
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper is the authors’ accepted version to
be published in the 5th IEEE International Conference on Blockchain and Cryptocurrency (ICBC). For the final, published version we refer to DOI [to be inserted here later upon publication].

SoK: Scalability Techniques for BFT Consensus
Christian Berger∗†, Signe Schwarz-Rüsch∗‡, Arne Vogel∗‡,

Kai Bleeke§, Leander Jehl¶, Hans P. Reiser∥, and Rüdiger Kapitza‡

∗ The first three authors contributed equally to this work
†University of Passau, Passau, Germany, Email: cb@sec.uni-passau.de

‡ Friedrich-Alexander-Universtität Erlangen-Nürnberg, Erlangen, Germany, Email: {ruesch, vogel, kapitza}@cs.fau.de
§ Technische Universität Braunschweig, Braunschweig, Germany, Email: bleeke@ibr.cs.tu-bs.de

¶ University of Stavanger, Stavanger, Norway, Email: leander.jehl@uis.no
∥ Reykjavik University, Reykjavik, Iceland, Email: hansr@ru.is

Abstract—With the advancement of blockchain systems, many
recent research works have proposed distributed ledger technol-
ogy (DLT) that employs Byzantine fault-tolerant (BFT) consensus
protocols to decide which block to append next to the ledger.
Notably, BFT consensus can offer high performance, energy
efficiency, and provable correctness properties, and it is thus
considered a promising building block for creating highly resilient
and performant blockchain infrastructures. Yet, a major ongoing
challenge is to make BFT consensus applicable to large-scale
environments. A large body of recent work addresses this
challenge by developing novel ideas to improve the scalability
of BFT consensus, thus opening the path for a new generation
of BFT protocols tailored to the needs of blockchain. In this
survey, we create a systematization of knowledge about the
novel scalability-enhancing techniques that state-of-the-art BFT
consensus protocols use. For our comparison, we closely analyze
the efforts, assumptions, and trade-offs these protocols make.

Index Terms—Byzantine Fault Tolerance, Consensus, Scalability,
Blockchain

I. INTRODUCTION

Blockchain-based distributed ledger technology (DLT) expe-
rienced increasing adaptation and growing popularity in recent
years. The original Bitcoin protocol uses a Proof-of-Work
(PoW) scheme to achieve agreement on blocks of transactions,
also called Nakamoto consensus [1]. Bitcoin and many of its
more recently upcoming competitors aim to realize secure and
decentralized applications. While Bitcoin’s application is to
allow its users to send and receive digital peer-to-peer cash,
other blockchains, such as Ethereum [2], even allow building
more complex applications by submitting generic code (called
smart contracts) to the blockchain, where functions of smart
contracts can be invoked by users sending transactions. A
blockchain’s security and decentralization depend on a large
number of network participants. At the same time, the system
performance, i. e., the throughput, should suffice to match the
application’s requirements.

a) Agreement for Blockchain Networks: Blockchains use
an agreement protocol to decide which block they append
next to the ledger. Ideally, agreement should work on a large-
scale (meaning many nodes) and geographically dispersed en-

vironment. PoW achieved agreement and successfully allowed
open membership by securing the blockchain network against
Sybil attacks [3]. This is because PoW couples the probability
of a node being allowed to decide the next block towards
the computational resources it utilized over a certain time
span. Because PoW achieves agreement without coordination
between the nodes other than disseminating the decided blocks,
it can scale well for a large number of nodes. As of this writing,
there are over 15,000 reachable Bitcoin nodes1.

Nevertheless, PoW comes with inherent design problems.
In particular, it (1) wastes energy and computing resources,
(2) usually does not scale up its performance when utilizing
more resources, thus making the scheme very inefficient, and
(3) it does not guarantee consensus finality [4], a property that
ensures a block, once decided, is never changed later on.

b) Coordination-based Byzantine Fault Tolerant (BFT)
Agreement: Recent research papers try to work around these
problems by proposing to utilize coordination-based BFT
agreement protocols (which we will simply refer to as BFT
protocols as of now) used in well-conceived protocols like
PBFT [5], initially proposed more than 20 years ago. The
benefits of PBFT and related protocols like BFT-SMaRt [6]
lie in proven protocol properties and various performance
optimizations allowing these protocols to achieve up to the
magnitude of 105 transactions per second.

In particular, BFT algorithms can be used as a Proof-of-
Stake (PoS) variant [7], in which blockchain nodes are granted
permission to participate in the agreement, depending on the
stake (i. e., native cryptocurrency of the blockchain) they own.
In coordination-based BFT protocols, the decision about which
block is being appended to the blockchain is canonical among
all correct nodes [7]; thus, they ensure consensus finality, and
they are at the same time energy-efficient, i. e., energy is only
consumed for meaningful computations.

A. Motivation

a) The Scalability Challenge for BFT Agreement: Tra-
ditional BFT protocols have a problem with scaling to large
system sizes. To illustrate this with a brief example, let us

1https://bitnodes.io/978-8-3503-1019-1/23/$31.00 ©2023 IEEE

4 16 32 64 128
0

50

100

150

200

Replicas

T
hr

ou
gh

pu
t

[k
O

ps
/s

]

128 byte payload
1024 byte payload

Fig. 1: Performance of BFT-SMaRt (measured by [8]).

PRE-PREPARE PREPARE COMMIT

Request Response
c

r0

r1

r2

r3

(1) all-to-all broadcasts with
O(n²) message complexity

(2) leader as a bottleneck

Fig. 2: Scalability problems of PBFT and BFT-SMaRt.

review the well-known PBFT protocol, which is efficient (with
performance in the magnitude of 105 transactions per second)
for small-sized systems but suffers a noticeable performance
decrease (of down to a magnitude of 103) when several hundred
nodes are in the system. Fig. 1 shows the declining performance
of a newer protocol, BFT-SMaRt (with the same agreement
pattern as PBFT), when the system size increases.

PBFT and BFT-SMaRt share two main problems (see
Fig. 2): First, the normal operation message complexity is
O(n2) because all replicas exchange their votes using all-to-all
broadcasts. This makes the underlying communication topology
of the protocol essentially a clique. Further, the more nodes
are in the system, the more resources are consumed for only
verifying message authenticators from all other nodes.

Second, the protocol flow seems imbalanced: An additional
burden is being put on the leader because the leader needs
to receive transactions from all clients and then disseminate
them in a batch to all other replicas. This essentially makes the
leader’s bandwidth or its computational capabilities to produce
message authenticators a limiting factor for the performance
of the BFT protocol since all transactions of the system need
to be channeled through a single leader.

b) The Age of Novel BFT Blockchains: Research on
BFT consensus becomes increasingly necessary and practical.
Recently, many BFT protocols have been proposed for usage
in blockchain infrastructures, such as HotStuff [9], SBFT [10],
Tendermint [11], [12], Algorand [13], Avalanche [14], Mir-
BFT [15], RedBellyBC [16], and Kauri [17].

These protocols aim at making BFT consensus more scalable,
thus delivering high throughput at low latency in systems
with hundreds or even thousands of participants. Scalability is
essential to allow a blockchain to grow its ecosystem and satisfy

the demands of many decentralized finance (DeFi) applications.
For instance, as of the time of writing, the Avalanche mainnet

consists of 1294 validators2 and has a total value locked of
2.78 billion USD3. But which techniques does the blockchain
generation of BFT protocols employ to improve its scalability
over well-known BFT protocols such as PBFT? In this survey,
we strive to explore the vast design space of novel protocols
and analyze their ideas for scaling Byzantine consensus.

c) A Closer Look on Scalability-Enhancing Techniques:
As shown in Fig. 2, traditional BFT protocols do not scale well.
One way to improve the scalability of BFT protocols is to
optimize the protocol logic in a way that (1) reduces bottleneck
situations and distributes the transaction load as evenly as
possible among the available capacities of every replica and
(2) utilizes clever aggregation techniques to reduce the overall
message (or: authenticator) complexity in the system.

Many more abstract ideas have been developed to make
consensus more scalable – these ideas concern, for example,
optimizing communication flow, parallelizing consensuses (i. e.,
sharding), utilizing special cryptographic primitives, or using
trusted hardware components.

B. Research Questions

The newer “blockchain generation” of BFT protocols re-
quires scalable Byzantine consensus, which made exploring,
advancing, and combining several scalability-enhancing tech-
niques a broad and ongoing research field. In this paper, we
want to create a systematization of knowledge on these ongoing
efforts, which leads to our two main research questions:
R1 Which novel techniques exist for scaling Byzantine

consensus?
R2 How do recent research papers combine existing

scalability-enhancing techniques or ideas in a novel way to
achieve better scalability than traditional BFT protocols?

Scalability here relates to the number of nodes in the
system. We analyze which techniques can improve scalability
in BFT protocols, e. g., compared to traditional protocols like
PBFT, and also cover the selection of smaller committees as
a scalability technique. Surveying the mechanisms of how to
provide open membership is not the focus of this work, and we
do not focus on defenses against Sybils in open membership
systems, e. g., computing a proof of work or depositing stake.

C. Contributions

The main ambitions of our survey paper are to review state-
of-the-art research papers on BFT protocols to identify and
classify the scalability-enhancing techniques that have been
developed. We further investigate the assumptions, ambitions,
and trade-offs with which these techniques are used. In
particular, our main contributions are the following:
• We conduct a systematic search for exploring scalability-

enhancing techniques for BFT consensus.

2https://explorer-xp.avax.network/validators
3https://defillama.com/chain/Avalanche

• Moreover, we create a taxonomy that classifies and summa-
rizes all of the found techniques.

• Further, we also create a comparison of the new generation
of scalable BFT protocol designs.

• We comprehensively discuss the different ideas on an abstract
level and pinpoint the design space from which these BFT
protocols originate.

D. Outline

In §II, we first give an overview of the basics of BFT
protocols. Next, we present our methodology in §III, which
is based on a systematic literature search. Further, in §IV,
we present our survey on scalability-enhancing techniques for
Byzantine consensus, trying to answer the research questions
from above. After that, we summarize the efforts of related
surveys in §V and conclude in §VI.

II. BFT IN A NUTSHELL

In this section, we review a few basics of BFT protocols.

A. Assumptions

1) The Byzantine Fault Model: A faulty process may behave
arbitrarily in the Byzantine fault model, even exhibiting mali-
cious and colluding behavior with other Byzantine processes.
The model always assumes that only a threshold f out of
n participants is Byzantine, while all others (n − f) are
correct and show behavior that exactly matches the protocol
description. Although described as arbitrary, the behavior and
possibilities of a Byzantine process are still limited by its
resources and computational feasibility, e.g., it can not break
strong cryptographic primitives. Lamport showed with the
Byzantine generals’ problem that achieving consensus with f
Byzantine participants is impossible if f ≥ n/3 and solvable for
f < n/3 in the partially synchronous or asynchronous model
(c. f., §II-A2) [18]–[20]. An adversary is often modeled as
being in control over all f Byzantine processes. The adversary’s
access to information can be limited through private channels
between replicas or unlimited if the adversary is modeled to
have full disclosure on all messages sent over the network.
Lastly, the adversary is assumed either static, i.e., has to make
his selection initially without the possibility to change it later
on, or adaptive, in which the adversary can change the nodes
as long as not exceeding the threshold f at any given time.

2) Synchrony Models: BFT protocols rely on synchrony
models to capture temporal behavior and timing assumptions,
which are important for the concrete protocol designs. In this
subsection, we review popular models (see Tab. I) and discuss
how they affect practical system design.

a) Asynchronous System Model: No assumptions are
made about upper bounds for network transmissions or perform-
ing local computations. These are said to complete eventually,
meaning they happen after an unknown (but finite) amount of
time. For instance, the network cannot “swallow up” messages
by infinitely delaying them. The asynchronous model is the
most general, yet it complicates the design of protocols in this
model since no timers can be used in the protocol description.

System model Bound δ exists? Bound holds ...

Synchronous known δ always
Eventually synchronous known δ after unknown GST
Partially synchronous unknown δ always

Asynchronous unbounded

TABLE I: Overview over different synchrony models.

