
Chasing the Speed of Light:
Low-Latency Planetary-Scale Adaptive Byzantine Consensus

Christian Berger† Lívio Rodrigues⋆ Hans P. Reiser‡ Vinícius Cogo⋆ Alysson Bessani⋆

⋆LASIGE, Faculdade de Ciências Universidade de Lisboa, Portugal
†University of Passau, Germany ‡Reykjavik University, Iceland

Abstract
Blockchain technology has sparked renewed interest in
planetary-scale Byzantine fault-tolerant (BFT) state machine
replication (SMR). While recent works have mainly focused
on improving the scalability and throughput of these proto-
cols, few have addressed latency. We present FLASHCON-
SENSUS, a novel transformation for optimizing the latency
of quorum-based BFT consensus protocols. FLASHCONSEN-
SUS uses an adaptive resilience threshold that enables faster
transaction ordering when the system contains few faulty
replicas. Our construction exploits adaptive weighted replica-
tion to automatically assign high voting power to the fastest
replicas, forming small quorums that significantly speed up
consensus. Even when using such quorums with a smaller
resilience threshold, FLASHCONSENSUS still satisfies the
standard SMR safety and liveness guarantees with optimal
resilience, thanks to the judicious integration of abortable
SMR and BFT forensics techniques. Our experiments with
tens of replicas spread in all continents show that FLASHCON-
SENSUS can order transactions with finality in less than 0.4s,
half the time of a PBFT-like protocol (with optimal consensus
latency) in the same network, and matching the latency of this
protocol running on the theoretically best possible internet
links (transmitting at 67% of the speed of light).

1 Introduction

State machine replication (SMR) is a general approach for
achieving fault tolerance in distributed systems by coordi-
nating client interactions with a set of n independent server
replicas [48]. As of recently, many scalable (BFT) SMR pro-
tocols have been proposed for usage in blockchain infras-
tructures, such as HotStuff [60], SBFT [30], Tendermint [15],
Mir-BFT [55], RedBellyBC [21], DisperseLedger [59], and
Kauri [43]. These protocols employ either some dynamically
elected leader [15, 30, 43, 56, 60], use multiple leaders [1, 55],
or are leaderless [4, 21, 59].

Nevertheless, consensus in all these cases requires commu-
nication steps that involve a Byzantine majority of replicas

under the assumption of a Byzantine adversary that controls
up to a fixed resilience threshold of t = ⌊ n−1

3 ⌋ replicas. Often,
the quorum size for proceeding to the next protocol stage de-
pends on this threshold, a Byzantine t-dissemination quorum
with ⌈ n+t+1

2 ⌉ replicas [39]. This size equals roughly 2
3 of all

replicas if an optimal resilience threshold is used.
As for geo-replicated or planetary-scale systems, such as

permissioned blockchains (e.g., [3, 21]) with tens of nodes
distributed worldwide, a relevant optimization goal is lower-
ing the end-to-end latency clients observe. Employing smaller
quorums of closer replicas can significantly decrease SMR
latency [34, 54]. The challenge in using such smaller, faster
quorums is to ensure they intersect in sufficiently many repli-
cas with all other quorums of the system. Such smaller, in-
tersecting quorums can be built using weighted replication,
where faster replicas have more voting power. However, this
approach requires more replicas than necessary for optimal
resilience [54]. In fact, there is a trade-off between resilience
and performance, as a smaller, faster quorum requires more
spare replicas [9].

Smaller quorums for better latency. To illustrate how
a geo-replicated system can progress faster by accessing
a smaller quorum of replicas, we consider a weighted sys-
tem [54] with n = 21 replicas dispersed across all 21 AWS
regions (see Figure 1a). When the system is configured for
maximum resilience, it tolerates up to t = 6 Byzantine repli-
cas (the highest integer satisfying t < n

3) and has ∆ = 2 spare
replicas, while the smallest weighted consensus quorum Q6

v
contains 13 replicas (see §B for details on these calculations).
This number corresponds to only one replica less than using
non-weighted replication. If we instead configure the system
for tolerating just t = 3 failures, the smallest weighted quorum
Q3

v contains only 7 replicas, with ∆ = 11. Furthermore, this
quorum can be composed of closer replicas that can exchange
votes with each other faster, thus more swiftly proceeding
through the stages of the consensus protocol (see Figure 1b),
and ultimately leading to latency gains that clients around the
globe can benefit from (see Figure 1c).

1

(a) Weighted quorums sizes with t = 6 and t = 3.

6543

50
100
150
200
250
300

Threshold t

L
at

en
cy

[m
s]

(b) Consensus latency
vs. resilience threshold.

São Paulo
London

Osaka
Virginia

100
200
300
400
500
600

L
at

en
cy

[m
s]

t = 6 t = 3

(c) End-to-end transaction latencies ob-
served by clients in different regions.

Figure 1: Weighted quorums composition and resulting BFT
SMR latency for different resilience thresholds (t) in our
n = 21 setup (see details in §6).

In this paper, we propose FLASHCONSENSUS, an adaptive
transformation for building protocols that aim for the best of
both worlds. It ensures the same resilience as if the optimal
threshold t = ⌊ n−1

3 ⌋ is used while driving consensus instances
faster by optimizing the system for the expected common case,
in which the number of faulty replicas is much lower than the
BFT protocol’s resilience threshold.

Challenges and the big picture. The main problem when
using a lower resilience bound tfast < t for consensus is
that a Byzantine attacker that controls f replicas (such that
tfast < f ≤ t) can cause equivocations. In this case, the
attacker can convince two correct replicas to decide differ-
ent batches of transactions for the same consensus instance,
as quorums for the lower threshold tfast do not necessarily
overlap in at least one correct replica.

A key insight of our work is that we can utilize BFT proto-
col forensics or accountability [49,50] in a novel way. Instead
of using it as a forensic tool to investigate the “day after”, we
leverage it as a protective countermeasure against Byzantine
attackers. In BFT protocol forensics, the client is the one who
detects conflicting values based on replicas’ logged signed
messages and pinpoints equivocating replicas. In our solution,
the responsibility of detecting faulty replicas is imposed on
all correct replicas so the system can autonomously detect and
expel equivocating parties. In a system tolerating up to tfast

faulty replicas, audits can detect agreement violations and
identify tfast +1 faulty replicas if there are no more than 2tfast
faulty replicas [50]. Using tfast = ⌈ t

2⌉ guarantees that audits
are always supported for up to t faulty replicas. The system
can recover from these violations by purging the detected
violators from the system and rolling back the divergent deci-
sions of correct replicas to a consistent state. This continuous
auditing is important not only as a recovery mechanism but
also as a deterrent to attacks since any perpetrator will be
identified and expelled from the system.

The fact that a decision can be rolled back on replicas may
lead to transaction outcomes observed by clients being un-
done, affecting the finality/durability of these transactions.
Therefore, we have to modify the matching replies require-
ments on clients to ensure they can know when an operation
completes in the system, ensuring linearizability as in stan-
dard SMR [16]. Another important contribution of our work is
deriving the exact number of matching replies a client needs
to expect to preserve linearizability even when consensus
agreement violations are possible.

Minimizing consensus latency, but then letting clients wait
for more-than-usual replies from all over the world to preserve
linearizability counteracts our goal of reducing the end-to-end
request latency. For this reason, we extend the programming
model of BFT SMR with correctables that allow client appli-
cations to use incremental consistency guarantees [29], which
simplifies and abstracts client-side speculation. We show that
clients can lower their transaction latency even further using
this abstraction.

Lastly, we need to take liveness into special consideration.
SMR liveness requires requests issued by correct clients to
be eventually completed. This property can be endangered
if the protocol operates with a lower threshold tfast < t and
there are f > tfast Byzantine replicas that stay silent, i.e., do
not reply to the client or participate in consensus quorums. To
avoid this scenario, we reuse the idea of abortable state ma-
chine replication [5]. If the system blocks or equivocates, we
abort the execution of the fast mode of FLASHCONSENSUS
and start a more resilient protocol instance, which uses the
maximum resilience threshold t.

Our experimental evaluation with up to 51 replicas around
the globe shows that FLASHCONSENSUS can order trans-
actions with finality in less than 0.4s, which is half of the
time required for BFT-SMART [11] (which implements a
PBFT-like protocol) in the same network. Interestingly, our
observed latencies are close to the theoretical optimum for
BFT-SMART, considering the physical location of replicas
and links transmitting at 2

3 of the speed of light, which is ac-
cepted as the upper bound on data transmission speed for the
internet [13, 36].

Contributions. In this paper, we present a threshold-
adaptive BFT protocol, FLASHCONSENSUS, that strives for
continuous self-optimization during runtime by tuning the

2

threshold used in consensus quorums. FLASHCONSENSUS
was implemented on top of AWARE [9], a BFT-SMART ex-
tension that provides automated and dynamic voting-weight
tuning and leader placement for supporting the emergence of
fast quorum systems with a fixed resilience threshold t. Our
ultimate goal is to significantly reduce latency in planetary-
scale BFT SMR in the expected common case of having few
failures. In summary, we make the following contributions:

• We explore how to detect malicious behavior under an
underestimated threshold tfast by auditing the system and
repairing the correct replicas’ state after an agreement
violation happens.

• We show that it is possible to preserve the usual SMR
guarantees, linearizability and termination, under the
larger resilience threshold t, even if the agreement quo-
rums are formed using a smaller threshold tfast < t.

• We equip clients with correctables to allow for client-
side speculation, thus enabling a client application to
minimize the observed transaction latency even further
by selecting the desired consistency level.

