
Scalable Performance Evaluation of Byzantine
Fault-Tolerant Systems Using Network Simulation

Christian Berger
University of Passau

Passau, Germany
cb@sec.uni-passau.de

Sadok Ben Toumia
MaibornWolff GmbH

Munich, Germany
sadok.bentoumia@maibornwolff.de

Hans P. Reiser
Reykjavik University
Reykjavik, Iceland

hansr@ru.is

Abstract—Recent Byzantine fault-tolerant (BFT) state machine
replication (SMR) protocols increasingly focus on scalability to
meet the requirements of distributed ledger technology (DLT).
Validating the performance of scalable BFT protocol implemen-
tations requires careful evaluation. Our solution uses network
simulations to forecast the performance of BFT protocols while
experimentally scaling the environment. Our method seamlessly
plug-and-plays existing BFT implementations into the simulation
without requiring code modification or re-implementation, which
is often time-consuming and error-prone. Furthermore, our
approach is also significantly cheaper than experiments with real
large-scale cloud deployments. In this paper, we first explain
our simulation architecture, which enables scalable performance
evaluations of BFT systems through high-performance network
simulations. We validate the accuracy of these simulations for
predicting the performance of BFT systems by comparing sim-
ulation results with measurements of real systems deployed on
cloud infrastructures. We found that simulation results display
a reasonable approximation at a larger system scale, because
the network eventually becomes the dominating factor limiting
system performance. In the second part of our paper, we use our
simulation method to evaluate the performance of PBFT and BFT
protocols from the “blockchain generation”, such as HotStuff and
Kauri, in large-scale and realistic wide-area network scenarios,
as well as under induced faults.

Index Terms—simulation, performance, Byzantine fault toler-
ance, state machine replication, consensus

I. INTRODUCTION

In the last years, distributed ledger technology (DLT) wit-
nessed the following trend: Byzantine fault-tolerant (BFT)-
based protocols like PBFT [1] have been envisioned to substi-
tute the energy-inefficient Proof-of-Work [2] mechanism with
a more efficient approach to achieving agreement between all
correct blockchain replicas regarding which block to append
next to the ledger [3]. While traditional BFT protocols like
PBFT can accomplish this task, the cost of running agreement
among a large number of replicas results in a sharp perfor-
mance decline in large-scale systems as shown in Figure 1. To
address the scalability challenges of BFT, many new protocols
have seen the light of day [4]–[9].

Cloud-scale deployments: Asserting that these novel BFT
protocols can provide sufficient performance in realistic, large-
scale systems, requires careful evaluation of their run-time
behavior. For this purpose, research papers describing these
protocols contain evaluations with large-scale deployments
that are conducted on cloud infrastructures like AWS, where

4 16 32 64 128
0

50

100

150

200

250

300

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

] PBFT
HotStuff
BFT-SMaRt

4 16 32 64 128
0

50

100

150

Replicas

L
at

en
cy

[m
s]

Figure 1: Simulation results of BFT protocols for 1 KiB pay-
load in a data center environment with 10 Gbit/s bandwidth.
This is the setup in which HotStuff has been evaluated [10].

experiments deploy up to several hundred nodes (for instance
see [5]–[7], [9], [10] and many more) to demonstrate a BFT
protocol’s performance at large-scale.

Evaluations using real protocol deployments usually offer
the best realism but can be costly and time-consuming, espe-
cially when testing multiple configurations. Thus, an interest-
ing alternative for cheap and rapid validation of BFT protocol
implementations (that are possibly still in the development
stage) can be to predict system performance with simulations.

Simulating BFT protocols: BFTSim [11] is the first
simulator that was developed for an eye-to-eye comparison
of BFT protocols, but it lacks the necessary scalability to be
useful for the newer “blockchain generation” of BFT protocols
(and apparently only up to n = 32 PBFT replicas can be
successfully simulated [12]). Moreover, BFTSim demands
a BFT protocol to be modeled in the P2 language [13],
which is somewhat error-prone considering the complexity
of BFT protocols and also time-consuming. A more recent
tool [12] allows for scalable simulation of BFT protocols, but
it unfortunately also requires a complete re-implementation of
the BFT protocol in JavaScript. Further, this tool cannot make
predictions on the system throughput and thus its performance
evaluation is limited to observing latency.

In our approach, we address a critical gap in the state-
of-the-art by introducing a simulation method for predicting
BFT system performance that is highly scalable, without
necessitating any re-implementation of the protocol. This key
feature distinguishes our approach from conventional methods
and represents a significant advancement for predicting BFT
system performance in a practical way.

Why not just use network emulation?: Emulation tries to
duplicate the exact behavior of what is being emulated. Em-
ulators like Kollaps can be used to reproduce AWS-deployed
experiments with BFT protocols on a local server farm [14].
A clear advantage of emulation is how it preserves realism:
BFT protocols still operate in real time and use real kernel and
network protocols. In contrast to simulation, emulation is not
similarly resource-friendly, as it executes the real application
code in real-time, thus requiring many physical machines at
hand to conduct large-scale experiments.

Simulation as (better?) alternative: Simulation decouples
simulated time from real time and employs abstractions that
help accelerate executions: Aspects of interest are captured
through a model, which means the simulation only mimics the
protocol’s environment (or also its actual protocol behavior if
the application model is re-implemented). This has the advan-
tage of easier experimental control, excellent reproducibility
(i.e., deterministic protocol runs), and increased scalability
when compared to emulation.

These benefits of emulation come at some cost: As a
potential drawback remains the question of the validity of
results, since the model may not fairly enough reflect reality.
Furthermore, another existing limitation of all current BFT
simulators is the need to modify or (usually) re-implement
the BFT protocol to use it within a simulation engine.

Our contributions: In our approach, we address these
limitations and aim at making simulation a useful approach
for large-scale BFT protocol performance prediction:

• We define a software architecture for high-performance
and scalable network simulation, in which we can plug
an existing, unmodified BFT protocol implementation into
a simulation, without requiring any re-implementation or
source code modifications. By doing this, we ensure va-
lidity on the application level, since the actual application
binaries are used to start real Linux processes that are
finally connected into the simulation engine.

• A threat to validity is the fact that when we solely
rely on network simulation, it neglects the impact of
processing time due to CPU-intensive tasks of BFT
protocols on performance, namely, signature generation,
and verification. We conducted experiments that show
that the performance results of simulations can display a
useful approximation to real measurements in large-scale
systems. This is because, at a certain number of replicas
(often as soon as n ≥ 32), the overall system performance
is mostly dictated by the underlying network, which
persists as a performance bottleneck in the system. We
provide more detailed insights on this in our validity
analysis in Section III-D.

• To demonstrate the usability of our method, we use
BFT protocols from the “blockchain generation”, namely
HotStuff and Kauri, to conduct simulations at a large
scale.