It was proven impossible to deterministically achieve consensus
in the presence of faults in an asynchronous system [21]. This
problem is solvable in a synchronous system [18] where timers
can be used to detect failures.

b) Synchronous System Model: Here we assume that
strict assumptions can be made about the timeliness of all
events. In particular, the synchronous system model assumes
the existence of a known upper bound δ for the time needed
for both message transmissions over the network and local
computations. In practice, choosing δ to model a system can
be bothersome: If the correctness of decisions depends on it, it
must not be underestimated; however, if it is chosen too large,
it may negatively impact the performance of a system.

c) Partially Synchronous System Model: Dwork et al. pro-
posed a sweet spot between the synchronous and asynchronous
model [22]. Partial synchrony comes in two versions: Unknown
bounds partial synchrony assumes an unknown bound that
always holds. Global stabilization time (GST) partial synchrony
assumes the bound is initially known but only holds eventually,
i. e., after some unknown time span which is modeled by the
GST. The latter is often also referred to as eventual synchrony
since the system behaves exactly like a synchronous system as
soon as GST is reached. Partial synchrony is popular among
many BFT protocols (like PBFT) that guarantee liveness only
under partial synchrony but always remain safe even when the
system is asynchronous.

B. State Machine Replication and Consensus

State machine replication (SMR) is a technique for achieving
fault tolerance by replicating a centralized service on several
independent replicas, which emulate the service. Replicas agree
on inputs (transactions) proposed by clients and thus ensure
a consistent state and matching results. Such agreement is
typically achieved through a consensus protocol. A consensus
protocol guarantees that all correct participants eventually
decide on the same value from a set of proposed input
values. Moreover, an SMR protocol additionally requires output
consolidation: The client needs to collect at least f+1 matching
responses from different replicas to assert its correctness.
Formally, SMR should satisfy the following guarantees:

• Safety (Linearizability): The replicated service behaves like
a centralized implementation that executes transactions
atomically one at a time [23].

• Liveness (Termination): Any transaction issued by a correct
client eventually completes [24].

vi
ew

s

Prep Prep Prep
Com Com

Prep
Com

Prep
Com

view change

instances

Exe Exe Exe Exe

Commit
stage

Prepare
stage

1 2 3 2 3
1
2
3

dissemination
voting
aggregation

Fig. 3: A simplified BFT SMR protocol model.

C. BFT Simplified

A BFT protocol implements SMR in a Byzantine fault model.
To explain BFT protocols, we employ an abstract model (see
Fig. 3) that contains many common design aspects from BFT
protocols, and we borrow some terminology from PBFT. BFT
protocols can be leaderless [25], [26] or work with multiple
leaders [15], [27], [28], but most BFT protocol designs operate
using a single leader.

To implement SMR, replicas must repeatedly agree on a
block containing one or more inputs. We refer to one such
agreement as an instance. To reach agreement typically requires
the successful execution of two or more protocol stages.
The two protocol stages, PREPARE and COMMIT of PBFT are
shown in Fig. 3. Each protocol stage includes dissemination
of one or multiple proposals, voting for a proposal by all
replicas, and aggregation of votes. In some protocols and stages,
replicas only vote on whether aggregation was successful. Thus,
dissemination may be omitted, as shown in the commit stage
in Fig. 3. During aggregation, matching votes from different
replicas are gathered to form a quorum certificate: Quorum
certificates contain votes from sufficiently many replicas to
ensure that no two different values can receive a certificate;
the value is now committed.

After reaching an agreement in one instance, transactions in
the decided (committed) block are ready for their execution in
all correct replicas. Subsequently, correct replicas reply back
to the respective clients.

In addition to instances, BFT protocols typically operate in
logical views, where each view describes one composition
of replicas and may use a predefined leader or certain
dissemination pattern. While some protocols perform all stages
of different instances in one view as long as agreement can
be reached, as is shown in Fig. 3, other protocols change
the view for every stage or instance. To change the view
requires a view change mechanism. If not sufficiently many
replicas reach agreement, e. g., due to a faulty leader, the
view change mechanism can synchronize replicas, replace the
protocol leader, and eventually ensure progress by installing a
leader under whom agreement instances finally succeed. During
view change, replicas exchange quorum certificates to ensure
that agreements from previous views are continued in the next.

III. METHODOLOGY

We create this survey by systematically reviewing a large
body of relevant research work. To find research work and
determine its relevance, we conducted a systematic search,
which we briefly explain in this section. We performed a
systematic search focusing on the scalability of BFT consensus.
Since we aim to increase transparency and reproducibility, we
briefly present our search methodology to gather and select
these research papers, which mainly originated from the field
of distributed systems, and especially the BFT and blockchain
communities. Our main ambitions are the following:
• Find distinct approaches in the literature for improving the

scalability of BFT consensus.
• Identify and classify scalability-enhancing techniques to

create a taxonomy for scalable BFT.

A. Search Strategy

For literature research, we used Semantic Scholar [29], whose
API allows the automated download of a large number of
references. We manually crosschecked with Google Scholar
to ensure relevant papers were included. We employed the
following search queries without filters on the publication date:

Search 1:
Query = Byzantine consensus scalability blockchain
Publication Type = Journal or Conference
Sorted by Relevance (Citation Count) = 250 most
cited publications
Search 2:
Query = Byzantine consensus scalability blockchain
Publication Type = Journal or Conference
Sorted by Date = 250 newest publications

For each search query, on December 17, 2021, we down-
loaded all results (954 papers) and sorted them locally by
relevance (Search 1) and by date (Search 2). The first search
favors relevance (citation count) to ensure that we can cover the
most influential works for the topic, while the second search
favors publication date to ensure that we can also regard the
most recent publications, which might not have been cited often
enough due to their recency. With these searches, we cover
all publications with at least 11 citations and further capture
all publications that have been published since January 2021.
By using two different sortings, we aim to include both the
most relevant and most recent works. We found that the search
engine could handle synonyms well, e. g., papers would not
evade our systematic search when using “agreement” instead
of “consensus”. After that, we combined the results of these
queries and sanitized them for duplicates.

B. Selection Criteria

Further, we employ a set of selection criteria that can be
applied to determine if a paper found by the search queries
is original research and potentially relevant. This means it is
selected for inclusion in the survey as long as no exclusion
criteria apply. These criteria also encompass conditions used
to assess the quality of a found paper.

Inclusion criteria – A paper is included if its contributions
satisfy one of the following criteria:
• The paper presents a novel technique for improving the

scalability of communication-based Byzantine consensus
• The paper combines existing scalability-enhancing tech-

niques, or ideas, in a novel way, achieving better results
than state-of-the-art protocols
Exclusion criteria – The exclusion process is applied after

inclusion. A paper is excluded if only one of the following
criteria applies:
• The paper is not a research paper (no practical reports,

workshop invitations, posters, or other surveys).
• The paper does not cover the scalability aspect sufficiently

from a technical point of view or does not originate from
the field of computer science (i. e., not originating from the
right ‘field’, e. g., we do not want papers from business
informatics or social science).

• The presented paper proposes a scalability mechanism
but does not present a careful experimental evaluation
showing how it can actually improve scalability (not enough
validation).

• The paper lacks relevance: while the paper presents some
scalability mechanism(s), the presented mechanism is an
incremental refinement of an earlier proposed mechanism.

• The paper does not focus on communication-based Byzantine
consensus but presents a ‘Proof-of-X’ consensus variant.

C. Selection Procedure and Results

We selected papers as relevant in the following way: In
the first phase, we conducted a fast scan, in which a single
assessor examined each paper only to check if the paper could
be of potential interest. Moreover, in this step, only papers
that obviously do not qualify are sorted out. For instance,
if the field is not computer science, the paper’s topic is not
related to scalability, or the paper is not a research paper but
a short abstract or workshop invitation. In a second review
round, all remaining papers are examined by two different
reviewers to validate their relevance: A paper is relevant iff at
least one inclusion criterion applies, and none of the exclusion
criteria applies. All papers are then tagged either relevant or
not relevant. In the final phase, assessor conflicts are resolved
by involving a third assessor and discussing the disagreement.

In the end, 52 papers have been selected as relevant for
inclusion in our SoK paper. Out of these, 13 papers are
published in 11 different journals, 7 papers are published
in online archives (e. g., arXiv), and 32 are published in
proceedings of 25 different conferences. The papers are spread
over many conferences and journals, many not specific to the
topic of blockchain. The most frequent publication channel,
besides arXiv, is VLDB, with 3 papers.

IV. SOK: SCALABILITY-ENHANCING TECHNIQUES

Improving the scalability of Byzantine consensus is an on-
going research field that requires the exploration, advancement,
and combination of several methods and approaches. In order to

communication

pipelining

multi-l
eader

leaderless

cryptography

independent groups

partic
ipants selection

hardware support

5
10
15
20
25 20

12
7 8

24 22 20

2pa
pe

rs
fo

un
d

Fig. 4: For each category: How many papers used at least one
scalability-enhancing technique fitting to this category.

divide the different directions of approaches, we identified the
following categories for scalability-enhancing techniques which
aim to increase the scalability (and efficiency) of Byzantine
consensus:
• Communication topologies and strategies. How can the com-

munication flow be optimized? Increasing the communication
efficiency might require a suitable communication topology,
e. g., tree-based or overlay / gossip-based.

• Pipelining. What benefit can be achieved by employing
pipelining techniques for parallel executions of agreement
instances?

• Cryptographic primitives. How can suitable cryptographic
primitives serve as building blocks for new scalability-
enhancing techniques?

• Independend groups. How can transactions be ordered and
committed in independent groups, e. g., through sharding?

• Consensus committee selection. How are roles in achieving
agreement distributed among network nodes? Does one
(or multiple) flexibly selected representative committee(s)
decide?

• Hardware support. How can we improve consensus efficiency
using trusted execution environments (TEEs)?
In Fig. 4, we show an overview of how many papers we

found to fit into each category.

A. Communication Topologies and Strategies

Improving the scalability of coordinating agreement between
a large number of n nodes requires avoiding bottleneck
situations, such as burdening too much communication effort
on a single leader. An asymmetric utilization of network or
computing resources hinders scalability, as observed in many
traditional BFT protocols resembling PBFT. Instead, one of the
main goals of the “blockchain generation” of BFT protocols is
to distribute the communication load among replicas as evenly
as possible. For instance, some approaches try to balance
network capabilities under a single leader by using message
forwarding and aggregation along a communication tree [17],
[30] or gossip [31], while others rely on utilizing multiple
leaders [15], [27] or even work fully decentralized without a
leader [16], [26], [32], [33].

Another reason why the well-known PBFT protocol does
not scale well is its all-to-all broadcast phases which make

the network topology a clique, which is usually always a
bad choice for scalability as it means an incurred O(n2)
number of messages (and necessary message authenticators).
Unsurprisingly, this design is not an ideal fit for a large network
size n and was later replaced by protocols that only require
linear message complexity by collecting votes [9], [10].

In the following, we review and explain different approaches
for improving communication flow in BFT protocols catego-
rized by the network topology they employ.

1) Star-based: Recently, many BFT protocols have proposed
to employ linear communication complexity by employing a
star-based communication topology [9], [10], [34]–[38]. We
briefly explain this idea and its limitations on the example of
HotStuff [9] (which is illustrated in Fig. 5).

The HotStuff leader acts as a collector, which gathers votes
from other replicas, and, as soon as a quorum of votes is
received, creates a quorum certificate that can convince any
node to progress to the next protocol stage. The rather costly
view-change subprotocol of PBFT can be avoided by adding a
further protocol stage. Thus, agreement in HotStuff requires
four protocol stages (PREPARE, PRE-COMMIT, COMMIT, and DECIDE)
shown in Fig. 5b.

Important for scalability is that the cost of transmitting
message authenticators can be reduced by a simple aggregation
technique: The leader compresses n − f signatures into a
single threshold signature of fixed size. Because the threshold
signature scheme uses the quorum size as a threshold, a valid
threshold signature implies a quorum of replicas is among
the signers. The threshold signature has the size of O(1) – a
significant improvement over letting the leader transmit O(n)
individual signatures. HotStuff also employs pipelining and
leader rotation which are addressed in §IV-B.

As we can see in Fig. 5b, the communication flow still is
imbalanced: Every follower replica communicates only with
the leader, but the leader still has to communicate with all
other replicas. This bottleneck can be alleviated by tree-based
or randomized topologies, as we explain next.

2) Tree-based: A few novel BFT protocols employ a tree-
based communication topology [17], [30], [39], [40]. This has
the advantage that the leader is relieved of the burden of being
the sole aggregation and dissemination point for votes and the
generated quorum certificates. The tree-based communication
pattern can be introduced into either the PBFT algorithm, as
done in ByzCoin [30], or HotStuff, as done in Kauri [17],
without requiring significant changes to the protocol. ByzCoin
was the first to show the potential of this topology, while
Kauri later showed how to overcome the shortcomings of this
approach.

The tree-based communication topology raises several prob-
lems, such as added latency, compared to the star topology
and the necessity to react to failures of internal and leaf nodes.
In the following, we briefly explain these challenges and the
solutions proposed. Fig. 6 shows the communication pattern
in Kauri. Compared to the pattern in Fig. 5, it is clear that
each level in the tree increases latency. To address this issue,
Kauri only considers trees of height 3, as shown in the Figure.

