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ABSTRACT
The increasing societal pervasion and importance of the Internet-
of-Things (IoT) raises questions regarding the fault tolerance and
robustness of IoT applications as these increasingly become part
of critical infrastructures. In this position paper, we outline novel
ideas that focus on the design of a resilient and self-organizing
execution platform for IoT applications called SORRIR. Its main
ambition is to simplify, alleviate and accelerate the development,
configuration and operation of resilient IoT systems. We follow
a holistic approach which is based on a novel design process, a
library containing resilience mechanisms and a robust execution
platform that is equipped with monitoring and self-organizing capa-
bilities. The goal is that developers only need to specify the desired
resilience degree without having to worry about the technical,
implementation-level details of employed resilience mechanisms.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems andnetworks; Embedded systems; Redundancy;
• General and reference→ Reliability.
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1 INTRODUCTION
Over the last decade cloud computing has tremendously changed
the way distributed and large-scale applications are being imple-
mented and operated. As part of this evolution, cloud computing
has been providing a well-suited environment for the operation of
backend systems for Internet-of-Things (IoT) deployments. This, in
turn has led to an increase in importance of IoT installations:

(i) IoT systems are not only becoming more widespread in ev-
eryday life, but part of critical infrastructures in Industry 4.0, prod-
uct service systems, and distributed control systems such as au-
tonomous driving support. The spread of IoT systems also reaches
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the eHealth sector. This creates an increasing social dependence
on reliable operations of these systems. (ii) IoT systems are sig-
nificantly growing in size (with respect to number of nodes and
the geographical area they span) turning them into complex sys-
tems. (iii) Latency-critical applications require that parts of the
functionality of IoT systems are offloaded to edge devices. (iv) The
development cycle for software in general, but also for IoT soft-
ware decreases while (v) in parallel, the diversification of the sensor
actuator, and IT infrastructure landscape increases.

In summary, the development of large-scale IoT systems gets
increasingly complex and uses shorter development and innovation
cycles. Conversely, the importance of reliability, resilience, and fault
tolerance increases making testing and development more time-
consuming and complicated. We claim that these contradicting
demands can only be satisfied through the separation of concerns:
developers shall focus on the business logic of IoT applications,
while domain experts provide building blocks for fault tolerance.
We suggest that fault-tolerance mechanisms are automatically and
dynamically woven into IoT applications so that the system can
evolve over time adapting to changing requirements.

This position paper outlines goals and principles of the SORRIR
middleware tackling these challenges. It presents the early SORRIR
architecture, cf. Figure 1, and introduces the conceptual components
that enable the holistic SORRIR approach to resilient, distributed
IoT systems. For doing so, SORRIR spans aspects from development
time, deployment time, and operation time: The SORRIR program-
ming model fosters the separation of resilience and business logic;
the application orchestrator supports the composability of business
and fault-tolerance domain; the SORRIR run-time system realises a
fault-tolerant, resilient platform for running and monitoring dis-
tributed IoT applications in geo-distributed infrastructures.

The remainder of this paper is structured as follows: Section 2
sketches the state of the art for IoT architectures, programming, and
operation. It derives requirements for SORRIR, whose architecture,
and eco-system are subject to Section 3. In Section 4 we briefly
discuss related work before we conclude.

2 BACKGROUND
This section captures the state of the art in IoT architectures, pro-
gramming and orchestration and distils requirements for SORRIR.

2.1 IoT architectures
ISO/IEC 30141 defines a high level Internet of Things reference
architecture [9] similar to others found in literature [4, 7, 10, 16]. It
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characterises IoT installations as highly distributed systems with
physically separated and remotely connected sub-systems (sites).
Networking per site is based on heterogeneous technology and
may incorporate non-IP proximity networks. The main entities
in an IoT landscape are IoT devices (sensors and actuators), IoT
gateways, and services: IoT devices bridge digital and analogue
world. IoT gateways provide access to wide-area networking (WAN).
Applications are built from services with well-defined interfaces.

According to [10] MQTT, CoAP, AMQP, and HTTP are the pri-
mary IoT communication protocols outside proximity networks.
All of them make use of IP. The NIST Network of Things architec-
ture [16] stresses the importance of movable devices and the need
for aggregation while data is sent from devices towards services.