This paper is structured as follows: In Section II, we
briefly review the basics of BFT protocols to guide the
reader through the different communication strategies that

vi
ew

s

Prep Prep Prep
Com Com

Prep
Com

Prep
Com

view change

instances

Exe Exe Exe Exe

Commit
stage

Prepare
stage

1 2 3 2 3
1
2
3

dissemination
voting
aggregation

Figure 2: A simplified model for BFT SMR protocols [15].

these protocols employ. In Section III, the main part of our
paper, we explain our methodology, which includes both the
design of our simulation architecture and the validation of
simulation results using real measurements for comparison.
In Section IV, we evaluate the performance of selected BFT
protocols under varying boundary conditions. In respect to a
possible blockchain use case, we construct large-scale and
realistic wide-area network scenarios with up to n = 256
replicas and heterogenous network latencies derived from real
planetary-scale deployments, and, in some scenarios, with
failures. We envision an apples-to-apples comparison of the
performance of scalable BFT protocols in realistic networks.
Finally, we summarize related work in Section V and conclude
in Section VI.

II. BFT PROTOCOLS

BFT state machine replication (SMR) protocols achieve
fault tolerance by coordinating client interactions with a set
of independent service replicas [16]. The replicated service
remains functional as long as the number of faulty replicas
does not surpass a threshold t out of n replicas. In BFT
SMR, replicas order operations issued by clients, preserve a
consistent state, and then provide matching responses to the
client, which needs to collect at least t+1 matching responses
from different replicas to assert the correctness.

Running agreements: Replicas repeatedly agree on a
block of operations. To complete a single agreement instance,
replicas must go through multiple phases. In our approach,
we model each of the phases such that it consists of several
components:

1) Dissemination of one or more proposals: In some cases,
this component can be omitted if the phase uses the output
of the previous phase as its input.

2) Confirmation: This component requires voting to confirm
a proposal.

3) Aggregation: Votes that match across different replicas
are collected to form a quorum certificate.

Figure 2 illustrates these phases for the PBFT protocol. The
first phase, PREPARE, encompasses both dissemination (PRE-
PREPARE messages) and confirmation (PPREPARE messages).

Quorum certificates contain votes from sufficient replicas to
guarantee that no two different blocks can receive a certificate,
thus committing the block. After an agreement completes,
replicas execute the operations.

PRE-PREPARE PREPARE COMMIT

Request Response
c

r0
r1
r2
r3

(a) PBFT’s agreement operation is fast: It
consists of only three communication steps
but incurs O(n2) communication complexity.

PREPARE

Request Response
c

r0
r1
r2
r3 PRE-COMMIT COMMIT DECIDE

(b) The HotStuff leader collects the votes
from the other replicas and distributes quo-
rum certificates to all others.

PREPARE

Request Response
c

r0

PRE-COMMIT COMMIT DECIDE

r1
r2
r3
r4
r5
r6

(c) In Kauri, the leader uses a balanced
communication tree to disseminate a proposal
and to aggregate and disseminate votes.

Figure 3: Communication patterns of different BFT protocols: (a) all-to-all, (b) linear (star), and (c) tree.

Orthogonal to the agreement instances, replicas operate in
views, which define a composition of replicas, select leader(s),
and in some cases establish the dissemination pattern. Some
protocols re-use a single view under a stable leader (as long
as agreement instances finish), as shown in Figure 2, but
others may change the view for each stage or instance. A view
change phase synchronizes replicas, replaces the leader, and
eventually ensures liveness by installing a new leader under
whose regency, agreement instances succeed.

PBFT: In 1999, Castro and Liskov proposed the Practical
Byzantine Fault Tolerance (PBFT) protocol which became
known as the first practical approach for tolerating Byzan-
tine faults [1]. PBFT’s practicality comes from its optimal
resilience threshold (t = n−1

3) and its high performance,
comparable to non-replicated systems. We show the message
flow of PBFT’s normal operation in Figure 3a. In PBFT, the
leader collects client operations in a block and broadcasts the
block in a PRE-PREPARE message to all replicas. Subsequently,
all replicas vote and collect quorum certificates through the
messages PREPARE and COMMIT which are realized as all-to-
all broadcasts. PBFT does not scale well for larger system
sizes, because all operations are tunneled through a single
leader, who must disseminate large blocks to all of the other
replicas. This makes the leader’s up-link bandwidth a bottle-
neck for the whole system’s performance. Further, PBFT’s all-
to-all broadcasts incur O(n2) messages (and authenticators) to
be transmitted in the system.

HotStuff: The HotStuff leader implements linear message
complexity by gathering votes from all other replicas and
disseminating a quorum certificate [4]. To reduce the cost
of transmitting message authenticators, the leader can use a
simple aggregation technique to compress n − t signatures
into a single fixed-size threshold signature. This threshold
signature scheme uses the quorum size as a threshold, and
a valid threshold signature implies that a quorum of replicas
has signed it. Consequently, the threshold signature has a size
of O(1), which is a significant improvement over transmitting
O(n) individual signatures.

The original implementation of HotStuff (we refer to it as
HOTSTUFF-SECP256K1) is based on elliptic curves and does
not feature signature aggregation (i.e., combining multiple
signatures into a single signature of fixed size). Later, an
implementation was made available by [7] that uses BLS
signatures [17] (which we refer to as HOTSTUFF-BLS) that

features signature aggregation.
As depicted in Figure 3b, the communication flow remains

imbalanced where each follower replica communicates exclu-
sively with the leader (which is the center of a star topology),
while the leader has to communicate with all other replicas.

Kauri: The use of a tree-based communication topology
offers an advantage as it distributes the responsibility of
aggregating and disseminating votes and quorum certificates,
thus relieving the leader. Kauri [7] is a tree-based BFT
SMR protocol (see Figure 3c) that introduces a timeout for
aggregation to address leaf failures.

To handle the failure of internal tree nodes, Kauri employs
a reconfiguration scheme, which guarantees to find a correct
set of internal nodes, given that the number of failures lies
below a certain threshold.

The added latency caused by the additional number of
communication steps is mitigated through a more sophisticated
pipelining approach (that can start several agreement instances
per protocol stage) than the pipelining mechanism employed
in HotStuff which launches only a single agreement instance
for each protocol stage.

III. METHODOLOGY

In this section, we first justify and motivate our ambition
of evaluating actual BFT protocol implementations through a
simulation of the running distributed system. In this simula-
tion, replica and client components are instantiated using the
provided protocol implementations and are co-opted into an
event-based simulation that constructs and manages the system
environment. Moreover, we explain the selection of protocols,
that we made in Section II.

Subsequently, we describe the software architecture of our
simulation approach. The approach involves the user inputting
a simple experimental description file (EDF), specified in
YAML format, to a frontend. The frontend then prepares all
runtime artifacts, creates a realistic network topology, and
schedules a new experiment. This scheduling is done by
launching an instance of the backend, which runs the network
simulation. A detailed overview is displayed in Figure 4.

