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Preliminaries

This course builds on an introduction into mathematical logic. We recall some basic
definitions and notations.

Sets

For a set A we write A2 = A ×A,A3 = (A ×A) ×A, . . . and P (A) for the power set of X.
We often view a function f as sets ordered pairs and write dom(f) = {b ∣ ∃a ∶ (a, b) ∈ f}
for its domain, and im(f) ∶= {a ∣ ∃a ∶ (a, b) ∈ f} for its image. For A ⊆ dom(f) we let
f↿A ∶= f ∩ (A × im(f)) denote the restriction of f to A. Note that a function g is a
restriction of a function f if and only if g ⊆ f ; then we call f an extension of g.

A set X is finite if there is a bijection from {0, . . . , n − 1} onto X for some n ∈ N;
otherwise it is infinite. E.g., ∅ is a bijection from {0, . . . ,0 − 1} = ∅ onto ∅.

For a family of sets (Xi)i∈I , the cartesian product ∏i∈IXi is the set of functions f with
domain I such that f(i) ∈ Xi for all i ∈ I. It is non-empty if all Xi are nonempty (this
statement is called the axiom of choice).

Structures

Let L be a language: a set symbols, namely function and relation symbols; every symbol
has an arity (a natural number) associated to it. A constant is a function symbol of arity 0.

An L-structure A is a pair (A, (sA)s∈L) of a universe A ≠ ∅ and interpretations sA of
the symbols in s ∈ L: an r-ary relation symbol R ∈ L is interpreted by a relation RA ⊆ Ar,
an r-ary function symbol f ∈ L is interpreted by a function fA ∶ Ar → A. For a constant
c ∈ L the function maps the unique element of A0 to some value, and we identify cA with
this value. We usually denote the universes of structures A,B,C, . . . by A,B,C, . . . .

Let L′ ⊆ L and A be an L-structure. We call A↿L′ ∶= (A, (sA)s∈L′) the L′-reduct of A,
and A an L-expansion of A↿L′.

An L-structure A is a substructure of an L-structure B, and B an extension of A,
symbolically A ⊆B, if A ⊆ B and RA = RB ∩Ar, fA = fB↿Ar for all r ∈ N, all r-ary relation
and function symbols R,f ∈ L. For constants c ∈ L this means cA = cB. Note that the
universe A of A is an L-closed subset of B, i.e., A ⊇ im(fB↿Ar) for every r-ary function
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PRELIMINARIES iv

symbol f ∈ L; in particular, cB ∈ A for all constants c ∈ L. Conversely, every L-closed
subset A ⊆ B is the universe of an L-structure.

Let X ⊆ B. If L contains a constant or if X ≠ ∅, then the intersection of all L-closed
A ⊆ B with X ⊆ A is the smallest L-closed superset of X. The substructure of B with
this universe is denoted ⟨X⟩B and said to be generated (in B) by X. If X = ∅ and L does
not contain constants, the notation is undefined. An L-structure B is finitely generated if
B = ⟨X⟩B for some finite X ⊆ B.

Morphisms

Let L be a language and A,B be L-structures. A function π ∶ A→ B is an homomorphism
from A to B, symbolically π ∶ A→h B, if for all r ∈ N , all r-ary relation symbols R ∈ L, all
r-ary functions symbols f ∈ L, and all ā = (a0, . . . , ar−1) ∈ Ar:

ā ∈ RA Ô⇒ π(ā) ∶= (π(a0), . . . , π(ar−1)) ∈ RB,

π(fA(ā))) = fB(π(a0), . . . , π(ar−1)).

In particular, π(cA) = cB for all constants c ∈ L. It is strong if ⇐⇒ holds above, i.e., if
π(RA)(= {π(ā) ∣ ā ∈ RA}) = RB. If π is strong and injective, it is an (algebraic) embedding
of A into B, symbolically π ∶ A→a B. If π is strong and bijective it is an isomorphism of A
onto B, symbolically π ∶ A ≅B. If such π exists, then A and B are isomorphic, symbolically
A ≅ B. An automorphism of A is an isomorphism of A onto A. Note π ∶ A →a B if and
only if π ∶ A ≅ B0 ⊆ B for some B0, and, A ⊆ B if and only if the identity (on A) is an
embedding of A into B.

Formulas

L-terms are obtained from variables x0, x1, x2, . . . (often we use other symbols like x, y, z, . . .)
by composition: if f ∈ L is an r-ary function symbol and t0, . . . , tr−1 are L-terms, then so
is ft0⋯tr−1; in particular every constant in L is an L-term. L-atoms have the form t0 = t1
or Rt0⋯tr−1 for L-terms ti and an r-ary relation symbol R ∈ L. L-formulas are built
from L-atoms by means of ∧,¬,∀x. The symbols ∨,→,↔,∃x are explained as suitable
abbreviations. Let x̄ = (x0, . . . , xk−1) be a tuple of variables, k ∈ N. Writing a formula ϕ
as ϕ(x̄) indicates that the free variables of ϕ are among x0, . . . , xk−1; similarly for terms.
Sentences are formulas without free variables. In formulas, we write ∀x̄ or ∀x0⋯xk−1 instead
∀x0⋯∀xk−1 and similarly ∃x̄. The universal closure of ϕ(x̄) is the sentence ∀x̄ϕ(x̄).

Let A be an L-structure. An assignment in A is a map from the variables into A. The
value of an L-term t under an assignment β in A is denoted tA[β]. A ⊧ ϕ[β] means that
the L-formula ϕ is true in A under β. For a set of formulas Φ, A ⊧ Φ[β] means A ⊧ ϕ[β]
for all ϕ ∈ Φ. For an L-sentence ϕ and a term t without variables we omit β, so tA ∈ A and
A ⊧ ϕ means that A satisfies ϕ or ϕ is true in A.
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If ϕ = ϕ(x0, . . . , xk−1) and β(xi) = ai ∈ A we write A ⊧ ϕ[a0, . . . , ak−1] for this, and say
ā = (a0, . . . , ak−1) satisfies ϕ(x̄) in A. The formula ϕ(x̄) defines (in A) the set

ϕ(A) ∶= {ā ∈ Ak ∣ A ⊧ ϕ[ā]}.

The notation tA[ā] is similarly explained. If π ∶ A →h B then π(tA[ā]) = tB[π(ā)], and if
π ∶ A ≅B, then ā ∈ ϕ(A) ⇐⇒ π(ā) ∈ ϕ(B).
Remark. Assume L contains a constant or X ≠ ∅. The universe of ⟨X⟩A is the set of
tA[ā] where t is an L-term and ā a tuple from X.

Remark. If ϕ(x̄) is quantifier-free and A ⊆ B, then ϕ(A) = ϕ(B) ∩ Ak. Hence, if
B ⊧ ∀x̄ϕ(x̄), then A ⊧ ∀x̄ϕ(x̄). Further, if π ∶ A→a B and ā ∈ ϕ(A), then π(ā) ∈ ϕ(B).

Theories

Let L be a language and T be an L-theory, i.e., a set of L-sentences also called axioms.
The theory of A is

Th(A) ∶= {ϕ ∣ ϕ is an L-sentence and A ⊧ ϕ}.

We say A satisfies T if A ⊧ T , i.e., T ⊆ Th(A); if such A exists, we call T is satisfiable.
Two L-theories T,T ′ are equivalent, symbolically T ≡ T ′, if they have the same models.
The class of L-structures satisfying T is axiomatized by T . A class of L-structures is
axiomatizable if it is axiomatized by some L-theory. A class of L-structures is elementary
if it is axiomatized by some finite L-theory, equivalently, by {ϕ} for some L-sentence ϕ.

Two L-structures A,B are elementary equivalent, symbolically A ≡ B, if Th(A) =
Th(B); e.g., ≅ implies ≡. An L-theory T is complete if it is satisfiable and its models
are pairwise elementarily equivalent. his happens if and only if for all L-sentences ϕ,
either T proves ϕ or T proves ¬ϕ (and not both). That T proves ϕ is written T ⊢ ϕ and
characterized as follows – for this course this can be taken as a definition.

Completeness theorem Let T be an L-theory and ϕ an L-formula. Then T ⊢ ϕ if and
only if A ⊧ ϕ[β] for all L-structures A with A ⊧ T and all assignments β in A.

Remark. Let T be an L-theory.

1. Let ϕ(x̄, ȳ) be an L-formula and c̄ be a tuple of constants outside L. Then T ⊢ ϕ(c̄, ȳ)
if and only if T ⊢ ∀x̄ȳϕ(x̄, ȳ).

2. T is satisfiable if and only if it is consistent, i.e., T /⊢ ¬x = x.

The proof of the completeness theorem implies

Compactness theorem Let T be an L-theory. Then T is satisfiable if and only if every
finite subset of T is satisfiable.

This could be called the fundamental theorem of model theory. We shall give a ‘direct’
proof, sidestepping the formal notion of proof.
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Algebraic theories

1. The language of (additively written) groups is LGr ∶= {+,−,0} for a binary function
symbol +, a unary function symbol − and a constant 0. We use infix notation and
write (t+s) for LGr-terms t, s instead +ts, The theory of groups contains (the universal
closures of)

x + (y + z) = (x + y) + z, x + 0 = x, 0 + x = x, x + (−x) = 0, (−x) + x = 0.

2. The theory of abelian groups contains additionally x + y = y + x.
3. For n > 0 write nx for the term x +⋯ + x (n times) where we omit parenthesis as is

usual. We extend the notation to integers setting 0x ∶= 0 and (−n)x ∶= n(−x) (where
− ∈ L on the r.h.s.). The theory of divisible abelian groups is the theory of abelian
groups plus ∃y x = ny for every n > 0.

4. The theory of ordered abelian groups has language LGr ∪ {<} for a binary relation
symbol < and is the theory of abelian groups plus

¬x < x, (x < y ∧ y < z) → x < z, x < y → x + z < y + z.

5. The theory of divisible ordered abelian groups is the union of the previous two theories.

6. The language of rings is LRing ∶= LGr∪{⋅,1} for ⋅ a binary function symbol (with infix
notation) and a constant 1. The theory of (commutative unitary) rings is the theory
of abelian groups plus (omitting parentheses as usual)

x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z, x ⋅ 1 = x, x ⋅ y = y ⋅ x, x ⋅ (y + z) = x ⋅ y + x ⋅ z.

7. The theory integral domains is the theory of rings plus

¬0 = 1, x ⋅ y = 0→ (x = 0 ∨ y = 0)

8. The theory of fields is the theory of rings plus

¬0 = 1, ¬x = 0→ ∃y x ⋅ y = 1.

9. The theory of ordered fields is the theory of fields plus

¬x < x, (x < y ∧ y < z) → x < z
x < y → x + z < y + z, (x < y ∧ 0 < z) → x ⋅ z < y ⋅ z.

By a group, abelian group, etc. we mean a model of the corresponding theory.



Chapter 1

Ordinals and cardinals

This chapter is a crash course in set theory, developed naively, i.e., not axiomatically. We
treat set theory as just another mathematical theory of a certain class of objects, and are
not concerned with its philosophical role as a foundation of mathematics.

1.1 Orders

In this section we consider the language L ∶= {<} for a binary relation symbol <. An L-
structure is a pair A = (A,<A) for A a nonempty set and <A⊆ A2. We use infix notation
and write x < y instead < xy. Given an {<}-structure A and a, b ∈ A (the universe of A),
we similarly write a <A b instead (a, b) ∈<A, and a ⩽A b means a <A b or a = b.

Definition 1.1. An {<}-structure A is a partial order if it is irreflexive and transitive; this
means, respectively, that it satisfies ∀x ¬ x < x and ∀xyz((x < y∧y < z) → x < z). A linear
order additionally satisfies ∀xy(x = y ∨ x < y ∨ y < x).

Let A be a partial order and B ⊆ A. An element b ∈ B is minimal (in B) if there does
not exist b′ ∈ B with b′ <A b. A is well-founded if every ∅ ≠ B ⊆ A has minimal elements. A
well-order is a well-founded linear order.

Examples 1.2.

1. (A,<A) for <A∶= ∅ is a partial order where all elements are both minimal and maximal.

2. Throughout this chapter we let N,Z,Q,R denote the familiar linear orders with uni-
verses N,Z,Q,R, respectively. Each is a substructure of the next. None has maximal
elements. N is a well-order. They are pairwise non-isomorphic. The first 3 are
pairwise non-elementary equivalent. We shall see later that Q ≡R (Example 3.13).

Remark 1.3. Let A be a partial order.

1. If ∅ ≠ B ⊆ A then B = (B,<A ∩B2) ⊆ A is a partial order. It is a linear order or a
well-order if A is.

1



CHAPTER 1. ORDINALS AND CARDINALS 2

2. The {<}-structure B ∶= (B,<B) with B ∶= A and <B∶=⩽A is reflexive (satisfies ∀x x <
x), transitive and anti-symmetric (satisfies ∀xy((x < y ∧ y < x) → x = y). Every such
structure B comes in this sense from a partial order A.

3. A is well-founded if and only if in A there is no infinite descending sequence

. . . <A a2 <A a1 <A a0

of elements a0, a1, . . . ∈ A. Indeed: If a0, a1, . . . is such a sequence, then B ∶=
{a0, a1, . . .} has no minimal element. Conversely, assume ∅ ≠ B ⊆ A has no mini-
mal element. Choose a0 ∈ B. Since a0 is not minimal in B, there is a1 ∈ B with
a1 <A a0. Continue.

4. Finite partial orders are well-founded.

5. For a set X, (P (X),⊊) is a partial order. It is well-founded if and only if X is finite.

Proof. If X is infinite, there are pairwise distinct x0, x1 . . . ∈ X. Then {x0, x1, . . .} ⊋
{x1, x2, . . .} ⊋ {x2, x3, . . .} ⊋ . . . is decreasing in (P (X),⊊).

Exercise 1.4. Show that a well-order is infinite if and only if it contains an infinite
increasing sequence.

Definition 1.5. Let A,B be partial orders. The ordered sum A +B of A and B has
universe ({0}×A)∪({1}×B) and interprets < setting (i, c) <A+B (i′, c′) if and only if i < i′,
or, i = i′ = 0 and c <A c′, or, i = i′ = 1 and c <B c′.

The (anti-lexicographic) product A×B of A and B has universe A×B and interprets <
setting (a′, b′) <A×B (a, b) if and only if b′ <B b, or, b′ = b and a′ <A a.

Intuitively, A +B is obtained by placing B on top of A; and A ×B is obtained by
replacing every b ∈ B by a copy of A.

Example 1.6. N ×Q /≅ Q ×N. Indeed, the latter is dense (satisfies ∀xy(x < y → ∃z(x <
z ∧ z < y))), the former is not.

Remark 1.7. Let A,B be partial orders.

1. A +B,A ×B are partial orders.

2. If A,B are linear, then so are A +B,A ×B.

3. If A,B are linear or well-founded, then so are A +B,A ×B.

Proof. For A +B this is easy to see. For A ×B, let ∅ ≠ X ⊆ A × B. Since B is
well-founded, there is a minimal element b0 of {b ∈ B ∣ (a, b) ∈ X for some a ∈ A}.
Since A is well-founded there is a minimal element a0 of {a ∈ A ∣ (a, b0) ∈ X}. Then
(a0, b0) is minimal in X.
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Exercise 1.8 (Order arithmetic). Let A,B,C be partial orders. Show

(A +B) + C ≅ A + (B + C),
(A ×B) × C ≅ A × (B × C),
A × (B + C) ≅ (A ×B) + (A × C).

Exercise 1.9. For a partial order A and a ∈ A, let A<a be the substructure with universe
A<a ∶= {a′ ∈ A ∣ a′ <A a}; it is undefined if this set is empty, i.e., a is minimal; A⩽a is
similarly explained. For partial orders A,B and (a, b) ∈ A ×B, show

(A ×B)<(a,b) ≅ (A ×B<b) +A<a,

if neither a nor b are minimal (in A resp. B). What if one of a, b is minimal?

Definition 1.10. Let A be a linear order with a minimal element 0 ∈ A and B be another
linear order. The {<}-structure AB has universe

A(B) ∶= {f ∶ B → A ∣ supp(f) is finite}

where supp(f) ∶= {b ∈ B ∣ f(b) ≠ 0}. It interprets < setting f <AB
g if and only if there is

b ∈ B such that f(b) <A g(b) and f(b′) = g(b′) for all b′ ∈ B with b <B b′.
Example 1.11. Let 2 ∶= ({0,1},{(0,1)}). Then 2N consists of infinite binary sequences
that are eventually 0. To determine whether f <2N g look for the maximal position where
the functions differ: there should be a 1 in g and a 0 in f . E.g.

f = 11011000100101101011000⋯
g = 01011110100011101011000⋯

Then, 2N ≅N via the isomorphism f ↦ ∑i∈N f(i) ⋅ 2i; note the sum is finite.

Exercise 1.12. Let A,B,C be linear orders. Show

AB+C ≅ AB ×AC,

AB×C ≅ (AB)C.

Lemma 1.13. If A,B are well-orders, then so is AB.

Proof. It is straightforward to check that AB is a linear order. Let ∅ ≠ X ⊆ A(B). If the
function constantly 0 is in X, it is minimal in X and we are done.

Otherwise, supp(f) ≠ ∅ for all f ∈ X. For f ∈ X, let b0
f be the maximal element of

supp(f) and let b0 be minimal among these. Let a0 be minimal in {f(b0) ∣ f ∈ X, b0
f = b0}.

It is clear that X0 ∶= {f ∈X ∣ b0
f = b0, f(b0) = a0} is an initial segment of X (i.e., its elements

are smaller than all other elements in X). Hence it suffices to find a minimal element in X0.
If X0 contains the function constantly 0 on B ∖ {b0}, we are done.

Otherwise, supp(f)∖{b0} ≠ ∅ for all f ∈X0. For f ∈X0, let b1
f be the maximal element

of supp(f) ∖ {b0}, and let b1 be minimal among these. Then b1 <B b0. Let a1 be minimal
in {f(b1) ∣ f ∈ X0, b1

f = b1}. Then X1 ∶= {f ∈ X0 ∣ b1
f = b1, f(b1) = a1} is an initial segment

of X0. If X1 contains the function constantly 0 on B ∖ {b0, b1}, we are done.
Otherwise continue. This process eventually stops because b0, b1, . . . is decreasing.
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1.2 Ordinals

For a set X (of sets) we write ⋂X ∶= ⋂x∈X x and ⋃X ∶= ⋃x∈X x. We have ⋃∅ = ∅, and we
consider ⋂∅ to be undefined.

Definition 1.14. A set X is transitive if ⋃X ⊆X. A set α is an ordinal if it is transitive,
and, α = ∅ or (α, ∈α) is a well-order where

∈α∶= {(x, y) ∈ α × α ∣ x ∈ y}.

For an ordinal α we sometimes write < instead of ∈; as before, x ⩽ y means x ∈ y or x = y.