• We conduct an extensive evaluation based on real and
simulated networks to reason about possible latency
gains that clients dispersed over the globe can achieve
when using FLASHCONSENSUS.

• We show that the principles underlying FLASHCONSEN-
SUS are generic enough to be used in other quorum-based
protocols such as HotStuff [60], leading to even higher
latency gains.

2 Byzantine State Machine Replication

Assuming a deterministic service starting in the same
state [48], a BFT (or Byzantine) SMR service aims to sat-
isfy the following standard properties [8, 16]:

1. SMR Safety: all correct replicas durably execute the same
sequence of operations;

2. SMR Liveness: all operations issued by correct clients
are eventually completed.

PBFT. Castro and Liskov presented the Practical Byzan-
tine Fault Tolerance (PBFT) [16] SMR algorithm in 1999,
which became widely famous as the first practical method
for tolerating Byzantine faults. PBFT is optimal in terms of
best-case latency (3 communication steps), resilience (t < n

3),
and in terms of assumptions (SMR safety under asynchrony
and liveness in a partially synchronous system model).

The idea of PBFT is to order requests by relying on a single
leader that assigns sequence numbers to batches of requests.
If the leader is correct and there is enough synchrony in the

PROPOSE WRITE ACCEPT

Request Responsec
r0
r1
r2
r3

Byzantine Agreement

Figure 2: BFT-SMART normal case operation [11].

system, PBFT’s normal case operation is repeatedly success-
fully executed. The normal case operation is an agreement
pattern that consists of the leader proposing a batch of op-
erations to all replicas, followed by two phases of all-to-all
message exchanges (PREPARE and COMMIT) in which repli-
cas try to commit the messages consistently despite Byzantine
failures by the use of quorums. Quorums are sufficiently large
to guarantee that any intersection of two quorums Qi and Q j
contains at least one correct replica, e.g., for any pair of repli-
cas ri and r j, it holds for the quorums Qi and Q j they observe
in a phase, that |Qi ∩Q j| ≥ t +1.

The problem of a faulty leader is solved by the view change
sub-protocol if t + 1 replicas support the change of leader.
During a view change, the newly elected leader collects the
current status from a quorum of replicas and defines consistent
decisions for pending instances.

BFT-SMART. The most popular implementation of a
PBFT-like protocol is the BFT-SMART replication li-
brary [11]. BFT-SMART works just like PBFT, running a
three-phase consensus instance for defining the batch of trans-
actions to be processed at slot i, as illustrated in Figure 2.
The analogous of a view change in BFT-SMART is its syn-
chronization phase, where a new regency (view) starts with
a newly-elected leader responsible for concluding pending
consensus instances and starting instances for future slots.

BFT-SMART was recently extended to support weighted
geo-replication. The resulting system, AWARE [9], supports
the autonomic reconfiguration of replicas weights based on
the observed latency between them (see more about AWARE
in Appendix B).

Abortable state machine replication. Abstract [5] is a
design methodology to simplify the development and recon-
figuration of abortable replicated state machines, which are,
in contrast to traditional replicated state machines, allowed to
abort the execution of client requests, and then re-direct this
responsibility to another Abstract instance.

The design is flexible since the decision of what might be
the “common case”, i.e., the criteria for an optimization (such
as speculating on the absence of faulty replicas or request
contention) is left to the system designer. The only aspect that
needs to be ensured is the safety of operations, while liveness
is ensured by eventually falling back to a backup instance

3

that never aborts, e.g., PBFT. Novel Abstract instances can be
composed by linking existing ones, i.e., specifying which one
takes over if the other aborts. This method is implemented
by a switching mechanism that glues together the different
Abstract instances. To make this work, each Abstract instance –
except the backup – needs to implement an abort sub-protocol
that is exposed to the next Abstract instance. In this way, the
next Abstract instance can be safely initialized by utilizing
the abort indications of the last aborting Abstract instance.

3 Assumptions and Goals

We consider the same system model used in BFT-
SMART [11] and in several other important protocols such
as HotStuff [60] and PBFT [16]. In our system, there is a set
of n replicas, R = {r0, ..,rn−1}, and an arbitrarily large set of
clients C .

Communication between all processes in the system is done
through point-to-point channels that are authenticated and re-
liable. Reliable communication channels can be built on top
of unreliable channels, as long as they are fair-loss, i.e., even-
tually, deliver messages if re-transmission attempts are used.
To ensure liveness, we require a weak partial synchrony [23]
where the system may initially behave asynchronously and, af-
ter an unknown GST (Global Stabilization Time), some upper
bound holds for all message transmission delays.

We assume there are at most t Byzantine replicas and an
unbounded number of Byzantine clients. Byzantine processes
may behave arbitrarily and even collude under the orchestra-
tion of an adversary. However, they are still limited in their
computational capabilities, i.e., they can not break crypto-
graphic primitives.

We assume a trusted setup in which public key material
is distributed among the processes. Every replica or client
possesses secret and public keys, and all public keys are
known to all processes. Additionally, replicas are equipped
with sign(·) and verify(·) primitives to create and ver-
ify message signatures, respectively. Finally, we assume a
collision-resistant hash function hash(·).

Our goal is to design a fast BFT protocol for wide-area
deployments that satisfy the standard SMR safety and liveness
(see §2) for the optimal resilience bound t = ⌊ n−1

3 ⌋ and can
tune itself to achieve fast commit latency in the expected
common-case when there are no more than tfast = ⌈ t

2⌉ faulty
replicas and a stable, correct leader.

4 FLASHCONSENSUS

FLASHCONSENSUS provides continuous self-optimization
at runtime by adapting the resilience threshold and chang-
ing weights to enable the emergence of smaller consensus
quorums for low-latency transaction execution. To achieve
this, it aims for the best of both worlds since it maintains the

Fast Mode

weighted
quorums
under tfast

switch

Conservative Mode

weighted
quorums
under t

Figure 3: FLASHCONSENSUS two modes of operation.

maximum resilience of the system for supporting diagnosis
and repairs while continuously attempting to run consensus
instances faster by optimizing the system for the expected
common case with few or no failures.

This dual approach is implemented using abortable state
machines, as previously done for performance [5] and re-
source efficiency [22]. The system starts in conservative mode
by running instances of a quorum-based consensus protocol
tolerating t failures. If nothing bad happens for a certain num-
ber of consensus instances, the system switches to the opti-
mistic fast mode that tolerates only tfast failures. While the
leader is correct and the number of actual failures does not
surpass tfast, FLASHCONSENSUS stays in this configuration
and uses smaller quorums to accelerate the termination of con-
sensus. If latency gains do not match expectations, the leader
is found to be faulty, or if correct replicas detect equivoca-
tions, FLASHCONSENSUS switches back to the conservative
mode. Figure 3 illustrates the two modes of operation.

Even building upon the features of AWARE [9], allow-
ing us the use small quorums with reconfigurable weights
based on the observed latency between replicas, FLASHCON-
SENSUS design encompasses several challenges. First and
foremost, we need mechanisms to detect and diagnose the
system when there are more than f > tfast failures. Second,
we need a robust reconfiguration mechanism to safely abort
the fast configuration and move to the conservative one in
such situations. Finally, the client-replica contract needs to
ensure linearizability in our dual fault-threshold approach.
These issues are discussed in the following subsections.

4.1 Obtaining Smaller Quorums

Decreasing t brings modest benefits in terms of quorum size
when using normal dissemination quorum systems. For in-
stance, in a system with 21 replicas, tolerating at most 6 fail-
ures, if we configure the system to tolerate up to tfast = 3
failures, the quorum size will drop from 14 to 13 replicas. We
can do much better than that by resorting to weighted replica-
tion, allowing us to build quorums as small as 7 replicas in
this setting (n = 21, tfast = 3).

The challenge in using weighted replication is to distribute
voting power to enable small quorums without giving up
required quorum guarantees, i.e., all quorums intersect in at

4

least one correct server (consistency), and there is always at
least one quorum available (availability).

The weight distribution scheme proposed for WHEAT [54]
satisfies these requirements and ensures there is at least one
minimal quorum with only 2tfast +1 replicas, independently
of n. To see why this quorum is minimal, notice that the avail-
ability property requires the biggest quorum in the system to
contain at most n− tfast replicas. To satisfy consistency, this
quorum must intersect all other quorums in at least tfast +1
replicas. As a consequence, the smallest possible quorum
must have at least 2tfast +1 replicas. WHEAT’s weight choice
for the replicas is nonarbitrary. There are 2tfast replicas with
voting power Vmax > 1 and the rest remains with voting power
1. Appendix B contains more details about WHEAT.

An additional challenge in using weighted replication is
how to (re)assign the weights in accordance with the cur-
rent system conditions. In our case, we must select the 2tfast
replicas that will receive maximal voting power. We resort to
the latency measurement and weight reassignment scheme of
AWARE [9] and focus instead on the problem of running the
protocol optimistically, tolerating few failures.

4.2 Dealing with f > t f ast Failures

The key challenge in devising FLASHCONSENSUS is ensuring
SMR safety and liveness when the system is in fast mode and
f > tfast. In this section, we detail how to detect and deal with
such situations.

4.2.1 Safety

When running in fast mode, the adversary can control more
than tfast replicas and cause equivocations in the system. This
situation might lead correct replicas to decide different trans-
action batches in a consensus instance since fast mode’s
smaller quorums are not guaranteed to overlap in at least
one correct replica.