After that, we validate simulation results by comparing them
with measurements from real setups that we mimicked.

A. Why Simulate BFT Protocol Implementations?
One of the main benefits of our concrete methodology is the

plug-and-play utility. This means we can guarantee application

realism because the actual implementation is used to start real
Linux processes which serve as the application model, thus
duplicating actual implementation behavior. In particular, it
means in regard to the application level the overall approach
can be considered an emulation. At the same time, users
experience no re-implementation or modeling effort which can
easily introduce errors due to the high complexity of BFT
protocols and is also time-consuming.

Furthermore, simulating actual BFT protocol implemen-
tations rather than specifically crafted models is useful
for the purpose of rapid prototyping and validation. Some
implementation-level bugs in BFT systems might not occur
in “common” n = 4 scenarios, and thus simulations can
be utilized to conduct integration tests at a larger scale.
Similarly, they can be employed by developers for automatic
regression tests thinking “did my last commit negatively affect
the protocol performance at a larger scale?”.

Furthermore, there are some advantages that generally exist
when using simulations. First of all, simulations make it easy
to investigate the run-time behavior of BFT protocols in an
inexpensive way, much cheaper than real-world deployments.
Nowadays more and more BFT protocol implementations are
published open-source. Simulations make it easy to compare
these protocols under common conditions and fairly reason
about their performance in scenarios in which performance
becomes network-bound. In particular, it is possible to explore
the parameter space of both protocol parameters and network
conditions in a systematic way and in a controlled environ-
ment, which even produces deterministic results.

Moreover, in our methodology, we can create large network
topologies by using latency maps (such as those provided by
Wonderproxy1) which can provide more regions than what
most cloud providers, e.g., AWS can offer.

Lastly, simulation can also serve a didactical purpose.
Simulations can help to achieve a better understanding of
how BFT protocols behave at a large scale. For instance, the
methodology can be used to support teaching in distributed
system labs at universities by letting students gain hands-on
experience with a set of already implemented BFT protocols.

BFT Protocol Selection: We justify the selection of BFT
protocols in the following way: Our main ambition was to
showcase the impact of different communication strategies
(i.e., all-to-all, star, and tree) towards system performance,
and thus we selected a single “representative” BFT protocol
for each strategy (namely PBFT, HotStuff, and Kauri, respec-
tively). As part of future work, we plan to extend evaluations
to multi-leader and leaderless BFT protocols which can be
also evaluated by following our methodology.

Phantom as Choice for the Backend: We chose Phan-
tom [18] for the part of the backend that finally conducts
the simulations. The main reason lies in its high perfor-
mance, hybrid simulation/emulation architecture which offers
the possibility to directly execute applications (thus benefiting

1See https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/ to ob-
tain information on these statistics.

realism) while still running them in the context of a cohesive
network simulation [18]. We conducted a comparison with
other approaches in an earlier workshop paper [19].

B. The Frontend: Accelerating Large-Scale Simulations of
BFT Protocol Implementations

Conducting large-scale simulations of BFT protocols re-
quires tackling a set of challenges first. This is because of
the following reasons:

1) The simulation quality depends on realistic and large
network topologies for arbitrary system sizes. The char-
acteristics of their communication links should ideally
resemble real-world deployments. This is crucial to allow
realistic simulation of wide-area network environments.

2) We need aid in setting up the BFT protocol implementa-
tions for their deployment, since bootstrapping BFT pro-
tocol implementations in a plug-and-play manner involves
many steps that can be tedious, error-prone, and protocol-
specific. Examples include the generation of protocol-
specific run-time artifacts like cryptographic key material,
or configuration files which differ for every BFT protocol.

3) When developing and testing BFT algorithms, different
combinations of protocol settings result in numerous
experiments being conducted. Since simulations run in
virtual time, they can take hours, depending on the host
system’s specifications. For the sake of user experience
and convenience, we find it necessary for experiments
to be specified in bulk and run sequentially without any
need for user intervention.

4) We may want to track and evaluate resources needed
during simulation runs, such as CPU utilization and
memory usage.

These reasons led us to develop a frontend2, a tool on top
of the Phantom simulator [18] to simplify and accelerate the
evaluation of unmodified BFT protocol implementations.

Experimental Description and Frontend Design: The fron-
tend is composed of several components (see Figure 4) and
follows a modular architecture, in that it is not tailored to a
specific BFT protocol, but is easily extensible.

Scheduler: The toolchain is administered by a scheduler
that manages all tools, i.e., for preparing an environment,
configuring runtime artifacts for a BFT protocol, and ini-
tializing a resource monitor. The scheduler invokes protocol
connectors to set up a BFT protocol and loads experiments
description files (see Figure 5 for an example that specifies
a single experiment) which contain a set of experiments to
be conducted for the specified BFT protocol. Finally, it starts
Phantom, once an experiment is ready for its execution.

The scheduler also initializes a resource monitor to collect
information on resource consumption (like allocated memory
and CPU time) during simulation runs and also the total
simulation time. These statistics can serve as indicators of a
possible need for vertically scaling the host machine and as
estimates for the necessary resources to run large simulations.

2All of our code and the experiment files are open-source available on
GitHub (https://github.com/Delphi-BFT/tool).

https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://github.com/Delphi-BFT/tool

Process 1

Shim

Virtual Host 1

Process 2

Shim

Virtual Host 2

... Process n

Shim

Virtual Host n

Simulated OS Kernel
Simulated Network Transport

pr
el

oa
de

d

IPC Channels

pr
el

oa
de

d

pr
el

oa
de

d

seccomp filter

Simulator Controller Process

libc
syscall within libchandle

syscall
handle
syscall

handle
syscall

IPC Channels

Library of BFT
 Implementations

Experiment
Desciption
File (EDF)

H
ot

-
S

tu
ff

P
B

FT

K
au

ri

B
FT

-
S

M
aR

t

...

Scheduler & Resource Management

Environment Generator Protocol Connectors

create network topology

Frontend

Backend (Phantom)

launches

configure runtime artifacts

scalable, high-performance
network simulations

Cloudping

Figure 4: Architecture employed in our simulation method.

Environment Generator: The environment generator cre-
ates network topologies as a complete graph for any system
size, resembling realistic LAN or WAN settings. To replicate
the geographic dispersion of nodes realistically, the environ-
ment generator employs a cloudping component, which re-
trieves real round-trip latencies between all AWS regions from
Cloudping3. This allows the tool to create network topologies
that resemble real BFT protocol deployments on the AWS
cloud infrastructure. We also implemented a larger latency map
that uses 51 distinct locations sourced from Wonderproxy’s
latency statistics. The cloudping component can either load an
up-to-date latency map from an online source or use one of
the existing ones from the repository. Note that using the same
latency map is necessary for maintaining determinism and
thus a requirement for reproducibility. The EDF.network
description defines the distribution of replicas and clients on
a latency map and configures bandwidth and packet loss.