C

(a) Star topology: A collector (C) collects votes and distributes quorum
certificates (in Figure 5b, replica r0 has this role).

PREPARE

Request Response
c

r0
r1
r2
r3 PRE-COMMIT COMMIT DECIDE

(b) HotStuff has linear communication complexity: The leader collects
the votes from the other replicas and distributed the quorum certificates.
Aggregation can be achieved through threshold signatures.

Fig. 5: Linear communication over a star-based network
topology on the example of HotStuff.

P

(a) Tree topology: The proposer (P) disseminates messages and collects
votes along a tree.

PREPARE

Request Response
c

r0

PRE-COMMIT COMMIT DECIDE

r1
r2
r3
r4
r5
r6

(b) In Kauri, the leader disseminates a proposal along a communication
tree. The inner nodes forward messages to their children and collect
and aggregate their children’s votes, to be returned to the parent.

Fig. 6: Communication over a tree-based network topology on
the example of Kauri.

Additionally, in the star topology, only leader failure is critical
and typically requires a view change. In the tree topology, the
failure of an internal node prevents the aggregation of votes
from its children and thus requires reconfiguration. Further, the
failure of a leaf node may cause its parent to wait indefinitely
for its contribution. Kauri introduces a timeout for aggregation
to handle leaf failure. To address the failure of internal nodes,
Kauri proposes a reconfiguration scheme, which guarantees to
find a correct set of internal nodes, given that failures lie below

(a) Randomized topology: Gossip between randomly chosen, con-
nected nodes that are called neighbors.

PROPOSAL

Request Response
c

r0
r1
r2
r3 PREPARE TENTATIVE-COMMIT

(b) In Gosig, replicas communicate with a fanout (i. e., number of
randomly selected neighbors) to disseminate a block or votes for
a block within each protocol stage. Each instance is started by a
randomly selected leader.

Fig. 7: A randomized communication strategy through gossip
on the example of Gosig [41].

a threshold k. Otherwise, Kauri falls back on a star-based
topology. The threshold k here depends on the tree layout but
lies at

√
n for a balanced tree.

To achieve competitive throughput and utilize the available
bandwidth despite the latency added through the tree overlay
and through timeouts on leaf nodes, Kauri relies on pipelining.
We will see more details on how pipelining can serve as a
means for increasing scalability in §IV-B.

3) Gossip and Randomized Topology: Furthermore, many
recent BFT protocols rely on gossip, or randomized communica-
tion topologies, for instance Internet Computer Consensus [42],
Tendermint [12], Algorand [13], Gosig [41], scalable and leader-
less Byz consensus [43], Avalanche [14] and RapidChain [44].

As shown earlier, deterministic leader-based BFT consensus
protocols are much affected by the high communication costs
of broadcasts, i. e., if the leader disseminates a block of ordered
transactions to all other nodes. An idea that enhances scalability
is to relieve the leader and shift this burden equally to all
nodes by disseminating messages through gossiping over a
randomized overlay network – which was recently proposed by
protocols like Algorand [13], Tendermint [12], or Gosig [41].

When using gossip, the leader proposes a message m to only
a constant number of k other, randomly chosen nodes. Nodes
that receive m forward the message to their own randomly
chosen set of connected neighbors, just like spreading a rumor
with high reliability in the network. Note that this technique
is probabilistic, and the probability of success (as well as the
propagation speed) depends on the fanout parameter k, the
number of hops, and the number of Byzantine nodes present
in the system. Gossip allows for the communication burden
to be lifted from the leader, leading to a fairer distribution of

bandwidth utilization, where each node communicates only
with its O(k) neighbors, thus improving scalability.

Fig. 7 shows the communication pattern of Gosig [41].
Similar to the tree-based overlay, the communication pattern
leads to increased latency. As Kauri, Gosig uses pipelining
to mitigate this latency. Different from Kauri, randomized
topologies do not require reconfiguration in case of failures.

Random overlay network topologies can also be utilized in
leaderless BFT protocols. Avalanche [14] is a novel, leaderless
BFT consensus protocol that achieves consensus through a
metastability mechanism that is inspired by gossip algorithms.
In Avalanche, nodes build up confidence in a consensus value
by iterative, randomized mutual sampling. Each node queries k
randomly chosen other nodes in a loop while adopting the value
replied by an adjusted majority of nodes so that eventually,
correct nodes are being steered towards the same consensus
value. In this probabilistic solution, nodes can quickly converge
to an irreversible state, even for large networks.

B. Pipelining

Pipelining is a technique that allows replicas to run multiple
instances of consensus concurrently, and it is employed with a
special focus on improving the scalability of the BFT protocol,
e. g., in HotStuff [9], Kauri [17], BigBFT [27], SBFT [10],
Proof-of-Execution (PoE) [36], ResilientDB [45], Dispel [33],
RapidChain [44], Hermes [46], RCC [47], Gosig [41], Narwhal-
HotStuff/Tusk [48], and Jolteon/Ditto [37].

Further, pipelining boosts performance and scalability be-
cause replicas maximize their available resource utilization. For
instance, the available bandwidth can be better utilized if data
belonging to future consensus instances can be disseminated
while replicas still wait to collect votes from previous, ongoing
consensus instances. This means pipelining can systematically
decrease the time replicas spend in an idle state, e. g., waiting to
collect messages from others. Gosig [41], for example, pipelines
both the BFT protocol, as committed nodes can start a round
while still forwarding gossip messages on the previous one, and
the gossip layer, by decoupling block and signature propagation.
With pipelining, a replica can participate in multiple consensus
stages simultaneously, and thus help to overcome limitations
for system performance, such as reusing quorum certificates
for multiple consensus stages in HotStuff or mitigating tree
latency in Kauri.

1) Out-of-Order Processing: A basic variant of pipelining
was also introduced with PBFT: The leader can build a pipeline
of concurrent consensus instances by starting multiple instances
for a specific allowed range defined through a low and high
watermark. Within this bound, pipelining is dynamic, allowing
the protocol to start fewer or more concurrent instances,
based on the load. PBFT employs out-of-order processing
(see Fig. 8a), which means that replicas in the same view vote
on and commit in all allowed consensus instances without
waiting for preceding instances to complete first. Yet, in this
case, executions must be delayed until all transactions within
lower-numbered consensus instances have been executed.

Similar to PBFT, the SBFT protocol [10] allows the
parallelization of blocks, in which multiple instances of the
protocol can run concurrently, but it additionally introduces
an adaptive learning heuristic to dynamically optimize its
block size. This heuristic employs a configurable maximal
recommended parallelism parameter, the number of currently
ongoing, pending blocks, and the number of outstanding client
requests. SBFT’s heuristic strives to distribute and balance
pending client transactions evenly among the recommended
number of parallel executing consensus instances, and new
requests are not required to wait when currently no decision
block is being processed.

Moreover, PoE [36] is a new BFT design employed within
ResilientDB [45] for achieving high throughput using a
multi-threaded pipelined architecture. Its core innovation is
to combine out-of-order processing and dynamic pipelining,
as introduced in PBFT, with speculative executions, where
transactions are executed before agreement. Since PoE allows
replicas to execute requests speculatively, it introduces a novel
view-change protocol that can rollback requests.

2) Chain-based Pipelining & QC Reusage: In chain-based
protocols like HotStuff, a block is committed after having
passed through several protocol stages, as shown in Fig. 5b. In
each stage, the leader collects votes from the other replicas,
aggregates these in a quorum certificate (QC), and disseminates
this QC to all as proof of completing the respective protocol
stage. HotStuff incorporates the idea of pipelining by making
each protocol stage into a pipelining stage (see Fig. 8b), and
thus allowing a QC to certify advanced stages of previous,
concurrently executing consensus instances, e. g., a DECIDE

QC of instance i can act as a COMMIT QC of instance i + 1
and PRE-COMMIT QC of instance i+ 2. Pipelining in HotStuff
is logical, meaning that concurrent instances are using the
same messages. The number of pipelining stages in HotStuff
equals its number of protocol stages, namely four. Narwhal-
HotStuff and Tusk [48] as well as Jolteon and Ditto [37] built
on HotStuff and use the same pipelining mechanism.

3) Multiplexing Consensus Instances per Protocol Stage:
Chain-based pipelining can be further optimized by multi-
plexing consensus instances per protocol stage, as done by
Kauri. For this purpose, Kauri refines the communication
flow of HotStuff by proposing a tree topology with a fixed-
sized fanout (number of communication partners). This load-
balancing technique relieves the necessary uplink bandwidth
(and thus also the time needed to send data) for message
distribution at the root (leader). But at the same time, the
communication tree increases the number of communication
steps necessary for reaching agreement and thus impacts
the overall latency of the SMR protocol. In Kauri, a more
sophisticated pipelining method than in HotStuff acts as a
solution to sustain performance despite this higher number
of communication steps: The number of concurrently run
consensus instances is decoupled from the fixed number of
protocol stages by introducing a stretching factor, which is a
parameterizable multiplicative to the fixed pipelining depth of
HotStuff. For instance, if a pipeline stretch of 3 is used, the

PRE-
PREPARE PREPARE COMMIT

Insta
nce

 1

Insta
nce

 2

Insta
nce

 3

 Out-of-order
Processing allowed

(does not
employ QC reusage)

PRE-
PREPARE PREPARE COMMIT

PRE-
PREPARE PREPARE COMMIT

P
ro

to
co

l I
n s

ta
nc

es

Protocol Stages

Instance
 4 PRE-

PREPARE PREPARE COMMIT

A window limits number
of simultaneous rounds

Wait before
execution

(a) Out-of-Order Processing (here on the example of PBFT): The
leader can start multiple instances for a given window of allowed
consensus instances concurrently. QCs are not being reused.

PREPARE PRE-COMMIT COMMIT DECIDE

PREPARE PRE-COMMIT COMMIT DECIDE

PREPARE PRE-COMMIT COMMIT DECIDE

PREPARE PRE-COMMIT COMMIT DECIDE

Insta
nce

 1

Insta
nce

 2

Insta
nce

 3

Insta
nce

 4

P
ro

to
co

l I
n s

ta
n c

e s

Protocol Stages

Example of reusing a QC

(b) Chain-based Pipelining uses one pipeline stage per protocol
stage (this example shows HotStuff). QCs can be reused to verify
incremental protocol stages of concurrently running instances.

PREPARE PRE-COMMIT COMMIT DECIDE

PREPARE PRE-COMMIT COMMIT DECIDE

Insta
nce

 1

Insta
nce

 2

Insta
nce

 3

Insta
nce

 4

Pipeline stretch
(here 3) instance per
protocol stage

PREPARE PRE-COMMIT COMMIT DECIDE

PREPARE PRE-COMMIT COMMIT DECIDE

Example of reusing a QC

P
ro

to
co

l I
n s

ta
nc

es

Protocol Stages

(c) Multiplexing Consensus Instances per Protocol Stage: A pipelining
stretch number of consensus instances can be concurrently started per
protocol stage (as done in Kauri). QCs can be reused.

Fig. 8: Pipelining variations of single leader BFT SMR.

Kauri leader can simultaneously start 3 consensus instances
every time a HotStuff leader would start a single instance,
leading to a total of 12 concurrent consensus instances instead
of 4 (like in HotStuff) once the pipeline is filled. In contrast
to PBFT, the pipeline stretch in Kauri is static and cannot
dynamically adapt to the load, and instances cannot complete
out-of-context (see Fig. 8c).

4) Pipelining in Multi-leader and Leaderless Protocols:
Many BFT protocols rely on the idea of having not only one but
several leaders that can concurrently start agreement instances
(e. g., [15], [27], [28]). This design benefits scalability because
it brings a fairer distribution of the task of broadcasting block
proposals and can prove a suitable solution for the leader
bottleneck problem. Yet, it also introduces novel challenges,
in particular when it comes to the coordination of leaders,
to prevent conflicts (i. e., identical transaction being proposed
by multiple leaders in different blocks) and also to maintain
liveness for all transactions in the presence of Byzantine leaders.
To serve as an example, Mir-BFT [15] is a multi-leader protocol
in which several leaders propose blocks independently and in
parallel, by employing a mechanism that rotates the assignment

of a partitioned transaction hash space to the leaders. Another
example is RapidChain [44], which is a BFT protocol that uses
sharding and allows a shard leader to propose a new block
while re-proposing the headers of the yet uncommitted blocks,
thus creating a pipeline to improve performance.