Remark 1.15. X is transitive if and only if x ⊆ X for all x ∈ X, if and only if y ∈ x ∈ X
implies y ∈X for all x, y.

Exercise 1.16. α is an ordinal, then so is α+ ∶= α ∪ {α}. It has maximal element α.

Examples 1.17. The sets

0 ∶= ∅, 1 ∶= {∅}, 2 ∶= 1 ∪ {1} = {∅,{∅}}, . . .

are ordinals. We shall usually omit the underlining, and, in particular, write 0 for ∅.

Remark 1.18. Let α,β be ordinals.

1. If α ≠ 0, then 0 ∈ α (it is the minimal element of α).

2. α ∉ α (by irreflexivity).

3. If x ∈ α, then x = {y ∈ α ∣ y < x} (since α is transitive).

4. If x ∈ α, then x is an ordinal.

Indeed: z ∈ y ∈ x implies z ∈ x (transitivity of <=∈), so x is transitive and ∈x=∈α
∩(x × x); thus, x = 0 or (x, ∈x) ⊆ (α, ∈α), so (x, ∈x) is a well-order (see Remark 1.7).

5. β ⊆ α if and only if β = α or β ∈ α. We write α ⩽ β for α ⊆ β and α < β for α ∈ β.

Proof. ⇐ is clear since α is transitive. ⇒∶ assume β ⊊ α and let x be minimal in
α ∖ β. Then x = {y ∈ α ∣ y < x} ⊆ β. We are left to show β ⊆ {y ∈ α ∣ y < x}. Let
y ∈ β and assume y /< x. As y ≠ x (since y ∈ β) and < is linear, we have x < y. Then
x ∈ y ∈ β, so x ∈ β (being transitive), a contradiction.

Lemma 1.19. Let X be a nonempty set of ordinals. Then ⋂X = ⋂α∈X α is the smallest
element of X (i.e., ⋂X ∈X and ⋂X ⩽ α for all α ∈X).

Proof. β ∶= ⋂X is an ordinal because intersections of transitive sets are transitive, and
substructures of well-orders are well-orders. Clearly, β ⊆ α for all α ∈ X. We have to
show β ∈ X: otherwise β ∈ α for all α ∈ X by Remark 1.18 (5), so β ∈ β contradicting
Remark 1.18 (2).



CHAPTER 1. ORDINALS AND CARDINALS 5

Theorem 1.20. Let α,β be ordinals. Then either α = β, or β ∈ α, or α ∈ β.

Proof. Clearly, no two of these conditions can hold: e.g. α ∈ β and β ∈ α implies β ∈ β
(since β is transitive), contradicting Remark 1.18 (2). To show at least one holds, apply
the previous lemma on X ∶= {α,β}. Then α ∩ β equals α or β. Hence α ⊆ β or β ⊆ α and
Remark 1.18 (5) implies the claim.

Corollary 1.21. Transitive sets of ordinals are ordinals.

Proof. Linearly ordered by ∈ by the theorem and well-founded by Lemma 1.19.

Lemma 1.22. Let X be a set of ordinals. Then ⋃X = ⋃α∈X α is an ordinal and for all
ordinals γ < ⋃X there is α ∈X such that γ < α. We write supα∈X α ∶= ⋃X.

Proof. This follows from the corollary: ⋃X is transitive since it is a union of transitive
sets, and its elements are ordinals by Remark 1.18 (4).

Definition 1.23. An ordinal α ≠ 0 is a successor if α = β+ = β ∪ {β} for some ordinal β.
Otherwise it is a limit.

Examples 1.24. All n for n ∈ N ∖ {0} are successors. ω ∶= {n ∣ n ∈ N} = ⋃{n ∣ n ∈ N} is a
limit ordinal. We have N ≅ (ω, ∈ω) via n↦ n.

Exercise 1.25. Show that an ordinal λ ≠ 0 is a limit if and only if λ = ⋃λ. Show ω is the
set of all finite ordinals.

Lemma 1.26. Let α,β be ordinals and f ∶ (α,<) → (β,<) be an embedding. Then γ ⩽ f(γ)
for all γ ∈ α, so α ⩽ β. If f is bijective, then α = β and f is the identity. In particular,
(α,<) is rigid in that its only automorphism is the identity.

Proof. Assume there exists γ ∈ α with f(γ) < γ. Let γ0 be minimal such. Since f is an
embedding, f(f(γ0)) < f(γ0) which contradicts minimality.

This implies α ⩽ β. If f is bijective, then both f and f−1 are isomorphisms. Hence f−1 is
an embedding, so β ⩽ α and thus α = β. Further, γ ⩽ f−1(γ), so f(γ) ⩽ f(f−1(γ)) = γ.

Theorem 1.27 (Order types). Every well-order A is isomorphic to (α, ∈α) for some ordinal
α, called its order type. The ordinal and the isomorphism are unique.

Proof. Uniqueness: assume π,π′ are isomorphisms from A onto (α, ∈α), (α′, ∈α′). Then
π′ ○ π−1 ∶ (α, ∈α) ≅ (α′, ∈α′). By the lemma, α = α′ and π′ ○ π−1 is the identity, i.e., π = π′.

To see existence, recall the notations A⩽a,A<a from Exercise 1.9. Call a ∈ A good if
there is πa ∶ A⩽a ≅ (αa, ∈) for some ordinal αa; not good means bad. We claim all a ∈ A
are good. Otherwise there is a minimal bad b ∈ A. Clearly, b is not the minimal element
of A. Note a′ <A a <A b implies that A⩽a′ is an initial segment of A<a. As an isomorphism,
πa maps A⩽a′ onto an initial segment of αa. This is an ordinal. By uniqueness, πa agrees
with πa′ on A⩽a′ . It follows that a↦ πa(a) is an isomorphism from A<b onto (β, ∈β) where
β ∶= supa<Abαa. Extend to an isomorphism from A⩽b onto β+ by mapping b to β. Hence b
is good, a contradiction.

If all a ∈ A are good, as before a↦ πa(a) shows A ≅ (α, ∈α) for α ∶= supa∈Aαa.
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1.3 Ordinal arithmetic

Definition 1.28. Let α,β be non-empty ordinals.

1. α + β is the order type of (α, ∈α) + (β, ∈β); further, we define 0 + α = α + 0 = α.

2. α ⋅ β is the order type of (α, ∈α) × (β, ∈β); further, we define 0 ⋅ α = α ⋅ 0 = 0.

3. αβ is the order type of (α, ∈α)(β,∈β); further, we define α0 = 00 = 1 and 0α = 0.

We omit parentheses as usual: e.g. α ⋅ βγ + δ stands for ((α ⋅ (βγ)) + δ.

Remark 1.29 (Ordinal addition). Let α,β, γ be ordinals.

1. + is associative (Exercise 1.8), and α + 1 = α+.

2. Successor recursion: α + β+ = (α + β)+ (since α + (β + 1) = (α + β) + 1).

3. α < β if and only if α + δ = β for some ordinal δ > 0.

Indeed, for ⇒ take δ such that (δ, ∈δ) ≅ (β ∖α,<) and check (α, ∈α) + (δ, ∈δ) ≅ (β, ∈β).
Further, δ is unique by left cancellation below.

4. Right monotonicity: If β < γ, then α + β < α + γ.

Indeed, given β < γ, choose δ > 0 with β + δ = γ; then α + γ = (α + β) + δ > α + β.

5. Left cancellation: if α + β = α + γ, then β = γ.

Indeed, β ≠ γ implies β < γ or γ < β by Theorem 1.20; then apply the previous.

Remark 1.30 (Ordinal multiplication). Let α,β, γ be ordinals.

1. 1 is both left- and right-neutral, and ⋅ is associative (Exercise 1.8).

2. Left distributivity: α ⋅ (β + γ) = α ⋅ β + α ⋅ γ (Exercise 1.8).

3. Successor recursion: α ⋅ (β+) = α ⋅ β + α.

4. Right monotonicity: if α ≠ 0 and β < γ, then α ⋅ β < α ⋅ γ.

Indeed write γ = β + δ for some δ > 0 and note α ⋅ δ > 0 since both α, δ ≠ 0. By left
distributivity and right monotonicity of +: α ⋅ γ = α ⋅ β + α ⋅ δ > α ⋅ β + 0 = α ⋅ β.

5. Left cancellation: if α ≠ 0 and α ⋅ β = α ⋅ γ, then β = γ.

Indeed, if β ≠ γ, then β < γ or γ < β by Theorem 1.20; then apply the previous.

Exercise 1.31. Let α ⩾ ω. Commutativity fails: 1 + α ≠ α + 1 and 2 ⋅ ω ≠ ω ⋅ 2. Right
cancellation fails: 0 + α = 1 + α. Right distributivity fails: (α + 1) ⋅ 2 ≠ α ⋅ 2 + 2.

Proposition 1.32 (Euclidian division). Let α,β be ordinals and α ≠ 0. Then there exists
a unique pair (ρ,µ) of ordinals such that ρ < α and β = α ⋅ µ + ρ.
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Proof. Uniqueness: assume α⋅µ+ρ = α⋅µ′+ρ′. By left cancellation, it suffices to show µ = µ′.
Otherwise, say µ < µ′, so µ+ ⩽ µ′. Then we get a contradiction using right monotonicity:
α ⋅ µ + ρ < α ⋅ µ + α = α ⋅ µ+ ⩽ α ⋅ µ′ ⩽ α ⋅ µ′ + ρ′.

Existence: for β = 0, the claim is trivial, so assume β > 0. Note γ ↦ (0, γ) is an
embedding from (β, ∈β) into A ∶= (α, ∈α) × (β, ∈β). Hence β ⩽ α ⋅ β by Lemma 1.26. If =,
set (ρ,µ) ∶= (0, β). Otherwise β ∈ α ⋅ β. Let f ∶ (α ⋅ β, ∈α⋅β) ≅ A and set (ρ,µ) ∶= f(β). Not
both ρ,µ are 0. We distinguish cases and use Exercise 1.9:

1. ρ ≠ 0 and µ ≠ 0. Then A<(ρ,µ) ≅ (α, ∈α) × (β, ∈β)<µ + (α, ∈α)<ρ.
2. ρ = 0 and µ ≠ 0. Then A<(ρ,µ) ≅ (α, ∈α) × (β, ∈β)<µ.

3. ρ ≠ 0 and µ = 0. Then A<(ρ,µ) ≅ (α, ∈α)<ρ.

The l.h.s. has order type β and the r.h.s. has order type α⋅µ+ρ in all cases. By Lemma 1.26,
β = α ⋅ µ + ρ.

Remark 1.33 (Ordinal exponentiation). Let α,β, γ be ordinals.

1. αβ+γ = αβ ⋅ αγ and (αβ)γ = αβ⋅γ (Exercise 1.12).

2. Successor recursion: αβ
+ = αβ ⋅ α (since αβ+1 = αβ ⋅ α1 and α1 = α).

3. Right monotonicity: if α > 1 and β < γ, then αβ < αγ.
Indeed, write β + δ = γ for some δ > 0, so αγ = αβ ⋅ αδ. Now, αδ > 1 since the set α(δ)

has more than one element. Right monotonicity of ⋅ gives αβ ⋅ αδ > αβ ⋅ 1 = αβ.

4. Left cancellation: if α > 1 and αβ = αγ, then β = γ.

Proposition 1.34 (Limit recursion). Let α,λ be ordinals and λ a limit.

1. α + λ = supβ<λ(α + β).

2. α ⋅ λ = supβ<λ(α ⋅ β).

3. αλ = supβ<λ(αβ).

Proof. ⩾ is clear in each case. We prove ⩽ for each case.
1: It suffices to find for γ < α +λ some β < λ such that γ < α + β. We can assume γ ⩾ α

and write γ = α+ δ for some δ. Then δ < λ (otherwise δ ⩾ λ by Theorem 1.20, so γ ⩾ α+λ),
and we set β ∶= δ+. Note δ+ < λ since δ+ ⩽ λ and λ is a limit.

2: It suffices to find for γ < α ⋅λ some β < λ such that γ < α ⋅β. Euclidian division gives
(µ, ρ) with γ = α ⋅ µ + ρ and ρ < α. Then µ < λ. We set β ∶= µ+ < λ and argue by right
monotonicity of +: γ < α ⋅ µ + α = α ⋅ (µ+).

3: It suffices to find for f in (α, ∈α)(λ,∈λ) =∶ A some β < λ such that A⩽f embeds
into (α, ∈α)(β,∈β) – then the order type of A⩽f is ⩽ αβ by Lemma 1.26. We can assume
supp(f) ≠ ∅ and set β ∶= (max supp(f))+. Note every g ⩽A f is a function g ∶ λ→ α that is
constantly 0 on arguments ⩾ β. The desired embedding just restricts g to β.

Exercise 1.35 (Continuity). This proposition states that the operations are in a natural
sense continuous in their second argument. Explain why.
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1.4 Cardinals

We intend to compare the sizes of arbitrary sets X,Y . The intuition is that the size of
X is at most the size of Y if there is an injection from X into Y , equivalently there is
a surjection from Y onto X. That X,Y have the same size should mean that they are
bijective (there is a bijection from X onto Y ). The following is vital for this idea.

Theorem 1.36 (Schröder-Bernstein). Let X,Y be sets and assume there are injections f
from X into Y and g from Y into X. Then there is a bijection from X onto Y .

Proof. For x in X define the preimage sequence

g−1(x), f−1(g−1(x)), g−1(f−1(g−1(x))), . . .

as long as it is defined. E.g., this is the empty sequence if x is not in the image of g. Then

h(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

g−1(x) if the preimage sequence of x has odd length,

f(x) if the preimage sequence of x has even or infinite length.

defines a bijection from X onto Y . Injectivity is easy to see. We verify surjectivity: given
y ∈ Y , set x ∶= g(y). Then the preimage sequence of x is not empty. If its length is odd, then
h(x) = g−1(x) = y. If it is even or infinite, then it has length at least 2, so x′ ∶= f−1(y) exists
and the length of its preimage sequence is also even or infinite; hence h(x′) = f(x′) = y.

The following shows that our desired notion of ‘size’ is non-trivial for infinite sets.

Proposition 1.37 (Cantor). Let X be a set. There is no injection from P (X) into X.

Proof. Otherwise there is a surjection f fromX onto P (X). LetD ∶= {x ∈X ∣ x ∉ f(x)} and
choose d ∈X such that f(d) =D. Then d ∈D if and only if d ∉ f(d) =D, contradiction.

Definition 1.38. An ordinal κ is a cardinal if there is no injection from κ into a smaller
ordinal.

Remark 1.39.

1. All n for n ∈ N and ω are cardinals.

2. If X is a set of cardinals, then supκ∈X κ = ⋃X is a cardinal.

Proof. Assume f is an injection from λ ∶= supκ∈X κ into α < λ. Then α < κ for some
κ ∈X, so the restriction of f to κ is an injection into α < κ. But κ is a cardinal.

The following shows that arbitrarily large cardinals exist.

Definition 1.40. For a set X let W (X) be the set of all well-orders A with A ⊆ X.
Hartog’s aleph H(X) of X is the set of order types of the well-orders in W (X).
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Theorem 1.41 (Hartog). For every set X, H(X) is an ordinal, namely the smallest such
that there is no injection of H(X) into X. In particular, H(X) is a cardinal.

Proof. Assume α < β ∈ H(X), say f ∶ (β, ∈β) ≅ A ∈W (X). Then the restriction f ↿ α (has
image in W (X) and) shows α ∈ H(X). Thus, H(X) is a transitive set of ordinals, so an
ordinal itself by Corollary 1.21.

If there is an injection f from H(X) into X, then f ∶ H(X) ≅ A ∈W (X) where A has
as universe im(f) and as order the one imported by f (i.e., {(x, y) ∣ f−1(x) ∈ f−1(y)}).
Hence H(X) ∈ H(X), contradicting Remark 1.18 (2).

Corollary 1.42. For every ordinal α, H(α) is the smallest cardinal > α.

We now enumerate all infinite cardinals:

Definition 1.43. For every ordinal α define ℵα as follows.

1. ℵ0 ∶= ω,

2. ℵβ+1 ∶= H(ℵβ),
3. ℵλ ∶= supβ<λ ℵβ if λ is a limit.

Exercise 1.44. ℵα is a cardinal ⩾ α for every ordinal α, and for every cardinal κ ⩾ ω there
exists an ordinal α such that ℵα = κ.

Exercise 1.45. Show there exist arbitrarily large cardinals κ with ℵκ = κ.

Hint: Given α, take the supremum of ℵα,ℵℵα ,ℵℵℵα , . . ..

1.5 Cardinal arithmetic

Definition 1.46. A set X is well-orderable if there exists a well-order with universe X. In
this case, the cardinality ∣X ∣ of X is the least order-type of a well-order with universe X.
If ∣X ∣ = ℵ0, X is countable; if ∣X ∣ ⩽ ℵ0, X is at most countable; if ∣X ∣ > ℵ0, X is uncountable.

Remark 1.47.

1. ∣X ∣ is a cardinal for every well-orderable set X

2. A set X is well-orderable if and only if X is bijective to some ordinal, if and only if
there is an injection of X into some ordinal.

Indeed, if f ∶X → α is an injection, then {(x, y) ∈X2 ∣ f−1(x) ∈ f−1(y)} is a well-order
on X.

3. Being finite means being bijective to {0, . . . , n − 1} for some n ∈ N; hence, finite sets
are well-orderable.

4. N ×N is well-orderable because it is bijective to N, hence to ω.
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5. The set of finite binary strings is well-orderable since it can be injected into N (hence
into ω): put a 1 in front and view the result as the binary expansion of a natural.

Exercise 1.48. Let X,Y be well-orderable. There is an injection from X into Y if and
only if ∣X ∣ ⩽ ∣Y ∣. There is a bijection from X onto Y if and only if ∣X ∣ = ∣Y ∣.

Thus, the notion of cardinality realizes our initial idea how to measure the size of sets –
but only for well-orderable ones. This begs the question which sets are well-orderable. The
so-called axiom of choice, or equivalently, Zorn’s lemma imply Zermelo’s theorem stating
that all sets are well-orderable. Zermelo’s theorem is actually equivalent to Zorn’s lemma.
These remarks can be made precise only within an axiomatic development of set theory as
a foundation of mathematics which is outside the scope of this course.

Our development sofar did not use Zorn’s lemma but we adopt it from now on (as is
usual nowadays). We recall its statement and use it to prove Zermelo’s theorem.

Definition 1.49. A partial order A is inductive if every chain X in A has an upper bound:
an element a ∈ A such that x ⩽A a for every x ∈X. Here, a chain in A is a linearly ordered
subset, i.e., a nonempty subset X ⊆ A such ⟨X⟩A ⊆ A is a linear order.

