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Abstract—In geo-replicated systems, the heterogeneous laten-
cies of connections between replicas limit the system’s ability to
achieve consensus fast. State machine replication (SMR) protocols
can be refined for their deployment in wide-area networks by
using a weighting scheme for active replication that employs
additional replicas and assigns higher voting power to faster
replicas. Utilizing more variability in quorum formation allows
replicas to swiftly proceed to subsequent protocol stages, thus
decreasing consensus latency. However, if network conditions
vary during the system’s lifespan or faults occur, the system
needs a solution to autonomously adjust to new conditions.

We incorporate the idea of self-optimization into geographi-
cally distributed, weighted replication by introducing AWARE,
an automated and dynamic voting weight tuning and leader
positioning scheme. AWARE measures replica-to-replica latencies
and uses a prediction model, thriving to minimize the system’s
consensus latency. In experiments using different Amazon EC2
regions, AWARE dynamically optimizes consensus latency by self-
reliantly finding a fast weight configuration yielding latency gains
observed by clients located across the globe.

Index Terms—adaptation, weighted replication, consensus, geo-
replication, Byzantine fault tolerance, self-optimization

I. INTRODUCTION

State machine replication (SMR) is a classical approach
for building resilient distributed systems. It achieves fault-
tolerance by coordinating client interactions with independent
server replicas [1]. SMR protocols typically use either some
dynamically selected leader [2] or are fully decentralized [3].
In both cases, protocols usually require communication steps
involving a major subset of all nodes.

With the emergence of novel Byzantine fault-tolerant (BFT)
blockchain infrastructures, BFT SMR protocols have been in-
creasingly catching academic attention over the last few years.
For example, the BFT-SMaRt [4] library has been employed
as an ordering service [5] for the Hyperledger Fabric [6]
blockchain platform allowing for a high-performance, resilient
service execution that achieves sub-second latencies in a geo-
graphically distributed environment using the WHEAT [7] op-
timization. In fact, BFT SMR protocols (typically called BFT
consensus) are a key component of permissioned blockchains
as they can be used to establish total order of transactions in
a closed group of processes without relying on the expensive
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Figure 1: Latency gain using weighted replication in WHEAT
and BFT-SMaRt [7], as measured by clients co-located with
different replicas.

proof-of-work mechanism [8], achieving thus a much higher
performance even with few tens of nodes, a significant consor-
tium size for this type of blockchain [5], [6]. However, they
might still be deployed in a wide-area network (WAN) for
decentralization.

Weighted replication. While inter-node network latencies
typically are similar between all pairs of nodes in a LAN
environment, we can observe variations of latencies in WAN
environments. The end-to-end latency of protocols waiting
for a set of messages to be received is determined by the
slowest replica in a subset which forms a quorum, i.e., contains
enough replicas to convince a replica to advance to the
next protocol stage. By introducing WHEAT [7] (WeigHt-
Enabled, Active replicaTion), Sousa and Bessani have shown
that using additional spare replicas and weighted replication
allows the system to benefit from more variety in quorum
formation. Thus, the system can make progress by accessing
a proportionally smaller quorum of replicas and can obtain a
significant latency decrease (see Figure 1).

Automation needed. However, this benefit holds only if one
selects the optimal weight configuration. A manual selection
is difficult in practice, as the decision of what is the best
configuration for a given set of network characteristics is non-
trivial. Further, network characteristics may be subject to run-
time variations such as attacks and other problems, and thus
the optimal configuration may also change at run-time. To
make weighed replication practically usable, the SMR system
needs a mechanism for automated and dynamic optimization.
We present AWARE (Adaptive Wide-Area REplication), a
mechanism for allowing geo-replicated state machines to self-
optimize at run-time: our method employs continuous self-
measurements of the replicas’ communication link latencies



and analyzes the leader’s expected consensus latency for all
possible weight distributions and leaders. It reconfigures the
system to minimize consensus latency, thus also leading to
latency gains observed by clients distributed across the globe.

Challenges and contribution. We address practical chal-
lenges that arise when incorporating steady self-optimization
into WHEAT by proposing AWARE, which allows the SMR
system to dynamically find a fast configuration and to adapt
to changing environmental conditions during the system’s life
span. Our contributions aim for making WHEAT more viable
for practical deployment. Our paper addresses the following
problems introduced by equipping a BFT system with such a
self-optimizing mechanism:

• Self-monitoring in an SMR system. Defining suitable
strategies for self-monitoring, including the question of
how can the system cope with incomplete and possibly
counterfeit measurement information?

• Deciding an optimal configuration. How can we compute
the expected latency benefits for WHEAT configurations?
We reason about consensus latency prediction and prob-
lems related to assessing configurations.

• Safe and deterministic reconfiguration. In the overall
algorithm, all correct replicas must reach agreement on a
self-optimization before triggering a reconfiguration.

• Mitigating faulty replicas’ influence. Can we redistribute
voting power of unavailable (e.g., crashed) replicas and
which threats impose malicious replicas?

Outline. We start by explaining relevant preliminary work
(§II). Then, we present AWARE’s monitoring methodology
(§III) and subsequently describe our algorithm for finding an
optimal configuration and deciding on a reconfiguration (§IV).
Moreover, we conduct an experimental evaluation of AWARE
using different Amazon EC2 regions (§V). Finally, we discuss
related research work (§VI) and draw conclusions (§VII).