BigBFT [27] is a pipelined multi-leader BFT design that aims
to overcome the leader bottleneck of traditional BFT protocols
by partitioning the space of sequence numbers (consensus
instances) among selected leaders (coordination stage) and thus
allowing multi-leader executions. Further, it logically separates
the coordination stage from the dissemination and voting of new
blocks. Pipelining is employed in two ways. Different leaders
perform their instances concurrently. Additionally, the next
coordination stage is run concurrently with the last agreement
stages. Similarly, RCC [47] concurrently executes multiple
instances with different leaders. Instead of a coordination stage,
RCC uses a separate, independent instance of a BFT protocol
for coordination.

A key innovation of Dispel [33] is its distributed pipeline
which builds on previous work on leaderless BFT consen-
sus [32]. In contrast to centralized pipelining (where the
decision, when to create a new agreement instance, is only up
to the leader(s)), all Dispel replicas can locally decide whether
to start new consensus instances based on their available
system resources like network bandwidth or memory. Dispel
builds a consensus pipeline by creating pipelining stages
for individual tasks within running consensus that consumes
different system resources. In particular, it employs four stages:
network reception, network transmission, CPU-intensive hash,
and latency-bound consensus [33]. The idea of Dispel is that a
replica can maximize its own resource utilization by executing
four consensus instances, one for each stage, concurrently. We
cover leaderless protocols in more detail later in §IV-E2.

C. Cryptographic Primitives

Efficient cryptography schemes can increase a protocol’s
scalability. We identified several approaches, most aimed at
reducing the communication complexity via message aggrega-
tion: multi-signatures (§IV-C1), threshold signatures (§IV-C2),
secret sharing (§IV-C3), erasure coding (§IV-C4), as well as
efficiently selecting a committee of nodes using verifiable
random functions (VRFs) (§IV-C5).

1) Multi-Signatures: Seven papers that match our criteria ag-
gregate messages using multi-signatures: Kauri [17], Gosig [41],
ByzCoin [30], Musch [34], AHL [38], BigBFT [27], and
RepChain [49]. A multi-signature allows n participants, who
want to jointly sign a common message m, to create a signature
σ of m so that verification can confirm that all n participants
have indeed signed m. This can be achieved by aggregating
multiple signatures, e. g., via multiplication, resulting in a
multi-signature whose combined size and verification cost is
comparable to that of an individual signature [50].

In BFT systems, multi-signatures are often used to combine
the votes of multiple participants to reduce the message
complexity and the memory overhead of the protocol from
quadratic to linear [17], [27], [34], [41]. A replica casts its vote

by adding its partial signature share to the multi-signature, and
the voting concludes once a quorum of signature shares has
been received [17]. Most protocols make use of asynchronous
non-interactive multi-signatures, i. e., BLS multi-signatures [50],
[51]. Replicas aggregate their signature share in one small
multi-signature. This reduces the signature size compared
to individual replica signatures; however, the computation
takes longer compared to, e. g., ECDSA signatures. Multi-
signatures thus offer accountability, as it can be checked who
signed a message. Further, they have the advantage that the
order of signatures can be arbitrary, making them resilient
against adaptive chosen-player attacks [41]. A node can sign
the message multiple times, e. g., when it receives the same
message from different nodes during gossip communication.
To ensure correct verification, the number of times each node
signs the message is tracked [41].

Signatures are collected during the voting phase, e. g., during
gossip as in Gosig or during vote aggregation phases as in
Kauri, where each replica receives votes from its children
in the communication tree, and once a quorum of signatures
is collected, the replica enters the next phase. BigBFT [27]
is a multi-leader protocol where each leader proposes client
requests in a block in instance r. All blocks are signed by
all other nodes during the vote phase upon reception. The
set of n− f votes for a block is then aggregated in a multi-
signature, which is piggybacked onto the proposed block in
the next instance r + 1 to commit the block of instance r.
BigBFT avoids the communication bottleneck of single-leader
protocols and reaches consensus in two communication rounds
by pipelining blocks using message aggregation and multi-
signatures to reduce message complexity. In Musch [34], nodes
exchange and aggregate signed hashes of blocks to create
one collective signature instead of repeating multiple replica
signatures, thus keeping the signature size constant. If not
enough signature shares can be collected, a view change is
performed, which also employs aggregated multi-signatures.

Another scheme that is used to aggregate signatures is the
collective signing protocol CoSi [52], which can effectively
aggregate a large number of signatures. It is based on Schnorr
multi–signatures and, contrary to the non-interactive BLS multi-
signatures, it requires a four-phase protocol run over two round-
trips to generate a CoSi multi-signature. The participants can be
organized in communication trees for efficiency and scalability,
as discussed in §IV-A. A node can request a statement, i. e.,
a request, to be signed by a group of witnesses, i. e., the
replicas, and the collective signature attests that the node, as
well as the witnesses, have observed this request. It is used
in ByzCoin [30] to reduce the cost of the underlying PBFT’s
prepare and commit phases, as well as in RepChain [49],
to enable efficient cross-shard transactions without requiring
multiple individual signatures. However, the security of two-
round multi-signatures has been shown to be compromised [53].

2) Threshold Signatures: A total of nine papers utilize
threshold signatures in their protocol design: Jolteon/Ditto [37],
Saguaro [54], ICC [42], Narwhal/Tusk [48], PoE [36], Hot-
Stuff [9], SBFT [10], Cumulus [55], and Dumbo [56]. In

threshold cryptosystems, participants each have a public key
and a share of the corresponding private key: in (t, n)-threshold
systems, at least t partial shares from participants are needed
to decrypt or sign a message. Participants can sign a message
with their secret key share, generating a signature share. This
signature share can be verified or combined with others into
an aggregated signature, which can again be verified. This
makes threshold signatures a special case of multi-signatures,
where instead of all participants (n-out-of-n) only a subset
(t-out-of-n, t < n) have to participate. BLS multi-signatures
can be transformed into threshold signatures; however, the im-
plementation of threshold signature schemes is more complex,
and multi-signatures require less computation [10].

Threshold signatures are, therefore, often used in BFT sys-
tems for aggregation of messages, similar to multi-signatures:
a block or vote message is signed by a quorum of nodes
(commonly with a threshold t = 2f + 1), the quorum’s shares
are combined in one authenticator, and the signature share is
used as a replica’s vote to confirm consensus [9], [36], [37],
[42], [54], or for example to create a quorum certificate for side-
chain checkpoints as in Cumulus [55]. BLS signatures can be
used for this as well, as done by ICC [42] and PoE [36]: either
by using the standard BLS scheme with a secret key shared
amongst all participants, which creates unique and compact
signatures, or by using BLS multi-signatures, where a signature
share is a BLS signature which then gets combined into a new
signature on an aggregate of the individual public key. PoE
can use threshold signatures or message authentication codes
depending on the number of participants in the network.

Threshold signatures can be used just as multi-signatures
to split one phase of high-complexity broadcast communi-
cation into two phases of linear communication complex-
ity. Dumbo [56] introduces two new asynchronous atomic
broadcasting protocols. The first protocol, Dumbo1, reaches
asymptotical efficiency, improving upon the design of threshold
encryption and asynchronous common subsets of HoneyBad-
gerBFT [57]. The second protocol, Dumbo2, further reduces
the overhead to constant by efficiently using multi-valued
Byzantine agreement (MVBA) running over a reliable broadcast
which outputs a threshold signature proof that of all receivers of
an input, at least one receiver is an honest peer. SBFT [10] uses
threshold signatures to reduce the communication complexity to
linear by extending PBFT by c+1 collectors. Nodes send their
messages to the collectors, who then broadcast the combined
threshold signature once 3f + c+1 shares have been received.
Using threshold signatures reduces the message size of the
collector from linear to constant, and the client overhead is
reduced as only one signature has to be verified. The execution
is similarly aggregated by c+1 execution collectors who collect
f + 1 signature shares. SBFT uses BLS signatures, though
BLS multi-signatures instead of threshold signatures are used
on the fast path as these require less computation.

Another usage of threshold cryptography is generating
randomness used for leader election in asynchronous networks.
Narwhal [48] uses an adaptively secure threshold signature
scheme to generate a distributed perfect coin, while Jolteon [37]

generates randomness for each view by hashing the threshold
signature of the view number in order to create an asynchronous
fallback protocol to circumvent the FLP impossibility. For
ICC [42], a sequence of random beacon values is created to
determine the permutation of the participants and thus the
leader, similar to verifiable random functions (c. f., §IV-C5).
Starting from a known initial value, a participant generates
the next sequence of the random beacon by broadcasting its
signature share of the current random beacon value. At least
one honest participant’s signature share is required to form a
comprehensible random value.

3) Secret Sharing: In secret sharing approaches, a secret
is split and distributed amongst a group of n nodes so that
it can be reconstructed for cryptographic operations when a
sufficient number (i. e., a threshold t) of shares are combined
but no single node can reconstruct the full secret by itself.
The splitting and distribution are typically performed by a
dealer. This secret sharing amongst replicas can, similar to
threshold signatures, reduce the overhead of multi-signatures.
Contrary to the threshold signatures of §IV-C2, however, the
secret sharing in FastBFT [40] requires hardware-based trusted
compartments on all replicas. The trusted compartment on
the leader can securely create secrets, split them, and deliver
them to all other replicas. This is performed in a separate
pre-processing phase before the agreement phase. Once the
order has been established, the replicas release in the final step
their shares of the secret to allow verification of the agreement.
All secrets are one-time secrets, and a monotonic counter value
is bound to the secret shares in order to prevent equivocation
of the leader. For more details on trusted counters and trusted
execution environments, we refer to §IV-F. Secret sharing can
also be used to prevent leakage of sensitive data: clients in
Qanaat [58] use (f + 1, n)-threshold secret-sharing to keep
data confidential.

4) Erasure Coding: Three protocols use erasure codes:
Dumbo [56], ICC2 [42], and DispersedLedger [59]. The first
two aim to reduce the communication overhead and lessen
the bottleneck on the leader, whereas DispersedLedger focuses
on data storage and availability. Erasure codes are forward
error correction codes that can efficiently handle bit erasures
during transmissions. In (n, n− 2t)-erasure codes, a message
m is split into n fragments of larger size so that any subset
of n − 2t fragments can be used to reconstruct the original
message m even if fragments get lost or corrupted. Instead
of broadcasting a given payload, a leader can encode this
payload and send the individual fragments to different replicas.
With a correct encoding, the payload can be reconstructed,
even if some replicas remain unresponsive. While reducing
network load on the leader, this technique adds computational
overhead for encoding and decoding. In ICC, large blocks
have to be disseminated, which can become a bottleneck,
so as an improvement of their peer-to-peer gossip sub-layer
(ICC0/1), they propose a subprotocol of reliable broadcast with
(n, n − 2t)-erasure codes (t < n/3) in ICC2 in combination
with threshold signatures. Dumbo’s reliable broadcast protocol
can be optimized as well using a (n − 2t, n)-erasure code

scheme in combination with a Merkle tree, which tolerates
the maximal adversary boundary and thus helps honest nodes
recover efficiently. In DispersedLedger, data is stored across n
nodes via a verifiable information dispersal protocol making
use of erasure codes. This guarantees data availability and
allows separating the tasks of agreeing on a short, ordered
log and of downloading large blocks with full transactions
for execution. This decoupling of the protocol stages leads to
faster progression of the protocol as the high-bandwidth task
of downloading transactions is no longer on the critical path.

5) Verifiable Random Functions: Five papers incorporate
verifiable random functions (VRFs) [60] into their design:
Algorand [13], Beh-Raft-Chain [61], Cumulus [55], Proof-
of-QoS [62], and DLattice [63]. A VRF is a cryptographic
function VRFsk(x) that for an input string x returns both a
hash value and a proof π. The hash value is here uniquely
determined by both the user’s secret key sk as well as the
input x, but appears undistinguishable from a random value
for anyone not in possession of sk. The proof π allows anyone
who knows the public key pk to verify whether the hash value
corresponds to x, without revealing sk [13]. VRFs in BFT
protocols facilitate the selection of committees, which in turn
can efficiently perform the consensus. Their non-interactive
nature makes them desirable as it prevents any targeted attack
on the leader(s) or committee members of the next instance,
as their membership status is not known in advance. For more
details on the usage of committees for scalability in BFT
protocols, we refer to §IV-E.

