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BY MARIA TERESAGALLEGOS AND GUNTER RITTER
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Let there be given a contaminated list ofR¢-valued observations
coming fromg different, normally distributed populations with a common
covariance matrix. We compute the ML-estimator with respect to a cer-
tain statistical model witm — r outliers for the parameters of thepop-
ulations; it detects outliers and simultaneously partitions their complement
into g clusters. It turns out that the estimator unites both the minimum-
covariance-determinant rejection method and the well-known pooled deter-
minant criterion of cluster analysis. We also propose an efficient algorithm
for approximating this estimator and study its breakdown points for mean
values and pooled SSP matrix.

1. Introduction. The aim of cluster analysis is the partitioning of a data set
into g disjoint subsets or clusters with common characteristics. Bebil@sstics
there are important approaches to this problem basestatistical modelsin
particular, approaches by the ML and Bayesian paradigms. The latter offer several
advantages. They allow one tmmputethe cluster criteria to be optimized and
they yieldalgorithmsthat effectively, and sometimes efficiently, reduce them; see
Schroeder (1976). Finally, a model serves as a guide for the user in which cases to
apply the method.

This paper deals with statistical cluster analysis in the potential presence of
contaminations Statistical methods postulate that the data come from different
statistical populations. After clustering, the elements of the clusters may be used
in order to estimate the parameters of the underlying statistical laws. Since almost
all real data contain outliers, for the method to be useful in practice one will
have to allow that part of the data are contaminations or spurious elements.
Accommodating or discarding them in a previous step is necessary for robustly
estimating these parameters.

There are a great number of statistical techniques for the clustering problem
g > 2 in the absenceof outliers. One distinguishes betwesnixture and classi-
fication models; for an overview see Hartigan (1975) and the recent review pa-
per Fraley and Raftery (2002). Two (nowadays classical) statistical partitioning
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methods are the trace and determinant criteria of cluster analysis [Friedman and
Rubin (1967) and Scott and Symons (1971)]. In both criteria, the pooled within-
groups sum of squares and products (SSP) mattinf the clustering, see (2),
plays a central role. These criteria postulate as estimators those partitions which
minimize the trace and the determinantf respectively. Both methods are not
only heuristically motivated: the resulting partitions are maximum likelihood es-
timators of well-defined statistical models. Therefore, both methods perform well
whenever the data set is a realization of random variables obeying the underlying
statistical laws. The probabilistic model for which the trace criterion is optimal
assumes that all populations are normally distributed witknownmean vectors

and the samsphericalcovariance matrix of unknown size. The determinant cri-
terion retains the assumption on equality of the covariance matrices, but is less
restrictive in dropping that on sphericity. As a consequence, the partition opti-
mal for the determinant criterion is invariant not only w.r.t. location but also w.r.t.
scale.

In the presenceof outliers and in the case = 1, the problem reduces to
outlier detection or robust parameter estimation and a great number of methods are
available; for a good overview see Barnett and Lewis [(1994), Chapter 7]. In the
caseg > 2, mixture models with outliers have been well known for some time; see
again Fraley and Raftery (2002). With the aim of robustifyingttlaee criterion,
Cuesta-Albertos, Gordaliza and Matran (1997) introduced a trimmed version
which they calledmpartial trimming given a trimming levek € ]0, 1[, find the
subset of the data of size (1 — «) | which is optimal w.r.t. the trace criterion. They
also studied its consistency. Later, Garcia-Escudero and Gordaliza (1999) showed
robustness properties of the algorithm and, recently, Garcia-Escudero, Gordaliza
and Matran (2003) presented a trimniecheans algorithm for approximating the
minimum of the criterion.

We propose first a statistical clustering model with outliers which we call
the spurious-outliers modelThe idea behind it is general enough to allow
the derivation of robust clustering criteria with trimming under all kinds of
distributional assumptions and cross-cluster constraints. In fact, in the case of
normal distributions with equal and spherical covariance matrices, one recovers
impartial trimming. Applying the method to equal but general covariance matrices
with rejection ofn — r elements, the ML-estimator leads us in Section 2 to a robust
version of thepooled determinantriterion, thetrimmed determinant criterion
(TDC): choose a subset of sizefrom then observations and patrtition it intg
clusters so that the pooled SSP matrix has minimum determinant. Not surprisingly,
the maximum likelihood estimate of the mean vectors of the different underlying
normal distributions are the sample mean vectors of the various clusters, whereas
that of the common covariance matrix is the pooled SSP matrix divided by
the case = n, the TDC simplifies to the classical determinant criterion of cluster
analysis.
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The numberr of regular objects of the model becomes a parameter of the
proposed algorithm, the number of retained elements. It turns out that the estimated
means and pooled covariance matrix are fairly insensitive to the choice of this
number as long as it is not chosen too large. Moreover, we propose in Section 5
a way of estimating: by a method akin to g2 goodness-of-fit test: run the
algorithm several times with various values foand choose the one for which
the output best fits the theoretical tail probabilities. This rule may be satisfactory,
so much the more as there is no rigorous and unified concept of “outlier,” let alone
a formal definition; see, for example, Barnett and Lewis (1994) or the introductory
discussion in Ritter and Gallegos (1997).

Apart from this parameter, we do not address the question of model finding.
Normality of the population distributions, the commonness of the covariance
matrix and the number of clusters are assumed as a priori given. This may yield
criticism. However, it is straightforward to carry over the method to oliheation
and scale mode]dor example, elliptical distributions with a given radial behavior.
But the efficiency of the algorithm depends on that of the ML-estimator of the
population parameters and one reason for the popularity of the normal model is
the fact that ML-estimation of its parameters essentially reduces to summation.
We could also dispense witbtommonnessf the covariance matrix. However,
the present model should be preferred in situations where each class arises from
noisy versions ofg prototypes and the noise affects each prototype in the same
way. Examples are the classification of phonemes in speech recognition and
the chromosome classification problem. In the former case, the prototypes are
the phonemes pronounced by a pure speaker and in the latter, they are clean
images of the chromosomes of the different biological classes of an organism.
In both cases, outliers play an important role; see, for example, Ritter and
Gallegos (1997). Moreover, different covariance matrices would require estimation
of more parameters and might need more observations than are actually available.
Estimation of thenumber of clustergs an important issue that would go beyond
the scope of this paper. Just as there is no clear definition of outlier, there is none of
“cluster” either. Nevertheless, both are useful concepts. More general distributions,
cross-cluster constraints and estimation of the number of clusters in a Bayesian
framework will be the subject matter of a forthcoming communication.

Minimizing the TDC requires computing a subset of siz# then observations
and its subsequent partitioning ingoclusters (one or several clusters produced
by our algorithm may be empty); we call such a partition together with the
subset aconfiguration As in the case of the classical determinant criterion, its
computation is infeasible except for small data sets and approximation algorithms
which are desirable. In Section 3 we formulate a reduction step that, starting
from an arbitrary configuration, yields another configuration with lower or
equal determinant of the corresponding pooled SSP matrix; it is based on the
Mahalanobis distance. Iterative application of reduction steps until convergence
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and multistart optimization yield an efficient approximation to the required
minimum.

A measure of robustness of an estimator idisakdown valuer breakdown
point the minimum fraction of bad outliers needed to make it succumb. The
asymptotic breakdown value its limit as the number of observations increases
to infinity. Estimators with zero asymptotic breakdown value lack robustness. This
paper would be incomplete if it did not contain a word about this topic and, in
Section 4 we compute the breakdown values of the TDC for the mean vectors and
for the pooled SSP matrix. It turns out that the asymptotic breakdown value of
the SSP matrix is positive. Mean values, too, are robust w.r.t. data sets that meet
a certain condition of cluster separation to be specified in Section 4.2. Both facts
plead for robustness of the TDC.

In Section 5 we offer a few simulation studies in order to assess the performance
of the proposed algorithm. The error rates obtained compare favorably even to
recent studies without outliers; see Coleman and Woodruff (2000).

1.1. General notation and preliminaries.Giveng > 1 elementg;, 1< j <g,
of a setF, z§ stands for theg-tuple (z1,...,z¢) € F&. We write A > 0
(A > 0) in order to indicate that a symmetric matrix € R¥*¢, d > 1, is
positive (semi-)definite and we denote trace and determinast by trA and
detA, respectively. The/-dimensional identity matrix is denotdd. The symbol
Na(i, V) denotes both thé-variate normal distribution with mean vectore R?
and covariance matri¥ € RY*? and its Lebesgue density functioN, (i, V)(X)
denotes the value of this densityxat R?. Thesum of squares and products matrix
(SSP matrix)W of a finite, nonempty subsét € R¢ with meanmg is the matrix

) We=>) (x—mg)(x—mg)".

