ.

(c) Modify D by ≥ n − r + g replacements that are at a distance≥ 2t from
each original observation and from each other to obtain a setM . Let M� be its
optimal clustering. Clearly, any subset ofr elements ofM contains at leastg
replacements. Moreover, there is a clusterC, #C ≥ 2, that contains at least one
replacement. Indeed, if no cluster contains two replacements, then each contains
exactly one and, sincer ≥ gd +1, one cluster contains at least two elements. Now,
if x is a replacement andy another element inC, then the trace of the SSP matrix
of C is at least

trWC ≥ tr
{(

x − x + y
2

)(
x − x + y

2

)T

+
(

y − x + y
2

)(
y − x + y

2

)T }

= ‖x − y‖2

2
≥ t.

Therefore, trWM� ≥ trWC ≥ t (see 4.1) and one eigenvalue must exceedt/d.
Claim (d) follows from (a)–(c). �

It may be astonishing that the TDC should takeg − 1 replacements even if
r = n. However, isolated replacements may be treated as one-point clusters in the
optimal configuration; in this case, the number of clusters formed by the original
data is reduced. Replacements that huddle together may form one cluster. In both
cases, the SSP matrix is not completely destroyed.

5. Simulation studies. In order to assess the performance of the proposed
algorithm, we have implemented it as a C++ program for various dimensions,
sizes, numbers and positions of clusters, as well as numbers of outliers. The first
simulation study illustrates how, by varying the input parameterr (the assumed
number of regular observations) of our algorithm, one can roughly control the
amount of contaminations contained in the data set.

The symbolei ∈ R
d , i ∈ 1..d, stands for theith unit vector. As usual, the

symbol χ2
d (α) denotes theα-quantile of theχ2-distribution with d degrees of

freedom. We consider, in dimensiond = 8, the 2d normally distributed populations
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Nd(µj ,V), j ∈ 1..2d, with common covariance matrixV, diagonal with entries
(1.0,1.2,1.4,1.6,1.8,2.0,2.2,9.0) and means

µj =


−
√

V((j + 1)/2, (j + 1)/2)χ2
d (α)

2
e(j+1)/2, j odd,√

V(j/2, j/2)χ2
d (α)

2
ej/2, j even,

(23)

α ∈ {0.95,0.99,0.999,0.999999}. That is, the means of the various clusters lie
on the 2d axial directions ofRd ; those of thej th and(j + 1)st clusters,j odd,
lie on the same axis but in opposite directions viewed from the origin. The
means (23) assure that the squared Mahalanobis distance of two cluster centers
on the same axis is 2χ2

d (α), whereas it isχ2
d (α) in the opposite case. The

valuesα = 0.95 and 0.99 give rise to heavily and moderately overlapped clusters,
while α = 0.999 and 0.999999 mean better and good separation, respectively. We
generate 100 observations from each cluster. Thus, we obtain a total ofr = 200d

(regular) observations. Additionally, in our first essay, we contaminate the data
with 22d outliers arranged in shells around the cluster centers. The square of
the Mahalanobis distance from each contamination to the closest cluster center
is χ2

d (β), β ∈ {0.999,0.999999}; see Figure 2.
Since we consider fourα’s and two β ’s, these specifications define eight

different cases. To each of them we apply the algorithm described in Section 3
four times, namely, with the a priori numbers of regular observationsr = n,
0.95n, 0.9n and 0.85n. More precisely, we apply the multistart method with up
to 2000 random initial configurations based on the method 3.3(a) and iterate
reduction steps until convergence is reached. The 32 rows in Table 1 show,
for each choice ofα, β and r , the fractions of estimated regular observations
whose squared Mahalanobis distances to their estimated cluster centers (w.r.t. the
estimated common covariance matrix) are larger than a given percentileχ2

d (γ ),
γ ∈ {0.95,0.975,0.99,0.999}. In the rows corresponding to the correct fraction of
outliers (≈ 10%), these are expected to match the correct tail probabilities 1− γ

shown on the top of Table 1. This heuristic (akin to aχ2 goodness-of-fit test)
for estimating the number of outliers is suggested by a similar heuristic applied
in robust discriminant analysis by Gather and Kale [(1988), Section 3] and Ritter
and Gallegos (1997). The method slightly underestimates the number of outliers.
We also compare the theoretical populations with those defined by the estimated
clusters. The Bhattacharyya distance between two normal distributions is

dBhatt
(
Nd(µ1,V1),Nd(µ2,V2)

)
= 1−

√ √
detV1 detV2

det((V1 + V2)/2)
exp
(
−1

4
(µ2 − µ1)

T (V1 + V2)
−1(µ2 − µ1)

)
,



374 M. T. GALLEGOS AND G. RITTER

(a)