Algorand uses a VRF based on the nodes’ key pairs as well
as publicly available blockchain information for cryptographic
sortition, meaning to select the committee members in a
private and non-interactive way so that nodes can independently
determine whether they are in the committee for this instance.
VRFs create a pseudo-random hash value that is uniformly
distributed between 0 and 2hashlen − 1, meaning that nodes
get selected at random to be in the committee. As VRFs do
not require interaction between the nodes and are calculated
using private information, a node’s membership status cannot
be determined in advance to launch a targeted DoS attack or
allow malicious nodes to collude; instead, a node’s membership
status is only known retrospectively. Algorand also includes
a seed in each instance, which is calculated using the VRF
result in combination with the previous instance’s seed; if this
seed is not included in a proposed block, it is discarded as
invalid. If multiple blocks get proposed by committee members,
then the included seed value is used to determine a priority
amongst these blocks. Furthermore, the VRF value can be
used as a random value for coins, for example, in order to
resume normal operation after a network partition. Algorand
implements its VRFs over Curve25519 [64], [65], and shows
that VRF and signature verification are CPU bottlenecks in the
protocol. VRFs are used similarly in Beh-Raft-Chain [61] and
DLattice [63] for cryptographic sortition in order to determine
a node’s role and membership status, e. g., (local) committee
leader. Proof-of-QoS [62] splits nodes into regions, and one
node per region is selected for the BFT committee based on its

quality of service (QoS). Out of the κ nodes with the highest
QoS in a region, the node with the smallest hash of id and seed
value is selected. This node’s membership status is confirmed
with its VRF hash, and others verify the corresponding proof.

In Cumulus [55], VRFs are used in a novel cryptographic
sortition protocol called Proof-of-Wait, which is used by this
side-chain protocol to select the epoch’s representative to
interact with the mainchain. At most, one representative can
be chosen per epoch, and it is based on nodes calculating a
random waiting time based on their VRF output. The VRF is
implemented based on the elliptic curve Secp256k1.

D. Independent Groups

In this section, we look at how subsets of all nodes, or
groups, can process transactions independently from the rest
of the nodes. Of the 22 papers in this section, we classified
16 as using sharding techniques. The remaining six papers are
classified as hierarchical consensus.

Sharding, traditionally used in database systems, splits a
dataset into smaller subsets. In database systems, this is used
when the data cannot fit onto a single machine anymore.
This technique has been used by BFT protocols to improve
scalability. In a sharding algorithm, the application’s state is
distributed over multiple, possibly overlapping, groups called
shards [61], [66]–[68]. This allows efficient processing of
transactions within shards, as only a subset of nodes has to
participate in the consensus. Further, only the responsible group
must execute the transaction.

Hierarchical consensus can but does not have to split state
across different groups. Here, the groups use a higher-level
consensus mechanism to coordinate. While shards can also
communicate with each other, e. g., for cross-shard transactions,
the higher-level consensus is a significant aspect of hierarchical
consensus, which we use to distinguish these two categories.

1) Sharding: Sharding is a technique to split the system
into multiple shards, each containing a subset of the replicated
state and being managed by a subset of the nodes, as seen
in Fig. 9a. Transactions that affect only a single shard can
then be processed independently. This improves scalability by
reducing the number of messages that have to be exchanged to
reach consensus within shards. Within a shard, nodes typically
run a classic consensus protocol like PBFT [66] or Raft [61].

Sharding also brings new challenges. First, as shards contain
only a subset of nodes, special care must be taken so that the
shards are not vulnerable. Next, once the shards are created,
clients need to know where to send transactions. Lastly, some
transactions affect multiple shards, which requires coordination
between shards to process these multi-shard transactions.

The first challenge requires the protocol to assign nodes to
shards while keeping the system safe and live. For this, different
sharding algorithms assume different threat models. Assuming
a global threshold of 1

3 faulty nodes, there is the risk that
more than 1

3 of nodes within a shard are faulty, jeopardizing
safety. This is especially a threat if an adaptive adversary
is considered. Most algorithms stipulate that the adversary
can only corrupt nodes between epochs, but not within an

(a) Replicas using sharding. Coordination be-
tween shards is commonly only required for
cross-shard transactions.

(b) Hierachical consensus with two layers with
“representatives” of the lower layer running the
consensus in an upper layer.

(c) Schematic overview of a committee algo-
rithm. Only a subset of all nodes performs
consensus on transactions.

Fig. 9: Three ways of reducing consensus participants: sharding, hierarchical consensus, and consensus by committee.

epoch [44], [61], [66], [67]. This moves the challenge of safety
to the shard formation. To ensure the distribution of malicious
nodes within any shard is equal to the global share of malicious
nodes, techniques like VRFs [60] or TEEs [38] can be used. A
more challenging threat model is adaptive corruption without
stipulations on when corruption can occur. In this setting,
algorithms ensure safety by resampling the shards faster than
an adaptive adversary can corrupt nodes [38], [69]. Some
approaches form shards based on criteria such as reputation
or past behavior to guarantee that well-behaved shards are
formed [49], [61]. Chainspace [70] also allows for whole
shards to be controlled by an adversary while still enforcing
some restricted safety criteria. Explicitly, Chainspace can still
guarantee encapsulation between state objects (smart contracts)
and non-repudiation in case a complete shard is controlled by
the adversary. The encapsulation of state objects guarantees that
malicious smart contracts cannot interfere with non-malicious
ones, i. e., the control mechanism of Chainspace. Combined
with non-repudiation, where message authorship cannot get
disputed, sources of inconsistencies can get identified by the
control mechanism and thus punished.

With a sharding architecture, some care has to be taken so
that transactions by clients end up in the correct shard. This
is especially true for cross-shard transactions. The simplest
solution is to have clients send transactions to all shards [49],
[66], [70], [71]. This way the shards can decide if a transaction
is relevant to the shard or discard the transaction otherwise.
This is more work for clients but, as ignoring transactions not
relevant for a shard is easy, the overhead for the shards is small.
Transaction routing has also been adapted in different ways.
One is that clients can send transactions to an arbitrary shard,
which then forwards the transaction to the correct shard [68],
[72]. In the Red Belly Blockchain [16], clients send balance
and transaction requests to known proposers published in
configuration blocks. The proposers can respond directly for
balance (i. e., read) requests and forward transactions (i. e.,
write requests) to consensus instances.

Lastly, transactions can affect multiple shards [44], [58],
[66]–[68], [71]. This occurs when a transaction requires data
from multiple shards. As such, these shards must coordinate
access to ensure consistency. The system then has to coordinate

cross-shard transactions to make sure the transaction is accepted
by each shard. Systems like RapidChain handle cross-shard
transactions by splitting them into multiple sub-transactions
that get handled by the respective shards [44]. This is possible
as RapidChain uses the Unspent Transaction Output (UTXO)
state model, which allows splitting transactions in the spending
of existing outputs and the creation of new outputs. RapidChain
calculates that more than 96% of transactions in their system
are cross-shard transactions. As an optimization, Pyramid,
which uses an account model, proposes to overlap shards,
allowing cross-shard transactions to be processed by the
nodes overlapping both shards [67]. This way, overlapping
nodes efficiently process cross-shard transactions, requiring
no additional work. The overlapping nodes generate blocks
from the transactions and send them to the rest of the shard
for commitment. In Cerberus [66], each shard locally reaches
consensus on UTXO transactions. If input from other shards is
necessary, each shard will send its own local input to the other
affected shards, thereby promising to process the transaction
once all the required input is available by the other shards.
As all shards do the same procedure, they will either receive
all required inputs and process the transaction, or all abort
the transaction. In SharPer [68], which also uses an account
model, cross-shard transactions are handled by clients sending
the transactions to some leader of a shard from which data
is needed. This leader is then responsible for sending the
transaction to all nodes of all other involved shards.

2) Hierarchical Consensus: In a hierarchical consensus
scheme, nodes on lower hierarchy levels can operate in
independent groups and use higher levels to coordinate. The
papers in this section use different approaches to improve
scalability. The biggest benefit, as with sharding, is that the
smaller groups allow for more efficient communication, as the
number of communicating nodes is reduced [54], [73], [74].

This architecture poses multiple questions. Firstly, how is
the hierarchy structured, and how is it determined? How many
layers are there, and what information has to get shared between
layers? Finally, and most importantly for scalability, what
degree of independence can lower levels have, and when are
higher levels of consensus necessary?

Regarding the hierarchy structure, of the papers considered,

four picked a two-layer hierarchy [61], [73]–[75], while two
chose a variable number of layers [39], [54]. For the two-
layer structure, a structure using “representatives” is most
common [61], [73], [75], which is also used by X-Layer [39] for
multiple layers. In this case, as seen in Fig. 9b, the lower levels
have their “representative”, commonly leaders, representing
the group in the upper layer. Similarly, GeoBFT [45] shares
transactions globally by sending them to the leaders of other
clusters before executing them. The difference is that global
sharing does not require coordination between the leaders,
but the leaders share the transaction within their own cluster.
In another way, DP-Hybrid [74] chooses to use PoW as
the mechanism for the upper layer where all nodes can
participate. Focusing on processing transactions in wide area
networks, Saguaro [54] uses multiple layers, with different
layers composed of edge devices, edge servers, fog servers, and
cloud servers. The structure of hierarchies can be dynamic [61],
[75], where new shards are created if enough new nodes join
the network, or static as in the cases of DP-Hybrid [74] and
Saguaro [54], where the algorithm is focused on companies
using the blockchain.

Next is the question on what information the higher level
works. There are two broad approaches to this: either with
the actual transactions [45], [74]–[76], or with “prepackaged”
blocks of transactions [54], [73] arranged in the upper layer. For
example, in GeoBFT [45] or DP-Hybrid [74], every transaction
is shared through the upper layer with the other groups. In C-
PBFT [73], on the other hand, the lower layer already constructs
blocks of transactions, which are then confirmed by adding
the block header to the upper-layer blockchain.

As with sharding, it can happen that some transaction
requires data from multiple groups. For this, affected groups can
coordinate with their least common ancestor group [54]. As all
transactions are globally shared in GeoBFT [45], each cluster
has access to all transactions, making cross-cluster transactions
cheap. As global sharing is performed before execution, this
leads to higher latencies.

Different layers can have different failure modes [54], [76],
e. g., when different applications use a shared blockchain. This
can be used to optimize the system, e. g., if the applications
require different security or fault tolerance levels. Then it might
be possible to use different consensus protocols in separate
lower layers, such as BFT or crash fault-tolerant protocols.

Further, there are protocols that measure the behavior of
nodes and reward good behavior, e. g., to allow well-acting
nodes to become leaders more often [61], [73]. The behavior-
measuring metrics consist of the detection of misbehaving
nodes [61] and qualitative measures like payment times and
amounts [73]. “Good” participants are thus rewarded for their
good metrics, creating incentives for good behavior.

E. Selection of Consensus Committees

As described in §IV-A, one approach to improve scalability
is to avoid bottleneck situations. In this direction, several
approaches regarding nodes’ roles for agreement exist. Of
the 20 papers in this section, 10 focus on consensus by

committee, eight on hierarchical consensus (c. f., §IV-D2), and
two on randomized sampling. One approach is that only a
substantially smaller subset of participants, i. e., committees,
participate in finding agreement [13], [35], [44], [46]. As these
committees are significantly smaller than the whole set of
participants, consensus protocols—which, in theory, would
not scale for the whole set of nodes—become sufficiently
efficient again. The remaining nodes often take a passive role
and only observe and verify the committee’s work. A related
technique is a hierarchical consensus where multiple layers
are used for consensus [39], [54], [73], [75], [76], which faces
similar problems as consensus by committee. In this section,
we investigate protocols using these techniques to see how
committees are formed, how they work, and what aspects
should be considered for scalability.

1) Committee: In a committee, only a subset of nodes
participates in the consensus algorithm, as depicted in Fig. 9c,
while non-committee members observe the results of the
consensus [13], [46], [77]. As only a substantially smaller
subset of the total nodes participate in the consensus algorithm,
the communication efforts needed inside of the committee
are reduced. The crucial question is: how is it decided which
participants will be included in the committee without being
vulnerable to attacks? The main committee formation scheme
is based on randomness. Randomness makes it unlikely that a
critical amount of malicious nodes will enter the committee.
Different algorithms use different randomness to select com-
mittee nodes. For example, Algorand utilizes VRFs [13] (c. f.,
§IV-C5), DRBFT picks committee nodes based on previous
blocks [77], and RapidChain uses verifiable secret sharing to
generate randomness within committees [44]. Some algorithms
modify the committee formation based on metrics such as
stake [13], [63] or quality characteristics [62] such as bandwidth
or latency to prioritize nodes by some weight. In permissionless
protocols like Algorand, the stake is necessary to prevent Sybil
attacks based on pseudonyms. Otherwise, attackers could create
an arbitrary number of nodes to gain control of the committee
to influence the consensus maliciously. The weighting of quality
metrics incentivizes nodes to provide more efficient services to
become committee nodes. Thus, preferred nodes are presumably
better committee members than randomly selected ones.