Examples 1.50. Finite partial orders are trivially inductive. (P (X),⊆) is inductive for
every set X. The linear orders N,Z,Q,R are not inductive. The set of consistent theories
in a given language, the set of linearly independent subsets of a given vectorspace, the set
of proper ideals of a given unitary ring, all partially ordered by ⊆, are inductive.

Zorn’s lemma Inductive partial orders have maximal elements.

Theorem 1.51 (Zermelo). Every set is well-orderable.

Proof. Let X be a set and consider the set F of all injections f ∶ α → X where α is an
ordinal (note α < H(X)). Consider the partial order (F,⊆). For a chain C note ⋃C is an
injection whose domain is the union of the domains of functions in C. This is an ordinal
by Lemma 1.22. Hence, ⋃C ∈ F is an upper bound of C. Thus, (F,⊆) is inductive. By
Zorn’s lemma it contains a maximal element f .

We are left to show that f is surjective. Otherwise choose x ∈ X ∖ im(f) and let
α ∶= dom(f). Then extend f mapping α to x. This defines an injection with domain α+,
contradicting the maximality of f .

We define arithmetic operations on cardinals. They should not be confused with their
ordinal variants although we use the same notation. Again we omit parentheses as usual.

Definition 1.52. Let κ,λ be cardinals.

1. κ + λ ∶= ∣({0} × κ) ∪ ({1} × λ)∣.
2. κ ⋅ λ ∶= ∣κ × λ∣.
3. κλ ∶= ∣{f ∣ f ∶ λ→ κ}∣.
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Remark 1.53. Let κ,λ,µ be cardinals.

1. +, ⋅ are associative and commutative with neutral elements 0, respectively 1.

2. Distributive law: κ ⋅ (λ + µ) = κ ⋅ λ + κ ⋅ µ.

3. κλ+µ = κλ ⋅ κµ, κλ⋅µ = (κλ)µ, (κ ⋅ λ)µ = κµ ⋅ λµ.

Proof. These are easy to see. E.g., κλ⋅µ is bijective to the set of functions f ∶ λ×µ→ κ.
Such f and α ∈ µ determines F (α) ∶ λ→ κ given by β ↦ f(β,α). Thus f determines
a function α ↦ F (α) from µ into the set of functions from λ to κ. The set of such
functions is bijective to (κλ)µ.

4. κ < 2κ. Indeed: By Cantor it suffices to show that P (κ) is bijective to 2κ: map X ⊆ κ
to its characteristic function “if α ∈X then 1, else 0”.

Exercise 1.54. For sets X,Y let XY denote the set of functions from Y into X. Show
∣Y ∣ < ∣XY ∣ if ∣X ∣ > 1. Show ∣P (N)∣ = ∣{0,1}N∣ = ∣R∣ = ∣NN∣.

Theorem 1.55 (Hessenberg). κ ⋅ κ = κ for all infinite cardinals κ.

Proof. It suffices to show ⩽. Assume not, and let α be minimal such that ℵα < ℵα ⋅ ℵα.
Define ≺ on ℵα × ℵα setting (β, γ) ≺ (β′, γ′) if and only if one of the following holds:

– max{β, γ} < max{β′, γ′}, or,

– max{β, γ} = max{β′, γ′} and β < β′, or,

– max{β, γ} = max{β′, γ′} and β = β and γ < γ.

It is easy to check that this defines a well-order. Let γ be its order type and f ∶ (γ, ∈γ) ≅
(ℵα × ℵα,≺). It suffices to show γ ⩽ ℵα.

Otherwise ℵα ∈ γ. Let f(ℵα) = (β0, γ0) and δ0 ∶= max{β0, γ0}+. Since cardinals are
limit ordinals, δ0 < ℵα. Then f ∶ ℵα → δ0 × δ0 because pairs (β, γ) with max{β, γ} ⩾ δ0 are
≻ (β0, γ0). Hence ℵα ⩽ ∣δ0 × δ0∣. But ∣δ0∣ < ℵα, so ∣δ0∣ = ∣δ0∣ ⋅ ∣δ0∣ = ∣δ0 × δ0∣ – contradiction.

Corollary 1.56. Let κ ⩾ ω and λ > 0 be cardinals. Then κ + λ = κ ⋅ λ = max{κ,λ}.

Proof. Let µ ∶= max{κ,λ}. Then µ ⩽ κ+λ ⩽ µ+µ = 2 ⋅µ ⩽ µ ⋅µ = µ by Hessenberg. Similarly,
µ ⩽ κ ⋅ λ ⩽ µ ⋅ µ = µ.

Exercise 1.57.

1. LetX,Y be nonempty sets, at least one infinite. Show ∣X∪Y ∣ = ∣X×Y ∣ = max{∣X ∣, ∣Y ∣}.

2. Let (Xi)i∈I be a family of sets. Show ∣ ⋃i∈IXi∣ ⩽ max{supi∈I ∣Xi∣, ∣I ∣}.

3. (König) Assume (κi)i∈I is a family of cardinals such that ∣Xi∣ < κi. Show

∣ ⋃i∈IXi∣ < ∣∏i∈I κi∣.
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1.6 Cofinality and cardinal exponentiation

We saw in the previous section that cardinal addition and multiplication are trivial. We
introduce the key concept to understand exponentiation:

Definition 1.58. Let A be a linear order. The cofinality cf(A) of A is the smallest
ordinal α such that there exists an unbounded function f ∶ α → A, i.e., for all a ∈ A there
is β ∈ α such that a ⩽A f(β). We write cf(α) ∶= cf((α, ∈α)) for ordinals α.

Remark 1.59.

1. cf(A) ⩽ ∣A∣ for every linear order A.

2. cf(α+) = 1 for every ordinal α: map 0 to the maximal element α.

3. cf(A) is a cardinal for every linear order A because if f ∶ α → A is unbounded and
g ∶ ∣α∣ → α is a bijection, then f ○ g is unbounded.

Exercise 1.60. cf(ℵλ) = cf(λ) for every limit ordinal λ.

Intuitively, cf(A) is the minimal number of steps required to ‘climb up’ A:

Lemma 1.61. Let A be a linear order. Then cf(A) is the smallest ordinal α such that
there is an unbounded embedding f from (α, ∈α) into A.

Proof. It suffices to find f ∶ (α, ∈α) →a A for some α ⩽ cf(A) =∶ κ. Let g ∶ κ → A be
unbounded. Set X ∶= {β ∈ κ ∣ g(γ) <A g(β) for all γ < β}. Then the restriction of g to X is
unbounded: given a ∈ A there is β ∈ κ such that a ⩽A g(β) and a minimal such β is in X.

Let α be the order type of (X,<) and choose h ∶ (X,<) ≅ (α, ∈α). Then f ∶= g ○ h−1 ∶
α → A is unbounded. Since h−1 ∶ (α, ∈α) →a (κ, ∈κ), Lemma 1.26 implies α ⩽ κ.

Corollary 1.62. cf(A) = cf(cf(A)) for every linear order A.

Proof. Let κ ∶= cf(A) and λ ∶= cf(cf(A)). By Remark 1.59 (1), κ ⩾ λ. Conversely, the
previous lemma gives unbounded embeddings f ∶ (λ, ∈λ) → (κ, ∈κ) and g ∶ (κ, ∈κ) → A.
Then g ○ f is an unbounded embedding of (λ, ∈λ) into A, so λ ⩽ κ.

Definition 1.63. A cardinal κ is regular if cf(κ) = κ, and otherwise singular.

Proposition 1.64. ℵα+ is regular for every ordinal α.

Proof. Assume κ ∶= cf(ℵα+) < ℵα+ , so κ ⩽ ℵα. Let f ∶ κ → ℵα+ be unbounded. Then

⋃β<κ f(β) = ℵα+ > ℵα. But by Exercise 1.57 (2), ∣ ⋃β<κ f(β)∣ ⩽ max{supβ<κ ∣f(β)∣, κ} ⩽
max{ℵα, κ} = ℵα, a contradiction.

Remark 1.65. The usual axioms of set theory (assuming their consistency) do not prove
that there exist weakly inaccessible cardinals: regular ℵλ for limit λ.

Proposition 1.66. cf(2κ) > κ for every cardinal κ.
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Proof. Let λ ∶= cf(2κ) ⩽ κ and assume f ∶ λ → 2κ is unbounded. Then ⋃β∈λ f(β) = 2κ

and ∣f(β)∣ < 2κ for every β < λ. Using Exercise 1.57 (3) and Corollary 1.56, ∣ ⋃β∈λ f(β)∣ <
∣∏β∈λ 2κ∣ = 2κ⋅λ ⩽ 2κ, a contradiction.

Remark 1.67. 2ℵ0 ≠ ℵω. Indeed: cf(2ℵ0) > ℵ0 = cf(ω) = cf(ℵω) (see Exercise 1.60).

Theorem 1.68 (Cardinal exponentiation). Let κ,λ be infinite cardinals.

1. If κ ⩽ λ, then κλ = 2λ.

2. If cf(κ) ⩽ λ ⩽ κ, then κ < κλ ⩽ 2κ.

3. If λ < cf(κ), then κ ⩽ κλ ⩽ 2<κ ∶= supα<κ 2∣α∣.

Proof. 1: 2λ ⩽ κλ ⩽ (2κ)λ ⩽ 2κ⋅λ = 2λ.
2: κλ ⩽ (2κ)λ = 2κ⋅λ = 2κ. For the lower bound, let f ∶ λ → κ be unbounded. Then

κ = ⋃α<λ f(α). Note ∣f(α)∣ ⩽ f(α) < κ. Hence, by Exercise 1.57 (3):

κ = ∣⋃α<λ f(α)∣ < ∣∏α<λ κ∣ = κλ.

3: If κ = ℵ0, this is clear. Assume κ = ℵα+ for some α. Note κ ⩽ 2ℵα and λ ⩽ ℵα. Hence

κ ⩽ κλ ⩽ (2ℵα)λ = 2ℵα⋅λ = 2ℵα = 2<κ.

Now assume κ = ℵα for a limit α, so κ = supβ<α ℵβ. Every f ∶ λ → κ is bounded, so has
image in ℵβ for some β < α. Using Exercise 1.57 (2)

κλ = ∣⋃β<α{f ∣ f ∶ λ→ ℵβ}∣ ⩽ max{∣α∣, supβ<α ℵλβ} ⩽ max{∣α∣, supβ<α 2ℵβ ⋅λ}.

Note λ ⩽ ℵβ for some β < α. Further, ∣α∣ ⩽ α = ⋃β<α β ⊆ ⋃β<α 2ℵβ = 2<κ. Thus

κλ ⩽ max{∣α∣, supβ<α 2ℵβ} = 2<κ.

This theorem does not give complete information. How large is the gap between κ
and 2κ? Of particular interest is the value of 2ℵ0 = ∣R∣ (see Exercise 1.54). Cantor con-
jectured the continuum hypothesis CH: 2ℵ0 = ℵ1. The generalized continuum hypothesis
GCH states 2ℵα = ℵα+1 for every ordinal α. Deep results state that these hypotheses are
independent from the usual axioms of set theory (assuming their consistency).

Exercise 1.69. Assume GCH. Given ordinals α,β determine γ such that ℵℵβα = ℵγ, distin-
guishing cases as in the previous theorem.



Chapter 2

Boolean algebras and ultraproducts

2.1 Boolean algebras

Let LBA ∶= {∪,∼,1} where ∪ is a binary function symbol, ∼ a unary function symbol, and
1 a constant. We use infix notation and write (t ∪ t)′ instead ∪tt′ for LBA-terms t, t′ and
usually omit outer parentheses in terms.. We use the abbreviations

(t ∩ t) ∶=∼ (∼ t∪ ∼ t′), 0 ∶=∼ 1.

Definition 2.1. Boolean algebra is a LBA-structure B that models the theory of Boolean
algebras. This is the set of universal closures of the equations:

1. Commutativity: x ∪ y = y ∪ x.

2. Associativity: (x ∪ y) ∪ z = x ∪ (y ∪ z).
3. Distributivity: x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).
4. Absorption: (x ∪ y) ∩ y = y.

5. Complement: ∼∼ x = x, x∪ ∼ x = 1

Obviously, substructures of Boolean algebras are Boolean algebras. Boolean algebras
fall on every mathematician’s table recognized as such or not:

Examples 2.2.

1. If B ⊧ 1 = 0, then B = {1B} and B is trivial. Indeed, using some rules verified in
Lemma 2.4 below, we have b = b ∪B 0B = b ∪B 1B = 1B for every b ∈ B .

2. For a set X the power set algebra P(X) of X has universe P (X) and interpretations
given by: 1P(X) ∶= X,Y ∪P(X) Z ∶= Y ∪ Z (the union of sets), and ∼P(X) Y = X ∖ Y
for all Y,Z ∈ P (X). If X = ∅, then P(X) is trivial.

3. Let L be a language and A an L-structure. The Boolean algebra D(A)of definable
sets is the substructure of P(A) consisting of the sets ϕ(A) where ϕ(x) is some
L-formula.

14
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4. Let L be a language and T an L theory. Declare formulas ϕ and ψ equivalent if
if T ⊢ (ϕ ↔ ψ). The Lindenbaum algebra L(T ) of T has as universe the set of
equivalence classes ϕ/T for L-formulas ϕ. It interprets 1 by (∀x x = x)/T , and ∪,∼
by (ϕ/T,ψ/T ) ↦ (ϕ ∨ ψ)/T and ϕ/T ↦ ¬ϕ/T .

For n ∈ N, the n-th Lindenbaum algebra Ln(T ) of T is the substructure of L(T )
whose universe consists of ϕ/T for ϕ = ϕ(x0, . . . , xn−1).

5. For a linear order A = (A,<A) with a smallest element. A half-open interval is a set
[a, b) ∶= {c ∈ A ∣ a ⩽A c <A b} or [a,∞) ∶= {c ∈ A ∣ a ⩽A c}. The interval algebra
I(A)of A is the substructure of P(A) whose universe consists of the sets that are
finite unions of disjoint half-open intervals.

6. Let X be a set and τ ⊆ P (X) a topology on X. The Boolean algebra of clopen sets
C(X,τ) of (X,τ) is the substructure of P(X) whose universe consists of the clopen
subsets Y of X (i.e., Y,X ∖ Y ∈ τ).

Exercise 2.3. If A ⊧ T , then there is a homomorphism from L1(T ) into D(A). It is an
isomorphism, if T is complete.

Lemma 2.4. The theory of Boolean algebras proves

1. DeMorgan: ∼ (x ∪ y) =∼ x∩ ∼ y, ∼ (x ∩ y) =∼ x∪ ∼ y.

2. the duals of the equations in Definition 2.1: swap ∩/∪ and 1/0.

3. Idempotencies: x ∪ x = x, x ∩ x = x.

4. Neutralities: x ∪ 0 = x, x ∩ 1 = x, x ∪ 1 = 1, x ∩ 0 = 0.

Proof. Let B be a Boolean algebra. We omit superscripts, and write e.g. a ∪ b instead
a ∪B b. Let a, b, c ∈ B.

1: Using complement: ∼ (a∪ b) =∼ (∼∼ a∪ ∼∼ b) =∼ a∩ ∼ b and ∼ (a∩ b) =∼∼ (∼ a∪ ∼ b) =
(∼ a∪ ∼ b).

2: Commutativity: ∼ a∪ ∼ b =∼ b∪ ∼ a. Apply ∼ to both sides: ∼ (∼ a∪ ∼ b) =∼ (∼ b∪ ∼ a).
This equals dual commutativity: a ∩ b = b ∩ a.

Using complement and DeMorgan: (a ∩ b) ∩ c =∼ (∼ a∪ ∼ b)∩ ∼∼ c =∼ ((∼ a∪ ∼ b)∪ ∼ c).
By associativity: =∼ (∼ a ∪ (∼ b∪ ∼ c)) =∼∼ a∩ ∼ (∼ b∪ ∼ c) = a ∩ (b ∩ c).

Dual distributivity is similar.
Absorption is ∼ (∼ (a ∪ b)∪ ∼ b) = b. Apply ∼ to both sides and use complement:

∼ (a ∪ b)∪ ∼ b =∼ b. Replace a by ∼ a and b by ∼ b: ∼ (∼ a∪ ∼ b)∪ ∼∼ b =∼∼ b. By
complement: ∼ (∼ a∪ ∼ b) ∪ b = b. This equals dual absorption: (a ∩ b) ∪ b = b.

Apply ∼ to complement: ∼ (a∪ ∼ a) = 0. Replace a by ∼ a: a∩ ∼ a =∼ (∼ a∪ ∼∼ a) = 0
3: Plug (a∪a) for a, and a for b in dual absorption: ((a∪a)∩a)∪a = a. By absorption:

(a∪a)∩a) = a. Hence a∪a = a. Using this and complement: a∩a =∼ (∼ a∪ ∼ a) =∼∼ a = a.
4: a ∪ 0 = a ∪ (a∩ ∼ a) by 3, = (∼ a ∩ a) ∪ a by commutativity of ∪ and ∩, = a by dual
absorption. Similarly, a ∩ 1 = a ∩ (a∪ ∼ a) = (∼ a ∪ a) ∩ a = a. Using idempotency:
a ∪ 1 = a ∪ (a∪ ∼ a) = (a ∪ a)∪ ∼ a = a∪ ∼ a = 1. Similarly, a ∩ 0 = 0.
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Exercise 2.5 (Boolean rings). This exercise shows that Boolean algebras are conceptually
equivalent to Boolean rings in algebra: a ring A = (A,+A,−A, ⋅A,0A,1A) is Boolean if a⋅Aa = a
for all a ∈ A. We omit superscripts.

1. Let X be a set. In the power set algebra P(X) define 0 ∶= ∅,1 ∶= X, Y ⋅ Z ∶= Y ∩ Z
and Y +Z ∶= (Y ∖Z)∪(Y ∖Z) (the symmetric difference of Y and Z) for Y,Z ∈ P (X).
Show that (P (X),+,−, ⋅,0,1) is a Boolean ring.

For finite X show it is isomorphic to the ring product Z2 ×⋯ × Z2 (∣X ∣ times) where
Z2 is the Boolean ring of integers modulo 2.

2. Let A be a Boolean ring. Show that commutativity “is automatic” and a = −a for all
a ∈ A. Define a ∪ b ∶= a + b + a ⋅ b and ∼ a ∶= 1 + a. Show (A,∪,∼) is a Boolean algebra
with a ∩ b = a ⋅ b.

3. Conversely, let B be a Boolean algebra. Define a+ b ∶= (a∪ b)∩ ∼ (a∩ b), −a ∶= a and
a ⋅ b ∶= a ∩ b. Show (B,+,−, ⋅,0,1) is a Boolean ring.

2.2 Classification of finite Boolean algebras

Lemma 2.6. Finitely generated Boolean algebras are finite.