2.2 IoT components and stacks
Truong et al. [14], just as ISO/IEC 30141 [9], stress the importance
of composing IoT systems from components. Node-RED1 is a tool
for composing flows from individual building blocks, called nodes.
Node-RED flows interact with external entities such as IoT devices
using dedicated io nodes. The scope of a flow is limited to one entity
(gateway, server), even though attempts for distribution exist.

AWS IoT2 provides an IoT operating systemwith add-on services
such as cloud and database access as well as handling of commu-
nication errors. Besides, IoT functionality integrates well with the
AWS EC2 landscape making Serverless a preferred approach for
introducing custom logic. Similar initiatives exist for other public
cloud providers such as Google3 and Microsoft Azure4.

2.3 Orchestration and operation
Cloud computing and containerisation have been dominating the
orchestration of software components over physical infrastructures
mostly through IaaS, PaaS, and CaaS abstraction layers. Orchestra-
tion comprises all steps necessary to acquire resources from cloud
platforms and deploy software on them [2]. Hence, cloud orches-
trators take a specification of the application as well as deployment
instructions and constraints about the deployment as input.

TOSCA [3] is an open standard for describing topology and or-
chestration of cloud applications. Its goal is to support portability
and operational management of cloud applications and services
across their entire lifecycle. While it comes with its own eco-system
such as vinery, it has also been adopted by OpenStack in its orches-
trator Heat5 and Cloudify6. CAMEL follows a similar approach [12],
but adds run-time information to the overall model. Also, it supports
cloud provider agnostic specifications of applications.

Docker swarm7 is a basic orchestrator for Docker containers
using Docker compose as a specification language. Kubernetes8 is
the most wide-spread orchestrator. For specifications it uses a cus-
tom format or Helm. k3s9 is a lightweight Kubernetes distribution
suited for IoT devices.
1https://nodered.org/
2https://aws.amazon.com/iot
3https://cloud.google.com/solutions/iot/
4https://azure.microsoft.com/en-us/services/iot-hub/
5https://wiki.openstack.org/wiki/Heat
6https://cloudify.co/
7https://docs.docker.com/engine/swarm/
8https://kubernetes.io
9https://k3s.io/

2.4 Requirements
The discussion so far shows that IoT systems span large geographic
domains and are vulnerable to failures of hardware, communication
systems, and others. Programmingmodels for IoT systems are either
limited (cf. serverless) or very open, while the management and
orchestration approaches are mostly based on containers or virtual
machines and do not incorporate IoT gateways or even IoT devices.

For realising the vision of SORRIR to increase the fault toler-
ance of IoT systems without burdening application developers, we
identified four requirements based on literature review and concep-
tual considerations. All of them are assume that IoT applications
are composed from services and further aim at the separation of
concerns between business logic and fault-tolerance mechanisms:

Requirement R.1: In order to achieve fault tolerance for IoT
applications and infrastructures, it is necessary to identify failures
in the infrastructure. These events need to be acted upon such that
erroneous conditions are mitigated. This demands for a resilient
orchestration, execution environment, and monitoring system.

Requirement R.2: The reference architecture [9] foresees re-
silience and fault tolerance as a cross-domain issue. From this con-
sideration, it follows that fault-tolerance mechanisms should not be
realised on a per-service basis, but rather be provided as building
blocks to be added to applications and components based on their
individual needs. This separation of concerns also eases the re-use
of application components in different environments.

Requirement R.3: Different fault-tolerance mechanisms exist
for addressing different kinds of failures. Each of them demands
different pre-requisites from the business logic. A fault-tolerant
execution environment needs to understand the interdependencies
between business logic and fault-tolerance mechanisms. This de-
mands for a fault-tolerant programming and component model that
should also address the need for composability as requested by [9].

Requirement R.4: A configuration mechanism should (i) pro-
vide the capability to compose IoT applications from components
developed with the given programming model; (ii) allow the IoT
operator to configure the desired reliability at the level of individual
components and at the application level.

