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ABSTRACT
Many recent researchworks have proposed distributed ledger
technology (DLT) that employs Byzantine fault-tolerant (BFT)
consensus protocols as the underlying core primitive to
create a total order among all transactions. Compared to
many Proof-of-Work (PoW) blockchains, this design typi-
cally benefits from increased performance, energy efficiency
and proven liveness and safety characteristics. While BFT
protocols have the potential to create highly resilient in-
frastructures, some questions yet remain to be answered.
This paper sketches our current and future research on how
DLTs can benefit from making the underlying BFT protocol
adaptive towards the system’s environment (e.g., geographic
decentralization or system scale) and resilient against at-
tacks of malicious replicas that are targeted at degrading the
overall system performance.
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1 MOTIVATION AND RELATEDWORK
State machine replication (SMR) is a well-studied approach
that allows developing resilient distributed systems. It coor-
dinates client interactions with independent server replicas,
thus achieving fault-tolerance [18]. In the Byzantine fault
model [12], faulty nodes may present different symptoms
towards different observers [8], which is an interesting fault
model for blockchain networks. This is, because blockchains
ideally achieve an overall trustworthy infrastructure on top
of a network of nodes of which a fraction may exhibit poten-
tially malicious behavior.

With the recent research interest in blockchain infrastruc-
tures, Byzantine fault-tolerant (BFT) SMR protocols have
also been getting more and more attention over the last
few years. To serve as an example, the Hyperledger Fabric
(HLF) [2] blockchain platform has been adopted to incorpo-
rate the BFT-SMaRt [6] library as an ordering service [20]
to achieve high-performance and resilient service execution.
Interestingly, further improvements can be made at the pro-
tocol level to make consensus in DLTs more practical: for
instance, weight-enabled active replication (WHEAT) [19] is
an optimization that decreases latencies in a geographically
dispersed environment, and thus can speed up the ordering
process for blocks in Hyperledger Fabric when deployed in
a wide-area network environment [20].

BFT consensus for DLT. Typically, traditional (PBFT-like [7])
BFT consensus protocols can serve as a key ingredient of
distributed ledger technologies (DLTs) as they are employed
to order transactions in a group of replicas without rely-
ing on the expensive Proof-of-Work (PoW) mechanism [17]
and also give stricter guarantees, e.g., on consensus final-
ity [21]. The main ambition is to reach higher throughput
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and lower latency than PoW achieves – however, for larger
system sizes the limited scalability of traditional BFT pro-
tocols can become a problem [21]. Many current research
papers improve the scalability by proposing novel BFT proto-
cols [9–11, 13–16, 22] which employ several interesting ideas,
such as efficient communication topologies [10], paralleliza-
tion of transaction processing [11], trusted hardware com-
ponents [14], representative committees [9], cryptographic
primitives [16, 22] or a combination of several ideas.

The road ahead. Along the path of many possible protocol-
level improvements, we conduct research on optimizations
that are adaptive, thus can make the consensus protocol re-
act to environmental conditions at runtime, such as scale
or geographic dispersion. A further goal is to investigate
how protocols can be designed (and modeled) in a way that
allows reasoning about their performance behavior in case
of attacks, such as when a specific threshold of replicas harm-
fully tries to degrade the system performance. While BFT
protocols are often published with a security analysis that,
e.g., proves certain safety and liveness characteristics, it has
been shown that many BFT protocols are in practice prone to
degradation attacks or can not give reasonable guarantees [1].
In our work, we will shift the focus towards the practical
aspects of BFT protocols when employed within a DLT. This
also includes exploring realistic deployment scenarios and
understanding the practical constraints they involve.

2 RESEARCH QUESTIONS
Although BFT protocols are being studied for decades now [7,
12], in practice, these algorithms often have deficits in re-
spect to scalability, delivering steady performance under
attacks, or the feasibility for validation, which may tarnish
their practical eligibility for DLTs. We aim to investigate
on research questions that focus on improving the practical
eligibility of BFT protocols when used in DLT:

R1 How can the adaptivity of BFT protocols be improved
without diminishing the resilience of the overall pro-
tocol? And which gains can we achieve?

R2 How can we design BFT systems that can deliver a
predictable and acceptable performance even when
’worst-case’ situations like attacks or faults occur?

R3 How can the design process be enhanced by suitable
validation techniques to make sure that the actually
implemented BFT systems work as intended?

3 CURRENT RESEARCH
Scaling consensus. At first, we analyzed a broad variety of
novel BFT protocols. Many of them were crafted to specifi-
cally fit the needs of DLT. We focused on the question which
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Figure 1: AWARE automatically optimizes a WHEAT
configuration at run-time [5].

novel techniques and designs these protocols employ to im-
prove scalability. Then, we summarized our findings [3],
concluding that great potential lies in a clever combination
of efficient communication strategies like gossip and crypto-
graphic primitives, e.g., threshold-signatures and the use of
randomness, e.g., for cryptographic sortition to elect a com-
mittee or leader as well as trusted execution environments.

Adaptivity in geo-replication. Moreover, we developed and
implemented1 a protocol called AWARE (Adaptive Wide-
Area REplication) [4] which is an extension of the BFT-SMaRt
/ WHEAT protocol. The WHEAT protocol is an optimiza-
tion to achieve latency gains in geographically dispersed
environments. Its core innovation is weighted replication:
voting weights allow giving faster replicas more importance
in quorum formation, so a proportionally smaller quorum
can be probed to make progress. AWARE extends this idea by
automating voting weights tuning as well as leader position-
ing, thus aiming for latency gains at run-time by selecting
a fast performing system configuration (see Figure 1). The
AWARE approach consists of (1) reliable self-monitoring of
inter-replica connection latencies as decision-making basis
and (2) a deterministic algorithm for self-optimization which
adapts voting weights and leader position to minimize con-
sensus latency. Moreover, this algorithm uses a prediction
model that can accurately forecast the system’s performance
in regard to consensus latency for different configurations.
Subsequently, the algorithm safely reconfigures the system.
Evaluation results have shown that world-spanning Byzan-
tine consensus systems can benefit from such a dynamic
self-optimizing approach, because it allows the system to au-
tomatically adapt to changing environmental conditions [4].