To limit this scenario, the system must detect if the actual
number of faults (f) surpassed the resilience threshold of the
fast mode (tfast) and, if so, revert the system to its more re-
silient configuration. For detecting faults, we need to check
the state of the replicas periodically to ensure they are consis-
tent, which is done through periodic checkpoint messages, as
in PBFT [16]. After every k completed consensus instances,
each replica takes a snapshot of the service state and broad-
casts to all replicas a signed message containing the digest of
this snapshot h and the highest consensus instance i for which
decided requests affect this checkpoint. Every replica waits
for n− t matching checkpoint hashes for the same consen-
sus instance to define the checkpoint as stable. If during this
process, a correct replica (the auditor) detects non-matching
checkpoints, it runs the lightweight forensics procedure of
Figure 4 to identify and obtain a non-repudiable Proof-of-
Culpability (PoC) for the protocol violators.

Replica
F1. Find evidence: Let S and S′ be the two sets of replicas with diverging
checkpoint digests. The auditor tries to collect signed lists of decision
proofs from consensus instances i− k+ 1 to i from at least one of the
replicas of each of these two sets.

F2. Produce PoC: When such logs are obtained, the auditor checks the
logs to find the first consensus instance with diverging decisions. Once
such an instance is found, the auditor checks the proofs of decisions.

1. If any of the proofs of decision is invalid, the log signed by the
replica that provided it is a PoC for the replica.

2. If both proofs are valid, the auditor finds the tfast +1 replicas that
provided signed ACCEPT messages for both decisions. These two
conflicting proofs are the PoC for the tfast +1 misbehaving replicas.

Figure 4: Lightweight forensics procedure.

If n− t matching checkpoint hashes are received during
the procedure execution, the auditor stops it. This action is
important to avoid faulty replicas blocking correct replicas
in forensics procedures since a faulty replica can send a non-
matching checkpoint but never send the corresponding log.

After concluding the lightweight forensics procedure, if a
PoC is produced for one or more replicas, the auditing replica
broadcasts this PoC to all replicas making the system switch
to the conservative mode and expel the misbehaving replicas,
as described in §4.2.4.

The lightweight forensics protocol might also be triggered
if a client detects non-matching signed replies for one of its
requests. When this happens, the client sends a panic message
with conflicting replies to the replicas. A replica that receives
a panic message with correctly signed conflicting replies starts
the lightweight forensics protocol, but fetches logs from the
last checkpoint until the consensus instance that decided the
problematic request.

4.2.2 Liveness

Besides equivocations, f > tfast adversary-controlled replicas
can stay silent and negatively affect the liveness of the system.
In such situations, there will be less than n− tfast correct repli-
cas in the system, subverting a key liveness assumption of the
consensus protocol operating with no more than tfast failures.
It can lead to two unfavorable situations. First, client requests
might not be ordered, triggering a timeout and causing the
system to initiate a leader change (i.e., BFT-SMART’s syn-
chronization phase). As explained in the next section, this
sub-protocol reverts the system to the conservative configura-
tion in which up to t failures are tolerated.

The second situation is more tricky since the request might
be ordered but faulty replicas might not send replies to the
client, preventing the client from consolidating the request
result. In this case, the client could send a panic message
to the replicas asking it to switch to the conservative mode.
Replicas might trigger a leader change to switch the system’s

5

mode. However, it must be done carefully since a malicious
client can create such a message to disallow the system to
operate in fast mode. This type of weakness is inherent to
many optimistic protocols [5]. Since the use of this mecha-
nism can make FLASHCONSENSUS very fragile, as a single
malicious client can undermine our latency improvements,
we propose an alternative approach. If the client does not
receive the required number of replies, it needs to periodically
check the log of decisions until the next checkpoint to see
in which position on the finalized request log its request ap-
pears. It is similar to what blockchain clients do, inspecting
the blockchain until their requests are included in a block a
certain number of blocks before the blockchain head. This
approach ensures clients would benefit from the extremely
low latency of FLASHCONSENSUS as long as there are no
more than tfast faulty replicas in the system.

4.2.3 Performance Degradation

To ensure FLASHCONSENSUS does not lead to performance
degradation when compared to the performance of the conser-
vative mode, all replicas periodically monitor their observed
performance and compare it with expectations they have on
the conservative mode. Replicas retrieve their expectations
from AWARE’s underlying latency prediction model [9]. Us-
ing this model, replicas can predict their consensus latency
for the conservative mode using the network latency map and
set their consensus latency expectation threshold. If they find
that the consensus latency they currently observe exceeds this
threshold, they stop their execution and ask for a synchro-
nization phase. When t +1 replicas ask for a synchronization
phase, the system switches to the conservative mode (see next
section). In the end, FLASHCONSENSUS only runs in fast
mode if replicas observe the consensus latency to be lower
than the expected latency in the conservative mode.

4.2.4 Reconfiguration of the System

As explained before, FLASHCONSENSUS operates in two
regimes: fast, in which smaller quorums are used and tfast
failures are tolerated, and conservative, in which standard-
size quorums are employed and t failures are tolerated.

The system starts in the conservative mode, and after finish-
ing a predefined number of θ consecutive consensus instances,
it switches to the fast mode. Such reconfiguration is very sim-
ple because it is done deterministically at a certain point in
the execution, i.e., after a certain consensus instance is de-
cided. At this point, it simply requires each replica locally
change the fault threshold to tfast and recalculate its quorum
size before executing the next consensus instance.

A replica stays in the fast configuration until the underly-
ing consensus’ synchronization phase [53] is triggered. This
approach can be done deliberately due to either safety or
liveness issues, as discussed in previous subsections. In both

cases, we require the participation of t + 1 replicas to start
the synchronization phase, which always runs considering
threshold t, not tfast (which might already be violated).

During the synchronization phase, the newly elected leader
will receive the log of decided instances since the last check-
point from n− t replicas and will verify if there are diverg-
ing decisions, using the lightweight forensics procedure (Fig-
ure 4). If this is the case, when a new leader is elected, the
first transaction of its regency after repairing the system to
a single transaction history is a reconfiguration request [11]
asking for the removal of the Byzantine replicas that partici-
pated in the detected equivocation. This request contains the
PoC generated during the forensics procedure. Every correct
replica removes these compromised replicas from the system
after processing reconfiguration requests with valid PoCs.

Further, in the case of equivocations, some replicas might
need to roll back their states to a previous stable checkpoint
(as discussed in §4.2.1), reapplying the correct transaction
history as defined by the new leader on this state.

4.3 Ensuring Linearizability

In typical BFT SMR systems, a client waits for t+1 matching
replies to ensure the replicated system perfectly emulates a
centralized server, i.e., it satisfies linearizability [31]. This
quorum size becomes ⌈ n+t+1

2 ⌉ if one wants to avoid running
a consensus when performing read-only operations [8, 16].
These quorum sizes are still valid in FLASHCONSENSUS
while in conservative mode; however, when the system is in
the fast mode, the existence of equivocations and the possi-
bility of divergent decisions (that will be later detected and
punished) requires revisiting the matching replies quorum
expected by clients.

Figure 5 illustrates the situation where two clients received
conflicting replies (v and v′) from two different quorums
(Q and Q′, respectively) for some instance i (ignore the leader
change quorum for now). Even if t malicious replicas are
present in the intersection of the quorums, a client can assume
that its request has been committed and will not be rolled back
by waiting for n− t matching replies. Due to the n > 3t as-
sumption, (n− t)+(n− t)> n+ t. It means that two quorums
with n− t elements intersect in more than t replicas and thus
the intersection must contain not only faulty replicas. By wait-
ing for n− t matching replies, responses accepted by clients
will never be rolled back, even with divergent decisions for
consensus instance i, as long as there are no leader changes.

Now, consider the same scenario in which the replies for v
were deemed final by the client, but there was a leader change,
and the new leader needs to define the result of consensus
instance i. In this scenario, the elected leader waits for n− t
replicas to inform their status as indicated in the quorum
of Figure 5, receiving replies from every replica but t slow
replicas that decided v.

In this setting, the decision for v will be preserved as long

6

Leader change quorumQ Q’

 t
Cv

t
Cv’

Replicas decided v
Client committed

Replicas decided v’
Client not committed

Figure 5: Quorum reasoning in FLASHCONSENSUS.

Leader change quorumQ Q’

 t -
(tfast+1) Cv +

(tfast+1)

t -
(tfast+1) Cv’

Replicas decided v
Client committed

Replicas decided v’
Client not committed

detections

Figure 6: Waiting for information from tfast +1 more replicas
during a leader change in FLASHCONSENSUS.

as such value is the majority value among the ones informed
by replicas, i.e., Cv >Cv′ + t in the figure. Considering n =
2t +Cv +Cv′ and Q =Cv +2t (both directly from the figure),
we can reach that Cv >

n
3 , leading to Q= n. Therefore, waiting

for n−t matching replies is insufficient to ensure a value is not
rolled back during a leader change that switches the system
to the conservative mode. The only quorum big enough to
ensure that is waiting for matching replies from all replicas.

Fortunately, by integrating BFT forensics [50] in the leader
change sub-protocol (view change in PBFT or synchroniza-
tion phase in BFT-SMART), we can make such a quorum
smaller. More specifically, we observe that to produce equivo-
cations that lead some correct replicas to decide v and v′, and
later force a committed value to be rolled back, the tfast +1
equivocators must participate in the three quorums (for v, for
v′, and leader change). Therefore, if the new leader executes
the forensics protocol during the leader change, it is possible
to identify up to d ≤ tfast +1 equivocators. Consequently, it is
possible to discard the contributions of such malicious repli-
cas and wait for messages from d additional replicas. This
situation is illustrated in Figure 6.