II. BFT REPLICATION

Castro and Liskov describe a practical replication algorithm
for tolerating Byzantine faults, called Practical Byzantine
Fault-Tolerance (PBFT) [2], that works in a partially asyn-
chronous environment and incorporates optimization tech-
niques to achieve throughput comparable to non-replicated
services. Clients send requests to replicas (to the primary or
upon timeout to all) that run consensus about the ordering of
requests. PBFT tolerates up to f Byzantine servers, which may
fail in an arbitrary way without compromising the service. The
Byzantine fault model [9] usually requires a BFT protocol to
use a total of n = 3f + 1 replicas to guarantee both liveness
and safety under the partially synchronous system model.

A. BFT-SMaRt

BFT-SMaRt [4] is an open-source library written in Java that
implements robust and configurable BFT SMR. It has some
important advantages compared to other SMR implementa-
tions – for example UpRight [10] or PBFT [2]: it employs
a dynamically scalable replica set, provides a modular archi-
tecture using strictly separated and exchangeable components

for different concerns, e.g., state transfer, reconfiguration, or
consensus, and it also achieves high performance because
of its multi-core awareness design and various optimization
techniques it incorporates. Furthermore, it can be configured
to run in CFT or BFT mode. For CFT, it requires fewer replicas
(n = 2f + 1) and operates faster (2 protocol steps are then
required for running consensus instead of 3).

BFT-SMaRt uses the Mod-SMaRt protocol [11], an al-
gorithm for SMR that employs an underlying leader-driven
consensus primitive (the consensus algorithm described by
Cachin [12]). A client broadcasts its request to all replicas
and waits for a specific quorum of replies. Replicas use a
consensus algorithm to achieve total order among all requests,
thus deciding the batch of requests to be executed next in every
consensus instance.

Byzantine consensus consists of three phases [12]: PRO-
POSE, WRITE, and ACCEPT. In the PROPOSE step, the
leader broadcasts a message that contains a batch of requests
that need to be decided to all other replicas. The following
two communication steps, WRITE and ACCEPT, are all-to-all
broadcasts used for commitment. In these steps, each replica
i forms a quorum Qi containing dn+f+1

2 e replicas to proceed
(Byzantine majority). Two different replicas i 6= j might use
two different quorums to advance, but these quorums overlap
in at least one correct replica, i.e., |Qi ∩Qj | ≥ f + 1.

B. WHEAT

WHEAT [7] is a variant of BFT-SMaRt’s state machine
replication protocol that is optimized for geo-replicated envi-
ronments. Its main innovation is the ability to decrease client
latency by, counter-intuitively, adding more replicas to the
system. The reason why this can result in a latency decrease
instead of the opposite, is because quorums in WHEAT are not
formed using a Byzantine majority of replicas, as it is done in
the rest of the BFT literature [1], [2], [10], [11], [13], [14]. In
WHEAT’s case, the size of a particular quorum can actually be
smaller than a Byzantine majority. Moreover, since WHEAT
is expected to operate in wide-area networks, we can leverage
the environment’s heterogeneity to rely on the replicas that
display the lowest end-to-end latency to be the ones forming
these smaller quorums, and use the rest to form larger quorums
that act as a fallback if the smaller ones are unavailable.

In order to understand how this works, let’s consider a
BFT system that, instead of comprising the usual number
of four replicas (the theoretical limit to withstand a single
Byzantine fault), actually comprises five (thus containing one
extra replica). Let’s consider the quorum formation for this
setup. Recall that the definition of a BFT quorum system is
a collection of subsets of replicas in which any two subsets
intersect by f + 1 replicas [15]. To ensure quorum formation,
BFT systems typically probe a Byzantine majority of replicas,
as depicted in Figure 2a. As we can see, using a Byzantine
majority, the extra replica makes the quorum size increase
from 3/4 to 4/5 across all possible combinations. However, it
is also possible to enforce quorum formation by relying on
weighted replication, as depicted in Figure 2b. In this case, by
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egalitarian quorum

egalitarian quorum

(a) Egalitarian: all quorums
contain dn+f+1

2
e replicas.

2 2 1 1 1

(b) Weighted: a quorum con-
tains at most n−f and at least
2f + 1 replicas.

Figure 2: Possible quorums for n = 5, f = 1, ∆ = 1 (BFT).

probing a majority of votes rather than a majority of replicas,
we can see that there exist combinations of replicas that still
intersect by f + 1 replicas, thus forming quorums in the size
of 3/5 and others in the size of 4/5. Now imagine that this
is a geo-replicated environment where the two best-connected
replicas are assigned the highest weight with value 2. In spite
of having five replicas in the system, progress is made by
typically probing three replicas to form a smaller quorum.
If for some reason any of these two fastest replicas is not
available – either due to a period of asynchrony or a crash –
progress can still be made by falling back to a quorum size of
four replicas. Moreover, we can also re-distribute weights if
any of the preferred replicas become slower. This approach is
preferable to replacing replicas, since that would require new
replicas to retrieve the state from others.

Further, for generalizing the above insight to any number of
replicas, WHEAT employs the following safe weight distribu-
tion scheme [7]: let’s assume a system of n replicas, tolerating
f Byzantine faults and containing ∆ additional replicas. The
relation between these variables is as follows:

n = 3f + 1 + ∆ (1)

Moreover, to account for weighted replication, WHEAT de-
mands each replica to wait for Qv votes, computed as follows:

Qv = 2(f + ∆) + 1 (2)

In order to correctly form quorums, WHEAT adopts a binary
weight distribution in which a replica can have a value of
either Vmin or Vmax. These values are computed as follows:

Vmin = 1 (3)

Vmax = 1 +
∆

f
(4)

Finally, Vmax is attributed to the 2f best-connected replicas in
the system. All other replicas are attributed Vmin. Using this
distribution scheme, any quorum will contain between 2f + 1
replicas and n − f replicas, instead of the fixed number of
dn+f+1

2 e replicas as in traditional systems [2], [4].