Experiments with Hyperledger Fabric. Further, we conducted
experiments (see Figure 2) with Hyperledger Fabric using

1The open-source implementation of AWARE is available at https://github.
com/bergerch/aware.
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Figure 2: AWARE consensus as self-adapting ordering service for Hyperledger Fabric leads to latency gains ob-
served by frontends distributed across the globe.

AWARE as consensus substrate to order transactions [5]: in
HLF, a modular ordering service has the responsibility to
achieve agreement on which block is appended next to the
blockchain. We think our protocol is particularly helpful as
a consensus substrate for DLTs that (1) should be optimized
for geographic scalability with ordering nodes being spread
across different regions in the world, (2) employ the Byzan-
tine fault model for high resilience, and (3) aim to achieve
adaptiveness to their environments.

In our experiments on Amazon AWS ordering nodes and
frontends are placed in the regions Sydney, São Paulo, Cal-
ifornia, Tokio and Stockholm. Frontends send transactions
(envelopes) to the geo-distributed ordering cluster for transac-
tion ordering and block generation, blocks are then delivered
to the receiving peers for validation (see Figure 2a). AWARE
reconfigures the system by shifting voting weight from São
Paulo toCalifornia resulting in latency gains. Figure 2c shows
the run-time observation for California, and Figure 2b shows
the latency gains after optimization as observed by frontends
deployed in different regions.

4 FUTURE RESEARCH
Scaling consensus. To improve the scalability of consensus
(R1), the consideration of suitable communication topolo-
gies (e.g., tree-like, hierarchical, randomized overlay) is a
promising approach of state-of-the-art research. To advance
these ideas further, we think it can be beneficial to make the
structure of communication as flexible as possible and hide it
behind an interface. In our approach, we intend to separate
the management of a robust and efficient network (such as
the construction of an overlay, choosing a suitable topol-
ogy) from the remaining tasks of the BFT protocol. Here, the
communication may be realised in a distinct layer, that is
accessed by the BFT protocol over the interface. This abstrac-
tion may allow to reduce the complexity of the composed
system and, at the same time, make the protocol more adap-
tive towards run-time conditions, e.g., an increasing scale of
the system in terms of number of replicas.

Orthogonaly to this, the use of trusted hardware based
approaches like Intel SGX can help to boost scalability by
managing some otherwise costly tasks like replacing asym-
metric cryptographic primitives by symmetric ones. Efficient
communication may also require the use of certain crypto-
graphic primitives like multi- or threshold signatures that
are used for message aggregation techniques.

Modeling BFT protocols. Further, to help forecasting the be-
havior of a BFT protocol when under attack (R2), we will
explore how employing models (e.g., using decomposition
into building blocks) can help to reason about probabilistic
lower bounds on the protocol performance, such as the la-
tency of the composed system. The overall goal is to study
the impact of attacks in terms of decreased performance of
BFT protocols when integrated in DLTs and when deployed
in realistic scenarios. Employing a prediction model can help
to identify bottlenecks in different layers of a system (and in
different configurations) even before an empirical evaluation
of the system takes place. This can be helpful for optimizing
the system at design time.
Until now, we have made some experiences with a pre-

diction model for consensus latency that is based on sim-
ulation [4] (amortized simulation of the protocol run over
multiple rounds) and heuristics to efficiently traverse a search
space of system configurations [5]. We plan to extend these
by (1) considering malicious nodes and attacks, (2) extending
to different consensus protocols and (3) considering other
DLT building blocks than just consensus, e.g., interaction
with frontends. Apart from simulation, a variety of inter-
esting modeling techniques exists (like timed or stochastic
Petri nets) that may also help to model the system behavior
in uncivil execution, such as when deployed in potentially
harmful environments.

Validating practical eligibility. Moreover, to improve testing
the implementation of a scalable BFT protocol into a practical
system for validity (R3), we aim to follow an approach that
joins methods of three different domains: first, using suitable
modeling techniques to derive the validity of a composed
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protocol from validated building blocks in a constructive,
bottom-up manner. Second, incorporating automated test-
ing procedures that can, to some extent, simulate malicious
behavior against BFT protocols by generating stress testing
scenarios. Third, developing a tool (or extending an existing
one like Hyperledger Caliper2) for automated deployment
and benchmarking which can make use of these generated
test scenarios. The overall goal is to combine complementary
techniques to support a continuous design process of DLT
systems, reaching from the specification of a BFT consensus
protocol to its implementation to its employment in a more
complex blockchain infrastructure (like Hyperledger Fabric).

5 SUMMARY
With recent developments in distributed ledger technology,
resilient consensus systems become increasingly practical
and necessary. In our work, we investigate on improving the
practical eligibility of consensus protocols for their use with
DLT. This includes designing consensus-based systems to
be adaptive towards their environment, e.g., by dynamically
selecting the characteristics of the ordering protocol that
match best with a given set of conditions. Further, validation
techniques and performance models can help to ascertain
that consensus-based system work as intended and deliver
acceptable performance even in case of failures or attacks.
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