Proof. Let B = ⟨A⟩B where A = {a0, . . . , an−1} and n ∈ N. For n = 0, B = {0B,1B} is finite.
Inductively assume n > 0 and B0 ∶= ⟨A ∖ {a0}⟩B = ⟨A ∖ {a0}⟩B0 is finite. It suffices to show
that every c ∈ B is good: there are b, b′ ∈ B0 (where B0 is the universe of B0) such that

c = (b ∩ a0) ∪ (b′∩ ∼ a0).

All elements c ∈ B0 are good because c = c ∩ 1 = c ∩ (a0∪ ∼ a0) = (c ∩ a0) ∪ (c∩ ∼ a0).
Also a0 = (1 ∩ a0) ∪ (0 ∩ a) is good. We are left to show that the set of good elements is
LBA-closed. Clearly, 1 ∈ B0 is good, and closure under ∪ is easy. We show closure under ∼.

Let c be good, say c = (b ∩ a0) ∪ (b′ ∩ a0) for b, b′ ∈ B0, then

∼ c = ∼ (b ∩ a0)∩ ∼ (b′∩ ∼ a0) = (∼ b∪ ∼ a0) ∩ (∼ b′ ∪ a0)
= (∼ b ∩ (∼ b′ ∪ a0)) ∪ (∼ a0 ∩ (∼ b′ ∪ a0))
= (∼ b∩ ∼ b′) ∪ (∼ b ∩ a0) ∪ (∼ a0∩ ∼ b′) ∪ (∼ a0 ∩ a0)

Thus ∼ c is good, as the union of good (∼ b∩ ∼ b′) ∈ B0 and (∼ b ∩ a0) ∪ (∼ a0∩ ∼ b′).

Remark 2.7. For a Boolean algebra B and a, b ∈ B define a ⩽ b if and only if a ∩ b = a,
and a < b if a ⩽ b and a ≠ b. Let a, b ∈ B.

1. ⩽ is reflexive, transitive and anti-symmetric.

Indeed: a ⩽ a since a∩a = a; if a ⩽ b and b ⩽ c, then a∩c = (a∩b)∩c = a∩(b∩c) = a∩b = a;
if a ⩽ b and b ⩽ a, then a = a ∩ b = b ∩ a = b.
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2. (B,<) is a partial order with (unique) minimal element 0 and maximal element 1.

3. a ⩽ b if and only if a∩ ∼ b = 0, if and only if ∼ a ∪ b = 1.

Proof. If a ⩽ b, then a∩ ∼ b = (a ∩ b)∩ ∼ b = a ∩ (b∩ ∼ b) = 0.

If a∩ ∼ b = 0, then ∼ a ∪ b =∼ (a∩ ∼ b) =∼ 0 = 1.

If ∼ a ∪ b = 1, then a = a ∩ (∼ a ∪ b) = (a∩ ∼ a) ∪ (a ∩ b) = a ∩ b, so a ⩽ b.

4. a ⩽ b if and only if ∼ b ⩽∼ a.

Indeed, the l.h.s. is equivalent to a∩ ∼ b = 0, and the r.h.s. to ∼ b∩ ∼∼ a = 0.

5. a ⩽ a ∪ b since a ∩ (a ∪ b) = a (absorption).

Examples 2.8.

1. In a power set algebra P(X) we have ⩽=⊆.

2. In a Lindenbaum algebra L(T ) we have ϕ/T ⩽ ψ/T if and only if (ϕ ∧ψ)/T = ϕ/T ,
if and only if T ⊢ ((ϕ ∧ ψ) ↔ ϕ), if and only if T ⊢ (ϕ→ ψ).

Definition 2.9. An atom of a non-trivial Boolean algebra B is a minimal element of the
partial order (B ∖ {0},<). If there are no atoms, B is atomless. B is atomic if for every
b ∈ B ∖ {0} there is an atom a such that a ⩽ b.

Lemma 2.10. Let B be a Boolean algebra. The following are equivalent for a ∈ B ∖ {0}:

1. a ∈ B is an atom.

2. If a = b ∪ c for some b, c ∈ B, then a = b or a = c.
3. a ⩽ b or a ⩽∼ b for every b ∈ B.

Proof. (a) ⇒ (b) ∶ If a = b ∪ c then by absorption b ⩽ a and c ⩽ a. By minimality, b = 0 or
b = a, and, c = 0 or c = a. But not both c = b = 0 since a ≠ 0.

(b) ⇒ (c) ∶ let b ∈ B; then a = a ∩ 1 = a ∩ (b∪ ∼ b) = (a ∩ b) ∪ (a∩ ∼ b). By (b), a = a ∩ b
or a = a∩ ∼ b, i.e., a ⩽ b or a ⩽∼ b.

(c) ⇒ (a) ∶ Let 0 ≠ b ⩽ a. We have to show a = b, i.e., a ⩽ b. Otherwise by (c), a ⩽∼ b,
so b ⩽∼ b, so b = b∩ ∼ b = 0 a contradiction.

Examples 2.11.

1. Let X be a non-empty set. P(X) is atomic, the atoms are the singletons {x}, x ∈X.

2. The interval algebra I(Q⩾0) is atomless where Q⩾0 is the usual order on non-negative
rationals.

3. I(N +Q) is neither atomic nor atomless. Its atoms are [(0, n), (0, n + 1)) = {(0, n)}
for n ∈ N. E.g. [(1,0), (1,1)) has no atom below.

4. Every finite non-trivial Boolean algebra B is atomic.
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Proof. Let b ∈ B ∖ {0}. If b is minimal (in (B ∖ {0},<)), it is an atom and we are
done. Otherwise choose 0 ≠ b1 < b; if b1 is minimal we are done. Otherwise choose
0 ≠ b2 < b1. . . this process has to stop because B is finite.

Later, in Corollary 3.16, we shall see that I(Q) is isomorphic to the following:

Exercise 2.12. Call X ⊆ N periodic if there is n ∈ N such that for all m ∈ N:

χX(m) = χX(n +m).

Here, χX ∶ N → {0,1} denotes the characteristic function of X. Show that the set of
periodic sets is the universe of a countable atomless subalgebra of P(N).

Theorem 2.13 (Classification of finite Boolean algebras). Every finite Boolean algebra is
isomorphic to a power set algebra.

Proof. We show π ∶B ≅P(A) where A is the set of atoms of B and π maps b ∈ B to

π(b) ∶= {a ∈ A ∣ a ⩽ b}.

In particular, if B is trivial, then A = ∅ and π ∶B ≅P(∅). Assume B is not trivial.
Note 1P(A) = A = π(b) ∪ π(∼ b) by Lemma 2.10. The union is disjoint: a ⩽ b and a ⩽∼ b

imply a = a ∩ a = (a ∩ b) ∩ (a∩ ∼ b) = a ∩ (b∩ ∼ b) = a ∩ 0 = 0. Hence π(∼ b) = A ∖ π(b).
For b, b′ ∈ B we have π(b ∪ b′) = π(b) ∪ π(b): ⊇ is clear; conversely, let a ⩽ b ∪ b′ be an

atom; then a = a ∩ (b ∪ b′) = (a ∩ b) ∪ (a ∩ b′). By Lemma 2.10, a = (a ∩ b) or a = (a ∩ b′).
π is injective: assume b ≠ b′, say b /⩽ b′. Then b∩ ∼ b′ ≠ 0. Since B is atomic (Exam-

ples 2.11 (4)), there is an atom a ⩽ b∩ ∼ b′. Then a ∈ π(b) and a ∈ π(∼ b′) = A ∖ π(b′).
To see π is surjective, first note that a ∩ a′ = 0 for distinct atoms a, a′: say, a /⩽ a′, i.e.,

a ∩ a′ ≠ a. Since a ∩ a′ ⩽ a and a is minimal in B ∖ {0}, we have a ∩ a′ = 0.
Clearly, ∅ = π(0). Let ∅ ≠ X ∈ P (A), say X = {a0, . . . , an} for some n ∈ N. Set

b ∶= a0 ∪ ⋯ ∪ an. Clearly, ai ⩽ b, so X ⊆ π(b). Conversely, if a ∈ π(b), then a = a ∩ b =
(a ∩ a0) ∪⋯ ∪ (a ∩ an), so a ∩ ai ≠ 0 for some i ⩽ n; then a = ai, i.e., a ∈X.

Remark 2.14. Recall Exercise 2.5. The above theorem implies that every finite Boolean
ring is isomorphic to a finite product Z2 ×⋯ × Z2. The following exercise asks for a direct
algebraic proof of this fact. This constitutes a second proof of the above theorem.

Exercise 2.15 (Classification of finite Boolean rings). Let A = (A,+,−, ⋅,0,1) be a Boolean
ring. For B ⊆ A and a ∈ A, write Ba ∶= {b ⋅ a ∣ b ∈ B}.

1. Write A′ ∶= A ↿ {+,−, ⋅,0}, i.e., forget the unit. Then ⟨Aa⟩A′ becomes a Boolean ring
Aa setting 1Aa ∶= a. Then Aa ×A(1 + a) ≅ A.

2. The universe of ⟨B⟩A consists of finite sums of finite products of elements of B: we
agree that the empty product equals 1. Further, ⟨Ba⟩Aa = Aa.

3. If A is finite, then A is isomorphic to a finite ring product Z2 ×⋯ × Z2.

Hint: use induction on n ∶= the minimal size of some B ⊆ A generating A.
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We derive a form of completeness of the equations in Definition 2.1: they imply all
equations (whose universal closure is) true in all power set algebras. In fact,

Corollary 2.16. The theory of Boolean algebras proves every universal LBA-sentence that
is true in all finite power set algebras.

Proof. Assume the theory does not prove ∀x̄ϕ(x̄) where ϕ(x̄) is quantifier-free. Then
there is a Boolean algebra B and a tuple b̄ in B such that B ⊧ ¬ϕ[b̄]. Since ¬ϕ(x̄) is
quantifier-free, we have ⟨b̄⟩B ⊧ ¬ϕ[b̄]. By Lemma 2.6, ⟨b̄⟩B is finite. Hence, it is isomorphic
to a power set algebra, so ∀x̄ϕ(x̄) is false in it.

For equalities we shall prove in Section 2.4:

Corollary 2.17. Let t(x̄), t′(x̄) be LBA-terms. If ∀x̄ t(x̄) = t′(x̄) is true in some non-trivial
Boolean algebra, then it is true in all Boolean algebras.

2.3 Stone representation theorem

Theorem 2.13 is not true in general for infinite Boolean algebras. For example, a countable
Boolean algebra cannot be isomorphic to a power set algebra because power set algebras
are either finite or uncountable. In this section we show that infinite Boolean algebras can
be embedded in power set algebras.

Definition 2.18. Let B be a Boolean algebra. A set A ⊆ B has the finite intersection
property (fip) if A ≠ ∅ and a0 ∩⋯ ∩ ak ≠ 0 for all k ∈ N and a0, . . . , ak ∈ A.

A set F ⊆ B is a filter (in B) if

1. 0 ∉ F ≠ ∅.

2. For all a ∈ F, b ∈ B: if a ⩽ b, then b ∈ F .

3. For all a, b ∈ F : a ∩ b ∈ F .

An ultrafilter (in B) is a maximal filter (i.e., no proper superset is a filter).

Lemma 2.19. Let B be a Boolean algebra.

1. Let A ⊆ B have the fip. Then A generates the filter

FA ∶= {b ∈ B ∣ there is k ∈ N and a0, . . . , ak ∈ A such that a0 ∩⋯ ∩ ak ⩽ b }

This is the smallest filter that contains A (i.e., if F ⊇ A is a filter, then FA ⊆ F )

2. Let F be a filter. The following are equivalent:

(a) F is an ultrafilter.

(b) For all b ∈ B either b ∈ F or ∼ b ∈ F .

(c) For all a, b ∈ B, if a ∪ b ∈ F , then a ∈ F or b ∈ F .
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Proof. The first statement being easy, we prove the second.
(a) ⇒ (b): Assume b,∼ b ∉ F . To show F is not maximal, it suffices to show that F ∪{b}

or F ∪ {b} has the fip. Otherwise there are a0 ∩⋯ ∩ ak−1 ∩ b = 0 and a′0 ∩⋯ ∩ a′`−1∩ ∼ b = 0
for certain ai, a′j ∈ F . For c ∶= a0 ∩⋯ ∩ ak−1 ∩ a′0 ∩⋯ ∩ a′`−1 we have c ∩ b = 0 and c∩ ∼ b = 0.
Then c = c ∩ (b∪ ∼ b) = 0 ∪ 0 = 0, contradicting fip.

(b) ⇒ (a): is trivial, and so is (c) ⇒ (b): b∪ ∼ b = 1 ∈ F implies b ∈ F or ∼ b ∈ F ; clearly
not both b,∼ b ∈ F (else 0 = b∩ ∼ b ∈ F ).

(b) ⇒ (c): if a, b ∉ F , then ∼ a,∼ b ∈ F by (b), so ∼ a∩ ∼ b =∼ (a∪b) ∈ F , so (a∪b) ∉ F .

Lemma 2.20. If B is a Boolean algebra and A ⊆ B has the fip, then there exists an
ultrafilter F with A ⊆ F .

Proof. Consider the set F of filters F with F ⊇ A. It is not empty because FA ∈ F . The
partial order (F ,⊆) is inductive: if C ⊆ F is a chain, then ⋃C ∈ F is an upper bound. Now
apply Zorn’s lemma.

Exercise 2.21. If B is a Boolean algebra and a ∈ B ∖ {0}, then F{a} = {b ∈ B ∣ a ⩽ b} is an
ultrafilter if and only if a is an atom.

This motivates the following definition:

Definition 2.22. An ultrafilter F in a Boolean algebra B is principal if F = F{a} for some
atom a ∈ B. Otherwise, F is free.

Proposition 2.23. If B is infinite, then there exists a free ultrafilter in B.

Proof. If B is atomless, every ultrafilter is free and ultrafilters exists by Lemma 2.20.
Otherwise, the set {∼ a ∣ a atom} is nonempty and by Lemma 2.20 is suffices to show it has
the fip. Assume not. Then ∼ a0 ∩⋯∩ ∼ ak = 0 for certain atoms ai, so a0 ∪⋯ ∪ ak = 1. For
every b ∈ B we have b = b∩1 = (b∩a0)∪⋯∪(b∩ak). Since b∩ai ⩽ ai we have b∩ai ∈ {0, ai}.
Thus ∣B∣ ⩽ 2k+1 is finite.

Theorem 2.24 (Stone representation). Every Boolean algebra is embeddable into a power
set algebra.

Proof. Let U be the set of ultrafilters in B. We claim π ∶B→a P(U) where π maps b ∈ B
to {p ∈ U ∣ b ∈ p}.

Clearly, π(1B) = U = 1P(U). Further, π(b) = U ∖ π(∼ b) because for p ∈ U : p ∈ π(b) if
and only if b ∈ p, if and only if ∼ b ∉ p, if and only if p ∉ π(∼ b).

Let a, b ∈ B. Then π(a∪ b) = π(a) ∪π(b): p ∈ π(a∪ b) if and only if a∪ b ∈ p, if and only
if a ∈ p or b ∈ p, if only if p ∈ π(a) or p ∈ π(b).

π is injective: if a ≠ b, say a /⩽ b, then a∩ ∼ b ≠ 0, so {a,∼ b} has the fip. By Lemma 2.20
there is p ∈ U with a,∼ b ∈ p. Then p ∈ π(a) and p ∈ π(∼ b) = U ∖ π(b), so π(a) ≠ π(b).

Exercise 2.25 (Stone topology). We describe the image of the embedding π ∶B→a P(U)
of the above proof. Show im(π) is the basis of a topology τ on U , the Stone topology. It
is Hausdorff and compact. Further, π ∶B ≅ C(U, τ), the algebra of clopen sets.
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Exercise 2.26. The following are equivalent for a Boolean algebra B:

1. B is finite.

2. All ultrafilters in B are principal.

3. There are only finitely many ultrafilters in B.

Exercise 2.27. A nontrivial Boolean algebra B that is not atomic has a least 2ℵ0 many
ultrafilters.

Hint: Assume there is no atom below b ∈ B ∖ {0}. Since b is not an atom, b = b0 ∪ b1 for
certain b0, b1 > 0 with b0 ∩ b1 = 0. Similarly write b0 = b00 ∪ b01 and b1 = b10 ∪ b11, etc. This
defines a binary tree below b and its branches are contained in pairwise distinct ultrafilters.

2.4 Reduced products and Horn formulas

Let L be a language and (Ai)i∈I a family of L-structures for a nonempty set I.

Definition 2.28 (Products). The product A ∶= ∏i∈I Ai of (Ai)i∈I has universe A ∶= ∏i∈I Ai
(where Ai is the universe of Ai), that is, the set of functions a with dom(a) = I and a(i) ∈ Ai
for all i ∈ I. We occasionally write a ∈ A as

a = ⟨a(i) ∣ i ∈ I⟩.

For r ∈ N and ā = (a0, . . . , ar−1) ∈ Ar and i ∈ I write ā(i) ∶= (a0(i), . . . , ar−1(i)). For r-ary
relation and function symbols R,f ∈ L the interpretations are given by

ā ∈ RA ∶⇐⇒ ā(i) ∈ RAi for all i ∈ I,
fA(ā) ∶= ⟨fAi(ā(i)) ∣ i ∈ I⟩.

If Ai =B for all i ∈ I we write BI ∶= ∏i∈I Ai.

Proposition 2.29. Let ϕ be ∀x̄ t(x̄) = s(x̄) for L-terms t(x̄), s(x̄). If Ai ⊧ ϕ for all i ∈ I,
then A ∶= ∏i∈I Ai ⊧ ϕ.

Proof. A straightforward induction shows for every L-term t(x̄) and ā from A:

tA[ā] = ⟨tAi[ā(i)] ∣ i ∈ I⟩.

Assume A /⊧ ϕ and choose ā such that tA[ā] ≠ sA[ā]. Then there exists i ∈ I such that
tAi[ā(i)] ≠ sAi[ā(i)], i.e., Ai /⊧ t = s[ā(i)], so Ai /⊧ ϕ.

Examples 2.30.

1. If all Ai are Boolean algebras, abelian groups or rings, then so is ∏i∈I Ai.

2. For the linear order Q, QN is not a linear order: neither ⟨0,0,0, . . .⟩ <QN ⟨1,0,0, . . .⟩
nor vice-versa.
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Proof of Corollary 2.17. Let B be a nontrivial Boolean algebra satisfying ϕ ∶= ∀x̄ t(x̄) =
t′(x̄). By Corollary 2.16 it suffices to show that P(I) ⊧ ϕ for every set I.

Let B0 ⊆ B have universe {0B,1B}. Since ϕ is universal, B0 ⊧ ϕ. If I = ∅, then P(I)
has one element, so satisfies all equalities. If I ≠ ∅, then BI

0 is a Boolean algebra that
satisfies ϕ by Proposition 2.29. But P(I) ≅BI

0 via X ↦ ⟨1B ∣ i ∈X⟩ ∪ ⟨0B ∣ i ∉X⟩.