XeE

We next recall some definitions and notation in the theory of cluster analysis.
Let D = x| = (X1, X2,...,X,) be a list ofn observations= R4, We will often
identify the observatiow; with the corresponding indexe 1..n and a subset of
the list with the corresponding subset aofrl Given a finite setE, the notation
(£) stands for the system of all subsetsibf sizer. Let g > 1 be the number
of clusters. IfR is a nonempty, finite subset of.4, C,(R) denotes the set of
all partitionsR = {R1, R, ..., R} of R into g clusters (or subsets), that is, the
set of all configurations over the s& Let R = {R1, R2, ..., Ry} € Co(R) be
such a configuration. We will often identiff; with its index j and R with the
integral interval 1g. For a nonempty cluster;, letmg; be its sample mean vector
while, for all empty cluster® ;, mg; is some vector iR given a priori. We write
Mg := (Mgy, ..., Mg,) andmg(j) = mg,. Thepooledor within-groups sum of
squares and products matr{SP matrixX\W z of a configuration® is the sum of
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the SSP matrices (1) of all clusters,

g
(2) Wr=>" Y (x—mg)x—mg)".

j:lXGRj

2. The spurious-outliers model and its ML-estimator. Let r < n be the
assumed number of regular observations. Both the numbsr clusters and-
are input parameters of the present clustering problem (concerning the chejce of
see Section 5, in particular, Table 1).

2.1. The spurious-outliers model.This section extends the usual statistical
clustering setup; see Mardia, Kent and Bibby [(1979), Section 13.2], combining
it with Mathar’s [(1981), Section 5.2] outlier model.

Let (gy)yew be some family of p.d.f’s oR?. The parameter set of our
statistical model is

(3) @::[ U eg(R)} x (RH)E x (V e R4V > 0} x w".
Re(*) o

The first factor of ® stands for the unknown configuration, the next two for
the unknown parameters of the underlying normally distributed statistical
populations which generate the regular observations. Finally, the last fadtor of
represents the unknown statistical laws that generate the outlierX, Let 1..n,
ben independentR9-valued random variables and let their p.d.f.’s conditional on
the parametef = (R, uf,V, ¥}), R ={R1,..., Ry} € C4(R) be given by

8vi» i¢R.

The observationg; are realizations of these random variables. Since both regular
observations and outliers come from Lebesgue-continuous populations, it is
natural to assume that the realizations are in general positioni(any elements
are affinely independent). If we additionally require- gd, then the pigeon hole
principle ensures that at least one cluster contdifsl or more elements, which
impliesW & > 0 for all configurationsr.

At the expense of the stronger condition 2 n > gd instead ofr > gd, the
condition “data set in general position” could be relaxeditefements of the data
set in general position.” This, too, would guarantee nonsingularity of all pooled
SSP matricedV z. This modification would allow the — r outliers to possess
any pattern, for example, a regular one. It would, however, exclude examples with
many outliers from the beginning, such as in Fraley and Raftery [(2002), Figure 7].
We, therefore, stick to the former conditions. The user may want to screen the data
set for affine dependencies in a preprocessing step, at least if dimension is not high.
(Otherwise, one may run the algorithm removing affine dependencies as soon as a

0
fxi:
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singular SSP matrix is detected.) Since the regular populations are assumed to be
Lebesgue continuous (even normal), such dependencies are the clearest indications
of outliers.

The likelihood function of the spurious-outliers model for the détés

8
(4) Ly (R, pf,V, y) = [1‘[ [1 Nd(uj,vxx,-)][l"[g%(x»}.

j=LlieR; i¢R

The maximum likelihood estimate aR, uf, V, ¥/ is any element of the pa-
rameter se®® which maximizes (4). The following proposition shows that the
ML-estimator exists and has a simple representation if the outlier model and the
data meet a certain condition (5). We were led to this condition and the method
of proof of the following proposition by a similar condition appearing in Ritter
and Gallegos (2002) in a different statistical context. The corollary following the
proposition exposes an outlier model for which this condition is independent of
data.

PROPOSITION2.1 (ML-estimator).

(a) If, for each subse” C 1..n of sizen — r, the function[];c7 gy, (X;)
possesses a maximunr.w (v;) € W1, then the maximum likelihood estimator
of the spurious-outliers model exists

Assumein addition,

(5) argmin  detWg C arg max maﬂx]_[ gy (Xi).
RGURE(IJ’L) eg(R) REURE(LH) eg(R) (I//)l i¢R

(Note that the‘arg max” on the right-hand side of the inclusion exists and that the
product depends only on the choice of the outlieFeien

(b) The MLE of the configuration®R (for the given statistical modglis
determined by the TDC

(TDC) min detWR(: min _min dethR).
REUge(t.m Ce(R) Re(L") REC4(R)

(c) If we denote it byR* (if it is not unique choose ong then the MLE of
(R1, -5 M) IS (Mg (1), ..., Mg+ (g)) and that of the common covariance matrix
Vis 1W ..

PrROOE By the assumptions and the discussion at the beginning of this
section, we haveNg > 0 for any R € URe(l..n) Cq(R). Therefore, classical

normal distribution theory [see Mardia, Kent and Bibby (1979), pages 103-105]
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shows

maxmaxl_[ [ Na(w;. V)(xi)
”’1 j=LlieR;

_max(detZTV) ’/ZHexp 1tr( 1Y (% — me()) (X — Mz () )

j=1 IER;

(6) —r/2 1
:mvax(detzrV) "/2exp—3tr(V W)

= K (det2tW ) ™"/?,

whereK is a constant independent &f. The last equality is a direct application
of Mardia, Kent and Bibby [(1979), Theorem 4.2.1, page 104]. Finiteness
of U, ) C,(R), (6), (4) and the hypothesis of (a) together imply

g
max[maxmax]_[ I Nd([Lj,V)(X,)n;}aXH gy (%i) }

’Ll j=1lieR; 1 i¢R
(7
= max Ly (R, ui,V,y7),
RSV
which proves part (a).
Now, by hypothesis (5), any configuratioR that maximizes the first factor
in brackets in (7) also maximizes the second one. The maximum is, therefore,
attained at the minimum of dé{ s over all configurationsR. [

In order to minimize the criterion (TDC), one has to determisalaseR C 1.n
of r elements, the set of estimatesjular observations and partition R of it in
g clusters such thal/ s has minimum determinant. Since

(6) = HHNd(mgw) m)(x»,

j=LlieR;

this may be restated as follows: in order to fitRl compute the subset of
observations which is optimally explained ky normal populations with a
common sample covariance.

Condition (5) is not very restrictive. It is satisfied if max.,, (x;) exists for alli
and does not depend @nTwo special, opposite cases are the following.

COROLLARY 2.1. The conclusions of Propositich1 hold under each of the
following two conditions

(@) ¥ =R4 andgy (X) =g(X—v)isa Iocation model with a density functign
having a maximurfe.g., g = N4(0, 1) or g = -1, whereB is some region
about the origif.

)»"(B)
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(b) W is singleton ancty, is constant on a region that contains all data

PROOF In case (a), leM = maxg. Clearly, from the assumption,

max] | gy, (%) = [ [ maxg(x; — i) = M" ™"

V1 igr i¢gr Vi
does not depend ot and Condition (5) of Proposition 2.1 is satisfied. The same
is obviously true in case (b).OJ

The corollary shows that the parameter $etnay be of any size. If it contains
just one element, then all outliers belongtepopulation. The model also allows
that each outlier comes from itsvn population. This particularity justifies the
adjective “spurious.”

Criterion (TDC) is optimal (in the maximum likelihood sense) for the spurious-
outliers model 2.1 if condition (5) is satisfied, in particular, if the outliers are
generated from Corollary 2.1(a) or (b). Therefore, it performs well whenever the
data seX’ is a realization of random variables meeting this condition. However,
it is also a plausible descriptive tool per se. We formulate the case of one cluster
(robust parameter estimation) as a second corollary of Proposition 2.1. A similar
statement for normally distributed outliers appears in Pesch (2000) where Mathar’s
outlier model is already used.

COROLLARY 2.2. Assume that the data’ satisfies(5) [e.g., that the
family (gy )y cpe is @ location mode]. Then Rousseel®MCD is the maximum
likelihood estimator for the spurious-outliers mo@el with g = 1.