3 SORRIR
Based on the requirements from Section 2.4, SORRIR starts off
to fulfill the following four primary goals: (i) to decouple fault-
tolerance mechanisms from application logic (R.3); (ii) to foster
the re-use of fault-tolerance mechanisms by providing libraries of
often-used and generally applicable mechanisms (R.2); (iii) shift
the decision for fault tolerance from development-time to run-time
(R.4) due to a (iv) fault-tolerance–enabled orchestration, run-time,
and monitoring (R.1).

3.1 System model and Terminology
The SORRIR system model and terminology widely aligns with
ISO/IEC 30141 [9], but is enhanced with terminology from cloud
and edge computing. From an infrastructure perspective, we dif-
ferentiate between IoT devices, IoT gateways, and execution sites.
We do not impose a strict hierarchy on the communication model;
in particular, we allow that messages travel vertically, e.g., from
device to gateway, and horizontally, e.g., from gateway to gateway.
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Figure 1: Overview of SORRIR components and their interplay.

IoT devices comprise sensors and actuators and reside in the
field. They provide little configuration capabilities, and re-program-
ming their software usually requires manual steps. IoT devices
either have direct access to WAN, communicate with the WAN
through one or multiple gateways, or communicate with other IoT
devices in a mesh network to reach a gateway.

IoT gateways receive messages from IoT devices and relay them
upstream (and vice versa). Depending on their computational ca-
pabilities they may preprocess and aggregate data. Due to their
stable connection they are easier to access for re-programming. Yet,
gateways do not provide a uniform API for this kind of access. For
SORRIR we allow that IoT gateways interact with each other.

Execution sites represent any type of computational resources
accessible from IoT gateways over network. Execution sites pool
computational resources and allow the instantiation of services;
hence they provide an IaaS or PaaS abstraction. The compute re-
sources provide better computational capabilities than gateways
and due to a well-defined API it is relatively easy to roll out new
functionality. Any execution site resides at a specific geographical
location and has a specific location in the overall network topology.
Concretely, execution sites may come for instance as regions of pub-
lic cloud providers, private clouds and compute clusters owned by
the user, and edge computing sites provided by network operators.

Applications and components An application encapsulates
the business logic. From a user perspective, we assume that an appli-
cation is composed of a set of instantiable components. Components
can be directly instantiated at IoT gateways and on execution sites,
after compute resources have been allocated at that site. The scale
out factor of a component (at a site) is the overall number of in-
stance of that component (at that site). Components may define
communication dependencies between them that are mapped to
the instance level in various ways (1:n, 1:m<n, m:n, ...).

3.2 Architecture and Eco-system
In order to achieve its goals, SORRIR provides mechanisms at de-
sign/development time, composition/deployment time, and finally
during run-time as sketched in the overview in Figure 1. This is com-
pliant with [11] that claims that IoT systems should amongst others
support application development, deployment, device management,
service management, monitoring.

Design-time For design-time, SORRIR provides a dedicated pro-
gramming model. This programming model supports the specifica-
tion and implementation of SORRIR components. Depending on
the use of specific SORRIR design patterns, base classes and APIs,

each component is capable of supporting a specific failure model
and allows that different types of fault-tolerance components be
combined with the application component. Similarly, matching
fault-tolerance mechanisms can be derived for groups of SORRIR
components and their communication dependencies. The SORRIR
component library provides commonly used components.

Configuration and composition Application operators make
use of the SORRIR configurator to compose distributed applications
from SORRIR components. The output of the configurator is a SOR-
RIR application configuration that defines the application structure
including the communication topology. What is more, the applica-
tion configuration defines desired resilience levels per-component,
per communication channel, and for groups of components. Taking
SORRIR’s focus into account, we expect to the configuration to be
concrete about the placement of components over IoT gateways
and execution sites.

Orchestration The SORRIR orchestrator bridges the design-
time aspects and run-time aspects. Its input is a SORRIR applica-
tion configuration. For putting this specification into operation
the orchestrator needs to fulfil three basic tasks: (i) acquire com-
pute resources over the execution sites defined in the application
specification and provision a SORRIR run-time system on these
resources. (ii) Enhance the SORRIR components defined in the ap-
plication specification with matching resilience mechanisms that
are provided through a resilience library (see below). (iii) Deploy
the enhanced components over the acquired infrastructure as well
as IoT gateways. Where applicable it may also reconfigure sensors
and IoT gateways. For deployed applications, the SORRIR orches-
trator provides the ability to change the current configuration and
resilience specifications.