Remark 2.31. By a filter, ultrafilter, . . . on I we mean one in P(I).

1. The principal ultrafilters on I are F{i} = {X ⊆ I ∣ i ∈X} (Examples 2.11). There exist
free ultrafilters on I if and only if I is infinite (Exercise 2.26).

2. Let I be infinite. The Frechet filter Fcf (on I) is the set of all co-finite subsets of I, i.e.,
those X ⊆ I with I ∖X finite. For an ultrafilter F on I the following are equivalent:

(a) F is free.

(b) F does not contain finite sets.

(c) Fcf ⊆ F .

Proof. (b) ⇒ (a): if F is principal, say F = F{i}, then {i} ∈ F .

(a) ⇒ (b): If F contains a finite set {i0, . . . , ik} = {i0}∪⋯∪{ik} for some k ∈ N, then
it contains {ij} for some j ⩽ k (cf. Lemma 2.19 (2c)), so F = F{ij} is principal.

(b) ⇔ (c): F contains no finite set if and only if F contains all complements of finite
sets (cf. Lemma 2.19 (2b)).

Lemma 2.32. Let F be a filter on I. Define a binary relation ∼F on ∏i∈I Ai by

a ∼F b ⇐⇒ {a = b} ∶= {i ∈ I ∣ a(i) = b(i)} ∈ F.

Then for all r ∈ N, all r-ary relation symbols R ∈ L, all r-ary function symbols f ∈ L and
all ā = (a0, . . . , ar−1), b̄ = (b0, . . . , br−1) ∈ Ar with a0 ∼F b1, . . . , ar−1 ∼F br−1:

1. ∼F is an equivalence relation.

2. fA(ā) ∼F fA(b̄)
3. {i ∈ I ∣ (ā(i)) ∈ RAi} ∈ F ⇐⇒ {i ∈ I ∣ (b̄(i)) ∈ RAi} ∈ F.

Proof. 1: a ∼F a because {a = a} = I ∈ F . If a ∼F b, then b ∼F a because {a = b} = {b = a}.
If a ∼F b and b ∼F c, then {a = b} ∩ {b = c} ∈ F , so {a = b} ∩ {b = c} ⊆ {a = c} ∈ F .

2: X ∶= ⋂j<r{aj = bj} ∈ F and X ⊆ {i ∈ I ∣ fAi(ā(i)) = fAi(b̄(i))} ∈ F .
3: Let Y,Z denote the sets on the left and right respectively. If Y ∈ F , then X ∩Y ∈ F ,

so X ∩ Y ⊆ Z ∈ F . The converse is analogous.

This lemma enables the
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Definition 2.33 (Reduced products). Let F be a filter on I. The reduced product A ∶=
∏F Ai has as universe A the set of equivalence classes aF for a ∈ ∏i∈I Ai. For r ∈ N and
ā = (a0, . . . , ar−1) ∈ (∏F Ai)r write āF ∶= (aF0 , . . . , aFr−1) ∈ Ar.

For r-ary relation and function symbols R,f ∈ L, the interpretations are given by:

āF ∈ RA ∶⇐⇒ {i ∈ I ∣ ā(i) ∈ RAi} ∈ F
fA(āF ) ∶= ⟨fAi(ā(i)) ∣ i ∈ I⟩F ,

If Ai =B for all i ∈ I, we write BI
F ∶= ∏F Ai.

Exercise 2.34. Prove:

1. Let ∅ ≠ I0 ⊆ I and F ∶= FI0 = {X ⊆ I ∣ I0 ⊆ X}. Then ∏F Ai ≅ ∏i∈I0 Ai. Hence,

∏{I}Ai ≅ ∏i∈I Ai and ∏F{i} Ai ≅ Ai for every i ∈ I.

2. If F ⊆ F ′ are filters, then there is an homomorphism from ∏F Ai into ∏F ′ Ai.

3. Infer an analogue of Proposition 2.29.

Example 2.35. Let F be the Frechet filter on N. Consider RN
F for R the field of reals.

Then ⟨r0, r1, r2, . . .⟩F = ⟨s0, s1, s2, . . .⟩F if and only if rn = sn for all sufficiently large n ∈ N.
Further, ⟨1,0,1,0, . . .⟩F and ⟨0,1,0,1, . . .⟩F are elements ≠ 0RN

F with product 0RN
F .

We generalize Proposition 2.29.

Definition 2.36. A Horn formula is a CNF (a conjunction of disjunctions of literals
(atomic formulas or a negations thereof)) whose disjunctions contain at most one literal
that is not a negation. A formula is universal Horn if it is obtained from a Horn formula
by universal quantification.

Proposition 2.37. Let F be a filter on I. Let ϕ be a universal Horn sentence and assume
Ai ⊧ ϕ for all i ∈ I. Then ∏F Ai ⊧ ϕ.

Proof. Write A ∶= ∏F Ai. For every L-term t(x̄) and ā from ∏i∈I Ai:

tA[āF ] = ⟨tAi[ā(i)] ∣ i ∈ I⟩F .

We prove this by induction on t. If t = xj, then both sides equal aFj . If t = ft0⋯tr−1 and
the claim holds for the tj(x̄), then

tA[āF ] = fA(tA0 [āF ], . . . , tAr−1[āF ]) = fA(⟨tAi0 [ā(i)] ∣ i ∈ I⟩F , . . . , ⟨tAir−1[ā(i)] ∣ i ∈ I⟩F )

= ⟨fAi(tAi0 [ā(i)], . . . , tAir−1[ā(i)]) ∣ i ∈ I⟩F = ⟨tAi[a0(i), . . . , ak−1(i)] ∣ i ∈ I⟩
F
.

We next claim for every atomic ϕ(x̄) and ā from ∏i∈I Ai:

A ⊧ ϕ[āF ] ⇐⇒ {i ∈ I ∣ Ai ⊧ ϕ[ā(i)]} ∈ F.
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Assume ϕ = Rt0⋯tr−1 (the case t0 = t1 is similar). Then

A ⊧ ϕ[āF ] ⇐⇒ (⟨tAi0 [ā(i)] ∣ i ∈ I⟩F , . . . , ⟨tAir−1[ā(i)] ∣ i ∈ I⟩F ) ∈ RA

⇐⇒ {i ∈ I ∣ (tAi0 [ā(i)], . . . , tAir−1[ā(i)]) ∈ RAi} ∈ F
⇐⇒ {i ∈ I ∣ Ai ⊧ ϕ[ā(i)]} ∈ F.

Let ϕ(x̄) = ∀x̄⋀j ⋁k λjk(x̄) be universal Horn, the λjk being literals. Assume A /⊧ ϕ
and Ai ⊧ ϕ for all i ∈ I. Choose āF and j such that A /⊧ ⋁k λjk[āF ]. Assume the disjunction
contains an atom χ; the case that all literals are negations is similar. Then the disjunction
is logically equivalent to ((ψ0 ∧ . . . ∧ ψ`−1) → χ) for certain atoms ψj(x̄), j < `. Hence
A ⊧ ψj[āF ], for j < `, and A /⊧ χ[āF ]. By the claim, Xj ∶= {i ∈ I ∣ Ai ⊧ ψj[ā(i)]} ∈ F
and Y ∶= {i ∈ I ∣ Ai ⊧ χ[ā(i)]} ∉ F . Then X ∶= ⋂j<`Xj ∈ F . For every i ∈ X we have
Ai ⊧ ψj[ā(i)] for all j < ` and hence Ai ⊧ χ[ā(i)] because Ai ⊧ ϕ. Hence X ⊆ Y , so Y ∈ F ,
a contradiction.

Examples 2.38. Reduced products of partial orders are partial orders. Same for Boolean
algebras, rings and abelian groups.

2.5 Ultraproducts

Let L be a language and (Ai)i∈I a family of L-structures for a nonempty set I.

Definition 2.39 (Ultraproducts). An ultraproduct of (Ai)i∈I is a reduced product ∏F Ai

for some ultrafilter F on I. It is an ultrapower of B if B = Ai for all i ∈ I; written BI
F .

Theorem 2.40 ( Los). Let F be an ultrafilter on I and ϕ be an L-sentence. Then

∏F Ai ⊧ ϕ ⇐⇒ {i ∈ I ∣ Ai ⊧ ϕ} ∈ F.

Proof. Let A ∶= ∏F Ai. We show that for all L-formulas ϕ(x̄)and all āF from A:

A ⊧ ϕ[āF ] ⇐⇒ {i ∈ I ∣ Ai ⊧ ϕ[ā(i)]} ∈ F.

Call formulas good if they satisfy this claim. We saw in the proof of Proposition 2.37 that
atomic formulas are good.

If ϕ(x̄) is good, so is ¬ϕ(x̄): note, since F is an ultrafilter,

{i ∈ I ∣ Ai ⊧ ϕ[ā(i)]} /∈ F ⇐⇒ {i ∈ I ∣ Ai /⊧ ϕ[ā(i)]} ∈ F.

It is easy to see that goof formulas are closed under conjunctions. We show they are
closed under universal quantification. Assume ϕ(x̄, y) is good. We show ∀yϕ(x̄, y) is good:

A ⊧ ∀yϕ[āF ] ⇐⇒ A ⊧ ϕ[āF , aF ] for all a ∈ ∏i∈I Ai

⇐⇒ Xa ∶= {i ∈ I ∣ Ai ⊧ ϕ[ā(i), a(i)]} ∈ F for all a ∈ ∏i∈I Ai

⇐⇒ X ∶= {i ∈ I ∣ Ai ⊧ ∀yϕ[ā(i)]} ∈ F.
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For the last equivalence argue as follows. If X ∈ F , then Xa ∈ F because X ⊆ Xa. If
X ∉ F , then I ∖X ∈ F being an ultrafilter. Choose for each i ∉ X some a(i) such that
Ai /⊧ ψ[ā(i), a(i)]; for i ∈X let a(i) ∈ Ai be arbitrary. For this a we have I ∖Xa ⊇ I ∖X ∈ F ,
so I ∖Xa ∈ F and Xa ∉ F .

Corollary 2.41 (Compactness theorem). Let T be an L-theory such that every finite subset
of T is satisfiable. Then T is satisfiable.

Proof. Let I be the set of finite subsets of T . For i ∈ I choose an L-structure Ai with
Ai ⊧ i. For i ∈ I let X(i) ∶= {j ∈ I ∣ i ⊆ j}. These sets have the fip: if i0, . . . , ik ∈ I, then

X(i0) ∩⋯ ∩X(ik) =X(i0 ∪⋯ ∪ ik) ≠ ∅.

Let F be an ultrafilter on I containing all X(i), i ∈ I (Lemma 2.20). Let ϕ ∈ T . Then

{i ∈ I ∣ Ai ⊧ ϕ} ⊇ {i ∈ I ∣ ϕ ∈ i} =X({ϕ}) ∈ F.

By  Los, ∏F Ai ⊧ ϕ. Thus, ∏F Ai ⊧ T .

2.5.1 Periodic and torsion-free abelian groups

Let G be an abelian group. For n ∈ N and g ∈ G let ng ∶= g +G⋯+G g (n times) and let nx
be the term x +⋯ + x (n times); for n = 0 we undertand ng = 0G and nx = 0.

G is periodic if all elements have finite order, i.e., for all g ∈ G there is n > 0 such that
ng = 0G. G is torsion-free if ng ≠ 0G for all n > 0 and g ∈ G ∖ {0G}.

Proposition 2.42.

1. The class of periodic abelian groups is not axiomatizable.

2. The class of torsion-free abelian groups is axiomatizable but not elementary.

Proof. We give a proof without using the compactness theorem.
1: Assume for contradiction that T is an axiomatization. Let F be a free ultrafilter on

the set of primes. Let Zp be the additive group of integers modulo p. Then Zp ⊧ T . By
 Los, A ∶= ∏F Zp ⊧ T . But this is false, A is in fact torsion-free: assume A ⊧ nx = 0[aF ] and
aF ≠ 0A and n > 0; by  Los, X ∶= {p ∣ p divides n⋅a(p)} ∈ F and Y ∶= {p ∣ a(p) ≠ 0} ∈ F ; hence,
X ∩ Y ∈ F is infinite (Remark 2.31 (2)), but every p ∈X ∩ Y divides n, a contradiction.

2: For an axiomatization just add, for every n > 0, the sentence ∀x(¬x = 0 → ¬nx = 0)
to the theory of abelian groups. For contradiction, assume {ϕ} is an axiomatization. Then
A ⊧ ϕ, so {p ∣ Zp ⊧ ϕ} ∈ F by  Los. But this set is empty, a contradiction.

2.5.2 Ideals versus filters in products of fields

Let I be a nonempty set and for each i ∈ I let Ai be a field. By Examples 2.30 (3), ∏i∈I Ai

is a ring. We show that ideals in this ring naturally correspond to filters on I.
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Proposition 2.43. There exists a bijection J ↦ FJ from the set of proper ideals J of

∏i∈I Aionto the set of filters on I such that

∏i∈I Ai/J = ∏FJ Ai.

Furthermore, J is a maximal ideal if and only if FJ is an ultrafilter.

Proof. For a ∈ ∏i∈I Ai let 0a ∶= {i ∈ I ∣ a(i) = 0Ai}. For a proper ideal J of ∏i∈I Ai we define

FJ ∶= {0a ∣ a ∈ J}.

We claim a ∈ J ⇐⇒ 0a ∈ FJ for all a ∈ ∏i∈I Ai. Indeed, if 0a ∈ FJ , then 0a = 0b for some
b ∈ J , so a = c ⋅ b ∈ J for c ∶= ⟨0 ∣ i ∈ 0b⟩ ∪ ⟨a(i)/b(i) ∣ i ∉ 0b⟩.

The exercise below shows FJ is a filter and similarly F ↦ JF ∶= {a ∣ 0a ∈ F} maps filters
F to ideals JF . Then FJF = F is trivial, and JFJ = J follows from the claim:

a ∈ JFJ ⇐⇒ 0a ∈ FJ ⇐⇒ a ∈ J.

It follows that both maps are bijective. To see ∏i∈I Ai/J = ∏FJ Ai we check using the claim:

a = b mod J ⇐⇒ b − a ∈ J ⇐⇒ 0b−a ∈ FJ ⇐⇒ {i ∈ I ∣ a(i) = b(i)} ∈ FJ ⇐⇒ a ∼FJ b.

The exercise below shows that FJ is an ultrafilter if and only if ∏FJ Ai is a field. But

∏i∈I Ai/J is a field if and only if J is a maximal ideal.

Exercise 2.44. In the notation of the above proof, show: FJ is a filter on I for every
proper ideal J , and JF is an ideal for every filter F on I. Further show for every filter F
on I that ∏F Ai is a field if and only if F is an ultrafilter.



Chapter 3

Back and Forth

3.1 Partial isomorphisms

Let L be a language, and A,B be L-structures. Recall we identify functions with their
graphs, i.e., view them as sets of ordered pairs.

Definition 3.1. A partial isomorphism p from A to B is an injection with dom(p) ⊆ A
and im(p) ⊆ B such that for all r ∈ N, all r-ary relations symbols R ∈ L, all r-ary function
symbols f ∈ L and all ā = (a0, . . . , ar−1) ∈ dom(p)r, a ∈ dom(p):

ā ∈ RA ⇐⇒ p(ā) ∶= (p(a0), . . . , p(ar−1)) ∈ RB,

fA(ā) = a ⇐⇒ fB(p(ā)) = p(a).

A and B are partially isomorphic, symbolically A ≅p B, if I ∶ A ≅p B for some nonempty
set I of partial isomorphisms. This means:

1. (Forth) for every p ∈ I and a ∈ A there is q ∈ I such that p ⊆ q and a ∈ dom(q),
2. (Back) for every p ∈ I and b ∈ B there is q ∈ I such that p ⊆ q and b ∈ im(q).

Remark 3.2. If dom(p) is the universe of a substructure A0 ⊆B, then im(p) is the universe
of a substructure B0 ⊆ B and p ∶ A0 ≅ B0. Indeed: for ā ∈ Ar with fA(ā) ∈ dom(p) the
condition for f above is equivalent to p(fA(ā)) = fB(p(ā)).

The following partial isomorphisms will play a central role.

Definition 3.3. The skeleton of A is the class Sk(A) of L-structures that are isomorphic to
finitely generated substructures of A. ISk(A,B) is the set of isomorphisms from a finitely
generated substructure of A onto a finitely generated substructure of B.

Remark 3.4 (Ehrenfeucht games). Consider the following two-player game between Spoiler
and Duplicator. The Spoiler chooses an element in one of the structures, the Duplicator

27
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responds by choosing an element in the other structure. After k rounds they determined
tuples ā = (a0, . . . , ak−1) ∈ Ak and b̄ = (b0, . . . , bk−1) ∈ Bk. The Spoiler wins once

ā↦ b̄ ∶= {(ai, bi) ∣ i < k}

is not a partial isomorphism from A to B. Otherwise, Duplicator wins (the infinite play).
Then I ∶ A ≅p B can be seen as a winning strategy for Duplicator. Section 3.2 studies

this game truncated to a fixed number k of rounds.

Definition 3.5. L-formula is term-reduced if all its atomic subformulas have the form

Rx̄, x = y, f x̄ = y

for variables x̄, x, y and R,f ∈ L relation, resp. function symbols.

Exercise 3.6. Every L-formula is logically equivalent to a term-reduced L-formula.

Exercise 3.7. ā ↦ b̄ is a partial isomorphism from A to B if and only if ā in A satisfies
the same term-reduced atoms as b̄ does in B.

The following two theorems give two meanings according to which partially isomorphic
structures are ‘similar’.

Theorem 3.8. Assume A,B are at most countable. Then

A ≅p B ⇐⇒ A ≅B.

Moreover, if p ∈ I ∶ A ≅p B then there is π ∶ A ≅B with p ⊆ π.

Proof. If π ∶ A ≅ B, then {π} ∶ A ≅p B. Conversely, assume I ∶ A ≅p B and let p ∈ I.
Let A = {a1, a2, . . .} and B = {b1, b2, . . .} (possibly finite). We define a chain p0 ⊆ p1 ⊆ ⋯
of partial isomorphisms in I. We set p0 ∶= p. Having defined pn distinguish cases: if n is
even, choose pn ⊆ pn+1 ∈ I with a⌊n/2⌋ ∈ dom(pn+1) according to (Forth); if n is odd, choose
pn ⊆ pn+1 ∈ I with b⌊n/2⌋ ∈ im(pn+1) according to (Back). Then π ∶= ⋃n∈N pn is the desired
isomorphism from A onto B.

Theorem 3.9. If A ≅p B, then A ≡B.

Proof. Let I ∶ A ≅p B. By Exercise 3.6 is suffices to show for every term-reduced L-
formula ϕ(x̄) that for all p ∈ I and all tuples ā from dom(p):

A ⊧ ϕ[ā] ⇐⇒ B ⊧ ϕ[p(ā)].