Malicious committee members pose a risk to the safety and
liveness of protocols. Inside the committee, BFT protocols
are used to tolerate malicious behavior. Additionally, some
algorithms use different mechanisms to reduce the risk of a
malicious committee. Commonly the results of the committee
are verified. This verification is both to check that progress
is made, e. g., that blocks are proposed, but also of the
blocks themselves [35], [77]. For example, in Proteus, a
committee is replaced with new members if the committee
does not generate valid blocks [35]. To encourage participation,
committee members who act maliciously risk forfeiture of their
stake in protocols requiring a deposit to join the committee [63].

By definition, committees consist of only a subset of the
total nodes. This opens up the risk that an adversary could gain
control of a committee by chance or by adaptive corruptions

while controlling less than 1
3 of the total nodes. One way

to overcome this risk of adaptive corruption is to change
out the committee members regularly [78]. For example, in
Algorand [13] any committee member is replaced after any
message sent by the member. Thus, committee members are
immediately replaced once identified as potential victims,
making it impossible for attackers to target committee members.
In contrast, for Dumbo [56] or in PoQ [62], committees are
persistent for one block generation. This makes committee
members vulnerable but limits the attack impact to one block.
Similarly, in AHL each committee is replaced after every
epoch [38]. This is assumed to be safe even in the presence
of an adaptive attacker model where nodes are not instantly
corrupted but rather after some time. RapidChain [44] also
replaces committee members after every epoch, though as an
optimization, it replaces only a subset of committee members.
AHL and RapidChain make limitations on the threat model.
AHL relies on TEEs, which are assumed to only fail by
crashing. RapidChain assumes that the adaptive adversary can
only corrupt nodes at the start of the protocol and in between
epochs, but not within an epoch. In Hermes [46], which does
not assume an adaptive adversary, committees can get replaced
by view changes. Non-committee members initiate a view
change after not receiving a block over some period of time,
after receiving an invalid block proposal, or after multiple
proposals with the same sequence number.

2) Randomized Sampling: We have seen how leaders can
become the bottleneck regarding scalability. Randomized
sampling can be used to create leaderless consensus protocols,
thus avoiding bottlenecks at a single leader [14], [43]. With
randomized sampling, nodes only communicate with a subset of
the total nodes. In the process, the nodes exchange information
locally about their values. These values can be the value a
node has locally decided as in [14], or DecicionVectors as
in [43] where the decisions of all nodes are exchanged. A
global consensus is achieved by running these local updates
multiple times so that, over time the nodes converge to a single
decision. With these local updates, there is no need for a leader
to drive the consensus forward. This removes the common
bottleneck in other consensus protocols, as no single node is
responsible for disseminating or collecting any information to
and from all other nodes. The required communication stays
constant for each node as it only needs to exchange information
with a configurable but constant subset of local nodes [14],
[43]. Nodes learn of proposed values from others. In Avalanche,
this happens after the node queries neighboring nodes, while in
[43], nodes can also actively push their value to other nodes.
However, they only provide probabilistic safety guarantees.

F. Hardware Support

The scalability of BFT protocols can also be improved via
hardware support as offered by trusted execution environments
(TEEs), as has been done in two papers matching our criteria:
FastBFT [40] and AHL [38]. The most commonly used TEE
is Intel’s Software Guard Extensions (SGX) due to its high
availability; however, many approaches are independent of the

underlying TEE, allowing the use of e. g., Trusted Platform
Modules (TPMs), ARM TrustZone, or AMD SEV-SNP. SGX
is an x86 instruction set extension that allows the creation
of so-called enclaves, in which confidentiality of execution
and integrity of data is ensured from privileged software via
hardware-based memory encryption and checksums. Enclaves
can be remotely attested: users can verify an enclave’s code and
data, and before execution of the enclave, the provided code
and data is hashed to create a measurement. This measurement
can then be compared against the value of the verified enclave
to ensure that the user communicates with a genuine, correct,
and unmodified version of the expected enclave.

TEEs can therefore be used as a trusted subsystem in BFT
protocols with a hybrid fault model: while the remainder
of the BFT system can still behave arbitrarily faulty, the
trusted subsystem is assumed to behave correctly and can
only fail by crashing. This can be used to prevent equivocation,
i. e., sending conflicting messages to different communication
partners in the protocol. Primitives that make use of such trusted
subsystems are e. g., trusted counters [79] or attested append-
only memory [80]. FastBFT [40] employs trusted monotonic
counters that are provided by the TEE running on the leader
replica. A counter value extends every message sent by the
leader, and as every value can only be used once and the counter
is monotonically increasing, it can thus be detected if the
leader equivocates. Relying on trusted hardware and therefore
preventing equivocation allows reducing the complexity of BFT
protocols, e. g., by decreasing the number of replicas from
3f + 1 to 2f + 1 or the required communication rounds for
agreement, or by using less expensive cryptographic primitives
(see also §IV-C).

TEEs are also used to efficiently aggregate messages [38],
[40], e. g., by combining a quorum of 2f + 1 messages into
a proof issued by the TEE [38]. Here, the leader collects and
aggregates other nodes’ signatures into a single authenticated
message, while nodes forward their signed messages to the
leader and verify the created multi-signature. Furthermore,
TEEs can also be used as a source for a trusted randomness
beacon, which can be used to efficiently partition the system
for sharding [38] (see also §IV-D1).

G. Summary of BFT Protocols

All discussed protocols are shown in Tab. II. We list their
assumptions regarding the synchrony model, the number of
faults that can be tolerated, membership of nodes (i. e., whether
nodes are static or can dynamically join or leave the network),
and the guarantees for safety and liveness. Further, we give an
overview of which scaling techniques have been employed and
combined in the protocols. PBFT, the starting point for many
protocols, assumes a partially synchronous network of static
nodes, whereas many of the blockchain BFT protocols target a
dynamic network of nodes or the asynchronous model. Many
protocols replace PBFT’s single leader with multiple leaders to
share the load and reduce its bottleneck, or with a leaderless
approach. Not all blockchain BFT protocols keep PBFT’s
clique communication; we take clique as the default and list in

TABLE II: Comparison of scalable BFT protocols regarding their assumptions, goals, and scaling techniques.
Assumptions Guarantees Scaling TechniquesBFT

Protocol Network (for
safety+liveness) Fault Members Safety Liveness Leader Crypto Message

Exchange
Pipelining
Strategy Consensus Parallel-

ization Other

ByzCoin [30] part. sync PoW bound dynamic det. det. single
PoW-elected multi sig. tree - - - -

Lim et al. [43] async f < 1
2
n static prob. prob. none - gossip - rand. sampling - -

Tendermint [11] part. sync f < 1
3
n dynamic det. prob. single

rotating - gossip - - - -

RepChain [49] sync f < 1
3
n dynamic prob. prob. single multi sig. - - - sharding -

Ostraka [81] conf. f < 1
2
n dynamic conf. conf. conf. - - - - sharding -

Mitosis [82] part. sync paramet. dynamic conf. conf. conf. - - - - sharding -

Kauri [17] part. sync f < 1
3
n static det. det. single multi sig. tree configurable pipe-

lining stretch - - -

HotStuff [9] part. sync f < 1
3
n static det. det. single

rotating threshold sig. star one pipeline stage
per protocol stage - - -

X-Layer PBFT [39] part. sync paramet. static prob. prob. single - tree - hierarchical - -
CHECO [28] async f < 1

3
n dynamic prob. prob. multi - - - - - -

Beh-Raft-Chain [61] sync f < 1
3
n dynamic prob. prob. single VRF - - hierarchical sharding -

SHBFT [75] part. sync f < 1
3
n dynamic det. det. single

multi - - - hierarchical hierarchical -

Hermes [46] part. sync f < 1
3
n dynamic prob. prob. single - - chain-based

pipelining committee - -

SharPer [68] part. sync f < 1
3
n dynamic det. det. single - - - - sharding -

FastBFT [40] part. sync f < 1
2
n dynamic det. det. single secret sharing tree - - - HW/TEE

ResilientDB [45] sync f < 1
3
n

per cluster
static det. det. multi - - c.f. PoE - clustering -

BFT-Store [83] part. sync paramet. dynamic det. det. single
rotating erasure coding - - - - storage

scalability
Red Belly [16] part. sync f < 1

3
n dynamic det. det. none - - - - sharding -

RCC [47] part. sync f < 1
3
n static det. det. multi - - pipelining blocks

across rounds - - -

RapidChain [44] sync f < 1
3
n dynamic prob. prob. single

random select. - gossip intrashard
pipelining committee sharding -

Pyramid [67] part. sync f < 1
3
n dynamic prob. prob. multi - - - - sharding -

Proteus [35] async f < 1
3
n static prob. prob. single - star - committee - -

Proof-of-QoS [62] part. sync f < 1
3
n

per committee
dynamic det. det. single VRF - - committee - -

Proof-of-Execution [36] part. sync f < 1
3
n static det. det. single threshold sig. star Out-of-order

processing
speculative
execution - -

Musch [34] part. sync f < 1
3
n static det. det. single multi sig. star - - - -

AHL [38] part. sync f < 1
3
n static prob. prob. single multi sig. star - committee sharding HW/TEE

Dumbo [56] async f < 1
3
n static prob. prob. multi erasure coding

threshold sig. - - committee - -

DP-Hybrid [74] part. sync paramet. dynamic prob. prob. none
single - - - hierarchical hierarchical -

DLattice [63] sync f < 1
3
n dynamic prob. prob. none VRF - - committee - -

DBFT [32] part. sync f < 1
3
n static det. det. none - - - - - -

Cumulus [55] part. sync f < 1
3
n dynamic prob. prob. single threshold sig.

VRF - - - - -

Chainspace [70] async f < 1
3
n dynamic prob. prob. single - - - - sharding -

CAPER [76] async f < 1
3
n static det. det. single - - - hierarchical - -

BlockTree [84] async f < 1
2
n dynamic prob. prob. single - - - - sharding -

Dispel [33] part. sync f < 1
3
n dynamic det. det. none - - distributed

pipeline - - -

BigBFT [27] part. sync f < 1
3
n static det. det. multi multi sig. - pipelining blocks

across rounds - - -

Gosig [41] part. sync f < 1
3
n static det. prob. random select. multi sig. gossip pipelines gossiplayer

and BFT protocol - - -

RingBFT [72] part. sync f < 1
3
n static det. det. single - ring - - sharding -

DispersedLedger [59] async f < 1
3
n static det. det. none erasure coding - - - - -

Saguaro [54] part. sync f < 1
3
n dynamic det. det. single threshold sig. - - hierarchical hierarchical -

Qanaat [58] part. sync f < 1
3
n static det. det. single secret sharing - - - sharding -

Narwhal-HotStuff [48] part. sync f < 1
3
n static det. det. rotating threshold sig. star c.f. HotStuff - - -

Tusk [48] async f < 1
3
n static prob. prob. rotating threshold sig. star c.f. HotStuff - - -

Avalanche [14] part. sync paramet. dynamic prob. prob. none - gossip - rand. sampling - -
C-PBFT [73] part. sync f < 1

3
n static det. det. single - - - hierarchical hierarchical -

DRBFT [77] part. sync f < 1
3
n dynamic det. det. single - - - committee - -

SBFT [10] sync n =
3f + 2c+ 1

static det. det. single threshold sig. star learning heuristic
for dynamic batching - - -

Cerberus [66] async f < 1
3
n static det. det. single - - - - sharding -

GearBox [69] part. sync f < 1
3
n dynamic det. prob. single - - - committee sharding -

ByShard [71] conf. f < 1
3
n conf. conf. conf. single - - - hierarchical sharding -

ICC0 / ICC1 [42] part. sync f < 1
3
n dynamic det. det. single

rotating threshold sig. gossip - - - -

ICC2 [42] part. sync f < 1
3
n dynamic det. det. single

rotating
threshold sig.
erasure coding gossip - - - -

Jolteon [37] part. sync f < 1
3
n static det. det. single threshold sig. star c.f. HotStuff - - -

Ditto [37] async f < 1
3
n static prob. prob. single threshold sig. star c.f. HotStuff - - -

Algorand [13] sync f < 1
3
n dynamic prob. prob. random select. VRF gossip - committee - -

Tab. II which protocols deviate from this pattern. While many
protocols target improving scalability within the consensus
group while increasing the number of nodes, protocols tagged
as “committee”, “sharding”, and “hierarchical” generally target
scalability and performance improvements by using subsets of
nodes participating in consensus. Some listed approaches are
generic frameworks that are not fixed to one specific protocol,
e. g., RCC [47], Ostraka [81], Mitosis [82], RingBFT [72],

and ByShard [71]. Here, we list assumptions and guarantees
if explicitly stated in the corresponding papers or list them as
configurable if applicable.