III. MONITORING STRATEGY

AWARE’s self-optimization approach relies on sound self-
monitoring capabilities of the system, which in turn require
reliable measurements.

Waiting for WRITE quorumT1

T2 T3

T4

actual latency actual latency

T2’ T3’

tampered 
latency

tampered 
latency

WRITE ACCEPT
R1

R2

Figure 3: Problem with timestamps and Byzantine replicas.

A. Monitoring BFT Consensus

Problem. Quorum-based measurements (e.g., measuring the
time between replica R1 sending a WRITE to R2 and receiving
an ACCEPT back from R2) do not allow reasoning about link
latencies because both message types do not casually depend
on each other. Replica R2 might form a WRITE quorum
without R1 and the WRITE from R1 might even arrive at
R2 after R2’s ACCEPT arrives at R1. In a non-malicious
setting, we could piggyback responses carrying timestamps
T2 and T3 in WRITE messages of subsequent protocol runs
and thus compute link latencies using timestamps generated
by both parties, e.g., by approximating the latency using
((T4 − T1) − (T3 − T2))/2 as shown in Figure 3. However,
malicious replicas can attach corrupt timestamps, e.g., mali-
cious replica R2 might try to shift T2 closer to T1 and T3

closer to T4, while correct replica R1 has no means to detect
this lying behavior and thus attributes R2 a better latency.
Byzantine replicas could try to abuse such behavior to increase
their voting power.

WRITE and ACCEPT. To prevent this, we favor one-sided
measurements, which only require the measuring replica to
be correct. In this method, we employ additional response
messages for monitoring the consensus pattern: replicas im-
mediately respond to a protocol message by directly sending
a WRITE-RESPONSE after receiving a WRITE. Thus, the
measuring replica can use (T4−T1)/2 as one-way link latency.
However, this introduces monitoring overhead into the system.
These latencies allow us to reason about times in which
replicas form weighted quorums to proceed to subsequent
protocol stages.

PROPOSE. PROPOSE messages are larger than other mes-
sages because they carry the actual consensus proposal (a
batch of client requests) instead of just a cryptographic hash,
thus they may have a higher latency. This is also relevant
for predicting the consensus latency, because every replica
can only start broadcasting its WRITE message after having
received a PROPOSE first. Further, we also use a response
message for the latency measurement of this phase.

The PROPOSE latency is also relevant for automated leader
location optimization. Therefore, we measure the latencies of
non-leaders proposing to other replicas in order to determine
hypothetical latency gains for the system when using a differ-
ent replica as the protocol leader.
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Figure 4: Message flow of BFT AWARE (f = 1; ∆ = 1).

B. AWARE Approach

Following a systematic approach, we develop customizable
variants of AWARE. In the following, we give a brief summary
of design decisions and configurable options.

Response to WRITE. In our approach, we expect each
correct replica i to measure the latencies of its point-to-
point links to every other replica and maintain a latency
vector Li = 〈li,0, ..., li,n−1〉. We use the WRITE-RESPONSE1

messages to measure latencies between replicas. Further, the
response message needs to include a challenge, e.g., a number
which was beforehand randomly generated by the sender and
attached to the original protocol message. This way we can
guarantee that a replica has received the WRITE and that
Byzantine replicas cannot send responses to messages before
actually having received them.

Non-Leaders’ PROPOSE. The DUMMY-PROPOSE allows
measuring precisely the time non-leaders need to PROPOSE
batches of possibly large size to the rest of the system, where
we expect a difference in cases where the network becomes
the bottleneck. Non-leaders do not simultaneously propose
to avoid creating a high overhead to the system, degrading
its performance and counter-acting our goal of improving
the performance. We use a rotation scheme in which only
one additional replica simultaneously broadcasts a DUMMY-
PROPOSE along with the leader, proposing a dummy batch
in the same way as the leader does, but without starting a
new consensus instance and all replicas disregard the proposal.
Replicas reply with a PROPOSE-RESPONSE and include the
proposed batch in the response message. Using the DUMMY-
PROPOSE is optional as it introduces overhead to the system
(see §V-E) and it is also possible to approximate these latencies
using the measurements of WRITE-RESPONSE.

Figure 4 shows the message flow2 of AWARE utilizing all
monitoring messages. This yields the variant of AWARE with
the highest accuracy in leader selection. Furthermore, AWARE
defines the number of recent monitoring messages to be used
for computation of the latencies for each connected replica in
a configurable monitoring window.

Moreover, in AWARE each correct replica i periodically
reports its latency vector Li to all other replicas. Replicas do

1We do not need to use an ACCEPT-RESPONSE because the ACCEPT
phase has the same message pattern as the WRITE phase.

2The message pattern of WHEAT/AWARE differs from BFT-SMaRt in the
use of tentative executions, an optimization that was introduced in PBFT [2].

this after some configurable synchronization period by dissem-
inating these measurements with total order (thus running con-
sensus on them) so that all replicas maintain the same latency
matrix after some specific consensus instance. We employ a
deterministic procedure for deciding a reconfiguration and use
the same monitoring data in all correct replicas (while it would
also be possible for replicas to have distinct views on the
measurements and then run consensus on possible actions).