Call an L-formula good if it is term-reduced and satisfies this claim. Term-reduced atoms
are good by Exercise 3.7. Clearly, good formulas are closed under ¬,∧. We show that
ϕ ∶= ∃yψ(x̄, y) is good, if ψ(x̄, y) is. Let ā be a tuple from dom(p) and p ∈ I. ⇒: if
A ⊧ ϕ[ā], choose a ∈ A such that A ⊧ ψ[ā, a]; by (Forth) choose p ⊆ q ∈ I with a ∈ dom(q);
since ψ is good, B ⊧ ψ[q(ā), q(a)], so B ⊧ ϕ[p(ā)]. ⇐ is similar using (Back).

We shall later prove a more fine-grained result later (Theorem 3.27). The converse of
Theorem 3.9 fails – Example 3.36 is a natural counterexample.
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3.1.1 Back and forth in dense orders

Definition 3.10. The theory of dense linear orders without endpoints has axioms:

∀x ¬x < x, ∀xyz((x < y ∧ y < z) → x < z),
∀xy(x < y → ∃z(x < z ∧ z < y)), ∀x∃y x < y,∀y∃y y < x.

Lemma 3.11. Let A,B be dense linear orders without endpoints. Then ISk(A,B) ∶ A ≅p B.

Proof. Note ∅ ∈ I ≠ ∅. Let p ∈ I and let a0, . . . , ak−1 list dom(p) for some k ∈ N; let
bi ∶= p(ai) for i < k. To verify (Back) ((Forth) is similar), let b ∈ B be given. There exists
a ∈ A that <A-compares to the ai exactly as b <B-compares to the bi: e.g., if bi <B b <B bi+1

for some i < k − 1, then we can choose a ∈ A such that ai <A a <A ai+1 because A is dense.
Then p ∪ {(a, b)} ∈ I.

By Theorems 3.8 and 3.9:

Corollary 3.12.

1. Every countable dense linear order without endpoints is isomorphic to Q.

2. The theory of dense linear orders without endpoints is complete.

Example 3.13. Q +Q ≅Q ×Q ≅Q ×N ≅Q ≅p R, in particular, Q ≡R.

3.1.2 Back and forth in atomless Boolean algebras

Definition 3.14. The theory of (nontrivial) atomless Boolean algebras is the theory of
Boolean algebras plus the axioms

¬0 = 1, ∀x(¬x = 0→ ∃y(¬y = x ∧ ¬y = 0 ∧ y ∩ x = y)).

Lemma 3.15. Let A,B be atomless Boolean algebras. Then ISk(A,B) ∶ A ≅p B.

Proof. Note I ≠ ∅ because 0,1 (we omit superscripts) generate isomorphic subalgebras of
A and B. We verify (Forth) ((Back) is similar). Let p ∈ I and a ∈ A. Then p ∶ A0 ≅ B0

where A0 ⊆ A is the substructure with universe dom(p) and B0 ⊆ B is the substructure
with universe im(p). Let a0, . . . , ak−1 list the atoms of A0. Then p(a0), . . . , p(ak−1) lists the
atoms of B0. Let a′j ∶= a ∩ aj and set J ∶= {j < k ∣ a′j ≠ 0}. For j ∈ J choose 0 < b′j < bj in
B. Then {a′j, aj∩ ∼ a′j ∣ j ∈ J} ∪ {aj ∣ j ∉ J} are the atoms of the subalgebra A1 ⊆ A they
generate, and {b′j, bj∩ ∼ b′j ∣ j ∈ J} ∪ {bj ∣ j ∉ J} are the atoms of the subalgebra B1 ⊆ B
they generate. The natural bijection between these to sets extends to an isomorphism
q ∶ A1 ≅B1. Then p ⊆ q and a ∈ dom(q).

Corollary 3.16.

1. Every countable atomless Boolean algebra is isomorphic to I(Q⩾0).

2. The theory of atomless Boolean algebras is complete.
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3.1.3 Back and forth in algebraically closed fields

In the language LRing = {+,−, ⋅,0,1} of rings and fields write xn ∶= x ⋅ . . . ⋅ x (n times).

Definition 3.17. The theory ACF of algebraically closed fields is the theory of fields
together with for every d > 0 the sentence

∀y0⋯yd−1∃x xd + yd−1 ⋅ xd−1 +⋯ + y1 ⋅ x + y0 = 0

For a prime p, the theory ACFp of algebraically closed fields of characteristic p addi-
tionally has axiom χp ∶= 1 +⋯ + 1 = 0 (p times 1).

The theory ACF0 of algebraically closed fields of characteristic 0 additionally has axioms
¬χp for all primes p.

We recall some facts from algebra. Let A be a field and B ⊆ A. Then ⟨B⟩A is a ring. The
smallest subfield of A containing B is ⟪B⟫A, it has universe tAB/sAB for LRing(B)-terms
t, s. A subfield of A is finitely generated if it equals ⟪B⟫A for some finite B ⊆ A.

Let A0 ⊆ A be a subfield and a ∈ A. Write A0(a) for ⟪A0 ∪ {a}⟫A. The element a ∈ A is
transcendental over A0 if P (a) ≠ 0 for all P ∈ A0[X], the polynomial ring over A0. Then
A0(a) ≅ A0(X), the quotient field of A0[X]. The isomorphism fixes A0 and maps a to X.

If a ∈ A is not transcendental over A0, it is algebraic over A0. The unique monic
polynomial p of minimal degree with P (a) = 0 is the minimal polynomial of a over A0.
Then A0(a) = ⟨A0 ∪ {a}⟩A ≅ A0[X]/(P ); here, (P ) denotes the ideal of A0[X] generated
by P . The isomorphism fixes A0 and maps a to X mod (P ).

Lemma 3.18. Let A,B be algebraically closed fields of the same characteristic. Assume
A is “large” in the sense that for every finitely generated subfield A0 of A there exists a ∈ A
which is transcendental over A0. Assume also B is “large” in this sense.

Then I ∶ A ≅p B for I the set of partial isomorphisms p from A to B such that dom(p)
is the universe of a finitely generated subfield of A.

Proof. Since A,B have the same characteristic, I ≠ ∅. Indeed, ⟪∅⟫A,⟪∅⟫B are both
isomorphic to the field of rationals if the characteristic is 0, and to the field of integers
modulo p if the characteristic is p > 0.

We verify (Forth) ((Back) is similar). Let p ∈ I and a ∈ A. Let A0 be the subfield of A
with universe dom(p) and let B0 be the subfield of B with universe im(p).

Assume first that a is algebraic over A0, say with minimal polynomial P . Let Q ∈B0[X]
be obtained from P by replacing all coefficients a by p(a). Since p ∶ A0 ≅B0, also A0(a) ≅
A0[X]/(P ) ≅B0[X]/(Q). The latter is ≅B0(b) for b ∈ B such that Q(b) = 0. Such b exists
because B is algebraically closed. Composing gives an isomorphism q ∶ A0(a) ≅B0(b) that
extends p and maps a to b.

Now assume a is transcendental over A0. Then A0(a) ≅ A0(X). Since B is “large”
there exists b ∈ B transcendental over B0. Then B0(b) ≅ B0(X). But p ∶ A0 ≅ B0 implies
A0(X) ≅ B0(X). Composing gives an isomorphism q ∶ A0(a) ≅ B0(b) that extends p and
maps a to b.
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Exercise 3.19. Let A,B be fields and I as in Lemma 3.18. Then:

I ∶ A ≅B ⇐⇒ ISk(A,B) ∶ A ≅p B.

In Section 5.1 we shall prove:

Lemma 3.20. For every algebraically closed field A there exists A∗ ≡ A that is “large” in
the sense of the previous lemma.

Corollary 3.21. Let p be a prime or 0. The theory ACFp is complete.

Proof. We have to show that any two models A,B of ACFp are elementarily equivalent.
Then A ≡ A∗ ≅p B∗ ≡B for suitable A∗,B∗. By Theorem 3.9, A∗ ≡B∗.

Exercise 3.22. Let C be the field of complex numbers and ϕ be an LRing-sentence. Use
the compactness theorem to show that C ⊧ ϕ if and only if ϕ is true in all algebraically
closed fields of sufficiently large characteristic.

3.2 Ehrenfeucht-Fräıssé theory

Let L be a finite language, and A,B be L-structures.

Definition 3.23. Let k ∈ N. A and B are k-isomorphic, symbolically A ≅k B, if there is a
sequence (Ij)j⩽k of sets Ij of partial isomorphism from A to B such that (Ij)j⩽k ∶ A ≅k B,
i.e., Ik ≠ ∅ and

1. (Forth) For all 0 < j ⩽ k, p ∈ Ij, a ∈ A there is q ∈ Ij−1 such that p ⊆ q and a ∈ dom(q).
2. (Back) For all 0 < j ⩽ k, p ∈ Ij, a ∈ A there is q ∈ Ij−1 such that p ⊆ q and b ∈ im(q).

A, ā ≅k B, b̄ means that there exists such (Ij)j⩽k and some p ∈ Ik−1 with p(ā) = b̄.

Lemma 3.24. Let k > 0 and ā, b̄ be tuples from A, B. Then A, ā ≅k B, b̄ if and only if

for all a ∈ A there is b ∈ B: A, āa ≅k−1 B, b̄b, and,

for all b ∈ B there is a ∈ A: A, āa ≅k−1 B, b̄b.

Proof. ⇒: clear. ⇐: for every a ∈ A choose b ∈ B and (Iaj )j⩽k−1 witnessing A, āa ≅k−1 B, b̄b,

and for all b ∈ B choose a ∈ A and (Ibj )j⩽k−1 witnessing A, āa ≅k−1 B, b̄b. For j ⩽ k − 1 define

Ij ∶= ⋃a∈A Iaj ∪⋃b∈B Ibj and Ik ∶= {ā↦ b̄}. Then (Ij)j⩽k ∶ A ≅k B.

Definition 3.25. The quantifier rank qr(ϕ) of an L-formula ϕ is defined setting qr(ϕ) = 0
for atomic ϕ and recursively

qr(¬ϕ) = qr(ϕ), qr((ϕ ∧ ψ)) = max{qr(ϕ), qr(ψ)}, qr(∀xϕ) = 1 + qr(ϕ).

A and B are k-equivalent, symbolically A ≡k B, if and only if A,B satisfy the same
term-reduced L-sentences of quantifier rank at most k.
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Remark 3.26.

1. A ≡0 B means that A,B interpret all 0-ary relation symbols in the same way. This
is equivalent to ∅ being a partial isomorphism from A to B, and to A ≅0 B.

2. A ≡B if and only if A ≡k B for all k ∈ N (Exercise 3.6).

3. A ≅p B implies A ≅k B for all k ∈ N. The converse fails: see Example 3.36.

Theorem 3.27 (Ehrenfeucht-Fräıssé). For all k ∈ N, A ≅k B if and only if A ≡k B.

The following two lemmas give stronger versions of both directions.

Lemma 3.28. Let k, ` ∈ N and ā ∈ A`, b̄ ∈ B` and assume A, ā ≅k B, b̄. Then for all
term-reduced L-formulas ϕ(x̄) of quantifier rank at most k:

A ⊧ ϕ[ā] ⇐⇒ B ⊧ ϕ[b̄].

Proof. We proceed by induction on k. For k = 0, A, ā ≅k B, b̄ implies that there exists a
partial isomorphism mapping ā to b̄. The set of formulas satisfying our claim is clearly
closed under ∧,¬ and it contains all term-reduced atoms by Definition 3.1. Hence, all
quantifier free term-reduced formulas satisfy our claim.

Let k > 0. The formulas satisfying our claim are closed under ∧,¬. Let ϕ(x̄) = ∃xψ(x̄, x)
have quantifier rank k. Assuming A ⊧ ϕ[ā], we show B ⊧ ϕ[b̄] (the other direction is
analogous). Choose a ∈ A such that A ⊧ ψ[ā, a]. By Lemma 3.24, there is b ∈ B such that
A, āa ≅k−1 B, b̄b. Since qr(ψ) ⩽ k − 1, by induction B ⊧ ψ[b̄, b], so B ⊧ ϕ[b̄].

It is for the following lemma that we need the assumption that L is finite.

Lemma 3.29. For all k, ` ∈ N with k + ` > 0, and all ā ∈ A` there is a term-reduced L-
formula τ kA,ā(x0, . . . , x`−1) of quantifier rank k such that for all L-structures B and b̄ ∈ B`:

A, ā ≅k B, b̄ ⇐⇒ B ⊧ τ kA,ā[b̄].

Moreover, for all k, ` ∈ N the set {τ kA,ā ∣ A is an L-structure and ā ∈ A`} is finite.

Proof. We use induction on k. For k = 0, we can assume ` > 0. Define τ 0
A,ā to be the

conjunction of all term-reduced literals in the variables x̄ = (x0, . . . , x`−1) that are satisfied
by ā in A. By Exercise 3.7, b̄ satisfies τ 0

A,ā(x̄) in B if and only if ā ↦ b̄ is a partial

isomorphism from A to B, i.e., A, ā ≅0 B, b̄.
Let k > 0. Given ā ∈ A` we define

τ kA,ā ∶= ⋀
a∈A

∃x` τ k−1
A,āa(x̄, x`) ∧ ∀x` ⋁

a∈A

τ k−1
A,āa(x̄, x`).

Note the conjunction and disjunction are finite by the moreover-part for k − 1. The
moreover-part for k follows. By induction, the formulas τ k−1

A,āa have quantifier rank k − 1, so

τ kA,ā has quantifier rank k. It follows from Lemma 3.24 that τ kA,ā satisfies our claim.
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Proof of Theorem 3.27. ⇒ follows from Lemma 3.28. ⇐: for k = 0, see Remark 3.26 (1).
For k > 0, τ kA (empty tuple ā not written) is a sentence of quantifier rank k and is true in A
(Lemma 3.29 for B ∶= A). Hence B ⊧ τ kA, so A ≅k B by Lemma 3.29.

Corollary 3.30. Let k, ` ∈ N with k + ` > 0. Every term-reduced L-formula ϕ(x0, . . . , x`−1)
of quantifier rank at most k is logically equivalent to

⋁{τ kA,ā(x̄) ∣ A is an L-structure and ā ∈ ϕ(A)}.

In particular, for every tuple of variables x̄ there are, up to logical equivalence, only finitely
many term-reduced L-formulas of quantifier rank at most k with free variables among x̄.

Proof. Let ψ(x̄) denote the displayed formula. Let B ⊧ ϕ[b̄]. Then τ k
B,b̄

is a disjunct in ψ

satisfied by b̄ in B, so B ⊧ ψ[b̄]. Conversely, if B ⊧ ψ[b̄], then B ⊧ τ kA,ā for some A, ā with

A ⊧ ϕ[ā]. Then A, ā ≅k B, b̄ by Lemma 3.29, so B ⊧ ϕ[b̄] by Lemma 3.28.

Exercise 3.31. Assume A is finite. Then B ⊧ τ ∣A∣+1
A if and only if B ≅ A.

Exercise 3.32. Let C be a class of L-structures. Then C is elementary if and only if there
is k ∈ N such that C is ≅k-closed: A ≅k B ∈ C implies A ∈ C.

3.2.1 Back and forth in discrete orders

Definition 3.33. The theory of discrete linear orders without endpoints has axioms (x ⩽ y
abbreviates (x < y ∨ x = y)):

∀x ¬x < x, ∀xyz((x < y ∧ y < z) → x < z),
∀x∃y(x < y ∧ ∀z(x < z → y ⩽ z)), ∀x∃y(y < x ∧ ∀z(z < x→ z ⩽ y)).

Notation: for a linear order A, a, a′ ∈ A and j ∈ N define

dA(a, a′) ∶= ∣{c ∈ A ∣ a ⩽A c <A a′ or a′ ⩽A c <A a}∣,
dAj (a, a′) ∶= max{dA(a, a′),2j}.

Lemma 3.34. Let A,B be discrete linear orders without endpoints and k ∈ N. Then
(Ij)j⩽k ∶ A ≅k B for Ij the set of partial isomorphisms p from A to B such that dom(p) is
finite and dAj (a, a′) = dBj (p(a), p(a′)) for all a, a′ ∈ dom(p).

Proof. Note ∅ ∈ Ik ≠ ∅. We show (Forth) ((Back) is similar). Let j < k and p ∈ Ij+1.
Let a0 <A . . . <A a`−1 list dom(p), and write bi ∶= p(ai). Let a ∈ A ∖ dom(p). Assume
ai <A a <A ai+1; the cases that a <A a0 or a`−1 <A a are similar.

Case: d ∶= dAj (ai, a) < 2j. Choose b ∈ B with bi <B b <B bi+1 such that dB(bi, b) = d: it

exists because dB(bi, bi+1) ⩾ dBj+1(bi, bi+1) = dAj+1(ai, ai+1) ⩾ dAj (ai, ai+1) = d.

We claim that dAj (a, ai+1) = dBj (b, bi+1). If dAj+1(ai, ai+1) = dBj+1(bi, bi+1) = 2j+1, then

dAj (a, ai+1) = dBj (b, bi+1) = 2j. If dAj+1(ai, ai+1) = dBj+1(bi, bi+1) < 2j+1, then dA(ai, ai+1) =
dB(bi, bi+1), so even dA(a, ai+1) = dB(b, bi+1).
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Case dAj (a, ai+1) < 2j is analogous.

Case dAj (ai, a) = 2j and dAj (a, ai+1) = 2j. It suffices to find b ∈ B with bi <B b <B bi+1

such that dBj (bi, b) = dBj (b, bi+1) = 2j. But dA(ai, ai+1) ⩾ 2 ⋅ 2j so dAj+1(ai, ai+1) = 2j+1 =
dBj+1(bi, bi+1), so dB(bi, bi+1) ⩾ 2j+1. Hence, there exists bi <B b <B bi+1 with dB(bi, b) = 2j.

Then dBj (bi, b) = 2j. Since dB(b, bi+1) ⩾ 2j, also dBj (b, bi+1) = 2j.

Corollary 3.35. The theory of discrete linear orders without endpoints is complete.

Proof. Let A,B be discrete linear orders without endpoints. By the above lemma, A ≅k B
for all k ∈ N. By Theorem 3.27, A ≡k B for all k ∈ N, so A ≡B by Remark 3.26.

Example 3.36. Let Z be the linear order on Z. Then Z ≡ Z + Z by the above corollary
and Z ≅k Z + Z for all k ∈ N via Lemma 3.34 and Z /≅p Z + Z by Theorem 3.8.

3.3 Fräıssé limits

Let L be an most countable language, and let K be a class of finitely generated L-structures
that is closed under isomorphism. Note that the structures in K are at most countable.

Definition 3.37. An L-structure A is ultrahomogenous if every isomorphism between
finitely generated substructures of A extends to an automorphism of A.

Remark 3.38. Let A,B be L-structures, both with skeleton K.