V. RELATED WORK

Several surveys systematically analyze blockchain protocols;
some contain a more or less detailed treatment of scalability.

Alsunaidi et al. created a survey of blockchain consensus
algorithms, focusing on performance and security [85]. The
authors distinguish between proof-based (e. g., PoW) and
voting-based (e. g., BFT). Scalability is a mentioned challenge,
but is not analyzed beyond categorizing proof-based protocols
as “strongly” and vote-based protocols as “weakly” scalable.

Bano et al. presented an SoK about blockchain consensus
protocols [86], where the main contribution is a systematization
framework that tracks the chronological evolution of blockchain
consensus protocols and a categorization using this framework.
While the framework explains that consensus scalability can be
achieved by advancing from hybrid single committee consensus
to hybrid multiple committee consensus (e. g., through sharding),
it does not treat scalability mechanics for consensus in general,
e. g., for consensus within a single committee.

Berger et al. created a short survey in 2018 that broadly
analyzes scalability techniques used in BFT consensus pro-
tocols [87]. Possibly, our survey can be best understood as
progressing this effort by (1) using a systematic methodology,
(2) increasing the level of detail, and (3) applying the analysis
to contemporary research works, thus extending the scope by
many papers that have been published just recently.

Ferdous et al.’s survey on blockchain consensus introduced
a taxonomy of desirable properties [88]. While scalability is
one such property, the technical aspects are not discussed.

Hafid et al. analyze the scalability of blockchain platforms
with a focus on first and second-layer solutions [89], i. e.,
changes to the blockchain, e. g., the block structure using DAGs
or increasing block sizes, and mechanisms implemented outside
of it, e. g., side-chains, child-chains, or payment channels. The
authors propose a taxonomy based on committee formation
and consensus within a committee and compare sharding-based
protocols. Scalability outside of sharding is not considered.

Huang et al. analyze blockchain surveys and focus on theo-
retical modeling, analysis models, performance measurements,
and experiment tools [90]. Scalability is only considered with
regard to sharding and multi-chain interoperability.

Jennath et al. give a general overview of common blockchain
consensus protocols, such as PoW, PoS, Proof-of-Elapsed-Time
(PoET), BFT, and Federated Byzantine agreements [91]. Lao et
al. consider IoT blockchains and their consensus strategies [92],
for which they compare consensus protocols using similar
categories. Neither survey considers BFT scalability.

Liu et al. analyze recent blockchain techniques and claim
that consensus-based scaling is limited, especially with Moore’s
law nearing its end [93]. They discuss and evaluate scaling
concerning topology and hardware assistance, e. g., off-chain
or parallel-chain computations or sharding.

Meneghetti et al. presented a survey on blockchain scalabil-
ity [94]; however, they focus more on smart contract executions,
particularly sharding, than on the consensus mechanism.

Monrat et al.’s survey on blockchain applications, challenges,
and opportunities [95] provides a blockchain taxonomy and
describes potential applications. The authors also describe
common consensus algorithms but do not focus on scalability.

Salimitari and Chatterjee created a survey on blockchain con-
sensus protocols in IoT [96]. They evaluate various blockchain
consensus protocols for use in IoT scenarios. The survey
categorizes consensus protocols in rough categories such as
PoW, PoS, BFT, VRF-based, and sharding-based solutions.

Vukolić contrasts PoW-based algorithms to BFT SMR
protocols [4]. Vukolić identifies scalability to many consensus
nodes as a blocker for the adoption of blockchain consensus.
As of 2016, Vukolić identifies optimistic BFT protocols and
relaxed fault models such as XFT or hybrid fault models with
trusted hardware as potential solutions.

VI. CONCLUSIONS AND OPEN CHALLENGES

One of the major ongoing challenges in the field of
blockchain is making Byzantine consensus applicable to large-
scale environments. To address this challenge, a large body of
research has focused on developing novel techniques to improve
the scalability of BFT consensus, paving the way for a new
generation of BFT protocols tailored to the needs of blockchain.
In this SoK paper, we employed a systematic literature search
to explore the design space of recent BFT protocols along with
their ideas for scaling up to hundreds or thousands of nodes. We
created a taxonomy of scalability-enhancing techniques, which
categorizes these ideas into communication and coordination
strategies, pipelining, cryptographic primitives, independent
groups, committee selection, and trusted hardware support. As
shown in Tab. II, many BFT protocols employ not only one idea
but rather a combination of several ideas. We also see that a less
vigorously explored research field seems to be the incorporation
of trusted execution environments, which is inviting for future
research works. Further, we comprehensively discussed all
ideas on an abstract level and pinpointed the design space from
which their corresponding BFT protocols originated.

Some open challenges regarding BFT scalability remain:
While we have identified and categorized these scalability
techniques, we cannot compare their effectiveness solely on
the basis of the papers’ evaluation results, and a common
evaluation platform for these protocols is not yet available [97].
Tab. II shows a wide range of combinations of techniques
that have so far been applied; however, further combinations
may exist that lead to valid, performant, and highly scalable
protocols and which have to be identified. Not only the
techniques’ effectiveness is important, but their complexity
regarding computational resource requirements, implementation
effort, or proof of correctness in a protocol is also relevant as
well and may differ widely. Finally, depending on the specific
application requirements, different agreement protocols may
be more suitable for specific deployment settings than others.
As the BFT protocol landscape is extensive, developing a
guideline for selecting the most fitting protocol according to
these requirements may be helpful.

ACKNOWLEDGMENTS

This work has been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) grant number
446811880 (BFT2Chain).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[2] V. Buterin. (2014) A Next-Generation Smart Contract and Decentralized

Application Platform. https://ethereum.org/en/whitepaper/.
[3] J. R. Douceur, “The Sybil Attack,” in Int. Workshop on Peer-to-Peer

Systems. Springer, 2002, pp. 251–260.
[4] M. Vukolić, “The Quest for Scalable Blockchain Fabric: Proof-of-Work

vs. BFT Replication,” in Int. Workshop on Open Problems in Network
Security. Springer, 2015, pp. 112–125.

[5] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), 1999, pp. 173–186.

[6] A. Bessani, J. Sousa, and E. E. Alchieri, “State Machine Replication
for the Masses with BFT-SMART,” in 2014 44th Annual IEEE/IFIP Int.
Conf. on Dependable Systems and Networks, 2014, pp. 355–362.

[7] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[8] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT Consensus in the Lens of Blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

[9] M. Yin, D. Malkhi, M. Reiter, G. Gueta, and I. Abraham, “HotStuff:
BFT Consensus with Linearity and Responsiveness,” in ACM Symp. on
Principles of Distributed Computing (PODC), 2019, pp. 347–356.

[10] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A Scalable and
Decentralized Trust Infrastructure,” in 49th Annu. IEEE/IFIP Int. Conf.
on Dependable Systems and Networks (DSN), 2019, pp. 568–580.

[11] E. Buchman, “Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[12] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and
F. Pedone, “The Design, Architecture and Performance of the Tendermint
Blockchain Network,” in 40th Int. Symp. on Reliable Distributed Systems
(SRDS), 2021, pp. 23–33.

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in 26th Symp. on
Operating Systems Principles (SOSP), 2017, pp. 51–68.

[14] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and Probabilistic Leaderless BFT Consensus through Metastability,”
arXiv:1906.08936 [cs], Aug. 2020, arXiv: 1906.08936. [Online].
Available: http://arxiv.org/abs/1906.08936

[15] C. Stathakopoulou, T. David, and M. Vukolić, “Mir-BFT: High-
Throughput BFT for Blockchains,” arXiv preprint arXiv:1906.05552,
2019.

[16] T. Crain, C. Natoli, and V. Gramoli, “Red Belly: A Secure, Fair and
Scalable Open Blockchain,” in IEEE Symp. on Security and Privacy
(SP), 2021, pp. 466–483.

[17] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT
Consensus with Pipelined Tree-Based Dissemination and Aggregation,”
in 28th Symp. on Operating Systems Principles (SOSP), 2021, pp. 35–48.

[18] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the
Presence of Faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, p. 382–401, Jul. 1982.

[20] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Presence of
Partial Synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
1988.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
Distributed Consensus with one Faulty Process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[22] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Presence
of Partial Synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, p.
288–323, apr 1988.

[23] M. Castro, “Practical Byzantine Fault Tolerance,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2000.

[24] N. A. Lynch, Distributed Algorithms. Elsevier, 1996.
[25] F. Borran and A. Schiper, “A Leader-Free Byzantine Consensus Algo-

rithm,” in Int. Conf. on Distributed Computing and Networking. Springer,
2010, pp. 67–78.

[26] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and I. Zablotchi,
“Leaderless Consensus,” in IEEE 41st Int. Conf. on Distributed Computing
Systems (ICDCS), 2021, pp. 392–402.

[27] S. Alqahtani and M. Demirbas, “BigBFT: A Multileader Byzantine Fault
Tolerance Protocol for High Throughput,” in IEEE Int. Performance,
Computing, and Communications Conf. (IPCCC), 2021, pp. 1–10.

[28] K. Cong, Z. Ren, and J. Pouwelse, “A Blockchain Consensus Protocol
with Horizontal Scalability,” in 2018 IFIP Networking Conf. (IFIP
Networking) and Workshops. IEEE, 2018, pp. 1–9.

[29] “Semantic Scholar,” Accessed at: 2022-01-10. [Online]. Available:
https://www.semanticscholar.org/

[30] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin Security and Performance with Strong Consistency via
Collective Signing,” in 25th USENIX Security Symp. (USENIX Security),
2016, pp. 279–296.

[31] E. Buchman, J. Kwon, and Z. Milosevic, “The Latest Gossip on BFT
Consensus,” arXiv preprint arXiv:1807.04938, 2018.

[32] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “DBFT: Efficient
Leaderless Byzantine Consensus and its Application to Blockchains,” in
2018 IEEE 17th Int. Symp. on Network Computing and Applications
(NCA), 2018, pp. 1–8.

[33] G. Voron and V. Gramoli, “Dispel: Byzantine SMR with Distributed
Pipelining,” arXiv preprint arXiv:1912.10367, 2019.

[34] M. M. Jalalzai and C. Busch, “Window Based BFT Blockchain
Consensus,” in 2018 IEEE Int. Conf. on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2018, pp. 971–979.

[35] M. M. Jalalzai, C. Busch, and G. G. Richard, “Proteus: A Scalable
BFT Consensus Protocol for Blockchains,” in 2019 IEEE Int. Conf. on
Blockchain (Blockchain), 2019, pp. 308–313.

[36] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “Proof-of-Execution:
Reaching Consensus through Fault-Tolerant Speculation,” in 24th Int.
Conf. on Extending Database Technology EDBT, 2021, pp. 301–312.

[37] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and Ditto: Network-Adaptive Efficient Consensus with
Asynchronous Fallback,” in Financial Cryptography and Data Security,
I. Eyal and J. Garay, Eds. Cham: Springer, 2022, pp. 296–315.

[38] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards Scaling Blockchain Systems via Sharding,” in 2019 Int. Conf.
on Management of Data. ACM, Jun. 2019, pp. 123–140.

[39] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A Scalable
Multi-Layer PBFT Consensus for Blockchain,” IEEE Trans. on Parallel
and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2021.

[40] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine
Consensus via Hardware-Assisted Secret Sharing,” IEEE Trans. on
Computers, vol. 68, no. 1, pp. 139–151, 2018.

[41] P. Li, G. Wang, X. Chen, F. Long, and W. Xu, “Gosig: A Scalable and
High-Performance Byzantine Consensus for Consortium Blockchains,”
in 11th ACM Symp. on Cloud Computing, 2020, pp. 223–237.

[42] J. Camenisch, M. Drijvers, T. Hanke, Y.-A. Pignolet, V. Shoup, and
D. Williams, “Internet Computer Consensus,” in ACM Symp. on Principles
of Distributed Computing (PODC), 2022, pp. 81–91.

[43] J. Lim, T. Suh, J. Gil, and H. Yu, “Scalable and Leaderless Byzantine
Consensus in Cloud Computing Environments,” Information Systems
Frontiers, vol. 16, no. 1, pp. 19–34, Mar. 2014.

[44] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in 2018 ACM SIGSAC Conf. on Computer
and Communications Security, 2018, pp. 931–948.