Protocol Connectors: For each BFT protocol implemen-
tation that we want to simulate, it is necessary to create
protocol configuration files and necessary keys. Since protocol
options and cryptographic primitives vary depending on the
concrete BFT protocol, we implement the protocol-specific
setup routine as a tool called protocol connector, which is
invoked by the scheduler. A connector must implement the
methods build() and configure(). This way, it is

3See https://www.cloudping.co/grid.

EDF.network
bandwidthUp: 25 Mibits
bandwidthDown: 25 Mibits
latency:
map: 'aws21'
replicas: ['eu-west-1': 2, 'us-east-1': 1,

'sa-east-1': 1]
clients: ['ca-central-1': 2]
packetLoss: 0.0

EDF.replica
replicas: 4
blockSize: 400
replySize: 1024
timeout: 4000

EDF.client
clients: 16
numberOfHosts: 2
requestSize: 1024
outStandingPerClient: 175

EDF.faults
type: crash
threshold: 0.25
timestamp: 60 s

Figure 5: Example for an experimental description file (EDF).

simple to extend our toolchain and support new BFT protocols,
as it only requires writing a new protocol connector (in our
experience this means writing between 100 and 200 LOC).

Fault Induction: Our frontend can also induce faults
during simulation runs which is important to reason about
the performance in “uncivil” scenarios. Since BFT protocols
sometimes employ different resilience thresholds, we allow the
user to specify a desired threshold of replicas in which faults
are induced. We model a static threshold adversary as often
assumed by BFT protocols.

A simple and currently supported fault type is type:
crash which terminates the faulty replica processes at a
specific timestamp within the simulation.

Another scenario that we can run is a denial-of-service
attack by setting type: dos and specifying an overload
parameter, which leads to a malicious client being instantiated
that sends a larger number of requests (a multiple, e.g., 100×
of what the normal clients send), to test if implementations
can withstand such a scenario, i.e., by limiting the number
of requests accepted from a single client and ensuring a fair
batching strategy. Further, we support packetloss which
describes the ratio of packets to be dropped on the network
level (however this setting currently needs to be configured
in the EDF.network section) to assess how well BFT
implementations can perform when networks behave lossy.

In future work, we want to explore more sophisticated
(Byzantine) fault behavior, for instance, by seeking inspiration
from the Twins [20] methodology. Twins is a unit test case
generator for Byzantine behavior by duplicating cryptographic
IDs of replicas (e.g., leading to equivocations).

C. The Backend: Using Phantom to Simulate BFT Protocols
as Native Linux Processes

As backend, we use Phantom, which employs a hybrid
simulation/emulation architecture, in which real, unmodified
applications execute as normal processes on Linux and are
hooked into the simulation through a system call interface
using standard kernel facilities [18]. An advantage of this is
that this method preserves application layer realism as real

https://www.cloudping.co/grid

BFT protocol implementations are executed. At the same time,
Phantom is resource-friendly and runs on a single machine.

By utilizing its hybrid architecture, Phantom occupies a
favorable position between the pure simulator ns-3 [21] and the
pure emulator Mininet [22]. It maintains sufficient application
realism necessary for BFT protocol execution while exhibiting
greater resource-friendliness and scalability compared to em-
ulators. Because Phantom strikes a balance that caters to the
needs of BFT protocol research, we chose it as the backend
for conducting protocol simulations.

Simulated Environment: In Phantom, a network topology
(the environment) can be described by specifying a graph,
where virtual hosts are nodes and communication links are
edges. The graph is attributed: For instance, virtual hosts
specify available uplink/downlink bandwidth and links specify
latency and packet loss. Each virtual host can be used to
run one or more applications. This results in the creation of
real Linux processes that are initialized by the simulator con-
troller process as managed processes (managed by a Phantom
worker). The Phantom worker uses LD_PRELOAD to preload
a shared library (called the shim) for co-opting its managed
processes into the simulation (see Figure 4). LD_PRELOAD
is extended by a second interception strategy, which uses
seccomp4 for cases in which preloading does not work.

Simulation Engine: The shim constructs an inter-process
communication channel (IPC) to the simulator controller pro-
cess and intercepts functions at the system call interface.
While the shim may directly emulate a few system calls,
most system calls are forwarded and handled by the simulator
controller process, which simulates kernel and networking
functionality, for example, the passage of time, I/O operations
on file, socket, pipe, timer, event descriptors and
packet transmissions.

Deterministic Execution: Throughout the simulation,
Phantom preserves determinism: It employs a pseudo-random
generator, which is seeded from a configuration file to emulate
all randomness needed during simulation, in particular, the
emulation of getrandom or reads of /dev/*random. Each
Phantom worker only allows a single thread of execution
across all processes it manages so that each of the remaining
managed processes/threads are idle, thus preventing concurrent
access of managed processes’ memory [18].

In our workflow, Phantom is invoked by the Scheduler as
soon as a new simulation experiment is ready for its execution
and the host’s hardware resources are available.

D. Validation

In this section, we compare measurements of real BFT
protocol runs with results that we achieve through simulations.

1) HOTSTUFF-SECP256K1: In our first evaluation, we try
to mimic the evaluation setup of the HotStuff paper (the
arXiv, version see [10]) to compare their measurements with
our simulation results. Their setup consists of more than a
hundred virtual machines deployed in an AWS data center;

4Installing a secure computing (i.e., seccomp) filter in a process allows
interposition on system calls that are not preloadable, see [18] for more details.

4 16 32 64 128
0

50

100

150

200

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

]

payload=1024 bytes

real
sim.

4 16 32 64 128
0

25

50

75

100

125

150

Replicas

L
at

en
cy

[m
s]

4 16 32 64 128
0

5

10

15

20

25

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

]

latency=10ms

real
sim.

4 16 32 64 128
0

25

50

75

100

125

150

Replicas

L
at

en
cy

[m
s]

Figure 6: Performance results of HOTSTUFF-SECP256K1 vs.
its simulated counterpart using a bandwidth of 10 Gbit.

each machine has up to 10 Gbit/s bandwidth and there is
less than 1 ms latency between each pair of machines (we
use 1 ms in the simulation). The employed block size is
400. We compare against two measurement series: “p1024”
where the payload size of request and responses is 1024
bytes and “10ms” with an empty payload, but the latency
of all communication links is set to 10 ms. Our goal is to
investigate how faithfully the performance of HotStuff can
be predicted by regarding only the networking capabilities
of replicas, which manifests at the point where the network
becomes the bottleneck for system performance.