1. If A is countable and ISk(A,A) ∶ A ≅p A, then A is ultrahomogeneous (Theorem 3.8).

2. ISk(A,B) has (Forth) if and only if B is K-saturated: if f ∶ K0 →a B and K0 ⊆ K1 ∈ K,
then there exists g ∶ K1 →a B with f ⊆ g.

⇐: let f ∈ ISk(A,B) and a ∈ A. Say, f embeds K0 ⊆ A into B. Let K1 ∶= ⟨K0∪{a}⟩A ⊆
A. Then K0,K1 ∈ K. Choose f ⊆ g ∶ K1 →a B. Then g ∈ ISk(A,B) and a ∈ dom(g).
⇒: let f ∶ K0 →a B and K0 ⊆ K1 ∈ K. We can assume K1 ⊆ A. Then f ∈ ISk(A,B).
By (Forth) there is f ⊆ g ∈ ISk(A,B) defined on a finite set of generators of K1.

3. If A,B are countable and K-saturated, then A ≅B.

4. If A is ultrahomogeneous, then A is K-saturated.

Indeed, let f ∶ K0 →a A and K0 ⊆ K1 ∈ K. Choose f1 ∶ K1 →a A. Then f1 ○ f−1 ∈
ISk(A,A), so extends to an automorphism g of A. Then g−1 ○ f1 ∶ K1 →a A extends f :
for a ∈K0 we have g(f(a)) = f1(a) by choice of g, so f(a) = g−1(f1(a)).

5. If A,B are countable and ultrahomogenous, then A ≅B.

Definition 3.39. K is a Fräıssé class if it has the following properties.

1. K contains at most countably many L-structures up to isomorphism.

2. Heredity: Sk(K) ⊆ K for all K ∈ K.
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3. Joint Embedding: for all K0,K1 ∈ K there exist K ∈ K with K0,K1 ∈ Sk(K).
4. Amalgamation: for all K,K0,K1 ∈ K and all embeddings f0 ∶ K →a K0, f1 ∶ K →a K1

there exist K∗ ∈ K and embeddings g0 ∶ K0 →a K∗, g1 ∶ K1 →a K∗ with g0 ○ f0 = g1 ○ f1.

K0

↗f0 ↘g0

K K∗

↘f1 ↗g1

K1

Exercise 3.40. Let E be a binary relation symbol. The theory of graphs is the {E}-theory
{∀x¬Exx,∀xy(Exy↔ Eyx)}. Show that the class of finite graphs is a Fräıssé class.

Exercise 3.41. If A is ultrahomogeneous, then Sk(A) is a Fräıssé class.

Theorem 3.42 (Fräıssé). If K is a Fräıssé class, then there exists a countable ultrahomo-
geneous L-structure with skeleton K. It is unique up to isomorphism and called the Fräıssé
limit of K.

Examples 3.43. Finite linear orders, and finite Boolean algebras are Fräıssé classes. Their
Fräıssé limits are the rational order Q and the atomless Boolean algebra I(Q⩾0).

Proof. Q is ultrahomogeneous by Remark 3.38 (1) and Lemma 3.11. By Exercise 3.41,
Sk(Q) is a Fräıssé class. This is easily seen to be the class of finite linear orders.

The proof for Boolean algebras is analogous using Lemma 3.15.

The proof of Fräıssé’s remarkable theorem is based on the following method of model
construction which we study in Section 4.4.

Definition 3.44. Let A0 ⊆ A1 ⊆ A2 ⊆ ⋯ be L-structures. The union ⋃nAn is the L-
structure with universe ⋃nAn that interprets every symbol s ∈ L by ⋃n sAn .

It is straightforward to check that ⋃nAn is well-defined and An ⊆ ⋃nAn for all n ∈ N
(cf. Remark 4.37).

Proof of Theorem 3.42. Uniqueness holds by Remark 3.38 (5). To prove existence, let
K0,K1, . . . list K up to isomorphism; we assume Ki ⊆ N. Let f0, f1, . . . list all finite partial
bijections from N to N. Given an L-structure B with B ⊆ N and i, j ∈ N we abuse notation
and write fi ∶ Kj → B if dom(fi) generates Kj and fi extends to an embedding Kj → B;
note there is at most one such extension. Fix some surjection β ∶ N → N4 such that each
quadruple has infinitely many pre-images.

The desired structure is A ∶= ⋃nAn for a certain chain A0 ⊆ A1 ⊆ ⋯ of structures from K
constructed as follows. We choose all An to have universe An ⊆ N. Let A0 ∈ K be arbitrary
(with A0 ⊆ N). Assume A2n is defined.

For A2n+1 choose, by Joint Embedding, a structure in K such that there are embeddings
from A2n and Kn into A2n+1; we can assume A2n ⊆ A2n+1.
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To find A2n+2 consider the tuple (Kn0 ,Kn1 , fn2 , fn3) where β(n) = (n0, n1, n2, n3). Check
whether fn2 ∶ Kn0 →a A2n+1, fn3 ∶ Kn0 →a Kn1 . If this is false, set A2n+2 ∶= A2n+1. If it is true,
use Amalgamation to choose A2n+2 ∈ K and g0 ∶ A2n+1 →a A2n+2 and g1 ∶ Kn2 →a A2n+2 with
g0 ○ fn2 = g1 ○ fn3 ; we can assume g0 is the identity, i.e., A2n+1 ⊆ A2n+2.

We claim Sk(A) = K. ⊆∶ a finitely generated substructure of A is one of An for suitable
n ∈ N, so in Sk(An) ⊆ K (Heredity). ⊇∶ Kn →a A2n+1 ⊆ A by construction.

By Remark 3.38 (1), (2) we are left to show that A is K-saturated. So let f ∶ B →a A
and B ⊆ C ∈ K. Choose m ∈ N such that f ∶ B →a Am. Choose (n0, n1, n2, n3) such that
B,C are isomorphic to Kn0 ,Kn1 , say, via π0, π1, and fn2 = f ○ π−1

0 and fn3 = π1 ○ π−1
0 .

C
π1→ Kn1

∪ ↑ fn3

A2n+1 ⊇ Am
f← B

π0→ Kn0

Choose n ⩾ m such that β(n) = (n0, n1, n2, n3). Then fn2 ∶ Kn0 →a A2n+1 and fn3 ∶ Kn0 →a

Kn1 . By construction A2n+1 ⊆ A2n+2 and g1 ∶ Kn1 →a A2n+2 with fn2 = g1 ○ fn3 . Then
g1 ○ π1 ∶ C→a A2n+2 ⊆ A extends f . Indeed, for all b ∈ B

f(b) = fn2(π0(b)) = g1(fn3(π0(b))) = g1(π1(b)).

3.3.1 The random graph

Definition 3.45. The random graph is the Fräıssé limit of the class of finite graphs.

Theorem 3.46. The theory of the random graph is equivalent to the theory of graphs plus
for all n > 0 and all X ⊆ {0, . . . , n − 1} the extension axiom εn,X : the universal closure of

⋀i<j<n ¬xi = xj → ∃z(⋀i<n ¬z = xi ∧⋀i∈X Ezxi ∧⋀i∉X ¬Ezxi).

Every countable model of this theory is isomorphic to the random graph.

Proof. Let R be the random graph and K ∶= Sk(R) the class of finite graphs. By Re-
mark 3.38 (4), R is K-saturated. This implies that R satisfies the extension axioms.

Conversely, let A be a graph that satisfies the extension axioms. We claim R ≡ A. By
Theorem 3.9 it suffices to show ISk(R,A) ∶ R ≅p A. (Forth) follows from A satisfying the
extension axioms, and (Back) from R being K-saturated and Remark 3.38 (2).

The 2nd statement follows from R ≅p A and Theorem 3.8.

Theorem 3.47 (0-1 law). For an {E}-sentence ϕ and n > 0 let Prn[ϕ] be the proba-
bility that a graph chosen uniformly at random among those with universe {0, . . . , n − 1}
satisfies ϕ. Then

limn Prn[ϕ] ∈ {0,1}.

Moreover, the random graph satisfies exactly those ϕ with limn Prn[ϕ] = 1.
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Proof. We claim limn Prn[εm,X] = 1. Let n > m and a0, . . . , am−1 < n be pairwise distinct
and let G be a random graph on {0, . . . , n−1}. For a < n distinct from the ai let Ea be the
event that a has an edge (in G) to ai, i ∈X, and not to aj, j /∈X. Then Pr[Ea] = 2−m. The
events Ea are independent. Thus no Ea occurs with probability (1 − 2−m)n−m. That this
happens for some a0, . . . , an−1 has probability ⩽ (n

m
)(1 − 2−m)n−m. This bounds Prn[¬εm,X]

and tends to 0 (m fixed and n→∞).
If the random graph satisfies ϕ, then its theory implies it. By compactness, there are

finitely many extension axioms E such that any graph satisfying them, also satisfies ϕ. As
limn Prn[⋀E] = 1, also limn Pr[ϕ] = 1. If the random graph satisfies ¬ϕ, then limn Prn[ϕ] =
1 − limn Prn[¬ϕ] = 0. Both statements follow.
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Diagrams

Let L be a language and A,B be L-structures. For A0 ⊆ A we let L(A0) be the language
L ∪ {ca ∣ a ∈ A0} for pairwise distinct constants ca ∉ L. We let AA0 denote the L(A0)-
expansion of A interpreting ca by a.

4.1 Algebraic diagrams

Recall from the preliminaries that A is embeddable into B, symbolically A→a B, if there
is an embedding π ∶ A→a B, i.e., an isomorphism from A onto some substructure of B.

Definition 4.1. A formula ϕ is universal (existential) if it is logically equivalent to ∀x̄ψ
(∃x̄ψ) for some quantifier free ψ.

Definition 4.2. The algebraic diagram Da(A) of A is the set of L(A)-literals true in AA.

Roughly, the following states that the models of Da(A) are the extensions of A.

Lemma 4.3. For an L(A)-structure C, the following are equivalent.

1. C ⊧Da(A).

2. a↦ cCa is an embedding from A into C↿L.

3. There exist B ⊇ A and an isomorphism π ∶B ≅ C↿L that extends a↦ cCa.

Proof. 1 ⇒ 2: The map is injective: if a ≠ a′, then ¬ca = ca′ ∈ Da(A), so cCa ≠ cCa′ . If e.g.
f ∈ L is a binary function symbol and a ∶= fA(a0, a1), we have to show fC(cCa0 , cCa1) = cCa;
this follows from fca0ca1 = ca ∈Da(A).

2⇒ 3: Choose a set B′ disjoint from A∪C and a bijection π from B ∶= B′∪A onto C that
extends a ↦ cCa. Define an L(A)-structure B with universe B such that π ∶ B ≅ C↿L: e.g.
define fB(b, b′) ∶= π−1(fC(π(b), π(b′)). Since π(a) = cCa we have π ∶BA ≅ C, so BA ⊧Da(A).
By 1⇒ 2, the identity a↦ cBAa = a is an embedding from A into B, i.e., A ⊆B.

3⇒ 1 follows from BA ⊧Da(A) and π ∶BA ≅ C.

The following is a general tool to construct extensions with certain desired properties.

38
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Lemma 4.4. Let L′ ⊇ L be a language and T ′ an L′-theory. The following are equivalent.

1. A satisfies every universal L-sentence ϕ such that T ′ ⊢ ϕ.

2. T ′ ∪Da(A) is consistent.

3. There is B′ ⊧ T ′ such that A ⊆B′↿L.

4. Every finitely generated substructure of A is embeddable into the L-reduct of some
model of T ′.

Proof. 1⇒ 2: Assume T ′ ∪Da(A) is inconsistent. By compactness there are ϕ0, . . . , ϕ`−1 ∈
Da(A) for some ` ∈ N such that T ′ ⊢ ¬⋀i⩽`ϕi. Write this L(A)-sentence as ψ(c̄) where
ψ(x̄) is a quantifier free L-formula and c̄ are constants outside L. We can assume they are
outside L′. Then T ′ ⊢ ∀xψ(x̄). Since A /⊧ ∀x̄ψ(x̄), (1) fails.

2⇒ 3: given C′ ⊧ T ′ ∪Da(A), set C ∶= C′↿L(A) and choose B ⊇ A and π ∶ B ≅ C↿L by
Lemma 4.3. Let B′ be the L′-expansion of B with π ∶B′ ≅ C′↿L′.

3 ⇒ 4 is trivial. 4 ⇒ 1: Let T ′ ⊢ ∀x̄ψ(x̄) where ψ is a quantifier free L-formula.
Assume A ⊧ ¬ψ[ā] for some ā. Then A0 ∶= ⟨ā⟩A ⊧ ¬ψ[ā] since ¬ψ is quantifier free. By
(4), A0 is embeddable into some C ⊧ T ′, say π ∶ A0 ≅ C0 ⊆ C↿L. Then C0 ⊧ ¬ψ[π(ā)], so
C ⊧ ¬ψ[π(ā)], so C /⊧ ∀x̄ψ(x̄). Since C ⊧ T ′ this contradicts T ′ ⊢ ∀x̄ψ(x̄).

Exercise 4.5. In the above lemma, assume L′ ∖ L contains only relation symbols and T ′

is universal. Then the statements are equivalent to:

5. A has an L′-expansion that models T ′.

Exercise 4.6. Every nontrivial Boolean algebra is embeddable into an atomless one.

4.1.1  Los-Tarski

Lemma 4.7. Let T0, T be L-theories. Assume for all A,B ⊧ T0:

A ⊆B ⊧ T Ô⇒ A ⊧ T.

Then there exists a universal L-theory U such that T0 ∪ T is equivalent to T0 ∪U .

Proof. Let U be the set of universal L-sentences ϕ such that T0∪T ⊢ ϕ. It suffices to show
that every model A of T0 ∪ U is a model of T . By 1 ⇒ 3 of Lemma 4.4, A embeds into a
model B of T0 ∪ T , say A ≅B0 ⊆B. Then B0 ⊧ T by assumption, so A ⊧ T .

Theorem 4.8 ( Los-Tarski for theories). Let T be an L-theory. Then T is equivalent to a
universal theory if and only if for all L-structures A,B:

A ⊆B ⊧ T Ô⇒ A ⊧ T

Proof. The forward direction is clear. For the converse apply Lemma 4.7 with T0 ∶= ∅.
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Theorem 4.9 ( Los-Tarski for formulas). Let T0 be an L-theory and ϕ(x̄) be an L-formula.
The following are equivalent.

1. For all A,B ⊧ T0 and all tuples ā from A of suitable length:

A ⊆B ⊧ ϕ[ā] Ô⇒ A ⊧ ϕ[ā].

2. There exists a universal L-formula ψ(x̄) such that T0 ⊢ (ϕ(x̄) ↔ ψ(x̄)).

Proof. 2⇒ 1 ∶ if B ⊧ ϕ[ā], then B ⊧ ψ[ā] since B ⊧ T0, then A ⊧ ψ[ā] since ψ is universal,
then A ⊧ ϕ[ā] since A ⊧ T0.

1⇒ 2 ∶ choose new constants c̄. It suffices to show T0 ⊢ (ϕ(c̄) ↔ ψ) for some universal
L∪ {c̄}-sentence ψ. Our assumption implies the assumption of Lemma 4.7 for T ∶= {ϕ(c̄)}
(and L ∪ {c̄} in place of L). Choose a universal L ∪ {c̄}-theory U accordingly. Then
T0 ∪ U ∪ {¬ϕ(c̄)} is inconsistent, so by compactness T0 ∪ U0 ∪ {¬ϕ(c̄)} is inconsistent for
some finite U0 ⊆ U . Then T0 ⊢ (ψ → ϕ(c̄)) for ψ ∶= ⋀U0. And ← is clear because
T0 ⊢ (ϕ(c̄) → χ) for all χ ∈ U .

Exercise 4.10. Formulate and prove a variant of the above for existential ψ(x̄).

4.1.2 Orderable and divisible abelian groups

We need the following result from algebra. Let Z denote the additive group of integers,
and Zn the additive group of integers modulo n.

Theorem 4.11. Every finitely generated abelian group is isomorphic to

Zk × Z
p
k0
0
×⋯ × Z

p
kr−1
r−1

for some r, k, k0, . . . , kr−1 ∈ N and primes p0, . . . , pr−1.

The Prüfer p-group Zp∞ for a prime p is the subgroup of the multiplicative group on
C ∖ {0} with universe Zp∞ ∶= {c ∈ C ∣ cpk = 1 for some k ∈ N}.

Lemma 4.12. Zp∞ is a divisible abelian group and Zpk →a Zp∞ for all k ∈ N.

Proof. For k ∈ N let Gk be the cyclic subgroup of Zp∞ of pkth roots of unity. Then Zpk ≅ Gk,
so Zpk →a Zp∞ . Further, Zp∞ = ⋃kGk. Let a ∈ Zp∞ and choose k such that a ∈ Gk. It suffices
to find for every prime q some b ∈ Zp∞ such that bq = a.

Case q = p. Let b generate Gk+1 and let c ∶= bp. Then c has order pk and generates Gk.
Hence a = c` for some `. Then a = (b`)p.

Case q ≠ p. Choose z0, z1 ∈ Z such that z0pk + z1q = 1. Then a = az0pkaz1q = (az1)q.

Theorem 4.13. Every abelian group is embeddable into a divisible abelian group.

Proof. Let A be an abelian group. By Lemma 4.4 it suffices to embed every finitely gener-
ated substructure of A in a divisible abelian group. These have the form in Theorem 4.11.
But every factor Z embeds into the rationals, and every factor Z

p
ki
i

into Zp∞ .
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This illustrates a natural use of Lemma 4.4. Here is a direct construction:

Exercise 4.14 (Divisible hull). Let A be an abelian group. Consider pairs (a,n) where
a ∈ A,n > 0. Declare (a,n) equivalent to (a′, n′) if n′a = na′, and let a/n be the equivalence
class of (a,n). Define a/n + a′/n′ ∶= (n′a + na)/nn′. This defines the divisible hull of A.
Verify it is a divisible abelian group and a↦ a/1 embeds A into it.

Definition 4.15. An abelian group is orderable if it has an LGr ∪ {<} expansion that
satisfies theory of ordered abelian groups.

Theorem 4.16. An abelian group is orderable if and only if it is torsion-free.

Proof. Forward is easy: say a < 0 (omitting superscripts), then a < 0,2a < a,3a < 2a, . . .,
so na ≠ 0 for all n ∈ N ∖ {0}. Conversely, let A be a torsion-free abelian group. Note we
ask for an expansion interpreting a relation symbol < that satisfies a universal theory. By
Exercise 4.5 it suffices to find a suitable expansion for every finitely generated substructure
of A. These have the form in Theorem 4.11 with k = 0 (being torsion-free). Thus it suffices
to show Zk is orderable. This is easy, in fact, if A,A′ are orderable abelian groups, say with
orders <,<′, then so is A ×A′ - take the lexicographic order on A ×A′: (a0, a′0) <lex (a1, a′1)
if a0 < a1, or, a0 = a1 and a′0 <′ a′1.