Once replicas have synchronized measurements after a given
consensus instance, they employ the model we explain in
§IV-C to predict the best weight distribution and leader.
Replicas use a calculation interval defining the number of
consensus instances after which a calculation and possibly a
reconfiguration is being triggered.

Bounding monitoring overhead. We can arbitrarily de-
crease the monitoring overhead by specifying a parameter
ω ∈ [0, 1] that determines the maximum overhead induced by
the monitoring procedure. Implementation-level details such
as the frequency of sending specific monitoring messages
(e.g., DUMMY-PROPOSE) are automatically derived from ω.
Frequent measurements provide more up-to-date monitoring
data and allow for faster reaction to environmental changes but
also negatively impact the maximum throughput (see §V-E).

C. Sanitization

All replicas maintain synchronized latency matrices MP

and MW for keeping measurements of PROPOSE and WRITE
latencies, both initially filled with entries

M [i, j]←

{
+∞, if i 6= j

0, otherwise
(5)

M [i, j] expresses the latency of replica i to j as measured by
i. Further, replica i can update a row of these matrices with
its measurements LP

i and LW
i with total order by using the

invoke interface of BFT-SMaRt:

invokeOrdered(MEASURE, LP
i , L

W
i );

The updating process yields a matrix M , with M [i, j] = Li[j]
if replica i sent its measurements within the last calculation
interval c of measurement rounds, or a missing value (+∞)
if it did not send any measurements within the last c rounds.
We sanitize both matrices immediately before the calculations
happen to mitigate the influence of malicious replicas.

We do that by exploiting the symmetry characteristic of
replica-to-replica latencies and let replicas have a pessimistic
standpoint on measurements. They use the pairwise larger
delay in calculations so that replicas cannot make themselves
appear faster. This procedure yields

M̂ [i, j] = max (M [i, j],M [j, i]) (6)

Figure 5 presents an example. This way, Byzantine replicas
cannot fraudulently improve their link latency to any correct
replica, and they also cannot blame (worsen a link latency
to) a correct replica without being contributed a bad latency
themselves. Still, in case of f > 1, Byzantine replicas may
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0 68 69 93 40
67 0 133 92 35
69 132 0 157 99
92 92 156 0 69
0 0 0 0 0


(a) Before sanitization.


0 68 69 93 40
68 0 133 92 35
69 133 0 157 99
93 92 157 0 70
40 35 99 70 0


(b) After sanitization.

Figure 5: Sanitized matrix reporting median WRITE latencies.

show intriguing behavior, e.g., by claiming to have tremendous
connections to each other (see §V-F).

IV. SELF-OPTIMIZATION

In our self-optimizing approach, replicas deterministically
reconfigure to a new weight configuration and/or leader po-
sition. This requires all replicas to (1) agree on what the
optimal configuration is and (2) decide whether they will
adjust themselves accordingly by triggering a view change.

A. Optimizations

Overall, AWARE employs two dynamic optimizations:
Voting weights tuning. Adjusting voting weights leads to

latency gains observed by clients across all sites [7]. AWARE
searches for a weight distribution that optimizes the system’s
consensus latency.

Leader relocation. Relocating the leader in a well-
connected site of the system reduces the request latency
observed by clients [7], [16]. Hence, AWARE is capable
of selecting the leader location as an optional optimization
technique.

We follow the idea of obeying leader selection constraints.
AWARE employs an abstraction, where the BFT protocol
provides an interface for choosing a leader. In particular,
we allow the protocol to provide a suitable set of leader
candidates L out of which AWARE chooses one.

In context of their decision, an optimization goal α defines
the threshold (relative to the current configuration) by which
a predicted consensus latency needs to be faster to trigger a
reconfiguration. This prevents the system from jumping back
and forth between configurations that are almost equally fast.

B. Consolidated Protocol

We ensure determinism by providing a deterministic con-
sensus latency prediction function used for our calculation (see
Algorithm 1). Further, we ensure that the measurement data is
the same in all replicas after a specific consensus instance
by synchronizing measured latency information with total
order broadcast. We apply a view-change after a calculation
performed in intervals specified by logical protocol rounds
(epochs) rather than by time. This works as follows:
1) Each replica i collects its latency measurements (a moving

median) in a vector Li = 〈li,0, ..., li,n−1〉;
2) Periodically, each replica i disseminates its vectors for

PROPOSE (LP
i ) and WRITE (LW

i ) with total order by
calling invokeOrdered(MEASURE,LP

i ,L
W
i );

3) Once a replica i decides a batch, that batch may contain
messages 〈MEASURE, LP

j , L
W
j 〉 from some replica j ∈ I .

It uses these vectors to update its synchronized matrices
MP

i and MW
i , i.e., for replicas k = 0, .., n − 1 assigning

MW
i [j, k] = LW

j [k] that is the information which i has
about the latency between replica j and all other replicas
measured by j. This applies to the maintained latency
information for both PROPOSE (MP

i ) and WRITE (MW
i ).

4) When a defined number (specified by the calculation inter-
val c) of consensus instances is reached, all replicas have
the same matrices MP and MW , e.g., with MW [i, j] =
LW
i [j] if replica i sent its WRITE measurements within the

last c consensus instances, or MW [i, j] = +∞ if i did not
send its measurements. The same applies to MP .