REMARKS. (a)Classical determinant criteriari-orr = n (the pure clustering
situation), criterion (TDC) reduces to the classical determinant criterion of cluster
analysis [Friedman and Rubin (1967) and Scott and Symons (1971)].

(b) Mixture model vs. classification mod&here exist two approaches to clas-
sical (nonrobust) model-based clustering: mixture modeling and the classification
approach. It is well known that both are related; see Mardia, Kent and Bibby
[(1979), remark (4), page 365] and Fraley and Raftery (2002). The same can be
said about mixture modeling with outliers and the present robust classification
model 2.1. Indeed, define the parameter set of the mixture model with outliers as

g r
Op = {(nl,...,ng) €10, 1| Y 7, =;} x O,
j=1

where (71, ..., ) are the mixing parameters artd; is defined in (3). Let
Y1,...,Y, be iid., 0.g-valued random variables whose common distribution
under the parametet = (5, p§,V, y}) € Oy is given by P/[Y1 = jl =,
jel.g, and P’[Y1=0] =1— L. Furthermore, letX; ;, i € 1..n, j € 0..g, be
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n - (g + 1) independentR“-valued random variables, independentdfand with
p.d.f. conditional or®,

inyj: i—0
8r; s J =V

The formula of total probability shows that tHe?-valued random variables
X1y, ..., Xny, are independent and that the conditional p.d.iXef., i € 1..n,
is given by the mixture

8
® P 0= 3Nt V)00 + (1 5 )y, 0

j=1

with mixing parametersr;. The datax] is now a realization of the random
variablesXy y;, ..., Xu,v,. Note that 1— - is the prior probability of occurrence

of an outlier. Hence, in this model the configurati@ns an unobservable random
variable. In the special case of Corollary 2.1(b), one finds the mixture model
appearing in equation (11) of Fraley and Raftery (2002).

The aim of the statistical clustering model 2.1 and the mixture model is (robust)
clustering and estimation of the means of all subpopulations and of their common
covariance matrix. Whereas, in doing so, the former estimates (besides these
parameters) the optimal configuratioR*, the latter estimates the probabilities
of the observations to come from the different clusters. In this sense, both models
pursue the same aim. In the clustering model, the prior information of the existence
of n — r outliers is expressed by the constraifiR#= n — r. The mixture model
describes this fact by setting the probability of occurrence of a contamination to
1 - . Furthermore, once the ML—estimate%f, /li,\A/) of the mixture (8) are

known, we can regard each distributioi (4 ;, V) as indicating a separate group,
and individuals are then assigned to clusters by Bayes’ allocation rule: assign
the ith observation;j € 1..n, to the classj that maximizes the posterior density
ﬁde(;l‘,-,\A/)(x,-). The (estimated) set of regular observatighgonsists of the
r observations with the largest maxima. The corresponding optimal partition is
defined by the class assignments of the elemen&s &imilarly, once the optimal
configuration®* of the clustering model is known, we can estimate the mixing
parameters by the cluster sizes dividediby

(c) Unequal cluster sizesBeing an ML-estimator, the pooled determinant
criterion can be interpreted as a maximum a posteriori estimator for mixtures with
equalmixing parameters. Therefore, it favors equal cluster sizes, although it can
deal with small deviations from the ideal situation. Baequalmixing parameters,
an entropy correction has to be added to the criterion; see Symons (1981). The
same remark applies to the trimmed version. We will deal with this topic (and the
related question of the number of clusters) in another communication.
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3. An efficient approximation algorithm. Minimizing the trimmed determi-
nant criterion requires the computation of a subset of siaat of then observa-
tions and its subsequent partitioning it@lusters. This task is infeasible, except
for small data sets, and an efficient approximation algorithm is desirable. In this
section we develop such a procedure. It is iterative and adapts the idea of mini-
mal distance partition, now classical in cluster analysis [see Schroeder (1976) for
a general version], to the case with outliers. In the classical caisleo(it trim-
ming), one reduces the sum of the squared Mahalanobis distance$Wyrfor a
fixed “current” configurationR by reassigningingle observationto cluster cen-
ters with smaller Mahalanobis distances WMt . Moreover, one shows that this
reduction also reduces the determinant of the SSP matrix. We prove below that
the same idea can be applied also to the trimmed determinant criterion; this exten-
sion is, however, not straightforward. The following theorem gives rise to the basic
reduction step of our algorithm.

THEOREM 3.1. Let R and Rpew be two configurations over-element
subsetsR, Rnew C 1..n, respectivelysuch that

8
oY (i —me() WX —m()))

j:].iERnev\Lj

<ZZ i —mz(N) WX —mz().

j=LlieR;

9)

(a) We havedetW g, < detW  with equality if and only iW &, = W .
(b) Let us putmg,,,(j) := mgz(j) for all j € 1..g such thatRpew; = @.
If there is equality in(a), then we have alsmg,,, = Mx.

PrROOE Atthe beginning of the proof of Proposition 2.1, we have already used
the fact that the determinant @  is a constant multiple of a negative power of
the product

l_[ I1 Nd<m:R(J) m)(xi).

j=Lli€R;

Claim (a) will, therefore, follow if we prove

8

ﬁ I1 Nd(mﬂnew )1W:Rnew>(xz)>]_[Nd<mﬂ(1) W:R)(Xz)

J=Lli€Rnew j=1
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Now, passing to likelihoods, we have

8 1
1_[ 1_[ LX,‘ (ma(Rnew(j)7 ;WfRnew>

j:liGRnewj

g 1
=1 I Lu(matin ;Wa)

j=li€Rner

1
(10) ey Y lx,.(mmj),;wﬁ)

j ieRnew,j

1
= exp) 3 b (M), ;Wﬁ)

j i€R;

g 1
— T 1 L« (mmp, ;wﬁ).
j=li€Rj
In this chain the first inequality follows from ML-estimation and the second is just
the assumption. This proves the first part of (a).

If the two determinants are equal, so are both ends of the above chain. Equality
in (10) follows and uniqueness of the ML-estimator impli&sz, ., = W and
MRnen(/) = Mz (j) for all j € 1..g such thatRnew ; # <. This concludes the
proofs of parts (a) and (b).c]

Let R be any configuration. With the squared Mahalanobis distances

(11) drG, )%= —mz(D) W —mg(j)), ielan jel.g.

Inequality (9) may be rewritten as

8 8
(12) Yo del, NP0 dri, )

j:liERneW_i j:liGRj

Theorem 3.1 is the basis of the following building block for our algorithm:
starting from a configuratioeR, look for another configuratiotRew Such that
the corresponding sum of distance squares whet.givenR is smaller than the
current one; see (12). The theorem assures that this new configuration is a better
approximation to the minimum of the TDC.

Plainly, a configuratiomRew that minimizes the sum

8

(13) 3 Y daG j)?

j=lieP;
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over all configurationg Py, ..., Pg} € C4(P), P € (1;”), satisfies (12). Fortu-
nately, computing this minimum is very simple: it is sufficient to assign each ob-
servationi to a clusterj € 1..g which minimizes the distance squaig (i, j)?

with respect to the fixed configuratioR. Let us call each clustej € 1..g that
minimizesdg (i, j)? optimalfor the ith observation;j € 1..n, with respect to the
given partitionR. Since we must restrict our choicet@bservations, the optimal
ones are those with thesmallest distances to their optimal clusters. These ideas
are made precise in the following corollary of Theorem 3.1.

COROLLARY 3.1. LetR be a configuration and leR,ey be a subset of..n
consisting ofr observations with the smallest Mahalanobis distances to their
optimal clusters w.t. R (in general Rpew iS UNiqug. Let Rpew be the partition
of Rnew Obtained by assigning eaéhe Rpew to its optimal cluster w.t. R. Then

(&) RnewMinimizes the objective functigh3) over the set of all configurations
{P1,..., Pg} € Cy(P), P e (L)
(b) The conclusions of Theoresnl hold.

In the case of one clasg,= 1, Corollary 3.1(b) is the basis of Rousseeuw and
Van Driessen’s C-step [Rousseeuw and Van Driessen (1999), Theorem 1]. For
n =r, (the noncontaminated situation) Corollary 3.1(b) reduces to Spath [(1985),
Theorem 3.5]. We next formulate the reduction step in algorithmic terms.

3.1. The reduction step. InputA configuration R together with its mean
vectorsmg and its SSP matri}V z;
Output A configurationRnew such that detV ¢, < detW z.