Observations. We display our results in Figure 6. The
simulation results for the payload experiment indicate a similar
drop in performance as the real measurements for n ≥ 32. For
a small-sized replica group, the network simulation predicts
higher performance: 200k op/s. This equals the theoretical
maximum limited only through the 1 ms link latency which
leads to pipelined HotStuff committing a block of 400 requests
every 2 ms. The difference in throughput decreases once the
performance of HotStuff becomes more bandwidth-throttled
(at n ≥ 32). We also achieve close results in the “10ms”
setting: 80 ms in the simulation vs 84.1 ms real, and 20k op/s
in the simulation vs. 19.2k op/s real for n = 4; but with an
increasing difference for higher n, i.e., 84 ms vs. 106 ms and
19k.2 op/s vs. 15.1k op/s for n = 128. The problem is that
this experiment does not use any payload which makes the
performance less sensitive to a network bottleneck (which is
usually caused by limited available bandwidth).

2) BFT-SMART and PBFT: In our next experiment we
validate BFT-SMART and PBFT5, by using measurements
taken from [10] and conducting our own experiment on a WAN
which is constructed using four different AWS regions.

5We use a Rust-based implementation of PBFT (github.com/ibr-ds/themis),
since the original by Castro et al. [1] does not compile on modern computers.

github.com/ibr-ds/themis

16 32 64 128
0

10
25

50

75

100

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

]
PBFT (sim) BFT-SMaRt (sim) BFT-SMaRt (real)

4 16 32 64 128
0

50

100

150

Replicas

L
at

en
cy

[m
s]

Figure 7: Performance of simulated BFT-SMART, simulated
PBFT and a real BFT-SMART execution in a 10 Gbit LAN.

Consensus

100
200
300
400
500
600

L
at

en
cy

[m
s]

real

sim.

(a) Consensus latency.

Oreg
on

Ireland

São Paulo
Sydney

100
200
300
400
500
600

L
at

en
cy

[m
s]

real AWS simulation

(b) End-to-end request latencies observed
by clients in AWS regions.

Figure 8: Comparison of a real BFT-SMART WAN deploy-
ment on the AWS infrastructure with its simulated counterpart.

LAN environment: To begin with, we mimic the “p1024”
setup from [10] (as the real measurement data we found for
BFT-SMART is from [10]), thus creating an environment with
1 ms network speed and 10 Gbit/s bandwidth. We simulate
both protocols: BFT-SMART and PBFT, because they utilize
an identical normal-case message pattern.

Observations. We display our results in Figure 7. We ob-
serve that initially (n ≤32) the real BFT-SMaRt performance
results are quite lower than what our simulations predict. This
changes with an increasing n, i.e., at n = 128, we observe
9.280 op/s for BFT-SMART (real measurement: 8.557 op/s)
and 9.354 op/s for our PBFT implementation. In the latency
graph, we observe a noticeable gap between real and simulated
BFT-SMART. The main reason for this is that we could not
exactly reproduce the operation sending rate from [10] as it
was not explicitly stated in their experimental setup.

Geo-Distribution: Next, we experiment with geographic
dispersion, putting each BFT-SMaRt replica in a distinct AWS
region. Our experimental setup is similar to experiments found
in papers that research latency improvements (see [23]–[25]).
We employ a n = 4 configuration and choose the regions
Oregon, Ireland, São Paulo, and Sydney for the deployment
of a replica and a client application each. We run clients one
after another, and each samples 1000 requests without payload
and measures end-to-end latency, while the leader replica (in
Oregon) measures the system’s consensus latency.

Observations. We notice that consensus latency is only
slightly higher in the simulation (237 ms vs. 249 ms), and
further, the simulation results also display slightly higher end-
to-end request latencies in all clients (see Figure 8). The
deviation between simulated and real execution is the lowest

0 100 200 400
0

2

4

6

8

10

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

]

real
sim

(a) KAURI.

0 100 200 400
0

200

400

600

800

1,000

Replicas

T
hr

ou
gh

pu
t

[O
ps

/s
]

real
sim

(b) HOTSTUFF-BLS.

Figure 9: Reproducing the “global” scenario from [7] that
uses 100 ms inter-replica latency and 25 Mbit/s bandwitdh.

in Oregon (1.3%) and the highest in São Paulo (3.5%).
3) KAURI and HOTSTUFF-BLS: Moreover, we mimic the

global experiment from Kauri [7], which uses a varying
number of 100, 200, and 400 replicas. The global setup
assumes replicas being connected over a planetary-scale net-
work, in which each replica possesses only 25 Mbit/s band-
width and has a latency of 100 ms to every other replica.
We validate two implementations that were made by [7]:
HOTSTUFF-BLS, an implementation of HotStuff which uses
BLS instead of SECP256K1 (this the originally implemented
version of HotStuff), and KAURI which enriches HOTSTUFF-
BLS through tree-based message dissemination (and aggrega-
tion) and an enhanced pipelining scheme.

Observations. Figure 9 shows our results. Overall, we
observe that for both implementations, the results we could
obtain for system throughput are almost identical. At n = 400,
for KAURI, we observe 4518 op/s (real: 4584 op/s), and for
HOTSTUFF-BLS it is 230 op/s (real: 252.67 op/s).

We also evaluated on the latency of Kauri deciding blocks
(as in Figure 8 from [7]) comparing with the n = 100 and 25
Mbit/s latency experiment. While the real experiment in the
Kauri paper reports a latency of 563 ms, in the simulation,
deciding a block seems to take at least 585 ms.

4) Resource Consumption and Implementations: Further,
we investigate how resource utilization, i.e., memory usage
and simulation time, grows with an increasing system scale.
For this purpose, we use the HOTSTUFF-SECP256K1 “10ms”
simulations (which display a somewhat steady system perfor-
mance for increasing system scale) on an Ubuntu 20.04 VM
with 214 GB memory and 20 threads (16 threads used for
simulation) on a host with an Intel Xeon Gold 6210U CPU
at 2.5 GHz. We observe that active host memory and elapsed
time grow with increasing system scale (see Figure 10). Based
on the practically linear increase in memory utilization in
Figure 10, we estimate that 512 replicas will need about 64
GiB memory, and it should be feasible to simulate up to 512
HotStuff replicas with a well-equipped host.

During our validations, we tested several open-source BFT
frameworks (see Table I) which have been written in dif-
ferent programming languages (C++, Rust, Java). From our
experience, the Java-based BFT-SMART library was the most
memory-hungry implementation, but we were still able to

41632 64 128
0

8

16

Replicas

M
em

or
y

[G
B

]

41632 64 128
0

15
30
45
60

Replicas

Ti
m

e
[m

]

Figure 10: Resource consumption of simulations.

simulate n = 128 replicas on our commodity hardware
server without problems, which strengthens our belief in the
scalability and resource-friendliness of our methodology.