5) The next step is to deterministically sanitize the matrices
to avoid the influence of malicious replicas (see §III-C),
generating M̂P and M̂W .

6) Now, every replica solves the following optimization prob-
lem, where PredictLatency (Algorithm 1) is a function for
predicting the latency of the consensus protocol using the
latencies in M̂P , M̂W and all possible weight distributions
W ∈W and permitted leaders l ∈ L:

〈l̂, Ŵ 〉 = argmin
W∈W,l∈L

PredictLatency(l,W, M̂P , M̂W ) (7)

In the end, the configuration 〈l̂, Ŵ 〉 that provides optimal
leader consensus latency is the one selected for the next
reconfiguration if the predicted latency is better than the
current configuration by the factor α (optimization goal).
Note that since this procedure is deterministic, the 〈l̂, Ŵ 〉
is the same in all replicas.

7) In case the replicas find a faster weight configuration, they
update their view to respect the new voting weights for the
following consensus instances. Optionally, if the system
uses leader relocation, the replicas might also trigger a
view change to elect a faster leader.

C. Latency Prediction

We predict the optimal configuration by simulating a pro-
tocol run for each configuration using the sanitized latency
matrices M̂P and M̂W to compute the predicted consensus
latency of the leader replica and subsequently select a con-
figuration that minimizes this latency. We argue that a fast
configuration is one that yields a low consensus latency from
the perspective of the leader. Once having finished a consensus
instance, a leader can prepare and propose the next batch [4],
[11] while in the meantime, poorer connected replicas may still
wait for messages to form their quorums. To make progress,
a leader needs to fulfill its quorums of Qv votes as well, so
it needs to be well connected to replicas with preferably high
voting power. The leader itself is always assigned Vmax voting
power in order to minimize its consensus latency.

Algorithm 1 is used to predict the leader’s consensus latency
for a given configuration by simulating the consensus protocol
run and computing the times each replica can proceed to
a subsequent protocol stage (illustrated in Figure 6), e.g.,
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Algorithm 1: PredictLatency computes the consensus
latency (amortized over multiple rounds) which re-
quires forming weighted quorums of Qv = 2fVmax+1

Data: replica set I , leader p, system sizes n, f , ∆, weight config.
W = 〈Rmax , Rmin 〉, latency matrices for PROPOSE M̂P

and WRITE M̂W , number of consensus rounds r
Result: consensus latency of the AWARE leader

1 Vmax ← 1 + ∆
f

Vmin ← 1 Vi ←
{
Vmax, if i ∈ Rmax

Vmin, otherwise
2 while r > 0 do
3 for i ∈ I do
4 TPROPOSED

i ← max(M̂P [p, i], oSeti)
5 writesi ← new PriorityQueue()
6 acceptsi ← new PriorityQueue()

7 for i ∈ I do
8 for j ∈ I do
9 writesi.add(〈TPROPOSED

j + M̂W [j, i], Vj〉)

10 for i ∈ I do
11 votes← 0
12 while votes < Qv do
13 〈Tnext, Vnext〉 ← writesi.poll()
14 votes← votes + Vnext

15 TWRITTEN
i ← Tnext

16 for i ∈ I do
17 for j ∈ I do
18 acceptsi.add(〈TWRITTEN

j + M̂W [j, i], Vj〉)

19 for i ∈ I do
20 votes← 0
21 while votes < Qv do
22 〈Tnext, Vnext〉 ← acceptsi.poll()
23 votes← votes + Vnext

24 TACCEPTED
i ← Tnext

25 for i ∈ I do
26 oSeti ← TACCEPTED

i − TACCEPTED
p

27 consensusLatenciesr ← TACCEPTED
p

28 r ← r − 1

29 return average of consensusLatencies

receiving the PROPOSE (line 4), forming the WRITE quorum
(lines 10-15) and deciding the consensus value (lines 19-24).
To be precise, the time a replica fulfills a quorum is com-
puted by continuously polling messages from a priority queue
(sorted by ascending arrival time of messages) and adding the
voting weights up until the sum of gathered votes reaches the
necessary quorum Qv . The arrival time of the last message,
necessary to reach this quorum, determines the time a replica
can proceed to the next protocol stage. Further, the algorithm
computes the amortized leader consensus latency over multiple
rounds r. Note that replicas achieve consensus at different
times (as can be seen in Figure 6) and if the difference between
the time leader p decides and the time replica i decides is
greater than the propose latency M̂P [p, i], then replica i might
receive a PROPOSE for the next consensus instance but wait
for its last consensus to finish before broadcasting its WRITE.
This might throttle the leader but only if he uses i in its quorum
as the Qvth quorum formation speed determining vote. We
consider this in our calculations for a sequence of rounds by

22 1 1 1

Figure 6: Computing the latency of a WHEAT consensus
(here: BFT mode, f = 1,∆ = 1) for a given configuration.

computing offsets (additive times other replicas need to finish
their consensus relative to the leader).

An AWARE configuration defines the weight configuration
and selects a leader. Hence, the number of possible configura-
tions is the number of weight configurations multiplied with
the number of possible leaders (Vmax replicas):(

3f + 1 + ∆

2f

)
· 2f =

∏3f+1+∆
i=2f i

(f + 1 + ∆)!
(8)

This yields 20 possibilities for a n = 5, f = 1,∆ = 1 system
and 504 possibilities for a n = 9, f = 2,∆ = 2 system.
Traversing the entire search space of possible configurations
becomes unfeasible for large f . However, (1) BFT systems
typically run with tens of nodes and (2) if larger systems
are needed, we can employ heuristics for approximating the
optimum (e.g., simulated annealing) using PredictLatency as
fitness function.