In this scenario, instead of assuming Cv >Cv′ + t, we have
Cv+(tfast +1)>Cv′ + t− (tfast +1). By developing this equa-
tion like before, we find that by waiting for n− tfast −1 match-
ing replies in fast mode, a client knows the result of its opera-
tion is durably committed, ensuring the linearizability of the
replicated service.

5 Implementation and Optimizations

FLASHCONSENSUS was implemented on top of the AWARE
prototype [9] which is based on BFT-SMaRt. We stress that
all mechanisms employed in AWARE (e.g., latency measure-
ment and weights reassignment) could be implemented in
any quorum-based SMR protocol. This implementation uses
TLS to secure all communication channels and the elliptic
curve digital signature algorithm (ECDSA) and SHA256 for
signatures and hashes, respectively.

Most of our modifications were related to the switching
between two modes of operations (with different resilience
thresholds) and implementing BFT forensics, which requires
the signing of WRITE and REPLY messages (see Figure 2).

5.1 Consolidated Algorithm
The consolidated algorithm for FLASHCONSENSUS is pre-
sented in Figure 7. This figure summarizes all the modifica-
tions we did on AWARE to accommodate the required mech-
anisms described in the previous section. The correctness
argument of the protocol is presented in Appendix A.

5.2 Improving Latency with Speculation
Operating in fast mode requires clients to collect n− tfast −1
matching replies to preserve linearizability. It is consider-
ably more than the t + 1 replies typically required in BFT
SMR. This result is expected to negatively impact the latency
observed by clients in the fast mode.

FLASHCONSENSUS can further lower clients’ observed
latencies using client-side speculation. For this purpose, we
implemented correctables [29] in the client shim of our BFT
protocol. A correctable is a programming abstraction that al-
lows a client application to work with incremental consistency
guarantees and thus accelerates the application by allowing
it to speculate with intermediate results. The state of a cor-
rectable can be updated multiple times, depending on the
replies received by the client, strengthening the consistency
guarantee each time, until it reaches the final state, which
corresponds to the strongest consistency guarantee.

We design the FLASHCONSENSUS correctable following
two principles: (1) to ensure the same safety guarantee as
other BFT SMR protocols, the final consistency guarantee
should satisfy linearizability under the maximum resilience
threshold t, and (2) less safe consistency guarantees may relax
either the assumptions on the number of Byzantine replicas
or trade linearizability for a weaker consistency model.

We define incremental consistency levels for FLASHCON-
SENSUS as follows (see Figure 8). First is the speculative re-
sult a client can access as soon as the first response arrives and
does not provide any correctness guarantee. Weak demands
responses from replicas totaling Qv = tfast ·Vmax + 1 votes,
being Vmax the maximum weight assigned to a replica, and

7

Client
C1. Invocation: When a new operation o is invoked, send ⟨REQUEST,o⟩
to all replicas.

C2. Acceptance: Accept a result res for o if received a set of matching
replies rep = {⟨REPLY,h(o), fast,res⟩} such that:

1. fast∧|rep| ≥ n− tfast −1 OR

2. ¬fast∧∑r∈rep weight(r)≥ 2t ·Vmax +1.

C3. Panic: Send a message ⟨PANIC,o,rep⟩ to all replicas if the set of
all received replies rep = {⟨REPLY,h(o),true,∗⟩} contains diverging
results for operation o.

Replica
State

fast mode of operation boolean false
r current regency Set of replicas initRegency()
chkp last stable checkpoint bytes null

Building Blocks
AWARE-NC normal case operation of AWARE (conservative)
AWARE-NCF normal case operation of AWARE in fast mode
AWARE-SYNC replaces leader, synchronizes decision log
AUDIT lightweight forensics procedure of Figure 4

S1. Request Processing: Start a timer for each received client request.
If leader, create a batch of requests and propose it using AWARE-NCF, if
fast, or AWARE-NC, otherwise.

S2. Client Panic: If fast and received a message ⟨PANIC,o,rep⟩ with
diverging signed replies for o in rep from a client, do Forensics.
S3. Periodic Checkpoint: When a snapshot of the service state
chkp′ is created after processing consensus j, broadcast signed mes-
sage ⟨CHECKPOINT,h(chkp′), j⟩. If n− t matching checkpoint hashes
h(chkp′) for j are received, update the last stable checkpoint chkp to
chkp′. If there are no n− t matching checkpoints, do Forensics.

S4. Forensics: Run the forensics protocol in AUDIT. If a proof of culpa-
bility poc is produced, broadcast ⟨POC, poc⟩.
S5. Switch: After deciding θ successful consensus instances in a row,
set fast to true (the optimization interval θ is inherited from AWARE).

S6. Abort: Broadcast a STOP message to enter Synch. Phase if fast
and either (1) a request timer expires, (2) a message ⟨POC, poc⟩ with a
valid PoC is received from some replica, or (3) upon consensus latency
disappointment (the fast mode is slower than the predicted latency for
the conservative mode – see §4.2.3).

S7. Synch. Phase: Run the synch. phase as follows:

1. Upon receiving t +1 matching STOP messages, use AWARE-SYNC to
replace the current leader and synchronize decision history. If fast,
set fast to false and do Forensics (except if triggered due to S6.B).

2. In case a PoC is produced, all replicas roll back to chkp
and use the decisions (with proofs) obtained from the new
leader to re-execute decided operations. The new leader proposes
⟨RECONFIGURE,culprits, poc⟩ using AWARE-NC.

3. Upon deciding ⟨RECONFIGURE,culprits, poc⟩ proposed by the new
leader, a replica verifies the poc using AUDIT, and removes the repli-
cas culprits from the system.

Figure 7: A summary of FLASHCONSENSUS.

thus must have been confirmed by at least one correct replica
if f ≤ tfast. This result can be stale, leading to the satisfac-
tion of only sequential consistency under tfast failures. Strong
demands Qv = 2tfast ·Vmax +1 weights and satisfies lineariz-
ability if f ≤ tfast. Since the read-only optimization requires

finalweak strong finalfirst

1st response

tfast*Vmax+1 weights

2tfast*Vmax+1 weights

n-tfast-1 responses

first: no consistency guarantee

weak: sequential consistency under tfast

strong: linearizability under tfast

final: linearizability under t

Figure 8: Incremental consistency levels that can be accessed
through the correctable programming interface.

such a larger quorum, a correctable in a strong state ensures
linearizability as long as f ≤ tfast. Finally, the Final level satis-
fies linearizability under t (just like any typical SMR with the
read-only optimization enabled) by waiting for n− tfast − 1
replies, as explained in the previous section. Since BFT SMR
requires linearizability, only Strong and Final give the typical
safety guarantee for their respective resilience thresholds.

6 Evaluation

We use our prototype implementation to compare the latency
of FLASHCONSENSUS with AWARE and BFT-SMART, on
the AWS cloud as well as a simulated network of 51 replicas
which is based on real data from the internet. Parts of our
experiments were conducted in our local data center using
high-fidelity tools for network emulation and simulation [28,
33]. We validated the fidelity of these emulated/simulated
setups as described in Appendix C. Our experiments focus
mostly on measuring latency, which is fundamentally limited
by the quality of the links and quorum formation rules in a
wide-area network.

6.1 AWS Network
To begin with, we investigate the potential performance gains
of FLASHCONSENSUS, comparing it to AWARE and BFT-
SMART as baselines. Later, we reason about FLASHCON-
SENSUS’s runtime behavior (particularly its adaptiveness) in
the presence of faults or unfavorable network conditions.

Setup. We use c5.xlarge instances on the AWS cloud for
deploying a client and a replica in each of the n = 21 AWS
regions (depicted in Figure 1a).

All clients send 400-bytes requests simultaneously and
continuously to the replicas (2000 per client) until each has
finished its measurements. A client request arriving at the
leader may wait until it gets included in a batch when there
is currently a consensus instance running. We employ syn-
chronous clients that block until a result is obtained and send
the next request after randomly waiting for up to 1s. Finally,
request latency is the average end-to-end protocol latency
computed by a client after completing all operations.

8

50
100
150
200
250
300
350
400

Protocol

L
at

en
cy

[m
s]

BFT-SMART

AWARE
FLASHCONSENSUS

(a) Consensus latency.

Asia-Pacific
North America

South America Africa Europe Oceania
Middle East

100
200
300
400
500
600
700
800

BFT-SMART at 1c
BFT-SMART at 0.67c

L
at

en
cy

[m
s]

BFT-SMART AWARE FLASHCONSENSUS: final strong weak first

(b) Clients’ observed end-to-end latencies for protocol runs with BFT-SMaRt, AWARE and FLASHCONSENSUS.
The client results are averaged over all regions per continent.

Figure 9: Achievable latency gains for the n = 21 AWS setup.

0 600 1,200 1,800 2,400 3,000
0

200

400

600

800

1,000
conservative

fast mode

leader crash

abort

switch

fast mode

slowed eu-west-2

after optimization

Time [s]

L
at

en
cy

[m
s]

first weak strong final

Figure 10: Runtime behavior of FLASHCONSENSUS.

6.1.1 FLASHCONSENSUS Acceleration

For a better exposition, we group the 21 clients’ results by
the continent they are located in, reporting only their regional
averages (see Figure 9). We observe that FLASHCONSENSUS
significantly accelerates consensus, leading to a speedup of
3.57× faster decisions (see Figure 9a). This result also sur-
passes the speedup of 2.29×, achievable if the speed of the
links employed by BFT-SMART approximated the speed of
light.1 Second, accelerating consensus decisions also leads
to faster request latencies observed by clients worldwide (see
Figure 9b). Averaged over all client regions, FLASHCON-
SENSUS leads to a speedup of 1.87× over BFT-SMART for
clients’ observed end-to-end request latencies with finaliza-
tion (AWARE leads to 1.33× only).