Table I: BFT protocol implementations that we simulated.

framework BFT protocol language repo on github.com
libhotstuff [10] HotStuff [10] C++ /hot-stuff/libhotstuff
themis [26] PBFT [1] Rust /ibr-ds/themis
bft-smart BFT-SMaRt [27] Java /bft-smart/library
hotstuff-bls [7] HotStuff [10] C++ /Raycoms/Kauri-Public/
kauri Kauri [7] C++ /Raycoms/Kauri-Public/

IV. EXPERIMENTAL RESULTS

In this section, we compare different BFT protocol imple-
mentations under varying border conditions:

1) failure-free: Benchmark protocols in failure-free execu-
tion for increasing system size and varying block size

2) packetloss: The simulated network behaves lossy
3) denial-of-service attack: A specific client tries to overload

the system by submitting too many operations
4) crashing-replicas: Similiar to (1) but with induced crash

faults at a certain point of simulated time
The high-level goal is to present an apples-to-apples compar-
ison of BFT implementations in a controlled environment.

A. General Setup
In our controlled environment, we simulate a heterogeneous

planetary-scale network, using 21 regions from the AWS cloud
infrastructure, as shown in Figure 11. Latencies are retrieved
from real latency statistics by the cloudping component of our
frontend. Replicas vary in number and are evenly distributed
across all regions. We use a 25 Mbit/s bandwidth rate, con-
sistent with related research to model commodity hardware in
world-spanning networks (e.g., see the global setup of [7]).
We utilize a variable number of clients to submit requests to
the replicas. Specifically, we carefully select both the client
count and concurrent request rate to fully saturate and thereby
maximize6 the observable system throughput.

In our simulations, we use the protocols PBFT, HOTSTUFF-
SECP256K1, HOTSTUFF-BLS, and KAURI. Operations carry a
payload of 500 bytes (roughly the average size of a Bitcoin
operation), and the default block size is 1000 operations unless
stated otherwise. Each simulation deploys replicas and clients
and then runs the BFT protocol for at least 120 seconds of
simulated time within the environment.

6The number of concurrently submitted requests is sufficient to (1) fill the
block size of each block that a BFT protocol processes in parallel, and (2) a
block size of pending requests remains to wait at the leader so the next block
can be disseminated immediately as soon as an ongoing consensus finalizes.

c

c

c

c

Figure 11: The aws21 map mimics a planetary-scale deploy-
ment on the AWS infrastructure, with replicas spread across
21 regions, and clients (c) submitting requests to replicas.

B. Failure-Free Scenario: Scalability and Block Size

In our first experiment, we evaluate the baseline perfor-
mance of the BFT protocols in our constructed environment
assuming that no failures happen. Further, we repeat each
simulation while varying the system size n (namely, using a
total of 64, 128, and 256 replicas) and varying the block size
(using both the default size of 1000 operations and a block size
that is more optimal for a protocol in respect to observing
lower latency). We denote variations in the employed block
size by adding the postfix “-blockSize” to the protocol name.

Observations: We present our results in Figure 12. In
particular, we can observe striking differences in BFT protocol
performance being in different orders of magnitudes.

KAURI-1k displays the highest performance among all pro-
tocol implementations. At n = 256, Kauri achieves a through-
put increase of almost 20× over HOTSTUFF-SECP256K1 in
our heterogeneous setup (4917 op/s vs. 246 op/s). On a side
note, the evaluations of Kauri report a possible increase of
up to 28× over HotStuff in a setup created entirely with
homogeneous latencies [7].

We further observe a surprisingly low performance of our
tested PBFT-1k implementation (75 op/s and a latency of
23.45 s at n = 64). The problem of this implementation
is that it includes full operations in blocks, causing long
dissemination delays for large blocks over the limited 25
Mbit/s links. Other protocol implementations include only
SHA-256 hashes of operations in the blocks, which then
accelerates proposal dissemination time.

For the purpose of a fair comparison, we simulate this PBFT
implementation as if it would use the “big request” optimiza-
tion7 [1] (and denote it by PBFT-opt), which achieves 466
op/s and a latency of 3.7 s at n = 64. HOTSTUFF-SECP256K1
still beats the PBFT implementation we used because of its
use of pipelining and re-use of quorum certificates during
aggregation which can improve performance in this setting.

Notably, varying the block size impacts observed latency.
Smaller blocks can be more quickly disseminated which then
decreases latency, in particular, if clients operate in a closed
loop, i.e., only issue a constant number of k operations

7The big request operation in PBFT substitutes larger requests by a hash
value and only inlines small operations into a block (batch in PBFT parlance).

0 64 128 256
10
25
50

100
250
500

1,000
2,500
5,000

10,000
25,000

Replicas

T
hr

ou
gh

pu
t

[O
ps

/s
]

KAURI-1k KAURI-500 HOTSTUFF-SECP256K1-1k HOTSTUFF-SECP256K1-400 PBFT-1k
PBFT-200 PBFT-opt-1k PBFT-opt-400 HOTSTUFF-BLS-400

0 64 128 256

0.625
1.25
2.5
5

10
20
40
80

consensus latencies

request latencies

Replicas

L
at

en
cy

[s
]

Figure 12: Performance of BFT protocols in a geo-distributed, fault-free scenario using 25 Mbit/s network links.

kauri500

hotstu
ff400

pbftO
pt400

hotstu
ffB

LS400
100

250
500

1,000

2,500
5,000

10,000

25,000

T
hr

ou
gh

pu
t

[O
p/

s] no loss
2% loss

Figure 13: Packet loss.

kauri500

hotstu
ff400

pbftO
pt400

hotstu
ffB

LS400

0.625
1.25
2.5
5

10
20
40
80

L
at

en
cy

[s
]

normal DOS

Figure 14: DOS attack.

concurrently then wait for obtaining responses and completing
pending operations before submitting new operations. We also
observe that at n = 256, the BLS implementation of HotStuff-
400 increases throughput by 1.85× over its implementation
with SECP256K1 (353 vs. 191 op/s).

C. Packet Loss

In our next experiment, we study the impact of lossy
network links on system throughput. For this purpose, we
employ the same environment as in the last section with a
fixed size of n = 128 replicas but introduce a packet loss of
2% on every network link.

Observations: We display our simulation results in Fig-
ure 13. Overall, we observe the same protocol performance
for PBFT, and HOTSTUFF-SECP256K1 while the throughput
of KAURI only slightly drops. We conclude that packet loss
does not seem to impact BFT protocol performance much.

D. Denial-of-Service Attack

In this experiment, we examine how well BFT protocol
implementations can tolerate specific clients trying to overload
the system. We use the usual n = 128 replicas setup. To
overload the system, we let a specific “malicious” client
submit a larger number (i.e., 10× more than in Sect. IV-B)
of outstanding operations to the system during a short time
interval of 120 s and investigate the impact on request latency
that normal clients observe.