[45] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “ResilientDB: Global
Scale Resilient Blockchain Fabric,” Proc. of the VLDB Endowment,
vol. 13, no. 6, pp. 868–883, 2020.

[46] M. M. Jalalzai, C. Feng, C. Busch, G. Richard III, and J. Niu, “The
Hermes BFT for Blockchains,” IEEE Trans. on Dependable and Secure
Computing, 2021.

[47] S. Gupta, J. Hellings, and M. Sadoghi, “RCC: Resilient Concurrent
Consensus for High-Throughput Secure Transaction Processing,” in IEEE
37th Int. Conf. on Data Engineering (ICDE), 2021, pp. 1392–1403.

[48] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Narwhal
and Tusk: A DAG-Based Mempool and Efficient BFT Consensus,” in
17th European Conf. on Computer Systems (EuroSys), 2022, p. 34–50.

[49] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and
X. Guan, “RepChain: A Reputation-Based Secure, Fast, and High
Incentive Blockchain System via Sharding,” IEEE Internet of Things
Journal, vol. 8, no. 6, pp. 4291–4304, 2021.

[50] D. Boneh, M. Drijvers, and G. Neven, “Compact Multi-Signatures for
Smaller Blockchains,” Cryptology ePrint Archive, Paper 2018/483, 2018.

https://ethereum.org/en/whitepaper/
http://arxiv.org/abs/1906.08936
https://www.semanticscholar.org/

[51] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed.
Springer, 2001, pp. 514–532.

[52] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping Authorities ”Honest or Bust”
with Decentralized Witness Cosigning,” in Symp. on Security and Privacy
(SP), 2016, pp. 526–545.

[53] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and
I. Stepanovs, “On the Security of Two-Round Multi-Signatures,” in Symp.
on Security and Privacy (SP), 2019, pp. 1084–1101.

[54] M. J. Amiri, Z. Lai, L. Patel, B. T. Loo, E. Lo, and W. Zhou, “Saguaro:
Efficient Processing of Transactions in Wide Area Networks using a
Hierarchical Permissioned Blockchain,” arXiv preprint arXiv:2101.08819,
2021, arXiv: 2101.08819.

[55] F. Gai, J. Niu, S. Ali Tabatabaee, C. Feng, and M. Jalalzai, “Cumulus:
A Secure BFT-based Sidechain for Off-chain Scaling,” in IEEE/ACM
29th Int. Symp. on Quality of Service (IWQOS), 2021, pp. 1–6.

[56] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
Asynchronous BFT Protocols,” in ACM SIGSAC Conf. on Computer and
Communications Security, 2020, pp. 803–818.

[57] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey
Badger of BFT Protocols,” in ACM SIGSAC Conf. on Computer and
Communications Security, 2016, pp. 31–42.

[58] M. J. Amiri, B. T. Loo, D. Agrawal, and A. E. Abbadi, “Qanaat:
A Scalable Multi-Enterprise Permissioned Blockchain System with
Confidentiality Guarantees,” arXiv preprint arXiv:2107.10836, 2021.

[59] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse, “Disperse-
dLedger: High-Throughput Byzantine Consensus on Variable Bandwidth
Networks,” in 19th USENIX Symp. on Networked Systems Design and
Implementation (NSDI), 2022, pp. 493–512.

[60] S. Micali, M. Rabin, and S. Vadhan, “Verifiable Random Functions,”
in 40th Annu. Symp. on Foundations of Computer Science, 1999, pp.
120–130.

[61] L.-e. Wang, Y. Bai, Q. Jiang, V. C. M. Leung, W. Cai, and X. Li, “Beh-
Raft-Chain: A Behavior-Based Fast Blockchain Protocol for Complex
Networks,” IEEE Trans. on Network Science and Engineering, vol. 8,
no. 2, pp. 1154–1166, 2021.

[62] B. Yu, J. Liu, S. Nepal, J. Yu, and P. Rimba, “Proof-of-QoS: QoS Based
Blockchain Consensus Protocol,” Computers & Security, vol. 87, 2019.

[63] T. Zhou, X. Li, and H. Zhao, “DLattice: A Permission-Less Blockchain
Based on DPoS-BA-DAG Consensus for Data Tokenization,” IEEE
Access, vol. 7, pp. 39 273–39 287, 2019.

[64] S. Goldberg, M. Naor, D. Papadopoulos, and L. Reyzin, “NSEC5 from
Elliptic Curves: Provably Preventing DNSSEC Zone Enumeration with
Shorter Responses,” Cryptology ePrint Archive, Paper 2016/083, 2016.

[65] S. Goldberg, D. Papadopoulos, and J. Včelák, “Verifiable Random
Functions (VRFs),” IETF, Internet-Draft draft-goldbe-vrf-00, 2017.

[66] J. Hellings, D. Hughes, J. Primero, and M. Sadoghi, “Cerberus: Mini-
malistic Multi-Shard Byzantine-Resilient Transaction Processing,” arXiv
preprint arXiv:2008.04450, 2020.

[67] Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A Layered Sharding
Blockchain System,” in IEEE Conference on Computer Communications
(INFOCOM), 2021, pp. 1–10.

[68] M. J. Amiri, D. Agrawal, and A. El Abbadi, “SharPer: Sharding
Permissioned Blockchains Over Network Clusters,” in Int. Conf. on
Management of Data. ACM, 2021, pp. 76–88.

[69] B. David, B. Magri, C. Matt, J. Nielsen, and D. Tschudi, “GearBox: An
Efficient UC Sharded Ledger Leveraging the Safety-Liveness Dichotomy,”
Cryptology ePrint Archive, Paper 2021/211, 2021.

[70] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A Sharded Smart Contracts Platform,” in 2018 Network
and Distributed System Security Symp. Internet Society, 2018.

[71] J. Hellings and M. Sadoghi, “ByShard: Sharding in a Byzantine
Environment,” in Proc. of the VLDB Endowment, vol. 14, 2021, pp.
2230–2243.

[72] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi,
“RingBFT: Resilient Consensus over Sharded Ring Topology,” arXiv
preprint arXiv:2107.13047, 2021.

[73] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou, “Concurrent
Practical Byzantine Fault Tolerance for Integration of Blockchain and
Supply Chain,” ACM Trans. on Internet Technology, vol. 21, no. 1, pp.
1–17, 2021.

[74] F. Wen, L. Yang, W. Cai, and P. Zhou, “DP-Hybrid: A Two-Layer
Consensus Protocol for High Scalability in Permissioned Blockchain,” in

Blockchain and Trustworthy Systems, Z. Zheng, H.-N. Dai, X. Fu, and
B. Chen, Eds. Springer, 2020, vol. 1267, pp. 57–71.

[75] Y. Li, L. Qiao, and Z. Lv, “An Optimized Byzantine Fault Tolerance
Algorithm for Consortium Blockchain,” Peer-to-Peer Networking and
Applications, vol. 14, no. 5, pp. 2826–2839, 2021.

[76] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “CAPER: A Cross-
Application Permissioned Blockchain,” Proc. of the VLDB Endowment,
vol. 12, no. 11, pp. 1385–1398, 2019.

[77] Y. Zhan, B. Wang, R. Lu, and Y. Yu, “DRBFT: Delegated Random-
ization Byzantine Fault Tolerance Consensus Protocol for Blockchains,”
Information Sciences, vol. 559, pp. 8–21, 2021.

[78] C. Matt, J. B. Nielsen, and S. E. Thomsen, “Formalizing Delayed
Adaptive Corruptions and the Security of Flooding Networks,” Cryptology
ePrint Archive, Paper 2022/010, 2022.

[79] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
Trusted Hardware for Large Distributed Systems,” in 6th USENIX Symp.
on Networked Systems Design and Implementation (NSDI), 2009.

[80] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-Only Memory: Making Adversaries Stick to Their Word,” in
21st ACM SIGOPS Symp. on Operating Systems Principles (SOSP), 2007,
p. 189–204.

[81] A. Manuskin, M. Mirkin, and I. Eyal, “Ostraka: Secure Blockchain
Scaling by Node Sharding,” in IEEE European Symp. on Security and
Privacy Workshops (EuroS&PW). IEEE, 2020, pp. 397–406.

[82] G. A. Marson, S. Andreina, L. Alluminio, K. Munichev, and G. Karame,
“Mitosis: Practically Scaling Permissioned Blockchains,” in Annu. Com-
puter Security Applications Conf., 2021, pp. 773–783.

[83] X. Qi, Z. Zhang, C. Jin, and A. Zhou, “A Reliable Storage Partition
for Permissioned Blockchain,” IEEE Trans. on Knowledge and Data
Engineering, vol. 33, no. 1, pp. 14–27, 2020.

[84] L. Vishwakarma and D. Das, “BlockTree: A Nonlinear Structured, Scal-
able and Distributed Ledger Scheme for Processing Digital Transactions,”
Cluster Comput, vol. 24, no. 4, pp. 3751–3765, 2021.

[85] S. J. Alsunaidi and F. A. Alhaidari, “A Survey of Consensus Algorithms
for Blockchain Technology,” in Int. Conf. on Computer and Information
Sciences (ICCIS). IEEE, 2019, pp. 1–6.

[86] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meikle-
john, and G. Danezis, “SoK: Consensus in the Age of Blockchains,” in
1st ACM Conf. on Advances in Financial Technologies (AFT), 2019, p.
183–198.

[87] C. Berger and H. P. Reiser, “Scaling Byzantine Consensus: A Broad
Analysis,” in 2nd Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL), 2018, p. 13–18.

[88] M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque, and A. Col-
man, “Blockchain Consensus Algorithms: A Survey,” arXiv preprint
arXiv:2001.07091, 2020.

[89] A. Hafid, A. S. Hafid, and M. Samih, “Scaling Blockchains: A
Comprehensive Survey,” IEEE Access, vol. 8, pp. 125 244–125 262, 2020.

[90] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A Survey of
State-of-the-Art on Blockchains: Theories, Modelings, and Tools,” ACM
Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–42, 2021.

[91] H. S. Jennath and S. Asharaf, “Survey on Blockchain Consensus
Strategies,” in ICDSMLA 2019, A. Kumar, M. Paprzycki, and V. K.
Gunjan, Eds. Springer, 2020, pp. 637–654.

[92] L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A Survey of
IoT Applications in Blockchain Systems: Architecture, Consensus, and
Traffic Modeling,” ACM Computing Surveys (CSUR), vol. 53, no. 1, pp.
1–32, 2020.

[93] Y. Liu, K. Qian, J. Chen, K. Wang, and L. He, “Effective Scaling of
Blockchain Beyond Consensus Innovations and Moore’s Law,” arXiv
preprint arXiv:2001.01865, 2020.

[94] A. Meneghetti, T. Parise, M. Sala, and D. Taufer, “A Survey on Efficient
Parallelization of Blockchain-Based Smart Contracts,” arXiv preprint
arXiv:1904.00731, 2019.

[95] A. A. Monrat, O. Schelén, and K. Andersson, “A Survey of Blockchain
from the Perspectives of Applications, Challenges, and Opportunities,”
IEEE Access, vol. 7, pp. 117 134–117 151, 2019.

[96] M. Salimitari and M. Chatterjee, “A Survey on Consensus Protocols in
Blockchain for IoT Networks,” arXiv preprint arXiv:1809.05613, 2018.

[97] M. J. Amiri, C. Wu, D. Agrawal, A. E. Abbadi, B. T. Loo, and M. Sadoghi,
“The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT
Protocol Design and Implementation,” arXiv preprint arXiv:2205.04534,
2022.

	Introduction
	Motivation
	Research Questions
	Contributions
	Outline

	BFT in a nutshell
	Assumptions
	The Byzantine Fault Model
	Synchrony Models

	State Machine Replication and Consensus
	BFT Simplified

	Methodology
	Search Strategy
	Selection Criteria
	Selection Procedure and Results

	SoK: Scalability-enhancing Techniques
	Communication Topologies and Strategies
	Star-based
	Tree-based
	Gossip and Randomized Topology

	Pipelining
	Out-of-Order Processing
	Chain-based Pipelining & QC Reusage
	Multiplexing Consensus Instances per Protocol Stage
	Pipelining in Multi-leader and Leaderless Protocols

	Cryptographic Primitives
	Multi-Signatures
	Threshold Signatures
	Secret Sharing
	Erasure Coding
	Verifiable Random Functions

	Independent Groups
	Sharding
	Hierarchical Consensus

	Selection of Consensus Committees
	Committee
	Randomized Sampling

	Hardware Support
	Summary of BFT Protocols

	Related Work
	Conclusions and Open Challenges
	References