(b)

FIG. 2. Visualization of four clusters in two dimensions. The Mahalanobis distance between each
pair of the four cluster centers depends on the valueα as specified by(23).The outliers are arranged
in shells. The inner and outer shells correspond toβ = 0.999andβ = 0.999999,respectively, where
β defines the ellipsoids of equal concentration on which the contaminations lie. See also the text.
(a)α = 0.99, (b)α = 0.999.
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a number in the unit interval. A measure for the quality of the estimates is the
minimum over all matchingsσ ∈ S2d between estimated and real classes of the

TABLE 1
Fraction of the estimated regular observations whose squared Mahalanobis distances from their
relative estimated population centers are greater thanχ2

8(γ ), d = 8. An estimate of the amount

of outliers is the fractionn−r
n , for which the values shown in the corresponding row match

best the theoretical tail probabilities for theχ2-distribution shown on top

1 − γ

α β n−r
n 0.05 0.025 0.01 0.001

0 0.097 0.069 0.033 0.002
0.05 0.066 0.045 0.015 00.95 0.999
0.10 0.039 0.019 0.004 0
0.15 0.004 0 0 0

0 0.095 0.062 0.022 0.001
0.05 0.066 0.044 0.012 00.99 0.999
0.10 0.041 0.018 0.006 0
0.15 0.003 0 0 0

0 0.094 0.055 0.016 0
0.05 0.068 0.042 0.012 00.999 0.999
0.10 0.039 0.018 0.005 0
0.15 0.003 0 0 0

0 0.075 0.035 0.007 0
0.05 0.068 0.024 0 00.999999 0.999
0.10 0.045 0.023 0.004 0
0.15 0.011 0 0 0

0 0.100 0.094 0.086 0.051
0.05 0.066 0.053 0.045 0.0270.95 0.999999
0.10 0.043 0.018 0.007 0
0.15 0.003 0 0 0

0 0.104 0.093 0.085 0.039
0.05 0.069 0.055 0.044 0.0310.99 0.999999
0.10 0.042 0.018 0.006 0
0.15 0.003 0 0 0

0 0.102 0.099 0.092 0.045
0.05 0.068 0.057 0.050 0.0270.999 0.999999
0.10 0.041 0.019 0.005 0
0.15 0.004 0 0 0

0 0.106 0.098 0.085 0.023
0.05 0.076 0.059 0.049 0.0240.999999 0.999999
0.10 0.046 0.023 0.004 0
0.15 0.011 0 0 0
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maximum Bhattacharyya distance over the 2d matched pairs:

min
σ∈S2d

max
j∈1..2d

dBhatt

(
Nd

(
mσ(j),

1

r
W
)
,Nd(µj ,V)

)
.

The results are shown in Table 2 ford = 2,4,8. For d = 2 andα = 0.95, the
original clusters are not recovered by the algorithm since the 400 regular data
points are too homogeneous; there is no reasonable matching. We tested also
scenarios withdiffuseoutliers generated fromNd(µ, v · Id), d = 2,4,8, µ ∈ R

d

and v ≥ 16. The caseµ = 0, v = 16 is the most demanding since the variance
is already quite close to that of the last coordinate. Even in this case, only about
10% of the rejected elements are (extreme) regular observations and the generated
clusters are well rediscovered.

Finally, the numberL of reduction steps until convergence in one iteration is
about 15 ford = 2 and 22 ford = 4,8 with standard deviations about 7. One
reduction step takes no longer than 0.004, 0.01 and 0.06 seconds, respectively,
on a 1 GHz processor. These figures are essentially independent of the trimming
parameterr of the algorithm.

We do not contend that the proposed algorithm responds to each clustering
situation. In fact, the presented model is meant as a possible component for outlier
handling in a comprehensive clustering strategy. One of the main purposes of
the paper is a contribution to computing breakdown values. Nevertheless, in our
experience, the algorithm works well in situations where the model assumptions
are satisfied: clusters of about the same shape, scale and size, and outliers
sufficiently scattered in space (not concentrated close to one or a few points).

TABLE 2
The maximal Bhattacharyya distances of the best matchings

between estimates and theoretical populations

dimension/number of clusters

α-quantile β-quantile 2/4 4/8 8/16

0.99 — 0.0685 0.07890.95
0.999999 — 0.0689 0.0556

0.999 0.0386 0.0340 0.02910.99
0.999999 0.0356 0.0246 0.0297

0.999 0.0257 0.0165 0.02650.999
0.999999 0.0111 0.0155 0.0265

0.999 0.0105 0.0165 0.02410.999999
0.999999 0.0104 0.0176 0.0240
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APPENDIX: TECHNICAL PRELIMINARIES

In this Appendix we prepare some tools for the proofs of the theorems. Some of
the statements are of interest on their own.