Observations: We show our simulation results in Fig-
ure 14. More outstanding client requests lead to higher ob-
served latency in PBFT (4.9s to 15.2s) and HOTSTUFF-
SECP256K1 (4.1s to 8.2s). This is because submitted requests
are queued and need to wait for an increasing amount of
time to be processed. Interestingly, we found almost identical
latency results for KAURI and HOTSTUFF-BLS. After looking
into the specifics of their implemented benchmark application,
it became clear to us that these implementations only report
consensus latency of replicas and not the end-to-end request
latency observed by clients. In this light, the latency results
obtained are – at least for this experiment – not helpful for a
direct comparison8.

None of the tested implementations had mechanisms in
place that would prevent overloading the system, e.g., limiting
the number of requests that are accepted from a single client.

E. Crashing Replicas

Finally, we investigate the crash fault resilience of our tested
protocol implementations, using our usual n = 128 replicas
setup. We induce a crash fault at the leader replica at time
τ = 60 s. During our simulations, we noticed that the PBFT
implementation’s9 view change did not work properly. After
contacting the developers we received a patch (a recent commit
was missing in the public GitHub repository) that resolved the
issue, at least for smaller systems. This illustrates how our
methodology can help detect protocol implementation bugs.

Observations: We show our results in Figure 15. The
failover time of a protocol generally depends on its timeout
parameterization and we cannot exclude that tighter timeouts
could have been possible (although noticeable, in [7] it is
stated that Kauri can use more aggressive timeout values than
Hotstuff). Notably, we observe a few interesting behaviors: In
HotStuff, after the failover, the new HotStuff leader pushes a

8Note that we would have to modify the benchmarking application of Kauri
to obtain request latency results that are comparable with the other protocols.
A small takeaway message is that different BFT protocol implementations
might use slightly different metrics in benchmark suites. It requires caution
when comparing results but it is not a hindrance to our general approach.

9This statement only applies to the Rust-based implementation of PBFT
(github.com/ibr-ds/themis) we tested, not the original by Castro et al. [1].

github.com/ibr-ds/themis

0 30 60 90 120
0

400

800

1,200

1,600

Time [s]

T
hr

ou
gh

pu
t

[O
ps

/s
]

(a) HotStuff.

0 30 60 90 120
0

1,000

2,000

3,000

4,000

5,000

Time [s]

T
hr

ou
gh

pu
t

[O
ps

/s
]

(b) Kauri.

0 30 60 90 120
0

400

800

1,200

1,600

Time [s]

T
hr

ou
gh

pu
t

[O
ps

/s
]

8 16 128

(c) PBFT.

0 30 60 90 120
0

400

800

1,200

1,600

Time [s]

T
hr

ou
gh

pu
t

[O
ps

/s
]

(d) HotStuff-BLS.

Figure 15: Inducing a single crash fault in the leader.

larger block leading to a throughput spike: It tries to commit
the large block fast by building a three-chain in which the large
block is followed by empty blocks (this leads to a short, second
throughput drop to 0). After that, the throughput stabilizes.
In our observation, the new Kauri leader can more quickly
recover protocol performance than in HotStuff. The throughput
level seems to be slightly higher which is because the new
leader seems to be located in a more favorable region of the
world (leader location impacts BFT protocol performance).

The PBFT implementation completed the failover for small
system sizes only and with a longer failover time than HotStuff
or Kauri. We inspected the concrete behavior of the implemen-
tation and noticed that the view change was implemented in an
inefficient way (with respect to utilized bandwidth): For every
request that timed out, the new leader would assign a sequence
number and instantly propose it in a new block (containing
only a single request). This way, the costs of running the
agreement protocol in our simulated wide area network would
not amortize over multiple (hundreds of) requests because
every timed-out request demanded to collect a quorum.

V. RELATED WORK

The first simulator specifically designed for traditional BFT
protocols is BFTSim [11]. It is tailored for small replica
groups, and its limited scalability renders BFTsim impractical
for newer larger-scale BFT protocols. BFTSim requires model-
ing BFT protocols in the P2 language, which introduces error-
proneness given the complexity of protocols, like PBFT’s view
change mechanism and Zyzzyva’s numerous corner cases.
While capable of simulating faults, it only considers non-
malicious behavior, lacking functionality to tackle sophisti-
cated Byzantine attacks. BFTsim uses ns-2 for realistic net-
working and is resource-friendly, running on a single machine.

Recently, Wang et al. [12] introduced a BFT simulator that
exhibits resource-friendliness, high scalability, and includes an
“attacker module” with predefined attacks such as partitioning,

adaptive, and rushing attacks. Similar to BFTSim, it requires
the re-implementation of a BFT protocol (in JavaScript). An-
other current limitation is the inability to measure throughput.

Several simulators were developed for blockchain research,
including Shadow-Bitcoin [28], the Bitcoin blockchain simu-
lator [29], BlockSim [30], SimBlock [31], and ChainSim [32].
These simulators primarily concentrate on constructing models
that accurately depict the features of Proof-of-Work (PoW)
consensus mechanisms, making them less suitable for adoption
in BFT protocol research.

Moreover, related work on behavior prediction encompasses
stochastic modeling of BFT protocols [33] and validations of
BFT protocols through unit test generation [20].

Additionally, there are tools for emulating or simulating
any distributed applications. Emulators such as Mininet [22],
[34] and Kollaps [14] create realistic networks that run actual
Internet protocols and application code with time synchro-
nized with wall clock. Both approaches offer a high level
of realism but are less resource-friendly. Mininet, although
not scalable, had this issue addressed with the introduction
of Maxinet [35], enabling distributed emulation using mul-
tiple physical machines. Kollaps [14] is a scalable emulator
but requires a significant number of physical machines for
conducting large-scale experiments. Furthermore, ns-3 [21]
is a resource-friendly and scalable network simulator, but it
necessitates the development of an application model, thus
impeding application layer realism (and preventing plug-and-
play utility). Phantom [18] uses a hybrid emulation/simula-
tion architecture: It executes real applications as native OS
processes, co-opting the processes into a high-performance
network and kernel simulation and thus can scale to large
system sizes.

VI. CONCLUSION

We proposed a methodology to assess the performance of
BFT protocols via network simulations. A major advantage of
our method compared to related approaches (i.e., [11], [12])
is that we can plug and play existing protocol implementa-
tions without requiring an error-prone re-implementation of
such a protocol in a modeling language. We found that our
method can be useful to study the performance of a protocol
at increasing system scale and in realistic environments. A
further use case of our method is to spot implementation bugs
as simulations can be used to perform integration tests of
distributed systems at a large scale in an inexpensive way.

Overall, the proposed simulation-based evaluation method
offers a valuable tool for researchers and practitioners working
with BFT protocols in the context of DLT applications. It
not only streamlines the scalability analysis process but also
provides cost-effectiveness and accuracy, enabling the design
and deployment of more efficient and resilient BFT-based
distributed systems.

ACKNOWLEDGMENTS

This work has been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) grant num-
ber 446811880 (BFT2Chain).