Our results also show that even higher speedups can be
achieved by employing the incremental consistency levels of
FLASHCONSENSUS’s correctables. The strong consistency
level, which guarantees linearizability if f < tfast, achieves a
speedup of 2.38×, while the speculative levels weak and first
achieve speedups of 2.76× and 2.90×, respectively (results
are averaged over all regions).

1Assuming all links transmit at the speed of 0.67c [13, 36].

6.1.2 FLASHCONSENSUS Runtime Behavior

For this experiment, we create an emulation of the AWS net-
work in our local cluster to be more flexible with the induction
of events. The emulated network uses latency statistics from
cloudping,2 and, the Kollaps network emulator, which was val-
idated for realistic WAN experimentation with BFT-SMART
and WHEAT [28], to construct the emulated network.

We launch FLASHCONSENSUS in the same n = 21 AWS
regions to observe its runtime behavior during the system’s
lifespan. Noticeably, clients’ request latencies show high vari-
ations, which are caused by a random waiting time of a request
at the leader before getting included in the next batch, which
takes a varying time depending on how shortly the request ar-
rived before the next consensus can be started. Moreover, we
induce the following events to evaluate FLASHCONSENSUS’s
reactions and plot the latency observed by a representative
correct client in Figure 10.

Configuration switch. FLASHCONSENSUS starts in the con-
servative configuration, displaying low performance. Later,
around time 277s, the system switches to the fast configu-
ration (such switches are attempted every 400 consensus in-
stances), leading to a significant latency improvement.

Leader crash. At the time 1814s, we crash the leader. Subse-

2https://www.cloudping.co/grid.

9

https://www.cloudping.co/grid

0 1,000 2,000 3,000
0

2

4

6

8

Clients

T
hr

ou
gh

pu
t[

kO
ps

/s
]

AWARE t = 3
FLASHCONSENSUS

AWARE t = 6
BFT-SMART

Figure 11: Throughput comparison for n = 21 replicas.

quently, replicas perform a leader change and abort (at 1846s),
switching back to the conservative mode. This blocking time
is similar to what a client would experience if an equivocation
is discovered. At the time 1889s, after finishing 400 consen-
sus instances again, replicas return to the fast mode. This
leads only to a modest performance improvement because the
weights have not been optimized yet. At the time 2022s, the
system self-optimizes to its best weight distribution and leader
placement (using the mechanisms inherited from AWARE),
reaching again the low latencies experienced before.

Slowed network. At the time 2640s, we artificially make the
current leader slower by using the tc command. After approx.
185s, which is the time required for a measurement round
and self-optimization [9], FLASHCONSENSUS detects it is
running in a sub-optimal configuration and changes replicas’
weights and leader location to accelerate performance (the
leader is changed from eu-west-2 to us-east-1).

6.1.3 FLASHCONSENSUS Throughput

Although FLASHCONSENSUS aims to optimize latency, we
conducted a simple 0/0-microbenchmark in our emulated
AWS network with an increasing number of clients evenly dis-
tributed among all AWS regions while measuring the through-
put of BFT-SMART, AWARE (t = 6), AWARE (t = 3), and
FLASHCONSENSUS. In this experiment, we used 0-byte
requests to avoid the saturation of links bandwidth. Fig-
ure 11 presents the results. These results show two main
insights. First, faster consensus instances can achieve higher
throughput, provided the available network bandwidth is not
exhausted. Second, FLASHCONSENSUS displays a minor
penalty compared to AWARE (t = 3), which uses the same
quorums but offers half of our resilience. This difference
stems from the costs of additional signatures needed to inte-
grate BFT forensics into our protocol.

6.2 Larger Network
In our next experiment, we assess if the performance gains
of FLASHCONSENSUS are sustained in a different scenario,
with a larger number of n = 51 replicas approaching a permis-
sioned blockchain deployment. Since this number exceeds
the number of available AWS regions, we sample locations

replica location

client location

Figure 12: Map showing the locations of the n = 51 replicas.

from a publicly available dataset provided by Wonderproxy.3

We choose 51 locations for distributing a replica in each of
them, and also distribute 12 clients, as depicted in Figure 12.

Setup. For simulating this network, we use Phantom [33],
which employs a hybrid simulation-emulation architecture, in
which real, unmodified applications execute as native Linux
processes that are hooked into a high-performance network
simulation. Further, it has been shown that Phantom can be
used to faithfully evaluate the performance of BFT protocol
implementations [10]. For validity, we repeated the n = 21
AWS experiment depicted in the previous section in this sim-
ulator and observed a low deviation with the results obtained
from the real AWS network and Kollaps emulator (see Ap-
pendix C).

Speedup achieved by FLASHCONSENSUS. In our exper-
iment, we measure the speedup that FLASHCONSENSUS
achieves in direct comparison with BFT-SMART. We mea-
sure both consensus latency and client end-to-end latencies
using the same method described before. Phantom bootstraps
replicas and clients in their host locations with the initial
protocol leader in Cape Town. As before, clients run simulta-
neously and send requests with a payload of 400 bytes with a
randomized waiting interval of up to 4s between two requests.
When running FLASHCONSENSUS replicas are started in a
configuration with optimal resilience threshold (t = 16), but
FLASHCONSENSUS optimizes this threshold to tfast = 8 be-
fore clients collect their measurement samples.

Results. Figure 13 shows similar latency improvements as
in the previous experiment for FLASHCONSENSUS when com-
pared with BFT-SMART. The consensus latency decreases
from 350ms in BFT-SMART to only 88ms in FLASHCON-
SENSUS, corresponding to a consensus execution speedup of
3.98×. For request latencies with final consistency, the high-
est speedup observed was in Frankfurt (1.95× from 615ms
down to 314ms), and the lowest speedup was observed in
Cape Town (1.41× from 618ms to 440ms).

3https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/.

10

https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/

Melbourne Los Angeles Tokyo Frankfurt New York Cape Town Sao Paulo Istanbul Paris

100
200
300
400
500
600
700
800 BFT-SMART at 1c at 0.67c

L
at

en
cy

[m
s]

BFT-SMART FLASHCONSENSUS: final strong weak first

Figure 13: Latencies of BFT-SMART and FLASHCONSENSUS for n = 51 replicas, observed from different client locations.

Melbourne Los Angeles Tokyo Frankfurt New York Cape Town Sao Paulo Istanbul Paris

200
400
600
800

1,000
1,200

HotStuff at 1c HotStuff at 0.67c

L
at

en
cy

[m
s]

HotStuff FLASHHotStuff : final strong weak first

Figure 14: Latencies of HotStuff using FLASHCONSENSUS techniques for n = 51 replicas.

Further, the speedup increases when using the incremental
consistency levels of the correctable. The average speedup
across all client locations from BFT-SMART to FLASHCON-
SENSUS’s final level is 1.83× and becomes incrementally
higher for the speculative levels strong (2.70×), weak (2.99×)
and first (3.23×). For comparison, the speedup that BFT-
SMART would achieve if the speed of network links approxi-
mated the speed of light is roughly 2.5×.

These results show that using smaller weighted quorums
is an important technique to achieve low consensus latency,
achieving results that are competitive even with the expected
latency of our baseline protocol with speed-of-light links.

6.3 FLASHCONSENSUS-flavored HotStuff

The principle of improving quorums introduced in FLASH-
CONSENSUS is general enough to be used in other BFT SMR
protocols to decrease consensus latency. For example, our
techniques can be directly applied to speedup agreement in
multi-leader protocols [55], as long as the leaders are selected
only among the best-connected replicas, or even in protocols
providing additional guarantees such as fair ordering [61].
Here, we experimentally demonstrate this aspect by applying
FLASHCONSENSUS ideas to HotStuff [60].

Compared to BFT-SMART and PBFT, HotStuff uses an
agreement pattern with one additional phase and achieves a
linear communication complexity by letting the leader collect
and distribute quorum certificates in each phase. It results in 7
communication steps per consensus instance, instead of 3 as
required by BFT-SMART/PBFT (see Figure 2). This design
makes the overall system’s latency even more sensitive to how

fast agreement can be achieved, which depends on the speed a
HotStuff leader can succeed in collecting quorum certificates.
FLASHHotStuff selects a configuration in which the leader
can communicate fast with a set of well-connected replicas
that are granted more voting power.

Setup. We use a prediction model of the HotStuff protocol4

to simulate FLASHHotStuff and normal HotStuff protocol
runs on the same latency map of n = 51 replicas used before
(Figure 12). These simulations compute the achievable laten-
cies for different consistency levels of FLASHHotStuff, the
latency of the original HotStuff and the hypothetical latencies
of HotStuff when network speeds are as fast as possible.

Results. Simulation results show that FLASHHotStuff sig-
nificantly improves HotStuff’s latency (see Figure 14). The
consensus latency is optimized from 853ms in HotStuff to
only 177ms in FLASHHotStuff, which corresponds to a con-
sensus execution speedup of 4.82×, achieved by the incor-
poration of weights, optimal leader placement, and the use
of smaller quorums. For client request latencies with final
consistency, the highest speedup observed was in Frankfurt
(2.84×) and lowest in Cape Town (2.07×).

Like before, the speedup increases with lower consistency
levels. The average speedup across all client locations from
HotStuff to FLASHHotStuff’s final level is 2.56× and be-
comes incrementally higher for the speculative levels strong
(3.69×), weak (4.05×) and first (4.74×).