V. EVALUATION

Throughout this section, we (1) experimentally quantify the
margin of latency variations among different WHEAT con-
figurations, (2) compare our model prediction for consensus
latency with real-world measurements in terms of accuracy,
(3) determine the correlation between consensus latency and
measured request latency observed by clients across multiple
regions, (4) evaluate the run-time behavior of AWARE when
carrying out self-optimizations, (5) evaluate the maximum
throughput of AWARE and investigate the monitoring over-
head induced by the DUMMY-PROPOSE, and (6) reason about
the system behavior in the presence of faulty replicas.

Setup. Unless stated otherwise, we use the Amazon AWS
cloud to place our EC2 instances in specific regions. Since we
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Figure 7: Measured average request latency of 11th to 90th percentile across clients in different regions.
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Figure 8: Comparison between predicted consensus latency, measured consensus latency and clients’ observed request latency.

do not have high hardware requirements for our latency exper-
iments, we use the t2.micro instance type, which is equipped
with 1 vCPU, 1 GB of RAM and 8 GB standard SSD volume
(gp2). We use WHEAT in the Byzantine fault model with
f = 1 and ∆ = 1 additional spare replicas. Further, we select
the (numbered) regions (0) Oregon, (1) Ireland, (2) Sydney, (3)
São Paulo and (4) Virginia. In each region we start one virtual
machine (VM) to construct our world-spanning replicated
system. Every VM carries a replica and a client which conduct
latency measurements. Consensus latency defines the time
between a leader sending a proposal and it being decided.
Request latency is the time between a client sending a request
and receiving enough replicas’ responses to accept the result.
Replicas measure the average consensus latency of a 1000
consensus instances sample. Clients simultaneously send at
least 1000 requests each and continue sending requests until
each client has finished its measurements. A client request
arriving at the leader replica may wait for some time until it
gets included in a batch when there is currently a consensus
instance running. We use synchronous clients that wait for the
result and send the next request after waiting for a random time
interval between 0 and 150 ms. Further, clients compute the
average latency from the 11th to 90th percentile (to mitigate
the influence of outliers) of perceived request latencies.

A. Margin of Latency Variations of Different Configurations

We start by justifying the question whether a dynamic ap-
proach to self-reliantly finding a well-performing configuration
is needed by showing the gap between different WHEAT
configurations. Figure 7 illustrates the observed client latencies
for different regions. Each configuration is represented by a
tuple 〈L,RVmax〉 where L is the leader and RVmax is the
other replica (besides the leader) that has a voting weight of
Vmax = 2. Each number corresponds to a region as explained
in the setup and Figure 7. We notice a big difference between

the configurations. The best configuration is 〈4, 0〉 showing a
latency (avg. across all clients) of 359.78 ms, the left median
configuration 〈3, 4〉 performs in 499.06 ms and the worst
configuration 〈2, 1〉 requires 589, 56 ms. The best WHEAT
configuration is 38.7% faster than the median and 63.9% faster
than the worst configuration. Further, we make four important
observations:

(1) Tuning voting weights can reduce latency: the adjust-
ment of weights is a promising optimization to reduce the
latency even if the leader is fixed (see different configurations
with the same leader).

(2) Leader selection may be necessary for optimal latency:
a leader in Sydney or São Paulo is not well connected enough
to the rest of the system. Relocation can improve the latency
observed by all clients.

(3) Co-located clients achieve slightly better latency: a
client co-located with the leader tends to observe lower request
latencies than other clients within a specific configuration.
Still, this does not necessarily imply a pareto-optimum: a
client in Sydney observes 492.19 ms in 〈2, 1〉 (co-located
with the leader) while it achieves its best results (among all
configurations) in 〈0, 4〉 with 403.46 ms.

(4) A global optimum does not exist but a few pareto-optimal
configurations dominate poorer performing configurations.

B. Accuracy of Consensus Latency Prediction

Our approach aims at finding a configuration with minimal
leader consensus latency. Our prediction model (Algorithm 1)
lets us compute these latencies for all configurations.

We compare our model prediction with the actual consensus
latency of the leader that we measured for every configuration
during our experiment (see Figure 8). For these configurations,
our predictions are off by 1.08% on average. The highest
prediction error is for 〈4, 0〉 (3.22%). Since our prediction
relies on latency measurements which are subject to smaller
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Figure 9: Runtime behavior of AWARE.

variations, we argue that these results are reasonable for
choosing a well-performing configuration – however, AWARE
might not always choose the actual best configuration but
decide for some configuration that is close to the optimum.

In our example, AWARE will pick any configuration of
〈0, 1〉, 〈0, 4〉, 〈1, 0〉, 〈1, 4〉, 〈4, 0〉 or 〈4, 1〉 for which it predicts
a leader consensus latency of 143.52 ms amortized over 1000
consensus rounds. In our experiment, the measured latencies
for these optimal candidates are between 141.30 ms (〈1, 0〉)
and 148.31 ms (〈4, 0〉). If there is an optimal configuration
containing the current leader, AWARE preferably chooses it
over configurations where a leader change is necessary. On a
side note, the median predicted leader’s consensus latency is
202.26 ms (〈3, 4〉) and the worst is 270.50 ms (〈2, 1〉).