(i) Compute the distance squaes(i, j)2,i € 1..n, j € 1..g, defined in (11).
(i) For eachi € 1..n, determine an optimal cluste; € R, that is, j; €
argmin,y , dz (i, j)?.
(iii) Determine a permutatior : 1..n — 1..n that satisfies

(14) Az (k (D), jew)’ < dg(k(2), je@)? < - < dg(k(), o)

(iv) Put Rpew = {«(1),...,«(r)} and, for eachj € 1..g, put Rnew; = {i €
1..V|jK(i) = J} Fil’lally, Ieteﬂnewlz {Rnew]_, ey Rnewg}.

3.2. Iteration and discussion. Now, starting from an initial configuratiomRo
and iterating reduction steps, we obtain a sequence of configurat®ns=o
such that detV z, ., < detW g, for all k. Since there are only a finite number of
configurations, this iterative process must become stationary after a finite number
of steps, sayL, with detW , , = detWg, (> 0). By Corollary 3.1, we have
W, ., =Wg, andmg, , =mg, . Thereforedg, (i, j) =dg, .G, j),i € 1.n,
j €l.g,and, ifRy is unique, a further reduction step yields a configuration with
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sum (13) and the TDC unchanged. &, is not unique, then a further step may
improve the TDC, but not (13). (An example of nonuniqueness in the complex
plane isx; = ¢!™/4 k € 1.8, r =4, g = 1 andRg = {X1, X3, X5, X7}.)

The configurationR is oneapproximation to the minimum. Now, multistart
optimization is applied to the foregoing iterative process; the limit configuration
with the least value of the determinant of the corresponding SSP matrix is the final
approximation to the minimum.

If a configurationR is aglobal minimunof the TDC, then a reduction step with
inputmg andW x yields an equivalent configuration.

3.3. The initial configuration. We indicate two methods for generating ran-
dom initial configurations. Both are natural extensions of the ones proposed by
Rousseeuw and Van Driessen [(1999), Section 4.1]:

(a) Draw a random configuration consisting of nonempty clusters.

(b) Choose at random a subset afwith at leastgd + 1 elements. Construct
a random partitiodD of the subset iy clusters and compute its mean vectorg
and its SSP matriXV 5. Iterate a reduction step to obtain an initial configuration
Ro.

We conclude this section with a result concerning some geometrical properties
of any limit configuration of our algorithm. This result extends Corollary 1 of
Rousseeuw and Van Driessen (1999) to robust clustering and the well-known
geometric separation property of discriminant analysis, see Mardia, Kent and
Bibby [(1979), Theorem 11.2.1], to clustering in the presence of outliers.

COROLLARY 3.2. Let R = {Ry1,..., R,} be a limit configuration of the
reduction step iteratioffor examplethe optimal configuration

(a) Each nonempty clusteR;, j € 1..g, is separated from the estimated set
CUj_y R; of outliers by an ellipsoid

(b) Two differentnonempty cluster®; and R; are separated by the hyperplane
hji(x;) = 0,whereh j; : R? — R is the linear form

hj(y) =2y — 2(mz () + ma))]" WH(me(j) —me(D),  yeR<

The observationsin clusterR; are those satisfying ;;(x;) > 0.

PROOF The application of a reduction step to the configurati®nyields
R itself as possible output. Thus, the set of regular observambasule R;
may be written as{k(1),«x(2),...,x(r)}, wherex:1.n — 1l.n is a permu-
tation satisfying (14), whereas the set of outliers is given {pyr + 1),
k(r+2),...,k(n)}. In order to prove part (a), lete 1..g such thatrR; # <. All
observations € R; satisfydg (i, j)? < MaXi<m<, dg (k(m), j)? =: K;, whereas



360 M. T. GALLEGOS AND G. RITTER

all i ¢ R satisfydz (i, ji)? > K; [evendg (i, ji)? > dz(k(r), jet))?]- The ellip-
soid

E;={xeR!|(x—mz()) W(x—mge(j) < K,)

containsR; andCR is contained in the closure &t ;.

For two observations; andiz in the jth and in thelth cluster, respectively,
we havedg (i1, /)2 < dg (i1, )2 anddg (i2, )2 < d(i2, j)2. Part (b) now follows
from standard matrix operations(]

4. The breakdown values.

4.1. Preliminaries. Besides the asymptotic breakdown value of an estimator
Hampel (1968, 1971), there exists also a finite-sample version, Hodges (1967) and
Donoho and Huber (1983). Loosely speaking, the latter measures the minimum
fraction of bad outliers that cartompletelyspoil the estimate. More precisely, let
® be a locally compact parameter space, for example, the intersection of an open
and a closed subset of some Euclidean space and consider an estimator ©.
Here,4 C R™ is the system of all data seigimissibléefor § (“in general position”
in our case). We say th&x), ..., X)) € 4 is anm-modification,m < n, of a data
set(Xy,...,X,) € A if it arises from(xy, ..., X,;) by replacingm observationx;
with arbitrary elements; e R? in an admissible way. An estimatér R"¢ — @
breaks dowrunderm replacements with a data se4, ..., X,) € 4 if the set of
estimates

{8(X], ..., X)X, - .., X,) is anm-modification of(x1, ..., x,)} C ©

is not relatively compact i®. Theindividual breakdown poinfior X} is defined as
B(8,X]) = 1min {ﬂ‘{S(MNM} is not relatively compact i|®};
<mzn|n

here M runs over allm-modifications ofxj. It is the minimum fraction of
replacements ix] that may causé to break down.

Depending on a specific data set, this is not a useful notion per se. Therefore,
Donoho and Huber define a value that we calliuhesersal breakdown valug(s)
of §: it is the minimum relative amount of replacements that cadstsbreak
down withsomedata sek] € #:

(15) B(8) = min B(8, x7).
X1 €A

According to this definition, the estimator breaks down at the first integéor
whichthere existsomex’ such that the estimate becomes arbitrarily bad for some
suitable modificatiorV.

The universal breakdown value is the minimal individual one; it depends on the
estimator and its parameters alone, not on data. It is pessimistic in considering the
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worst caseand modifications of this notion are conceivable. One may argue that
the existence of aingledata sek’ and possibly vergpecialbad modificationg/
may not suffice to indicate lack of robustness of an estimator. A more relaxed
definition would require the criterion to break down feufficiently manydata
setsx]. We will introduce such a modification in Section 4.2. Another less stringent
definition would require all components of the estimate to break down [such as all
means in Definition 4.1(a)].

The present task is, among other things, estimating mean vectors and an SSP
matrix by means of the TDC. In the first case = R$4 and in the second? is
the set of all positive-definité by ¢ matrices, an open subset(@%")-dimensional
Euclidean space.

Our definitions and analyses need the following facté. ¥ B, then trA <trB
by linearity and def < detB (see Lemma A.2). Lekmin(A) (Amax(A)) be the
least (largest) eigenvalue of a matféix> 0. Then

Amin(A) = min xTAx < min x”Bx = Amin(B)
lxlI=1 lxlI=1

and, similarly,

Amax(A) < Amax(B).

Let E C F be nonempty, finite subsets Bf and letmz andmy be their means.
Then their SSP matrice®y and W [in the simple sense (1)] satisfWg =
We(mg) < Wg(mp) < Wr(mp) = Wge. Hence, also tWg < tr Wg, detWg <
detWgr, Amin(Wg) < Amin(Wr) andimax(WEe) < Amax(WF).

In the present situation, corruption of the estimates is reflected by an arbitrarily
large value of at least one sample mean or by an arbitrarily large or small
eigenvalue of the pooled SSP matrix of the optimal configuration; see Donoho
and Huber (1983). Transferring definition (15) to the present situation, we obtain
the following.

DEFINITION 4.1. Letn,r, g,d be such that > r > gd + 1 as before. Given
a data sets < R™? of observations in general position, lét* denote its optimal
configuration w.r.t. the TDC.

(&) Theuniversal breakdown valuef the TDC for themean vectorss
Bearn. ) =min min 1 |supmax m.- (/) = ool
X’i l<m=n|n' p jel.g
herex] runs over all data sets in general position afidver allm-modifications
of x7 in general position.
(b) Theuniversal breakdown valuef the TDC for the SSP matrix is

m 1
,r,g)=min min § —{supmax{ Amax(W 4¢+), ————— ) =001,
BssHn, 1, 8) b l<m<n{n‘ Mp X( max(W 4+) )\min(W,M*)) oo}

wherex}] andM are as stated in (a).
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We first show that, in general, theniversal breakdown value of the TDC
w.r.t. the mean vectors is low. We need two lemmas; the first—a geometrical
interpretation of the SSP matrix—is of general interest and the second is
combinatorial and of a technical nature. The parallelepiped spannied byoints
Yo....,Yr € R k <d, is the subset

k
P(Yo.....Y) ={Yo+ Y _Xi(yi —Y0)|0<1; <1p SR
i=1

Its d-dimensional volume is independent of the order of the pagints

LEMMA 4.1. Let E = {Xq,...,Xs} € R?. We have the equalitdetWy =
71 Volumé P (E).