4This model is similar to the one AWARE uses to anticipate the effect of
weight and leader changes during its self-optimization [9].

11

7 Related Work

In this section, we discuss various optimizations proposed for
BFT SMR, with a focus on those that address changing con-
ditions, geographical distribution of replicas, and low latency.
Additionally, we cover related work on BFT forensics.

Adaptivity in BFT SMR. Making BFT protocols adaptive
to their environment has been studied in multiple works [6,
7, 14, 17, 24, 38, 45, 51]. RBFT monitors system performance
under redundant leaders to assert that a faulty leader cannot
purposely degrade performance [6]. Optimizing the leader
selection has been studied in several works (e.g., [24, 38]).
Further works investigated adaptively switching the consen-
sus algorithm [7, 14], strengthening the protocol by reacting
to perceived threat level changes [51], being network-agnostic
(tolerating a higher threshold in synchronous networks) [12]
or adapting the state transfer strategy to the available network
bandwidth [17]. In contrast, FLASHCONSENSUS can be ap-
plied to most BFT protocols and accelerates planetary-scale
Byzantine consensus by making both system configuration
(leader and replica weights) and threshold adaptive without
impacting resilience through the integration of BFT forensics.

Geographically-distributed SMR. Various works studied
the improvement of SMR for WANs [2, 20, 25, 26, 40, 41, 44,
46, 57–59]. Mencius, one of the first of these works, opti-
mizes performance in WANs using a rotating leader scheme
that allows clients to pick their geographically closest replica
as its leader [40]. While Mencius tolerates only crash faults,
EBAWA uses the same rotating leader technique together with
trusted components on each replica to tolerate a minority of
Byzantine replicas in a protocol that requires the same number
of communication steps as Mencius [57]. Steward proposes
a hierarchical, two-layered architecture for replication. Re-
gional groups within a system site run Byzantine agreement,
and these replication groups are finally connected over a CFT
protocol [2]. Steward’s idea of a hierarchical architecture was
later employed in Fireplug [44] for efficient geo-replication of
graph databases by composing multiple BFT-SMaRt groups.
PBFT-CS refines PBFT with client-side speculation. Clients
send subsequent requests after predicting a response to an ear-
lier request without waiting for the earlier request to commit
– however, clients need to track and propagate the dependen-
cies between requests [58]. WHEAT optimizes BFT SMR
latency by incorporating weighted replication and tentative
executions [54], while AWARE enriches WHEAT through
self-monitoring capabilities and dynamic optimization by ad-
justing weights and leader position [9]. By utilizing BFT
forensics, FLASHCONSENSUS can safely use smaller consen-
sus quorums and accelerate Byzantine consensus even further
than AWARE, mastering the resilience-performance trade-off
that previously limited AWARE’s performance.

Fast BFT. It has been shown that having additional redun-
dancy (and using a less-than-optimal resilience threshold)
can be efficiently utilized to develop faster consensus vari-
ants, i.e., two-step Byzantine consensus [32, 37, 42], or even
one-step asynchronous Byzantine consensus for scenarios
that are contention-free [27, 52]. FLASHCONSENSUS extends
a latency-optimal protocol similar to PBFT to significantly
improve latency without losing resilience.

BFT forensics. BFT forensics is a technique for analyzing
safety violations in BFT protocols after they happened [50],
yielding results such as that at least t +1 culprits can be iden-
tified in case of an equivocation (with the accountability of
up to 2n

3 replicas that may actually be Byzantine). Polygraph
is an accountable Byzantine consensus algorithm tailored
for blockchain applications that allow the punishment of cul-
prits (e.g., via stake slashing) in case of equivocations [18].
A simple transformation to obtain an accountable Byzantine
consensus protocol from any Byzantine consensus protocol
has been proposed in [19]. The Basilisc class of protocols
solves consensus with n ≤ 3t + d + 2q replicas tolerating t
general Byzantine failures, d deceitful failures (that violate
safety – the ones that can be identified using forensics), and
q benign failures [47]. The Basilisc resilience is shown to
be optimal. IA-CCF [49] shows that by logging all messages
exchanged on PBFT in a blockchain, it is possible to identify
any number of misbehaving replicas in case of equivocations.
FLASHCONSENSUS does not differentiate failures or require
a blockchain, employing instead a light version of the BFT
forensics protocol of [50] to identify a limited number of
equivocators in a fast regency (or view, in PBFT parlance),
enabling the secure use of smaller quorums.

8 Conclusion

FLASHCONSENSUS accelerates planetary-scale Byzantine
consensus by combining weighted replication with BFT foren-
sics to safely underestimate the resilience threshold, using
faster quorums to drive consensus decisions. We showed how
to obtain FLASHCONSENSUS from AWARE, by incorporat-
ing the ideas of abortable state machine replication, BFT
forensics, and incremental consistency guarantees. Notably,
FLASHCONSENSUS always achieves linearizability and live-
ness under the optimal resilience threshold – even when agree-
ment quorums are formed using the fast threshold.

Our evaluation results indicate that latency benefits are sub-
stantial, i.e., achieving a speedup of 1.87× over BFT-SMART.
Our methodology is essentially a transformation that can be
applied to other BFT protocols improving their speed under
geographical dispersion. We showed that, if a protocol’s agree-
ment patterns consist of more communication steps (like in
HotStuff), it results in even stronger benefits (2.56× speedup).
We also see potential in the client-side speculation, which al-

12

lows the application to choose a relaxed consistency level
from the client-replica contract on the granularity level of
individual operations. It can be a good fit for operations that
are time-sensitive and not security-critical as they can benefit
from speedups of up to 6×.

Acknowledgements. This work was supported by FCT
through the ThreatAdapt (FCT-FNR/0002/2018) and
SMaRtChain (2022.08431.PTDC) projects, and the LASIGE
Research Unit (UIDB/00408/2020 and UIDP/00408/2020).
Further, this work has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) grant number 446811880 (BFT2Chain).

References

[1] Salem Alqahtani and Murat Demirbas. BigBFT: A
multileader Byzantine fault tolerance protocol for high
throughput. In Proc. of the IEEE Int. Performance,
Computing, and Communications Conference (IPCCC),
pages 1–10, 2021.

[2] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan
Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, and
David Zage. Steward: Scaling Byzantine fault-tolerant
replication to wide area networks. IEEE Transactions on
Dependable and Secure Computing (TDSC), 7(1):80–93,
2010.

[3] Elli Androulaki et al. Hyperledger Fabric: a distributed
operating system for permissioned blockchains. In Proc.
of the 13th European Conference on Computer Systems
(EuroSys), pages 30:1–30:15, 2018.

[4] Karolos Antoniadis, Antoine Desjardins, Vincent
Gramoli, Rachid Guerraoui, and Igor Zablotchi. Lead-
erless consensus. In Proc. of the 41st IEEE Int. Conf.
on Distributed Computing Systems (ICDCS), pages 392–
402, 2021.

[5] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next 700
BFT protocols. ACM Transactions on Computer Sys-
tems (TOCS), 32(4):1–45, 2015.

[6] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien
Quéma. RBFT: Redundant Byzantine fault tolerance.
In Proc. of the 33rd IEEE Int. Conf. on Distributed
Computing Systems (ICDCS), pages 297–306, 2013.

[7] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker.
Making BFT protocols really adaptive. In Proc. of
the 29th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), pages 904–913, 2015.

[8] Christian Berger, Hans P. Reiser, and Alysson Bessani.
Making reads in BFT state machine replication fast,
linearizable, and live. In Proc. of the 40th IEEE Int.
Symp. on Reliable Distributed Systems (SRDS), pages
1–12, 2021.

[9] Christian Berger, Hans P. Reiser, João Sousa, and
Alysson Neves Bessani. AWARE: Adaptive wide-area
replication for fast and resilient Byzantine consensus.
IEEE Transactions on Dependable and Secure Comput-
ing (TDSC), 2020.

[10] Christian Berger, Sadok Ben Toumia, and Hans P. Reiser.
Does my BFT protocol implementation scale? In Proc.
of the 3rd Int. Workshop on Distributed Infrastructure
for Common Good (DICG), pages 1–6, 2022.

[11] Alysson Bessani, João Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with BFT-
SMaRt. In Proc. of the 44th Annu. IEEE/IFIP Int. Conf.
on Dependable Systems and Networks (DSN), pages
355–362, 2014.

[12] Erica Blum, Jonathan Katz, and Julian Loss.
Network-agnostic state machine replication. preprint
arXiv:2002.03437, 2020.

[13] Frank Cangialosi, Dave Levin, and Neil Spring. Ting:
Measuring and exploiting latencies between all Tor
nodes. In Proc. of the ACM Internet Measurement Con-
ference (IMC), pages 289–302, 2015.

[14] Carlos Carvalho, Daniel Porto, Luís Rodrigues, Manuel
Bravo, and Alysson Bessani. Dynamic adaptation of
Byzantine consensus protocols. In Proc. of the 33rd
Annual ACM Symposium on Applied Computing (SAC),
pages 411–418, 2018.

[15] Daniel Cason, Enrique Fynn, Nenad Milosevic, Zarko
Milosevic, Ethan Buchman, and Fernando Pedone. The
design, architecture and performance of the Tendermint
blockchain network. In Proc. of the 40th IEEE Int. Symp.
on Reliable Distributed Systems (SRDS), pages 23–33,
2021.

[16] Miguel Castro and Barbara Liskov. Practical Byzan-
tine fault tolerance. In Proc. of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI),
pages 173–186, 1999.