C. Clients’ Observed Request Latency
Figure 8 also shows the clients’ observed request latency

(average across all sites) for all configurations and compares
them with both model predictions and measurements for
consensus latency.

As expected, consensus speed contributes to total latency.
We notice a positive correlation ρ(LMP , LCR) = 0.961 be-
tween our series (over all configurations) of model predictions
for leader consensus latency LMP and the measurement series
of average clients’ request latency LCR, indicating that faster
consensus is beneficial for geographically distributed clients.

D. Runtime Behavior of AWARE
We deploy AWARE in our usual setting and observe its

behavior during the system’s lifespan. Overall, the clients’
request latencies show high variations which is caused by
a waiting time of a request at the leader: since all clients
simultaneously send requests and the leader batches these, a
client request may wait until the current consensus finishes to
get into the next batch, which takes a varying time depending
on how shortly the request arrived before the next consensus
can be started3. We induce events to evaluate AWARE’s
reactions (see Figure 9) to certain conditions, in particular:

3This is the reason the clients’ observed average request latencies are a
little more than twice as high as the consensus latency in Figure 8.

1) Action: We start AWARE in a low-performance configu-
ration 〈2, 3〉 with Sydney being the leader and Sydney and
São Paulo having maximum voting power.

2) Reaction: After a calculation interval of c = 500, AWARE
decides that Oregon and Ireland are faster and changes its
configuration to 〈0, 1〉 leading to latency gains observed
by all clients across all sites.

3) Action: We create network perturbations, in particular we
add an outgoing delay of 120 ms and 20 ms jitter to the
Ireland replica, thus making it slower (the client and replica
of Ireland are not co-located on the same VM).

4) Reaction: AWARE attributes one of the Vmax to São Paulo
while Ireland’s weight is reduced to Vmin. Clients observe
a small improvement in request latencies.

5) Action: We end the network delay for Ireland, thus the
network stabilizes and the communication links of Ireland
become just as fast as in the beginning of our experiment.

6) Reaction: AWARE notices this improvement and assigns
the Vmax of São Paulo back to Ireland since it predicts
latency gains for this configuration. After the reconfigu-
ration, clients observe faster request latencies identical to
what happened after the first reconfiguration (Event 2).

7) Action: We crash the leader Oregon (which has Vmax).
8) Reaction: Replicas’ request timers expire and BFT-SMaRt

triggers the leader change protocol: Ireland becomes the
next leader. Since fVmax voting power becomes unavail-
able, all remaining correct replicas are forced to use the
same quorum Qv (all 3 Vmin replicas and the leader).
Accordingly, clients observe higher request latencies.

9) Reaction: AWARE redistributes the Vmax to a former
Vmin replica, São Paulo, hence restoring some degree of
variability in quorum formation. Replicas now can form
smaller quorums. This leads to clients observing latency
improvements across all regions.

E. Maximum Throughput

For measuring maximum throughput, we change the instance
types to c5.xlarge (4 vCPU, 8 GB of RAM, 8 GB SSD)
and use 5 VMs in our usual regions to place replicas, and
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Figure 10: Maximum throughput comparison.

5 other VMs to launch as many clients as necessary to
saturate the system. Asynchronous clients send requests of size
1 kB after randomly waiting between 0 ms and 10 ms and
replicas’ responses also have a size of 1 kB. We compare 3
different variants: (1) WHEAT in a bad configuration (〈2, 3〉),
(2) AWARE, after having adjusted to 〈0, 4〉 using WRITE-
RESPONSE, and (3) AWARE, in configuration 〈0, 4〉 and
with enabled DUMMY-PROPOSE (we bound overhead with
ω = 0.5, hence only for every second consensus, one replica
broadcasts a DUMMY-PROPOSE).

In principle, faster completing consensus rounds and in-
creasing the batch size (number of requests decided per
consensus) can both raise the throughput. However, larger
batch sizes also lead to higher PROPOSE latencies and thus
can slow down consensus. In our experiments, we observe
(see Fig. 10), that (1) low consensus latency indeed has
positive effects on throughput for different batch sizes and
(2) the monitoring overhead induced by enabling the DUMMY-
PROPOSE is noticeable, but still passable, given that AWARE
is mainly thought of as a latency optimization technique.

F. Effect of Faulty Replicas

AWARE deals with both crash and malicious faults as long
as they are limited to f faulty replicas. In WHEAT, if replicas
become unavailable for quorum formation, then their voting
weight cannot be accessed until they get repaired. In AWARE,
we need to distinguish two cases: first, replicas may crash,
so their weight cannot be accessed for quorum formation
anymore. Second, malicious replicas may adapt their behavior
to prevent AWARE from redistributing weights.

Crash faults. In the first case, AWARE detects the unavail-
ability as crashed replicas do not disseminate measurements
nor do they respond to protocol messages. Thus +∞ latencies
are fed into AWARE’s prediction model. In case crashed
replicas have Vmax voting power, AWARE redistributes it to
faster replicas (see Figure 9, Event 9) and hence restores some
variability in quorum formation. If the former fast but crashed
replicas are repaired and reintegrate in the system, then they
might re-obtain high voting power as well.