PROOF Letm= 1557 x;. Putting
A ( 1 1 ) ¢ RE+Dx@+D)
Xg — M Xy —Mm ’
we obtain the claim from
volumé P(Xo, ..., Xg)
= detz(X]_ —Xo, ..., X4 — X0)
1 (Xo—m?
, 1 ... 1
—def A =detAdetA” = det( ) : :
Xo—M -+ Xg—m
1 (xg—mT

d+1 0
=det( + ):(d+1)detWE.

0 Wg O

LEMMA 4.2, Letg>2,p>2,q>g—2andr = p + g be natural numbers
and let

F={x1,....xp} U{y1s, y2} Ufz1, ..., 24}

with pairwise disjoint elements;, y, andz;. Any partition R of a subset ot of
sizer in g classes is either of the form

R*={{x1,....x,}, {y1. y2}, g — 2 one-point classes from the's}

or possesses a clags which contains some paifx;, y} or some pair{z;, u},

u#z.
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PROOF Let #x, #y and #z be the numbers ofy;’s, y’'s and z;'s,
respectively, that make up the configurati8nBy assumption, # +#,y +#,z =
r and, hence,

#ro=r—t#hx—-#y>r—p—-2=g-2

The claim being trivial if #z > g, we consider the three remaining casgs# g,

g — 1 andg — 2 separately. Now, # = g implies #x +#.y=r —g=p > 2;
therefore, if there are no twg's in one class, then one class must contain sgme
together with arx; oray,. If#,z=g¢g — 1, then#x+#y=r—g+1=p+1;
sincep > 2, at least one; and oney;, must belong to the configuration. A simple
counting argument shows the claim in this case. Finally, i # ¢ — 2, then
#x+#Hy=r—g+2=p+ 2, that is, allx;’s and all y;’s belong to the
configuration. If allz;’s form one-point classes, then thgs and y;’s must share
the remaining two classes. If they are separated, tRea R*. In the opposite
case, some class contains bothvaand ay;. [

For 0y € R?, the rank-one matriyyy” has the simple eigenvalugy||?.
Therefore, dety +yy?") =1+ |yl?, y € R%. Hence, ifA € R?*? is positive
definite, then we have

(16) detA +yy") =detvVA(ly +A Y2y A=Y2) /A = 1+ y"A~ly) detA,

an equality that we will repeatedly use in the sequel.

In the following theorem we assume that, in the case of ties, an optimal solution
is chosen for which the trace of the between-groups SSP matrix is minimum.
This applies, in particular, to one-point clusters since these can be exchanged with
discarded observations without any change of cost.

THEOREM4.1 (Universal breakdown point of the TDC for the means).

(@) If n>r+21andr > gd + 2,then the means remain bounded by a constant
that depends only on the data as one observation is arbitrarily replaced

(b) If g=2andr > g + 2 (besides the standard assumptior gd + 1), then
there is a data set such that one mean breaks down if two particular observations
are suitably replaced

() fg=2,n>r+1,andr > gd + 2,thenBmeardn, r, g) = %

PROOF (@) It suffices to show that an optimal configurati®f discards a
remote replacement. The mean vectors of all cluster®bdfwill then remain
within the convex hull of the date;. Arguing by contradiction, let us assume that
there is an optimal configuratioR* which contains the replacemanin a cluster
C € R*. If the replacement is far away, then this cluster must contain at least one
other point since, otherwise, it would be exchanged with a discarded original point
by the convention agreed upon just before the theorem. This point must, of course,
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be an original observation. It follows that:=y — m¢ — oo asy — oo. Since

r > gd + 2, any subset of elements, in particular the union of the members of
R*, contains at least — 1 > gd + 1 original points. Therefore, one clustér;,
contains a subsei consisting ofd 4 1 original points. The affine span éfis the
whole space and, wheth€y = C or not, we have

Wgs > Wg(me,) + (y; —me)(y; —me)” > Wg +uu”.

Therefore, by (16),

detW z- > detWg +uu’) = (1+ W5 7?ul|?) detWr — oo.
Uu—o00
This contradicts the fact that the maximum cost of any configuration that discards
the replacement is finite.

(b) Let us construct a data st = {X1,...,X,—g, W1, W2, 21, ...,Zyr4g—2}.
First note that — g > d + 1 (distinguish betweed = 1 andd > 2). Hence, we
may choose — g elementdxy, ..., X,_¢} = F in general position with mean zero
and SSP matrix,.

We next use induction to construct the poinis. .., z,_, 4o 2if n —r+g> 2.
Suppose thaty, ..., z; have already been constructed for san®<!/ <n —r +
g — 2. Let F; be the system of all hyperplanés spanned by! of the points in
M; = F U/{z,...,z) each. Since the set of all directionsi{ parallel to some
H € 7 is a(d — 1)-dimensional subspace &, there is a direction not parallel
to any of the hyperplanes. By running in such a direction, weZing so far from
each hyperplanél that

an volumeP (Z;41, U1, ...,Ug) > +/2(d+ 1)
for all {us, ..., uq} € (/') and such that

(18) 1+ 3 @41 — W Wil (Z41 — ) detWg > 2

forallue M; and allE € (Z\i‘i}). After all x;'s andz;’s have been constructed, the
two pointswi, wo are chosen in the centered unit ball so tiiatis in general
position. Irrespective of the optimal configuration, theestimated means are
within the convex hull ofD.

Now, mimicking the construction of ore, we replace the two points; and

w> with a twin pairy1 # y» such thatly, — y1] <1,

(19) volumeP(E) > /2(d + 1)

for all setsE e (‘{P\WY2hULY2l) that contain at least ong. except forE =
{y1,y2} if d = 1, and such that

(20) detWe(1+ 3(yk —w ' Wglye —w) =2, k=12,

forallue D\ {y1,y2} and allE € (Z\ﬂ})-
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We claim that the optimal configuration®* = {F, {y1, Y2}, {za}, ..., {Zg—2}}.
Indeed, by (16), its cost is

detW g+ = detf{ Wr + 3(y2 — y1) (Y2 — y»7)
=detly + 3(y2 -y (Y2 —y»7)
=1+3ly2—y1l*< 3.
Moreover, Lemma 4.2 tells us that any clusteriignot equivalent withR*
(equivalent in the sense that somé& are exchanged) possesses some cluster
(choose it of maximum size) containing either some pair,yx} or some
Z; together with any other element. Let us denote these two elememtagb.

If C is of size at least/ + 1, then we choose &/ + 1)-element subsek C C
containing{a, b} and estimate

detW ¢ > detW¢ > detWy > y Jlr lvolume?- P(E)>?2
according to Lemma 4.1, (17) and (19).

Otherwise, we havd > #C > 2 and there exists a clust® of size>d + 1
which contains no paifx;, yx} and noz,. We haveR # C and fromd > 2, it
follows that R C F. Choosing a(d + 1)-element subseE C R, we use (18),
(20) and (16) to estimate

detWz > det(Wg + Wap)) = detWp det(l+ (b — ' w;lb —a) > 2

In order to conclude the proof of part (b), it is sufficient to observe that the norm
of the mean vector of the clustfy, y2} may be arbitrarily large.
Part (c) follows immediately from (a) and (b)J

4.2. Restricted breakdown point and the separation properfheorem 4.1
says that the asymptotic universal breakdown value for the means is zero; this
is a negative result and somewhat unsatisfactory in the framework of a trimming
algorithm. One reason is the strength of the universal breakdown value. We may
rescue the situation by introducing a relaxed version of itreés&icted breakdown
valueg(§, X) w.r.t. a subclasg C 4 of data sets admissible fér It lies between
the individual and the universal breakdown values, Section 4.1, and we define
it as the minimum fraction of replacements that cads® break down with
somex; € X,

B(8, KX)= min B(8,X]).
x’{eJ(
The universal breakdown value is justs, #4). The restricted breakdown value,

too, is a characteristic of an estimator. It provides information on the structure that
a data set must have so that the estimator still acts reasonably after contamination.
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Let us now compute the restricted breakdown value of (TDC) for the mean
values w.r.t. a certain class of data sets that we describe next. It is necessary to
first introduce some notation. LeR = {P1, ..., P;} be a partition of some data
sets, let 8}7’ be the set of all mean values of nonempty subse®;pfl < j < g,
let 87 be the set of all subconfigurations #f comprising at most elements
and possessing at least one cluster of sizé+ 1, and letw? be the set of all
pooled SSP matrices generated by elements?ofGiveng >2 andu > 1, we

definek, , = (max{zr_”’(g(;_l)gg*l’”‘”*lﬁ (> d) and X, as the system of all
d-dimensional data setsof lengthn in general position that have tiseparation

property

S possesses a partitign in g subsets of sizes at leas{< |n/g]) such that

. . maxy cw» detW
(1)  min_ min (Mg —m)TW-(m; —m;) > 2. — W .
Wew? mjegf min P; detWC
J Ce(kg',u)
mye&” 1=j<g
#P; > ke u

j#k
Both sides of this estimate are invariant with respect to location and scale and their
guotient describes a measurevafidity of the partitions, a combination of cluster
compactnesgdetW) and clusterseparation(the Mahalanobis distance squared).
A great number of such indices are widely in use for assessing the quality of a
partition; see Bezdek, Keller, Krisnapuram and Pal (1999).