[17] Tairi Chiba, Ren Ohmura, and Junya Nakamura. Net-
work bandwidth variation-adapted state transfer for geo-
replicated state machines and its application to dynamic
replica replacement. preprint arXiv:2204.08656, 2022.

[18] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Poly-
graph: Accountable Byzantine agreement. In Proc. of
the 41st IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 403–413, 2021.

13

[19] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guer-
raoui, and Jovan Komatovic. As easy as ABC: Optimal
(A)ccountable (B)yzantine (C)onsensus is easy! In Proc.
of the 37th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 560–570, 2022.

[20] Paulo Coelho and Fernando Pedone. Geographic state
machine replication. In Proc. of the 37th IEEE Int. Symp.
on Reliable Distributed Systems (SRDS), pages 221–230,
2018.

[21] Tyler Crain, Christopher Natoli, and Vincent Gramoli.
Red Belly: A secure, fair and scalable open blockchain.
In Proc. of the 42nd IEEE Symp. on Security and Privacy
(S&P), pages 466–483, 2021.

[22] Tobias Distler, Christian Cachin, and Rüdiger Kapitza.
Resource-efficient Byzantine fault tolerance. IEEE
Transactions on Computers (TC), 65(9):2807–2819,
2015.

[23] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–323, 1988.

[24] Michael Eischer and Tobias Distler. Latency-aware
leader selection for geo-replicated Byzantine fault-
tolerant systems. In Proc. of the 1st Workshop on
Byzantine Consensus and Resilient Blockchains (BCRB),
pages 140–145, 2018.

[25] Michael Eischer and Tobias Distler. Resilient cloud-
based replication with low latency. In Proc. of the
21st International Middleware Conference, pages 14–28,
2020.

[26] Michael Eischer, Benedikt Straßner, and Tobias Distler.
Low-latency geo-replicated state machines with guaran-
teed writes. In Proc. of the 7th Workshop on Principles
and Practice of Consistency for Distributed Data (Pa-
PoC), pages 1–9. 2020.

[27] Roy Friedman, Achour Mostefaoui, and Michel Raynal.
Simple and efficient oracle-based consensus protocols
for asynchronous Byzantine systems. IEEE Transac-
tions on Dependable and Secure Computing (TDSC),
2(1):46–56, 2005.

[28] Paulo Gouveia, João Neves, Carlos Segarra, Luca
Liechti, Shady Issa, Valerio Schiavoni, and Miguel
Matos. Kollaps: decentralized and dynamic topology
emulation. In Proc. of the 15th European Conference
on Computer Systems (EuroSys), pages 1–16, 2020.

[29] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian
Seredinschi. Incremental consistency guarantees for
replicated objects. In Proc. of the 12th USENIX
Symp. on Operating Systems Design and Implementa-
tion (OSDI), pages 169–184, 2016.

[30] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
SBFT: a scalable and decentralized trust infrastructure.
In Proc. of the 49th Annual IEEE/IFIP Int. Conf. on De-
pendable Systems and Networks (DSN), pages 568–580,
2019.

[31] Maurice P. Herlihy and Jeannette M. Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[32] Heidi Howard, Aleksey Charapko, and Richard Mortier.
Fast Flexible Paxos: Relaxing quorum intersection for
Fast Paxos. In Proc. of the 22nd Int. Conf. on Distributed
Computing and Networking (ICDCN), pages 186–190,
2021.

[33] Rob Jansen, Jim Newsome, and Ryan Wails. Co-opting
Linux processes for high-performance network simula-
tion. In Proc. of the USENIX Annual Technical Confer-
ence (USENIX ATC), pages 327–350, 2022.

[34] Flavio Junqueira, Yanhua Mao, and Keith Marzullo.
Classic Paxos vs Fast Paxos: Caveat emptor. In Proc. of
the Workshop on Hot Topics in System Dependability,
2007.

[35] Scott Kirkpatrick, Charles Daniel Gelatt, and Mario P.
Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[36] Katharina Kohls and Claudia Diaz. Verloc: Verifiable
localization in decentralized systems. In Proc. of the
31st USENIX Security Symposium (USENIX Security),
pages 2637–2654, 2022.

[37] Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Re-
visiting optimal resilience of fast Byzantine consensus.
In Proc. of the 40th ACM Symposium on Principles of
Distributed Computing (PODC), pages 343–353, 2021.

[38] Shengyun Liu and Marko Vukolić. Leader set se-
lection for low-latency geo-replicated state machine.
IEEE Transactions on Parallel and Distributed Systems
(TPDS), 28(7):1933–1946, 2017.

[39] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distributed computing, 11(4):203–213, 1998.

[40] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.
Mencius: Building efficient replicated state machines for
WANs. In Proc. of the 8th USENIX Conf. on Operating
Systems Design and Implementation (OSDI), pages 369–
384, 2008.

14

[41] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.
Towards low latency state machine replication for un-
civil wide-area networks. In Proc. of the 5th Workshop
on Hot Topics in System Dependability (HotDep), 2009.

[42] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzan-
tine consensus. IEEE Transactions on Dependable and
Secure Computing (TDSC), 3(3):202–215, 2006.

[43] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable BFT consensus with pipelined tree-
based dissemination and aggregation. In Proc. of the
28th ACM SIGOPS Symp. on Operating Systems Princi-
ples (SOSP), pages 35–48, 2021.

[44] Ray Neiheiser, Luciana Rech, Manuel Bravo, Luís Ro-
drigues, and Miguel Correia. Fireplug: Efficient and
robust geo-replication of graph databases. IEEE Trans-
actions on Parallel and Distributed Systems (TPDS),
31(8):1942–1953, 2020.

[45] Martin Nischwitz, Marko Esche, and Florian Tschorsch.
Raising the AWAREness of BFT protocols for soaring
network delays. In Proc. of the 47th IEEE Conf. on
Local Computer Networks (LCN), pages 387–390, 2022.

[46] Shota Numakura, Junya Nakamura, and Ren Ohmura.
Evaluation and ranking of replica deployments in geo-
graphic state machine replication. In Proc. of the 38th
IEEE Int. Symp. on Reliable Distributed Systems Work-
shops (SRDSW), pages 37–42, 2019.

[47] Alejandro Ranchal-Pedrosa and Vincent Gramoli.
Basilic: Resilient optimal consensus protocols with be-
nign and deceitful faults. preprint arXiv:2204.08670,
2022.

[48] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[49] Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel
Castro, Cédric Fournet, Edward Ashton, Amaury
Chamayou, Sylvan Clebsch, Antoine Delignat-Lavaud,
Matthew Kerner, Julien Maffre, Olga Vrousgou,
Christoph M. Wintersteiger, Manuel Costa, and Mark
Russinovich. IA-CCF: Individual accountability for
permissioned ledgers. In Proc. of the 19th USENIX
Symp. on Networked Systems Design and Implementa-
tion, NSDI’22, 2022.

[50] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kan-
nan, and Pramod Viswanath. BFT protocol forensics.
In Proc. of the 28th ACM Conference on Computer and
Communications Security (CCS), 2021.

[51] Douglas Simoes Silva, Rafal Graczyk, Jérémie De-
couchant, Marcus Völp, and Paulo Esteves-Verissimo.
Threat adaptive Byzantine fault tolerant state-machine
replication. In Proc. of the 40th IEEE Int. Symp. on Re-
liable Distributed Systems (SRDS), pages 78–87, 2021.

[52] Yee Jiun Song and Robbert van Renesse. Bosco: One-
step Byzantine asynchronous consensus. In Proc. of the
22nd International Symposium on Distributed Comput-
ing (DISC), pages 438–450, 2008.

[53] João Sousa and Alysson Bessani. From Byzantine con-
sensus to BFT state machine replication: A latency-
optimal transformation. In Proc. of the 9th IEEE Eu-
ropean Dependable Computing Conf. (EDCC), pages
37–48, 2012.

[54] João Sousa and Alysson Bessani. Separating the wheat
from the chaff: An empirical design for geo-replicated
state machines. In Proc. of the 34th IEEE Int. Symp. on
Reliable Distributed Systems (SRDS), pages 146–155,
2015.

[55] Chrysoula Stathakopoulou, Tudor David, and Marko
Vukolić. Mir-BFT: High-throughput BFT for
blockchains. preprint arXiv:1906.05552, 2019.

[56] Xiao Sui, Sisi Duan, and Haibin Zhang. Marlin: Two-
phase bft with linearity. In Proc. of the 52nd Annual
IEEE/IFIP Int. Conf. on Dependable Systems and Net-
works (DSN), pages 54–66, 2022.

[57] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
EBAWA: Efficient Byzantine agreement for wide-area
networks. In Proc. of the 12th IEEE Int. Symp. on High
Assurance Syst. Eng. (HASE), pages 10–19, 2010.

[58] Benjamin Wester, James Cowling, Edmund B. Nightin-
gale, Peter M. Chen, Jason Flinn, and Barbara Liskov.
Tolerating latency in replicated state machines through
client speculation. In Proc. of the 6th USENIX Symp. on
Networked Systems Design and Implementation (NSDI),
pages 245–260, 2009.

[59] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger: High-
throughput Byzantine consensus on variable bandwidth
networks. In Proc. of the 19th USENIX Symp. on Net-
worked Systems Design and Implementation, NSDI’22,
2022.

[60] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In Proc.
of the 38th ACM Symp. on Principles of Distributed
Computing (PODC), pages 347–356, 2019.

15

[61] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus with-
out Byzantine oligarchy. In Proc. of the 14th USENIX
Symp. on Operating Systems Design and Implementa-
tion, OSDI’20, 2020.