Malicious faults. In the second case, malicious replicas
might not participate in the achieving of consensus (e.g., do
not send WRITE messages), but still send response messages
to other replicas and disseminate latency vectors that attribute
them very low latencies, e.g., if f > 1, then pairs of malicious
replicas could assert that their pairwise communication links
have a latency close to 0. Since malicious replicas might par-

ticipate in the monitoring process, their unavailability cannot
be easily detected by AWARE and thus restricts AWARE’s
ability to redistribute voting weights only between correct
replicas. If we assume the worst case, then f malicious replicas
might in total possess up to fVmax voting power and force
correct replicas to use the only remaining fallback quorum of
fVmax +(f+1+∆)Vmin votes cast by all 2f+1+∆ correct
replicas to make progress. Still, we can always guarantee the
availability of the system. Restricting the quorum formation
variability can – in the presence of faults – generally happen
in consensus protocols that make use of quorum systems,
regardless if they use egalitarian or weighted quorums.

G. Summary of Observations

We conclude that AWARE’s approach refines the practical
utilization of WHEAT in several ways:

1) Ease of Deployment: For deployment, it is irrelevant
to choose a good starting configuration because AWARE
provides the needed automation for finding an optimal config-
uration by tuning voting weights and/or relocating the leader.

2) Adjusting to Varying Network Conditions: The quality
of communication links may vary for different reasons, e.g.,
bad routing, overloads or DDoS attacks. This might be less a
problem for Amazon’s data centers but can occur for server
located in poorer connected regions. AWARE dynamically
adjusts to new conditions by shifting high voting power to
replicas that are the fastest in a recent timeframe.

3) Compensating for Faults: In the worst case f replicas
become unavailable. If they all have Vmax voting power, then
all correct replicas need to access the same quorum without
any variability. For non-malicious behavior, AWARE detects
this and restores the availability of up to f(Vmax − Vmin)
voting power in the system by redistributing high voting
weights to the fastest of the remaining correct replicas.

VI. RELATED WORK

A variety of research touches the fields of SMR optimiza-
tions in WAN environments [13], [14], [17]–[19] and dynamic
approaches for latency awareness [16], [20]–[22].

WAN optimizations. Steward [14] is a hierarchical architec-
ture for scaling BFT replication in WANs. Multiple replication
groups (each group is located at a site and runs Byzantine
agreement) are geographically distributed and groups are
connected over a CFT protocol. Like our approach, it uses
additional spare replicas but with much higher replication
costs (4 replicas are needed at each site). Mencius [17] is an
approach for building efficient SMR for WANs by employing
a rotating coordinator scheme where clients choose their
geographically closest replica as the coordinator. However,
Mencius only supports the CFT model because of its skip-
ping technique. The idea of a rotating leader in Mencius is
later enhanced in the RAM protocol [18] which additionally
employs attested append-only memory and assumes mutually
suspicious domains to achieve low latency SMR for uncivil
WANs. In our work, we assume the BFT model where clients
do not trust their local leaders. EBAWA [13] is a protocol
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that improves SMR in WANs under a hybrid fault model. A
trusted component on the replicas allows reducing the number
of replicas in the system to 2f + 1 and the communications
steps needed for agreement to 2. It also uses a rotating leader
technique where clients send their requests to their local
server. In contrast, Egalitarian Paxos [19] allows all replicas
to propose and employs a mechanism for solving conflicts if
operations interfere. Clients choose a well-connected replica
to propose their operations. GeoPaxos [23] decouples order
from execution, utilizes partial order instead of total order and
exploits geographic locality to achieve fast geographic SMR,
but only tolerates crash faults just like Egalitarian Paxos.

Dynamic approaches. The protocols Droopy and Drip-
ple [16] follow a dynamic approach to reduce latency for geo-
replicated state machines under imbalanced localized work-
loads. The authors suggest that the choice (and the number) of
leaders depends on both replica configuration and workload,
thus is subject to variations over time. Droopy dynamically
reconfigures the leader set of each partition while Dripple
coordinates state partitions. Further research work shows that
clients can also dynamically react to changing workloads
by efficiently changing their quorum selections to achieve
good performance [22]. A protocol for latency-aware leader
selection in geo-replicated systems is ARCHER [20], which
uses clients’ observed end-to-end response latencies to select
the optimal leader and hence can dynamically adjust to varying
workloads. In contrast, AWARE measures replica-to-replica
latencies and uses weight tuning additional to leader selection.
We follow the empirical observations of WHEAT, in which
a mechanism that makes clients closer to their leaders (or
using a leader in the same region) gives less latency gains
than just using the fastest replica as the leader [7]. Dynamic
adaptation of consensus algorithms for BFT systems is being
studied in latest research work [21] by the implementation of
switching algorithms in the BFT-SMaRt library and evaluation
of different techniques for a multi-datacenter (WAN) setting.

VII. CONCLUSION

World-spanning Byzantine consensus systems can benefit
from dynamic self-optimizing approaches. We showed how to
construct such a dynamic approach using WHEAT as underly-
ing weighting scheme and BFT-SMaRt as replication protocol
by letting the system perform continuous measurements and
decide on an optimal configuration. Further, we described
a deterministic, self-optimization algorithm that enables the
system to minimize its consensus latency and thus to faster
respond to clients.

AWARE enriches the idea of weighted replication by pro-
viding the needed automation to adapt to changing environ-
mental conditions. Our method implements resilient, adaptive
Byzantine consensus, in particular it automates voting weight
tuning and leader positioning, hence thriving for latency
gains at run-time by selecting a fast performing WHEAT
configuration. Evaluation results show that the potential for
latency and throughput gains is substantial. Specifically, the

best configuration performs about 38.7% faster on average in
terms of observed latency across clients’ sites than the median.
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