A data set satisfying condition (21) possesses a marked cluster structure. Note
that the left-hand side of (21) increases as the different clustefs éne moved
away from each other, whereas the right-hand side remains unchanged under this
operation. It is, therefore, easy to construct examples of data sets that satisfy the
separation property.

Note that the classeX, , decrease as increases. The SSP mati » is
larger than all matrices iiv” w.r.t. the positive semi-definite ordering; therefore,
substituting migh; m, (Mg — mj)TW}l(mk — m;) for the left-hand side of (21)
and deWV » for max, > detW defines a narrower class. Itis easier to verify this
condition than (21).

LEMMA 4.3. Let S € K, 1 (with associated partition) and let R be a
partition of some finite subsé& € R such that

(i) some clusteR; € R contains elements of at least two differéhts,
(i) there are a cluster; € R and somgj € 1..g such that#(R; N P;) > kg 4.

Then we haveetW g > maxy > detW.

ProOF.  Without loss of generality, the twB;’s appearing in (i) aré’, and P,.
We first consider the case= /. Puttinga; = #(R; N P;), we use Lemma A.3 to
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estimate
Wg>Wg, = Y (x—mg)(x— mRk)T
XERy
d T
= Z Z (x - mRk)(x - mRk)
j=1x€eR(NP;

g aia
= Z Wrinp; + Z [ (mRkﬂPj — mkaPh)(mRmP, - mkaPh)T
j=1 1<j<h=g

ajap T
Wgine + Y '/T(mkaPj — Mg,np) (MRep; — MRenp,) s
l<j<h=g
here we have abbreviate®, N » = (Ry N P1,..., Ry N Pg). Applying
Lemma A.1(b) withA = W g, np andy;; := ‘/%(m]qkn})j —Mgnp,), L<j <
h < g, we infer

a;ap Tyn/—

J 1

detW s > <1+ > IR, (Mrenp; — Mrenp,)” Weine (Menp; — mkaPh)>
l<j<h=g

x detWg,np

a;ay . T

- ( Z #JR )R AP, P (Mrnp; = Megy)
1<j<h<g Tk J RN} RANP 7S

- l<j<h=g

-1
X Wi np (Mrinp; — Menp,) ABW g0

1 . Tor—1
> — min m S —m Wr ' n(m . —m
= 5 ke W g, 2o (MR~ Mrins) Wi (Mrine; = Meinr)
1<j<h=g

X detWka;p;
the last inequality follows from Lemma A.4 and (i). Sinég N P < 87 by (ii)
and sincamg,np, € 8;? 1<h <2, we may apply the lower bound (21) to the last
line above to obtain

detW g >

ma » detW
. Mwew detWg,np» > max detw.
min . », detW¢ Wew?
CE(kg,Ju)
1<j=<g
#szkg,u

If k # 1, we start with
WJR = WR] + WRk

ajap T
J
>Wgrnp + ) o (Meinp; = Mrinp,)(Meanp; —Meop,) -
l<j<h=g
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The remainder of the proof is similar, as beforél

If a data set meets the separation property, then (TDC) is much more robust than
predicted by Theorem 4.1.

THEOREM 4.2 (Restricted breakdown point of the TDC for the meangkpet
g>2,letr > (g — Dgd, and letu > n — r be an integer

(@) The restricted breakdown value @FDC) for the mean values .wt. X, ,
satisfiesBmearn, 1, g, Kg u) = % minfn —r+1r—(g—Vgd,r +u—n}.
(b) If

() 2r —n> (g —1)gd and
(i) u>2mn-r),

thenBmearn, 1. g, Kg.u) = 2(n —r + 1).

PROOF (a) LetS € K, , with partition  and letM be any set obtained
from S by modifying at mosto =min{fn —r,r — (g —Dgd — L, r +u —n — 1}
elements. Our proof proceeds in several steps.

(o) Any configuration®® in M has at least one cluster with+ 1 original
observations:

Indeed, by definition ofp, R = |JR has at least — p > (g — Dgd > gd
original observations and the claim follows from the pigeon hole principle.

Let R now be the optimal configuration d¥f. We will show that the mean
values of all clusters ofR are bounded by a number that depends solely on the
original datas.

(B) detW z is bounded by a number that depends onlyson

In fact, we have

(22) detWx < max detW.
Wew?

Indeed, letR" € M consist ofr original points and letR’ = R' N P =
(R'NP...,R' N P); thenR' € 87, Wr € WP and deW g < detW z by
optimality.

(y) If R; containsd + 1 or more original observations, then its mean is
bounded by a number that depends onlySon

To this end, define

Amax(S) := maxA|A eigenvalue oWe, C C Sand # > d + 1},
bmin(S) := min{detW¢|C C S, #C >d + 1}.
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These quantities are bounded above and below (away from 0) and depend only
on S. Now, by Steiner’s identity,

Wg> > (x—mg)(x—mg,)
XERjﬂS

= Wg;ns +#(R; N S)(Mg; — Mg;ns)(Mg; — ijﬂS)T

> Wg;ns + (Mg; — Mg;ns)(Mg; — ijmS)T-
Hence, by (16) and the assumption madergn
detW z > detWg,ns(1+ (Mg, — Mg;ns)’ Wghs(Mr, — Mg;ns))
bmin(S)
Amax(S)
and the claim now follows fromg).
(6) If R; contains between one andoriginal observations, then its meary

is bounded by a number that depends onlyson
By («), there is a clustek # j containingd + 1 original observations. We have

Wgr = Wg, + Wk,

>

“ij —Mg;ns ”2

T
> Wgrins + WR_,ﬂS +#(R; N S)(ij — ijﬂS)(ij - mR_,ﬂS)

> Wrens + (Mg, — Mg;ns) (Mg, — ijmS)T

by assumption orR ;; hence,

detW g > detWg,ns(1+ (Mmg; — ijﬂS)TWI;k]hS(ij —Mg;ns))

and the proof terminates as that ¢f)(

In view of (y) and ¢), the proof of part (a) will be finished if we show that

(¢) eachR; contains at least one original point.

Assume, on the contrary, tha® contains some cluster that consists solely
of replacements. We show that, as a consequeRcand R must satisfy the
hypotheses of Lemma 4.3. By definition@fR has atleast — (r +u—n—1) =
n + 1 —u original elements; that iszf;’f:l#R N P; > n — u. Taking into account
that eachP; has at least elements, a simple counting argument shows that each
of the g sets P; intersectsk. By assumption, there is son®, omitted by all
P;’s and the pigeon hole principle shows Lemma 4.3(i). Again by assumption, the
original observations iR are distributed over at mosgg — 1)g (disjoint) sets of
the formR; N P;; the definition ofk, , and another application of the pigeon hole
principle show that some s&; N P; contains at least, , original observations;
this is Lemma 4.3(ii).

The conclusion of Lemma 4.3 contradicts (22), which completes the proof of
part (a).
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(b) The individual breakdown value of (TDC) for the mean vectors w.r.t. any
admissible data set] is < %*1 Indeed, letM be a set obtained from] by
modifying at leastn — r + 1 of its elements. Then each subsetMfof sizer
contains at least — (n — (n — r + 1)) = 1 replacements. Part (b) now follows
from (a), (i) and (ii). O

In the caseg = 1, (TDC) reduces to Rousseeuw’s MCD; see Corollary 2.2.
Rousseeuw (1985) proves that the asymptotic breakdown value of MCD with
r=[(1—a)n]isaif « <0.5; see also Lopuhad and Rousseeuw (1991), where
the analogous estimator MVE is treated in more detail. This is in harmony with
the foregoing theorem, although it is not a corollary of it: the separation property
and part £) of its proof are not applicable § = 1.