LEMMA A.1. Letd ≥ 2 and letA ∈ R
d×d be positive definite.

(a) For any positive semi-definite matrixC ∈ R
d×d , we have

det(A + C) ≥ (1+ tr(A−1C)
)
detA + detC.

(b) If y1, . . . , yk ∈ R
d , then we have

det

(
A +∑

h

yhy
T
h

)
≥
(

1+∑
h

yT
h A−1yh

)
detA.

PROOF. (a) FromA + C = A1/2(Id + A−1/2CA−1/2)A1/2, we infer

det(A + C) = det(Id + A−1/2CA−1/2)detA.(24)

If λ1, λ2, . . . , λd are the eigenvalues ofA−1/2CA−1/2, then the eigenvalues of
Id + A−1/2CA−1/2 are 1+ λ1, . . . ,1+ λd and the claim follows from (24) and

det(Id + A−1/2CA−1/2) =
d∏

j=1

(1+ λj ) ≥ 1+
d∑

j=1

λj +
d∏

j=1

λj

= 1+ tr(A−1/2CA−1/2) + detA−1/2CA−1/2.

Part (b) is an immediate consequence of (a).�

LEMMA A.2. 0 ≤ A ≤ B implies detA ≤ detB. If B > 0, then there is
equality if and only ifA = B.

PROOF. If d = 1, nothing has to be shown. Otherwise, the first claim is plain if
A is singular. IfA is positive definite, then the claims follow from Lemma A.1(a)
with C = B − A. �

LEMMA A.3. Let xn
1 be a Euclidean data set and let{P1, . . . ,Pg} be a

partition of 1..n with cardinalitiesa1, . . . , ag . Moreover, let m be the mean ofxn
1

and letmj be the mean of(xi )i∈Pj
(arbitrary if aj = 0). Then

g∑
j=1

∑
i∈Pj

(xi − m)(xi − m)T

=
g∑

j=1

WPj
+ 1

n

∑
1≤j<h≤g

ajah(mj − mh)(mj − mh)
T .
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PROOF. Expanding the left-hand side, we obtain

g∑
j=1

∑
i∈Pj

(xi − m)(xi − m)T

=
n∑

i=1

xixT
i − n · mmT

=
g∑

j=1

∑
i∈Pj

(xixT
i − mj mT

j ) +
g∑

j=1

aj mj mT
j − n · mmT

=
g∑

j=1

WPj
+

g∑
j=1

aj · mj mT
j − n · mmT .

On the other hand,

1

n

∑
1≤j<h≤g

ajah(mj − mh)(mj − mh)
T

= 1

2n

∑
j,h

ajah(mj − mh)(mj − mh)
T

= 1

n

∑
j,h

ajahmj mT
j − 1

n

∑
j,h

ajahmj mT
h

=∑
j

aj mj mT
j − 1

n

(∑
j

aj mj

)(∑
j

aj mj

)T

=∑
j

aj mj mT
j − n · mmT .

�

LEMMA A.4. Let g ≥ 2 and c ≥ 2. The minimum of the sum of products∑
1≤j<l≤g ajal taken over allg-tuples(a1, a2, . . . , ag) of real numbersa1, a2 ≥ 1,

a3, . . . , ag ≥ 0 such that
∑g

j=1 aj = c is c − 1. It is assumed exactly at the tuples
(1, c − 1,0, . . . ,0) and(c − 1,1,0, . . . ,0).

PROOF. We proceed by induction ong. If g = 2, we have the one-dimensional
problem of optimizing the functiona1 �→ a1(c − a1), restricted to the interval
[1, c − 1]. It plainly attains its minimum at the two endpoints 1 andc − 1.

Assume now that the assertion has already been proved up tog and let us prove
it for g + 1. From

∑
1≤j<l≤g+1 ajal = ag+1(c − ag+1) +∑

1≤j<l≤g aiaj and the
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induction hypothesis, we infer by means of the principle of dynamic optimization,

min∑g+1
j=1 aj=c

a1≥1,a2≥1

∑
1≤j<l≤g+1

ajal

= min
ag+1∈[0,c−2]

(
ag+1(c − ag+1) + min∑g

j=1 aj=c−ag+1

a1≥1,a2≥1

∑
1≤j<l≤g

ajal

)

= min
ag+1∈[0,c−2]

(
ag+1(c − ag+1) + c − ag+1 − 1

)
= min

ag+1∈[0,c−2]
(
ag+1(c − ag+1 − 1) + c − 1

)
.

This is a one-dimensional optimization problem forag+1 ∈ [0, c − 2]. The
minimizer is 0 and the minimum isc − 1. This concludes the proof.�
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