REFERENCES

[1] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in OSDI.
Berkeley, CA, USA: USENIX Association, 1999, p. 173–186.

[2] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Int. Workshop on Open Problems in Network
Security. Cham: Springer, 2015, pp. 112–125.

[4] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in ACM
Symposium on Principles of Distributed Computing (PODC), 2019, pp.
347–356.

[5] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in IEEE Symp. on Security and Privacy.
Washington, DC, USA: IEEE Comp. Soc., 2021, pp. 466–483.

[6] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and
F. Pedone, “The design, architecture and performance of the tendermint
blockchain network,” in 40th Int. Symp. on Reliable Distributed Systems.
Washington, DC, USA: IEEE Comp. Soc., 2021, pp. 23–33.

[7] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
consensus with pipelined tree-based dissemination and aggregation,” in
ACM SIGOPS 28th SOSP. New York, NY: ACM, 2021, pp. 35–48.

[8] C. Stathakopoulou, T. David, and M. Vukolić, “Mir-bft: High-throughput
BFT for blockchains,” arXiv preprint arXiv:1906.05552, 2019.

[9] P. Li, G. Wang, X. Chen, F. Long, and W. Xu, “Gosig: a scalable and
high-performance Byzantine consensus for consortium blockchains,” in
11th ACM Symp. on Cloud Computing. New York, NY: ACM, 2020,
pp. 223–237.

[10] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

[11] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “BFT
protocols under fire.” in NSDI, vol. 8. Berkeley, CA, USA: USENIX
Association, 2008, pp. 189–204.

[12] P.-L. Wang, T.-W. Chao, C.-C. Wu, and H.-C. Hsiao, “Tool: An efficient
and flexible simulator for Byzantine fault-tolerant protocols,” in 52th
Annu. IEEE/IFIP Int. Conf. on Dependable Systems and Networks.
Washington, DC, USA: IEEE Comp. Soc., 2022, pp. 287–294.

[13] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” in 12th ACM SOSP.
New York, NY: ACM, 2005, pp. 75–90.

[14] P. Gouveia, J. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni, and
M. Matos, “Kollaps: decentralized and dynamic topology emulation,” in
15th European Conf. on Computer Systems. New York, NY: ACM,
2020, pp. 1–16.

[15] C. Berger, S. Schwarz-Rüsch, A. Vogel, K. Bleeke, L. Jehl, H. P.
Reiser, and R. Kapitza, “Sok: Scalability techniques for BFT consensus,”
in IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, 2023.

[16] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of cryptology, vol. 17, pp. 297–319, 2004.

[18] R. Jansen, J. Newsome, and R. Wails, “Co-opting linux processes for
high-performance network simulation,” in USENIX ATC 22. Berkeley,
CA, USA: USENIX Association, 2022, pp. 327–350.

[19] C. Berger, S. B. Toumia, and H. P. Reiser, “Does my bft protocol im-
plementation scale?” in Proceedings of the 3rd International Workshop
on Distributed Infrastructure for the Common Good, 2022, pp. 19–24.

[20] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Twins: BFT Systems Made Robust,” in 25th Int. Conf.
on Principles of Distributed Systems, vol. 217. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 7:1–7:29.

[21] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Cham: Springer, 2010,
pp. 15–34.

[22] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. New York, NY: ACM, 2010,
pp. 1–6.

[23] J. Sousa and A. Bessani, “Separating the WHEAT from the chaff: An
empirical design for geo-replicated state machines,” in 34th IEEE Symp.
on Reliable Distributed Systems. Washington, DC, USA: IEEE Comp.
Soc., 2015, pp. 146–155.

[24] C. Berger, H. P. Reiser, J. Sousa, and A. N. Bessani, “AWARE: Adaptive
wide-area replication for fast and resilient Byzantine consensus,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 3, pp.
1605–1620, 2022.

[25] C. Berger, H. P. Reiser, and A. Bessani, “Making reads in BFT state
machine replication fast, linearizable, and live,” in 40th Int. Symp. on
Reliable Distributed Systems. Washington, DC, USA: IEEE Comp.
Soc., 2021, pp. 1–12.

[26] S. Rüsch, K. Bleeke, and R. Kapitza, “Themis: An efficient and memory-
safe BFT framework in rust: Research statement,” in 3rd Workshop on
Scalable and Resilient Infrastructures for Distributed Ledgers. New
York, NY: ACM, 2019, pp. 9–10.

[27] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with BFT-SMaRt,” in 44th Annu. IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN). Washington, DC, USA:
IEEE Comp. Soc., 2014, pp. 355–362.

[28] A. Miller and R. Jansen, “Shadow-Bitcoin: Scalable simulation via direct
execution of multi-threaded applications,” in 8th Workshop on Cyber
Security Experimentation and Test. Berkeley, CA, USA: USENIX
Association, 2015.

[29] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in ACM SIGSAC CCS. New York, NY: ACM, 2016, pp.
3–16.

[30] C. Faria and M. Correia, “Blocksim: blockchain simulator,” in IEEE Int.
Conf. on Blockchain. Washington, DC, USA: IEEE Comp. Soc., 2019,
pp. 439–446.

[31] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo, “Simblock: A
blockchain network simulator,” in IEEE Conf. on Computer Communi-
cations Workshops. Washington, DC, USA: IEEE Comp. Soc., 2019,
pp. 325–329.

[32] B. Wang, S. Chen, L. Yao, and Q. Wang, “Chainsim: A p2p blockchain
simulation framework,” in CCF China Blockchain Conf. Singapore:
Springer, 2020, pp. 1–16.

[33] M. Nischwitz, M. Esche, and F. Tschorsch, “Bernoulli meets pbft:
Modeling BFT protocols in the presence of dynamic failures,” in 16th
Conference on Computer Science and Intelligence Systems. Washing-
ton, DC, USA: IEEE Comp. Soc., 2021, pp. 291–300.

[34] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in 8th Int. Conf. on Emerging networking experiments and technologies.
New York, NY: ACM, 2012, pp. 253–264.

[35] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in IFIP Networking Conf. Washington, DC, USA: IEEE Comp. Soc.,
2014, pp. 1–9.

https://bitcoin.org/bitcoin.pdf

	Introduction
	BFT Protocols
	Methodology
	Why Simulate BFT Protocol Implementations?
	The Frontend: Accelerating Large-Scale Simulations of BFT Protocol Implementations
	The Backend: Using Phantom to Simulate BFT Protocols as Native Linux Processes
	Validation
	HotStuff-secp256k1
	BFT-SMaRt and PBFT
	Kauri and HotStuff-bls
	Resource Consumption and Implementations

	Experimental Results
	General Setup
	Failure-Free Scenario: Scalability and Block Size
	Packet Loss
	Denial-of-Service Attack
	Crashing Replicas

	Related Work
	Conclusion
	References