Theorem 4.2(b) asserts that the algorithm can withstand exactly the number of
outliers generated by the model 2.1 if the hypotheses of (b) are satisfied.

ExAMPLE 4.1. By way of discussing Theorems 4.1, 4.2 and the separation
property, it is interesting to take a look at an instructive example. Let us
consider the one-dimensional data sgt..., x10 shown in Figure 1 with gap
a > 1. Its “natural” partition has thg = 2 clustersR1 = {x1,...,x5} and Ry =
{x6,...,x10}, and the means are 0 amd+ 4. It is reasonable to choose this
partition for 2 andu = 5. The assumptions of both theorems are met with the
parameter = 8 (i.e., the algorithm discards two observations). The first theorem
says that (TDC) will resist one arbitrary outlier for alk> 1, whereas the second
promises that it will tolerate even two such outliera it 20. There is actually a
transition from the breakdown value 0.2 to 0.3 at a much smaller value loft
us compute this critical value. A decisive pair of replacements-sxg). As we
replace these two observations by very large, close numiers; with SSPe,
two configurations compete for optimality: the configuratidtis= {x1, ..., xe},

R}, = {x7, xg} (xg andx1g removed, one mean breaks down) &{d= {x1, ..., x5},
R5 = {xg, x9, x10} (replacements removed, means are 0 ang %‘). The first

T Ty
I X2 x3 H T ] 7 xs Zg x10
-2 —1 0 1 2 at+2 a+3 at+4 a+5 a+6

Fic. 1. 1D data set replacementsﬁ, xé; breakdown a replacements if: < 1.225and at3 if
a>1.225.
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has SSP 16- %(a + 2)2 + ¢, which is smaller than that of the secon@,, if

a < \/? — 2~ 1.225. Hence, this is the critical parameter that separates the

breakdown values 0.2 and 0.3. This indicates that (TDC) is actually more robust
than predicted by Theorem 4.2, let alone Theorem 4.1.

We next show that, i > r and ifr/n is large enough, the TDC is robust w.r.t.
the SSP matrix. We actually show that it breaks down simultaneously for each data
set as the fraction of bad outliers slightly exceeds/n.

THEOREM 4.3 (Universal breakdown point of the TDC for the pooled SSP
matrix).

(a) Suppose thatr > n + g(d + 1). If at mostn — r + g — 1 points of the data
setD are replaced in an arbitrary waythen the eigenvalues of the SSP matrix of
any admissible configuration remain bounded away from zero by a constant that
depends only o andd.

(b) Suppose tha2r > n + g(d + 1). If at mostn — r + g — 1 points of D are
replaced in an arbitrary waythen the eigenvalues of the SSP matrix of the optimal
configuration remain bounded by a constant that depends only andd.

(c) Givent > 0, n — r + g elements of anyD may be replaced so that the
largest eigenvalue of the SSP matrix exceeds

(d) If 2r >n+ g(d + 1), thenBsspn, r, g) = ”_ZJ.

PROOF We begin with two remarks. (i) Leb be any subset dk? of sizen
in general position and |é¥x be the SSP matrix of a subsetC D. SinceD is in
general position, the number

o= mig Amin(WE)
Ee(4y1)

is strictly positive and depends dhandd, only.

(i) Let M be any set obtained fror® by modifying at mosts —r + g — 1
elements and leR be any subset oM consisting ofr elements. If 2 > n +
g(d+1),thenR containsatleast— (n—r+g—-1)=2r—n—g+1>gd+1
original observations iD. By the pigeon hole principle, any clustering Bfin g
parts has at least one memlgrthat contains/ + 1 such points. We now prove

(a)—(d).

(&) The least eigenvalue of the SSP matrix’dh (ii) is > « and, by Section 4.1
the same is true for the SSP matrix of any admissible clustering of the modified set
M.

(b) Sincer — g + 1 points in D remain unchanged by the replacement, the
modified setM has an admissible configuratiowt with one cluster consisting of
r — g + 1 original data ang — 1 one-point clusters. Hence, the SSP matrix of the
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optimal configurationM* of M cannot have a determinant larger than thatgf
that is,

detW i« < detW 4.

The SSP matrixV 4 is that of ther — ¢ 4+ 1 original points and, hence, depends
only on D. Therefore, its determinant is bounded by a consjarihat again
depends only orD. By (ii), at least one cluster o(* contains at leas# + 1
original points. The claim, therefore, follows from the estimates

)»max(WM*)Old_l = )Lmax(WeM*))»min(WM*)d_l < detW 4+ <detW  <y.

(c) Modify D by > n — r 4+ g replacements that are at a distane@r from
each original observation and from each other to obtain d&dtet M* be its
optimal clustering. Clearly, any subset ofelements ofM contains at leasg
replacements. Moreover, there is a clusier#C > 2, that contains at least one
replacement. Indeed, if no cluster contains two replacements, then each contains
exactly one and, since> gd + 1, one cluster contains at least two elements. Now,
if x is a replacement anglanother element id’, then the trace of the SSP matrix
of C is at least

RS ATRS2%Y ( _ﬂ)( _m)T}
trWCzter 5 )(x > ) +1ly 5 y 2

_vlI2
_ =yt
> >
Therefore, thW 4« > tr W > ¢ (see 4.1) and one eigenvalue must exag@dd
Claim (d) follows from (a)—(c). O

It may be astonishing that the TDC should take- 1 replacements even if
r = n. However, isolated replacements may be treated as one-point clusters in the
optimal configuration; in this case, the number of clusters formed by the original
data is reduced. Replacements that huddle together may form one cluster. In both
cases, the SSP matrix is not completely destroyed.

5. Simulation studies. In order to assess the performance of the proposed
algorithm, we have implemented it as a C++ program for various dimensions,
sizes, numbers and positions of clusters, as well as numbers of outliers. The first
simulation study illustrates how, by varying the input parametéhe assumed
number of regular observations) of our algorithm, one can roughly control the
amount of contaminations contained in the data set.

The symbole; € R?, i € 1..d, stands for theth unit vector. As usual, the
symbol Xj(a) denotes thex-quantile of they2-distribution withd degrees of
freedom. We consider, in dimensidn= 8, the 2/ normally distributed populations
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Na(pj, V), j € 1..2d, with common covariance matri¥, diagonal with entries
(1.0,1.2,1.4,1.6,1.8, 2.0, 2.2, 9.0) and means

V +1)/2,(j+1))/2
\/((] )/ (é )/2)x2(e) ciina o

(23) r; =

\/V(J/Z J/2x2@) ; even

2 1/2’

a € {0.95,0.99,0.999 0.999999. That is, the means of the various clusters lie

on the 2/ axial directions ofR?; those of thejth and(j + 1)st clusters, odd,

lie on the same axis but in opposite directions viewed from the origin. The
means (23) assure that the squared Mahalanobis distance of two cluster centers
on the same axis |sxg(a) whereas it isy; 2(e) in the opposite case. The
valuesa = 0.95 and 099 give rise to heavily and moderately overlapped clusters,
while o = 0.999 and 99999 mean better and good separation, respectively. We
generate 100 observations from each cluster. Thus, we obtain a tetal 2004
(regular) observations. Additionally, in our first essay, we contaminate the data
with 224 outliers arranged in shells around the cluster centers. The square of
the Mahalanobis distance from each contamination to the closest cluster center
IS x7 2(B), B € {0.999,0.999999: see Figure 2.