Operation and monitoringWhile it is the task of the orches-
trator to acquire compute resources and instantiate components
on these resources, the run-time system is the part of SORRIR that
surveils all parts of the system: Its basic task is to monitor com-
putational resources, IoT gateways, and IoT devices. The SORRIR
run-time system is a decentralised, distributed application that,
considering its crucial role in the overall architecture, needs to be
resilient and fault-tolerant. An instance of the SORRIR run-time
system runs on each of the IoT gateways and compute resources.
We refer to these instances as nodes.

Each node permanently shares its current state with its peers.
The current state at least contains information on the run-time
status of components scheduled on this node and the current load;
it may also include application-specific information in case this has
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been defined in the application specification. When problems or
errors occur, the SORRIR run-time system notifies both the orches-
trator as well as running components through the APIs defined
by the SORRIR component model. For instance, it could notify a
component that some sensor is no longer accessible, that some
other component has failed, or that the system is under attack.

4 RELATEDWORK
Recent research works propose a broad variety of approaches to
fault tolerance, in particular investigating on how certain aspects
of fault tolerance can be brought to IoT systems to increase their
resilience towards software or hardware faults [1, 5, 6, 8, 13, 15, 17].

Tsigkanos et al. present a roadmap for resilient IoT systemswhich
identifies state-of-the-art techniques and methods to establish re-
silience in the face of disruption as well as future directions for
engineering resilient IoT systems, e.g., having the edge infrastruc-
ture consumed as a full-fledged utility, abstracting business logic
management from infrastructure capabilities as well as autonomous
control and self-healing [15].

Employing redundancy is also a possibility for making IoT sys-
tems fault-tolerant. Terry et al. argue that within IoT systems, de-
vices like sensors or actuators are often fail-stop, thus application
fault tolerance can often be provided without resorting to active
replication (even with only an additional component) [13]. Further,
the necessary costs for redundancy can be reduced by having the IoT
platform discover and select nearby devices that can report similar
events, such as motion or presence, and that support similar actions,
like turning on a light, for instance, devices could automatically
connect to nearby operating hubs and then switch hubs as soon as
failures occur [13]. Moreover, the concept of virtual services which
use data from more than one sensor devices to replace an actual ser-
vice on some faulty device can also be leveraged to incorporate fault
tolerance in service-oriented IoT architectures [17]. Fault-tolerant
routing between a possibly large number of small, inter-connected
devices can be achieved by constructing, recovering and selecting
k-disjoint multipath routes that guarantee connectivity even after
the failure of up to k − 1 paths [8].

Abreu et al. propose a modular IoT middleware for smart cities,
which comprises a Resilience Manager that has the main task of
permanently supervising activities using a Monitor module and,
additionally, employs a Protection and Recovery module to trigger
proper actions in case of faults, e.g., relying on other modules such
as topology control as well as placement and migration modules [1].

In the domain of e-Health systems, Gia et al. describe an approach
to ensure reliability which is constructed on top of a 6LoWPAN
communication infrastructure and utilizes backup routing between
nodes and advanced service mechanisms to maintain connectivity
in case of failing connections between system nodes [6].

5 CONCLUSIONS AND FUTUREWORK
The growing spread of Internet-of-Things (IoT) systems increases
their societal pervasion and importance. At the same time fault
tolerance of these installations is challenged by shorter develop-
ment cycles as well as larger and more complex systems. In this
position paper, we present key ideas and concepts around SORRIR,
a resilient, self-organising middleware for IoT applications.

Its main ambition is to simplify, alleviate and accelerate the de-
velopment, configuration and operation of resilient IoT systems.
SORRIR is constructed around the core idea of decoupling busi-
ness logic from resilience logic. Components developed using the
SORRIR programming model can be dynamically bundled with
matching fault-tolerance mechanisms provided through a library.
The SORRIR run-time system monitors the overall execution of
applications, reacts on failures and triggers reconfigurations. Using
SORRIR developers only need to specify the desired resilience de-
gree for an application without having to worry about the technical,
implementation-level details of employed resilience mechanisms.
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