Appendix

A FLASHCONSENSUS Correctness Argument

In the following, we argue why FLASHCONSENSUS, as sum-
marized in Figure 7, preserves the safety and liveness of its
underlying protocol, AWARE [9], with up to t failures.

Safety. Intuitively, we need to ensure the following property:
if an operation o is finalized at a client, then it was the i-
th executed operation in all correct replicas, and no client
observes the effects of some o′ ̸= o executed at position i.

A client c accepts an operation o as finalized if it receives
enough matching replies, depending on FLASHCONSENSUS’s
mode:

• Conservative mode: A correct replica generates a re-
sponse for an operation o after executing it as its i-th
operation. This happens after a batch containing o was
decided in an AWARE-NC consensus instance j. Since
AWARE implements consensus tolerating t failures, all
correct replicas will decide the same batch in consensus
j, execute o at position i, and generate the same reply.
This means at least n− t replicas will produce the same
reply for o, enabling c to collect a weighted response
quorum [54] to finalize it.

• Fast mode: In this mode, client c finalizes o only if it
collected n− tfast −1 matching replies for it (see §4.3).
We have to consider two cases, depending on the actual
number of faulty replicas f in the system.

1. Case f ≤ tfast: This case is analogous to the conser-
vative mode since AWARE-NCF satisfies SMR safety
under tfast.

2. Case tfast < f ≤ t: In this case, an equivocation can
cause two correct replicas to execute conflicting oper-
ations o′ ̸= o at position i. However, the fact c waits
for n− tfast −1 matching replies for finalizing an op-
eration o ensures this operation will never be reverted,
and replicas executing o′ can not get their responses
accepted as shown in §4.3.

Liveness. As defined in §3, SMR liveness comprises the
guarantee that any operation o issued by a correct client even-
tually completes. To argue about that, suppose a correct client
c sends operation o to the replicas. Again, we have to consider
the two modes of FLASHCONSENSUS:

(a) Egalitarian: All quorums
have the same size of exactly
⌈ n+t+1

2 ⌉ replicas.

1 1 1

2 2

(b) Weighted: A quorum con-
tains at most n− t and at least
2t +1 replicas.

Figure 15: BFT quorums for n = 5, t = 1, and ∆ = 1 (on b).

• Conservative mode: If the leader is correct and there
is sufficient synchrony, then a batch containing o will
be eventually decided through AWARE-NC. In case of a
faulty leader or asynchrony, the timers associated with
o on correct replicas will expire, and the AWARE-SYNC
will be executed until a correct leader can use AWARE-NC
to force replicas to decide a batch containing o (poten-
tially after GST). At this point, n−t correct replicas send
matching replies, which are collected by c until it has a
weighted response quorum [54] to finalize o.

• Fast mode: In fast mode, we have to consider two cases:

1. Case f ≤ tfast, correct leader, and synchrony: This
case is analog to the conservative mode because
AWARE-NCF solves consensus with up to tfast faulty
replicas.

2. Case tfast < f ≤ t or faulty leader or asynchrony: In
this case, AWARE-NCF might not be finished, and the
timers associated with o will expire in correct replicas.
This will cause replicas to initiate the synch. phase
and changes to the conservative mode. Alternatively,
f Byzantine replicas might participate in consensus
but not reply to c, which will never be able to col-
lect n− tfast − 1 matching replies. In this case, the
client periodically reattempts to confirm the result
of o by checking the log of decisions until the next
checkpoint is formed to verify in which position on
the finalized request log o appears. This will eventu-
ally happen, because if o is not ordered successfully,
then a timeout at the replicas triggers, which causes
replicas to initiate the synch. phase and switches the
protocol to the conservative mode. The liveness argu-
ment then continues from the conservative mode.

B Weighted BFT Replication

WHEAT. WHeight-Enabled Active replicaTion
(WHEAT) [54] is an empirical design for optimizing
BFT SMR for geographically dispersed deployments. A
core insight of WHEAT is that client latency can be reduced

16

by utilizing ∆ additional replicas that do not contribute to
increasing the resilience threshold, i.e., n = 3t +1+∆.

Quorums in WHEAT are not formed using an egalitar-
ian Byzantine majority of replicas like in other BFT works
(e.g., [16,53,56,60]), but are formed instead by weighted repli-
cation, which enables proportionally smaller quorum sizes.
The knack is that a clique of well-connected replicas (replicas
with low latency to each other) can be nominated to be the
ones forming these smaller quorums (see Figure 1a). The
approach still ensures the availability of the replicated system
since other replicas with lower voting weight can be accessed
to form fallback quorums.

BFT systems typically probe a Byzantine dissemination
quorum, which contains ⌈ n+t+1

2 ⌉ replicas [39] as shown in
Figure 15a. With n = 5 replicas, the quorum size needs to be
4 to ensure these quorums intersect in at least t +1 replicas.

Albeit, it is also possible to satisfy the same intersection
property by relying on specific replicas more than on others,
which is captured by assigning weights as we can see in
Figure 15b. A fast quorum comprises three replicas with a
total voting weight of five. This quorum is smaller than an
egalitarian quorum, yet it guarantees the intersection since it
contains all the replicas with high voting power.

Now, suppose that the fastest, geographically nearest repli-
cas are the ones in this particular quorum. They can progress
the voting phases of consensus more swiftly, as they need to
wait less time to collect the necessary votes. By accelerating
consensus, WHEAT can also decrease the overall latency of
the system [54].

Unlike traditional systems like PBFT, WHEAT does not
wait for a predefined number of replicas but waits for a prede-
fined sum of votes of Qv.

To distribute weights (or voting power) among the replicas,
WHEAT uses a bimodal scheme that divides the voting power
in such a way that the 2t best-connected replicas have a voting
power of Vmax = 1+ ∆

t while the remaining replicas have a
voting power of 1. As a result, the number of votes required
for a quorum is Qv = 2t ·Vmax +1. This distribution ensures
that even if t best-connected replicas fail, it is possible to form
quorums using the other replicas.

Notice that the size of the smallest quorum only depends
on the chosen threshold t, not on the actual size of the system
n. When using this weighting scheme, all quorums contain
between 2t +1 and n− t replicas.

AWARE. Distributing weights is difficult in practice, as the
decision of what is the optimal weight configuration for a
given set of network characteristics is non-trivial. To tackle
this issue, AWARE (Adaptive Wide-Area REplication) [9]
allows geo-replicated state machines to self-optimize at run-
time. By using an automated dynamic weight tuning and
leader placement scheme, AWARE supports the emergence
of fast quorums in the system.

At its core, AWARE monitors latencies between all replicas
and creates a corresponding latency matrix. This matrix is
used to predict the expected consensus latency for several
configurations of weight distributions and leader locations.
Given a fixed threshold t, AWARE automatically chooses the
fastest configuration found using the latency matrix, and a
meta-heuristic called simulated annealing [35]. By running
this method periodically, AWARE can adapt to changes in the
network: when the latency matrix is recalculated and changes
are detected, the system automatically reconfigures the weight
distribution and/or leader location to better suit the current
network conditions.

C Validation of Emulated/Simulated Networks

In this section, we compare the results of the experiment con-
ducted in Section 6.1.1 for which we used the real AWS cloud
infrastructure with supplementary experiments that use an
emulated and simulated network environment that mimic the
AWS infrastructure by using latency statistics from cloudping.
For these network environments, we use state-of-the-art net-
work emulation and simulation tools, namely Kollaps [28]
and Phantom [33]. The repeated experiments should give
some insights of how close real network characteristics can
be modeled using emulation and simulation tools. A threat to
validity is that the network statistics average latency observa-
tions over a larger time span (i.e., a year). In contrast, when
conducting experimental runs, short-time fluctuations might
make individual network links appear faster or slower than
usual, which can impact the speed at which certain quorums
are formed. Nevertheless, we are convinced that using the net-
work tools and latency statistics creates reasonably realistic
networks that can be used to validate the latency gains of the
quorum-based protocols we are working with.

In Figure 16, we contrast protocol runs for BFT-SMART,
AWARE, and FLASHCONSENSUS on a real network, as well
as in the Kollaps-based and Phantom-based networks. On
average, we observed latencies that were 1.5% higher in the
emulated network than on the real AWS network. Respec-
tively, the simulated network yielded latency results that were,
on average, 0.8% lower than the real network

17

Asia-Pacific
North America

South America Africa Europe Oceania
Middle East

100
200
300
400
500
600
700
800

Simulation (Phantom)Emulation (Kollaps)

L
at

en
cy

[m
s]

BFT-SMART AWARE FLASHCONSENSUS: final strong weak first

Figure 16: Comparison of clients’ observed end-to-end latencies for protocol runs with BFT-SMART, AWARE and FLASHCON-
SENSUS in different network environments: real, emulated, and simulated. The client results are averaged over all regions per
continent.

18

	Introduction
	Byzantine State Machine Replication
	Assumptions and Goals
	FlashConsensus
	Obtaining Smaller Quorums
	Dealing with f > tfast Failures
	Safety
	Liveness
	Performance Degradation
	Reconfiguration of the System

	Ensuring Linearizability

	Implementation and Optimizations
	Consolidated Algorithm
	Improving Latency with Speculation

	Evaluation
	AWS Network
	FlashConsensus Acceleration
	FlashConsensus Runtime Behavior
	FlashConsensus Throughput

	Larger Network
	FlashConsensus-flavored HotStuff

	Related Work
	Conclusion
	FlashConsensus Correctness Argument
	Weighted BFT Replication
	Validation of Emulated/Simulated Networks