Since we consider four’s and two g8’s, these specifications define eight
different cases. To each of them we apply the algorithm described in Section 3
four times, namely, with the a priori numbers of regular observatiorsn,

0.951, 0.9n and 085:. More precisely, we apply the multistart method with up

to 2000 random initial configurations based on the method 3.3(a) and iterate
reduction steps until convergence is reached. The 32 rows in Table 1 show,
for each choice ofy, 8 andr, the fractions of estimated regular observations
whose squared Mahalanobis distances to their estimated cluster centers (w.r.t. the
estimated common covariance matrix) are larger than a given percgﬁ(ﬂe,

y €{0.95,0.975 0.99,0.999. In the rows corresponding to the correct fraction of
outliers & 10%), these are expected to match the correct tail probabilities 1
shown on the top of Table 1. This heuristic (akin tg & goodness-of-fit test)

for estimating the number of outliers is suggested by a similar heuristic applied
in robust discriminant analysis by Gather and Kale [(1988), Section 3] and Ritter
and Gallegos (1997). The method slightly underestimates the number of outliers.
We also compare the theoretical populations with those defined by the estimated
clusters. The Bhattacharyya distance between two normal distributions is

dehatt(Na (11, V1), Na(po, V2))

\/ JdetVidetVs o
det(V1+V2)/2)

1 T -1
Xp(-;,r(uz VARV T u1>),
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FiG. 2. Visualization of four clusters in two dimensioff$ie Mahalanobis distance between each
pair of the four cluster centers depends on the valas specified b§23). The outliers are arranged

in shells The inner and outer shells correspondde= 0.999and 8 = 0.999999 respectivelywhere

B defines the ellipsoids of equal concentration on which the contaminatiarSdealso the text
(@) a =0.99, (b)a =0.999.
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a number in the unit interval. A measure for the quality of the estimates is the
minimum over all matchings € 482, between estimated and real classes of the

TABLE 1
Fraction of the estimated regular observations whose squared Mahalanobis distances from their
relative estimated population centers are greater tb(émy), d = 8. An estimate of the amount

of outliers is the fractior>-, for which the values shown in the corresponding row match
best the theoretical tail probabilities for the?-distribution shown on top

1-y

P B n-r 0.05 0.025 0.01 0.001

0 0.097 Q069 Q033 Q002

0.05 0066 Q045 Q015 0
0.95 0.999 0.10 0039 Q019 Q004 0

0.15 0004 0 0 0

0 0.095 Q062 Q022 Q001

0.05 0066 Q044 Q012 0
0.99 0.999 0.10 0041 Q018 Q006 0

0.15 0003 0 0 0

0 0.094 Q055 Q016 0

0.05 0068 Q042 Q012 0
0.999 0.999 0.10 0039 Q018 Q005 0

0.15 0003 0 0 0

0 0.075 Q035 Q007 0

0.05 0068 Q024 0 0
0.999999 0.999 0.10 0045 Q023 Q004 0

0.15 0011 0 0 0

0 0.100 Q094 Q086 Q051

0.05 0066 Q053 Q045 Q027
0.95 0.999999 0.10 0043 Q018 Q007 0

0.15 0003 0 0 0

0 0.104 Q093 Q085 Q039

0.05 0069 Q055 Q044 Q031
0.99 0.999999 0.10 0042 Q018 Q006 0

0.15 0003 0 0 0

0 0.102 Q099 Q092 Q045

0.05 0068 Q057 Q050 Q027
0.999 0.999999 0.10 0041 Q019 Q005 0

0.15 0004 0 0 0

0 0.106 Q098 Q085 Q023

0.05 0076 Q059 Q049 Q024
0.999999 0.999999 0.10 0046 Q023 Q004 0

0.15 0011 0 0 0
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maximum Bhattacharyya distance over tlkrd@atched pairs:

(,T}EL jg}ft%(d chatt<Nd (mau), :;LW> Na(pj, V))-
The results are shown in Table 2 fdr= 2,4,8. Ford = 2 anda = 0.95, the
original clusters are not recovered by the algorithm since the 400 regular data
points are too homogeneous; there is no reasonable matching. We tested also
scenarios wittdiffuseoutliers generated fromv,; (i, v - 14),d =2,4,8, n € R4

andv > 16. The caseu = 0, v = 16 is the most demanding since the variance

is already quite close to that of the last coordinate. Even in this case, only about
10% of the rejected elements are (extreme) regular observations and the generated
clusters are well rediscovered.

Finally, the number of reduction steps until convergence in one iteration is
about 15 ford = 2 and 22 ford = 4,8 with standard deviations about 7. One
reduction step takes no longer thaif®@®, Q01 and 006 seconds, respectively,
on a 1 GHz processor. These figures are essentially independent of the trimming
parameter of the algorithm.

We do not contend that the proposed algorithm responds to each clustering
situation. In fact, the presented model is meant as a possible component for outlier
handling in a comprehensive clustering strategy. One of the main purposes of
the paper is a contribution to computing breakdown values. Nevertheless, in our
experience, the algorithm works well in situations where the model assumptions
are satisfied: clusters of about the same shape, scale and size, and outliers
sufficiently scattered in space (not concentrated close to one or a few points).

TABLE 2
The maximal Bhattacharyya distances of the best matchings
between estimates and theoretical populations

dimension/number of clusters

a-quantile  B-quantile 2/4 4/8 8/16
0.95 0.99 — Q0685 Q00789
' 0.999999 — 0689 00556
0.99 0.999 00386 00340 00291
’ 0.999999 @356 00246 00297
0.999 0.999 00257 Q0165 00265
’ 0.999999 0111 00155 00265
0.999999 0.999 00105 Q0165 00241

0.999999 0104 Q0176 00240
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APPENDIX: TECHNICAL PRELIMINARIES

In this Appendix we prepare some tools for the proofs of the theorems. Some of
the statements are of interest on their own.
LEMMA A.1. Letd >2and letA € R?*¢ be positive definite
(a) For any positive semi-definite mati e R?*¢, we have
detA 4 C) > (14 tr(A~1C)) detA 4 detC.
(b) If y1,..., yx € R, then we have

det(A + thyhT) > <1+ Zy,{A‘lyh> detA.
I T

PROOF (@) FromA + C =AY2(1, + A—12CA-Y2)AY2 we infer
(24) detA + C) = det(l; + A~Y2CA~Y?) detA.
If A1, %2,...,4q are the eigenvalues d&~1/2CA~1/2 then the eigenvalues of
lq + A~Y2CA—Y2 are 1+ A4, ..., 1+ A4 and the claim follows from (24) and

d d d
detly + A Y2CA Y2 = [TA+2) =1+ > 2+ [ 4
j=1 j=1 Jj=1

=1+ tr(A~Y2CAY?) ;- deta~Y2CcA~1/2,

Part (b) is an immediate consequence of (&).

LEMMA A.2. 0< A < B implies detA < detB. If B > 0, then there is
equality if and only ifA = B.

PrOOFE If d =1, nothing has to be shown. Otherwise, the first claim is plain if
A is singular. IfA is positive definite, then the claims follow from Lemma A.1(a)
withC=B—-A. O

LEMMA A.3. Let x| be a Euclidean data set and I¢fPy,..., P} be a
partition of 1..n with cardinalitiesay, ..., ag. Moreoveylet m be the mean af
and letm; be the mean ofxi)iep (arbitrary if a; = 0). Then

8
D i —myxi —my”

j=lieP;
8 1 -
=Zij+; Z ajap(Mj —my)(M; —my)".
j=1 1<j<h=g
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PrROOE Expanding the left-hand side, we obtain

8
D i —myx —my”

j=licP;

On the other hand,
1

T
= Y ajap(m; —my)(m; —my)
1<j<h=<g

1
=5 2 ajan(m; —my)(m; —my)"
J.h

== ajapm;mi — =3 "a;a,m;m;
Jsh Jih
T
_ZajmjmJ (Zajmj)<zajm])
J J J
=Y ajm;m; —n-mm’.

LEMMA A.4. Letg > 2 andc¢ > 2. The minimum of the sum of products
Zlgjdg, a;ja; taken over allg-tuples(azy, ay, ..., a,) of real numbersiy, a; > 1,
as,...,ag > 0such that2§7:1 aj=cisc—1.1tis assumed exactly at the tuples
1,c¢c—-1,0,...,0and(c—1,1,0,...,0).

PrROOF We proceed by induction o If g = 2, we have the one-dimensional
problem of optimizing the functiom; — aj(c — a1), restricted to the interval
[1, ¢ — 1]. It plainly attains its minimum at the two endpoints 1 and 1.

Assume now that the assertion has already been provedgiartd let us prove
itfor g + 1. Fromy_q_; j<oi1ajar = agyi(c — agt1) + 3 1< j<gaia; and the
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induction hypothesis, we infer by means of the principle of dynamic optimization,

_min > ajq
j=14j=C 1<j<l<g+1
a1>1,a>1
= min <ag+1(c —dagr1)+  min Z aja1>
ag+1€[0,c—2] ‘;:1 aj=C—dgil 1<j<]<g
a1>1,a2>1

= min do11(c —ae11) +Cc—aor1—1
ug+1e[0,c—2]( g+ ( g+ ) g+ )

= min — -1 —1).
ag+1e[0,c—2](ag+1(c dg+1 ) +c¢ )
This is a one-dimensional optimization problem fey,; € [0,c — 2]. The
minimizer is 0 and the minimum is— 1. This concludes the proof.[]
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