4.2 Model completeness

Definition 4.17. A is an elementary substructure of B and B an elementary extension
of A, symbolically A ≼B, if A ⊆B and for every L-formula ϕ(x̄) and every ā from A:

A ⊧ ϕ[ā] ⇐⇒ B ⊧ ϕ[ā].

Remark 4.18.

1. Equivalently, one can replace ⇐⇒ by ⇒ or ⇐ above: the missing direction follows
using ¬ϕ instead ϕ.

2. A ≼B if and only if A ⊆B and AA ≡BA.

Exercise 4.19. Let N>0 ⊆ N ⊆ Q ⊆ R be the usual linear orders with universes {n ∈ N ∣
n > 0},N,Q,R. Which ⊆ are ≼? Hint: recall Lemma 3.11.

Lemma 4.20 (Tarski’s test). For A0 ⊆ B the following are equivalent.

1. A0 is the universe of an elementary substructure of B.

2. For every L-formula ϕ(x̄, y) and every tuple ā from A0 of suitable length: if B ⊧
ϕ[ā, b] for some b ∈ B, then B ⊧ ϕ[ā, a] for some a ∈ A0.
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Proof. 1⇒ 2 ∶ Let A0 ≼B have universe A0. If B ⊧ ϕ[ā, b] for some b ∈ B, then B ⊧ ∃yϕ[ā],
then A0 ⊧ ∃yϕ[ā], then A0 ⊧ ϕ[ā, a] for some a ∈ A0.

2⇒ 1 ∶ (2) for the formulas y = y, f x̄ = y show A0 is nonempty and L-closed, so universe
of a substructure A0 ⊆ B. Call a ϕ(x̄) good if B ⊧ ϕ[ā] ⇐⇒ A0 ⊧ ϕ[ā] for all ā from A0.
We claim all formulas a good. Atomic formulas are good since A0 ⊆B, and good formulas
are closed under ¬,∧. We are left to show closure under ∃y. So assume ϕ(x̄, y) is good and
let ā be a tuple from A0. By (2), B ⊧ ∃yϕ[ā] if and only if B ⊧ ϕ[ā, a] for some a ∈ A0.
Since ϕ is good, this is equivalent to A0 ⊧ ϕ[ā, a], so A0 ⊧ ∃yϕ[ā].

Definition 4.21. An L-theory T is model complete if for all A,B ⊧ T :

A ⊆B ⇐⇒ A ≼B.

An L-formula ϕ(x̄) is T -provably equivalent to an L-formula ψ(x̄) if T ⊢ (ϕ(x̄) ↔ ψ(x̄)).

Exercise 4.22. The theory of discrete linear orders without endpoints is not model com-
plete. The theory of dense linear orders without endpoints is model complete. Find abelian
groups A ⊆B such that A is not existentially closed in B. Same for fields.

Exercise 4.23. T is model complete if and only if T ∪Da(A) is complete for every A ⊧ T .

Theorem 4.24. Let T be an L-theory. The following are equivalent.

1. T is model complete.

2. (Robinson’s test) For all A,B ⊧ T , if A ⊆B, then A is existentially closed in B: for
every existential L-formula ϕ(x̄) and all tuples ā from A of suitable length:

B ⊧ ϕ[ā] Ô⇒ A ⊧ ϕ[ā].

3. Every existential L-formula is T -provably equivalent to a universal one.

4. Every L-formula is T -provably equivalent to a universal one.

Proof. 1⇒ 2 is clear, and 2⇔ 3 is Theorem 4.9.
3⇒ 4 ∶ an L-formula ϕ(x̄) is logically equivalent to one of the form

∀x̄0∃ȳ0⋯∀x̄k−1∃ȳk−1 ψ(x̄, x̄0, ȳ0, . . . , x̄k−1, ȳk−1)

for ψ quantifier free. Using (3) replace ∃ȳk−1ψ by a universal formula χ. Then replace
∀xk−1χ by an existential formula χ′ (apply (3) to the existential formula ¬∀xk−1χ). This
gives an expression of the above form with k decreased by 1. Proceed.

4⇒ 1 ∶ Let A ⊆B be models of T . By Remark 4.18 (1), it suffices to show

B ⊧ ϕ[ā] Ô⇒ A ⊧ ϕ[ā]

for all L-formulas ϕ(x̄) and tuples ā from A. This clearly follows from (4).

Remark 4.25. Assume A ⊆ B. Then A is existentially closed in B if and only if every
primitive L(A)-sentence true in B is true in A; being primitive means to be of the form
∃x̄ψ where ψ is a conjunction of literals. Indeed, every existential formula is logically
equivalent to a disjunction of primitive formulas.
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4.2.1 Existentially closed subfields

Recall, A[x̄] denotes the polynomial ring over a field A with variables x̄.

Proposition 4.26. Let A ⊆B be fields. Then A is existentially closed in B if and only if
for all k ∈ N and all variable tuples x̄ and all P0(x̄), . . . , Pk−1(x̄),Q(x̄) ∈ A[x̄]:

P0(x̄) = 0, . . . , Pk−1(x̄) = 0, Q(x̄) ≠ 0

has a solution in B, then it has a solution in A.

Proof. By Remark 4.25 it suffices to show that the truth of a primitive LRing(A)-sentence
is equivalent to the solvability of a suitable system, and vice-versa.

Every polynomial P (x̄) ∈ A[x̄] is equivalent to some LRing(A)-term tP (x̄) in the sense
that the functions ā↦ P (ā) and ā↦ tAAP [ā] are equal. Conversely, every such term t(x̄) is
equivalent to a polynomial Pt(x̄) ∈ A[x̄].

Hence, a system as displayed has a solution in B (resp. A) if and only if BA (resp. AA)
satisfies the LRing(A)-sentence

∃x̄(tP0(x̄) = 0 ∧ . . . ∧ tPk−1(x̄) = 0 ∧ ¬tQ(x̄) = 0).

Conversely, note that the theory fields proves (t = s↔ t + (−s) = 0), (¬t = 0 ∧ ¬s = 0↔
¬t ⋅ s = 0), for all LRing-terms t, s, and hence also for all LRing(A)-terms t, s. Hence, the
theory proves every primitive LRing(A)-sentence ϕ equivalent to one of the form

∃x̄(t0(x̄) = 0 ∧ . . . ∧ tk−1(x̄) = 0 ∧ ¬tk(x̄) = 0).

This sentence is true in BA (resp. AA), if and only if B (resp. A) contains a solution of

Pt′0(x̄) = 0, . . . , Pt′
k−1(x̄) = 0, Pt′

k
(x̄) ≠ 0.

4.3 Elementary diagrams

Definition 4.27. π ∶ A → B is an elementary embedding of A into B, symbolically π ∶
A→e B, if π ∶ A ≅B′ ≼B for some B′. If there is such π, then A is elementarily embedabble
into B, symbolically A→e B.

The elementary diagram of A is De(A) ∶= Th(AA).

The following are analogous to Lemmas 4.3 and 4.4.

Lemma 4.28. For an L(A)-structure C, the following are equivalent.

1. C ⊧De(A).

2. a↦ cCa is an elementary embedding from A into C↿L.

3. There exist B ≽ A and an isomorphism π ∶B ≅ C↿L that extends a↦ cCa.
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Proof. 1 ⇒ 2: by Lemma 4.3, a ↦ cCa witnesses A ≅ C0 ⊆ C↿L for some C0, hence also
AA ≅ C′0 ∶= ⟨C0⟩C. But C′0 ≡ C as models of the complete theory De(A). Up to renaming
constants, C′0 is (C0)C0 and C is (C↿L)C0 . Hence C0 ≼ C↿L by Remark 4.18 (2).

2⇒ 3 and 3⇒ 1 are analogous to Lemma 4.3.

Remark 4.29. π ∶ A →e B if and only if for all L-formulas ϕ(x̄) and all tuples ā from A
of suitable length: A ⊧ ϕ[ā] ⇐⇒B ⊧ ϕ[π(ā)].

Proof. Let C be the L(A)-expansion of B that interprets ca by π(a). Then the r.h.s. is
equivalent to (1) in the previous lemma, and the l.h.s. to (2).

Lemma 4.30. Let L′ ⊇ L be a language and T ′ an L′-theory. The following are equivalent.

1. A satisfies every L-sentence ϕ such that T ′ ⊢ ϕ.

2. T ′ ∪Th(A) is consistent.

3. T ′ ∪De(A) is consistent.

4. There is B′ ⊧ T ′ with A ≼B′↿L.

Proof. 1 ⇒ 2: by compactness, if T ′ ∪ Th(A) is inconsistent, then T ′ proves ¬ϕ for ϕ a
finite conjunction of sentences in Th(A). Then ϕ ∈ Th(A), so A /⊧ ¬ϕ.

2⇒ 3: by compactness, if T ′ ∪De(A) is inconsistent, then T ′ proves ¬ϕ for ϕ ∈De(A).
Write ϕ = ψ(c̄) for constants c̄ outside L and ψ(x̄) and L-formula. We assume L′∩L(A) = ∅.
Then T ′ ⊢ ∀x̄¬ψ(x̄) but ∃x̄ψ(x̄) ∈ Th(A). Hence T ′ ∪Th(A) is inconsistent.

3⇒ 4: let C ⊧ T ′ ∪De(A). By Lemma 4.28, there are B ≽ A and π ∶ B ≅ C↿L. Define
an L′-expansion B′ of B such that π ∶B′ ≅ C↿L′.

4⇒ 1 is trivial.

Exercise 4.31. A ≡B if and only if A→e C ≽B for some C.

Exercise 4.32 (Ultrapower embedding). Let F be an ultrafilter on I ≠ ∅ and consider
the ultrapower AI

F . The diagonal map d maps a ∈ A to d(a) ∶= fFa where fa ∶ I → A is the
function constantly equal to a. Then d is an elementary embedding of A into AI

F .

Exercise 4.33 (Definable ultrapower). A Skolem-function for ϕ(x̄, y) (in A), say x̄ =
(x0, . . . xn−1), is a function f ∶ An → A such that for all ā ∈ An, if A ⊧ ∃yϕ[ā], then
A ⊧ ϕ[ā, f(ā)]. Assume A has definable Skolem-functions: every ϕ(x̄, y) has a Skolem-
function which is definable in AA.

Consider an ultrapower AI
F for I ∶= A and a free ultrafilter F on I. Show that the

set of functions from A to A that are definable in AA is the universe of an elementary
substructure of AI

F . It is called a definable ultrapower of A modulo F .

Lemma 4.34. Assume B is infinite and A0 ⊆ B. Then there exists A ≼ B with A0 ⊆ A
and ∣A∣ = max{∣A0∣, ∣L∣,ℵ0}.
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Proof. We define sets A0 ⊆ A1 ⊆ ⋯ of cardinality ⩽ κ ∶= max{∣A0∣, ∣L∣,ℵ0}. Assume Ak is
defined. For every n ∈ N and ā ∈ Ank and every L-formula ϕ(x̄, y) with B ⊧ ∃yϕ[ā] choose
b ∈ B such that B ⊧ ϕ[ā, b]. Define Ak+1 by adding all such chosen b to Ak.

There are ℵ0 ⩽ κ many n ∈ N, max{∣L∣,ℵ0} ⩽ κ many ϕ, and ∣Ak∣n ⩽ κ many ā, hence
⩽ κ3 = κ many b are added; thus ∣Ak∣ ⩽ ∣Ak∣ + κ = κ. Then A ∶= ⋃kAk has cardinality
⩽ ℵ0 ⋅ κ = κ. We verify Tarski’s test for A and B: assume B ⊧ ϕ[ā, b] for b ∈ B and ā ∈ An;
then ā ∈ Ank for some k ∈ N and Ak+1 contains some a with B ⊧ ϕ[ā, a].

Theorem 4.35 (Löwenheim-Skolem-Tarski). Assume A is infinite and κ ⩾ ∣L∣ is an infinite
cardinal.

1. If κ ⩽ ∣A∣, then A has an elementary substructure of cardinality κ.

2. If κ ⩾ ∣A∣, then A has an elementary extension of cardinality κ.

Proof. 1: choose A0 ⊆ A of cardinality κ and apply the previous lemma.
2: By compactness, T ′ ∶= De(A) ∪ {¬cα = cβ ∣ α,β < κ,α ≠ β} is consistent; the cα’s are

pairwise distinct new constants. Let B ⊧ T ′. The language of this model has cardinality
∣L∣ + ∣A∣ + κ = κ, and κ ⩽ ∣B∣. By (1), there is B′ ≼ B of cardinality κ. By Lemma 4.28,
B′↿L is isomorphic to an elementary extension of A.

4.4 Directed systems

Definition 4.36. Assume I = (I,<I) is a directed partial order, i.e., it satisfies

∀xy∃z(x ⩽ z ∧ y ⩽ z).

Then (Ai)i∈I = (Ai)I is an directed system if Ai ⊆ Aj for all i, j ∈ I with i <I j; it is
elementary if Ai ≼ Aj for all i, j ∈ I with i <I j. A chain or ω-chain is a directed system for
I a linear order, resp. the linear order on N.

The union ⋃I Ai =∶ A of (Ai)I is the L-structure with universe A ∶= ⋃i∈I Ai (where Ai
is the universe of Ai) that interprets every symbol s ∈ L by sA ∶= ⋃i∈I sAi (recall we view
functions as sets of ordered pairs)

Remark 4.37. The following imply that A is well-defined. Let R ∈ L be an r-ary relation
symbol, and f ∈ L an r-ary function symbol, and ā = (a0, . . . , ar−1) ∈ Ar

1. ā ∈ Ari for some i ∈ I: for j < r choose ij ∈ I such that aj ∈ Aij ; since I is directed
there is i ∈ I such that i0, . . . , ir−1 ⩽I i; then ā ∈ Ari .

2. if ā ∈ Ari ∩Arj , then fAi(ā) = fAj(ā) and ā ∈ RAi ⇔ ā ∈ RAj .

Indeed: let k ∈ I such that i, j ⩽I k; since Ai,Aj ⊆ Ak we have fAi(ā) = fAk(ā) =
fAj(ā), and ā ∈ RAi ⇔ ā ∈ RAk ⇔ ā ∈ RAj .

3. fA↿Ari = fAi and RA ∩Ari = RAi , that is, Ai ⊆ A.
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Remark 4.38. If A is countable, say A = {a0, a1, . . .}, then A is the union of the ω-chain
(⟨a0, . . . , an⟩A)n∈N. In general, let I be the set of finite nonempty subsets of A, and let
i <I j mean i ⊊ j. Then A is the union of the directed system (⟨i⟩A)i∈I .

Lemma 4.39 (Tarski). Let (Ai)I be an elementary directed system and A ∶= ⋃I Ai. Then
Ai ≼ A for all i ∈ I.

Proof. We show that for all L-formulas ϕ(x̄) and all i ∈ I and all ā from Ai:

A ⊧ ϕ[ā] ⇐⇒ Ai ⊧ ϕ[ā].

Call a formula good if it satisfies this claim. The set of good formulas is closed under ¬,∧
and contains atoms by Remark 4.37. We are left to show it is closed under ∀y. Let ψ(x̄, y)
be good, ϕ = ∀yψ, i ∈ I and let ā be from Ai.

If A ⊧ ϕ[ā], then A ⊧ ψ[ā, a] for all a ∈ A, so Ai ⊧ ψ[ā, a] for all a ∈ Ai since ψ is good,
so Ai ⊧ ϕ[ā]. Conversely, assume Ai ⊧ ϕ[ā] and let a ∈ A. We have to show A ⊧ ψ[ā, a].
Choose j ∈ I with a ∈ Aj, and, by directedness, choose k ∈ I with i, j ⩽I k. The ā, a are
from Ak. As Ai ≼ Ak we have Ak ⊧ ϕ[ā], so Ak ⊧ ψ[ā, a]. As ψ is good, A ⊧ ψ[ā, a].

4.4.1 Chang -  Loś -Suszko

Definition 4.40. An ∀∃-formula is an L-formula logically equivalent to one of the form
∀x̄∃ȳψ with ψ quantifier free. An ∀∃-theory is an L-theory containing only ∀∃-sentences.

For an L-theory T , let T∀∃ be the set of ∀∃-sentences proved by T .

Lemma 4.41. A ⊧ T∀∃ if and only if A has an extension B ⊧ T such that A is existentially
closed in B.

Proof. Assume the r.h.s. and T ⊢ ∀x̄∃ȳψ(x̄, ȳ) for ψ quantifier free. Let ā be a tuple
from A. We have to find ā′ from A such that A ⊧ ψ[ā, ā′]. This follows from existential
closure: since B ⊧ T , there is b̄ such that B ⊧ ψ[ā, b̄].

Conversely, let T ′ be T together with the universal L(A)-sentences true in AA. We claim
T ′ is consistent. Otherwise, by compactness, T ⊢ ¬ψ for some universal L(A)-sentence ψ
true in AA. Write ψ = ψ′(c̄) for some L-formula ψ′(x̄) and c̄ outside L. Then ∀x̄¬ψ′(x̄) is
proved by T and false in A. But ∀x̄¬ψ′(x̄) is an ∀∃-sentence, contradicting A ⊧ T∀∃.

Let B′ ⊧ T ′. By Lemma 4.3, there are B ⊇ A and π ∶ B ≅ B′↿L with π(a) = cB′
a for

all a ∈ A. Thus BA ≅ B′ models T ′, and hence T . Further, BA satisfies the universal
L(A)-sentences true in AA, equivalently, A is existentially closed in B.

Like the  Los-Tarski theorem does for universal theories, the following characterizes
∀∃-theories semantically.

Theorem 4.42 (Chang,  Loś, Suszko). Let T be an L-theory. The following are equivalent.

1. T ≡ T∀∃.
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2. If (Ai)I is a directed system of models of T , then ⋃I Ai ⊧ T .

3. If (An)n is an ω-chain of models of T , then ⋃nAn ⊧ T .

Proof. 1 ⇒ 2: we claim ⋃I Ai ⊧ ϕ for every ∀∃-sentence ϕ that is true in all Ai. Say, ϕ
is ∀x0⋯xk−1∃y0⋯y`−1ψ(x̄, ȳ) for quantifier free ψ. Given ā ∈ Ak, we have to find b̄ ∈ A`
such that A ⊧ ψ[ā, b̄]. Choose i ∈ I such that ā ∈ Aki . As Ai ⊧ ϕ there is b̄ ∈ A`i such that
Ai ⊧ ψ[ā, b̄]. Then A ⊧ ψ[ā, b̄] since Ai ⊆ A and ψ is quantifier free.

2⇒ 3 is trivial. 3⇒ 1: given A0 ⊧ T∀∃, we have to show A0 ⊧ T . We first construct a
sandwich: B0 ⊧ T and A1 ≽ A0 such that

A0 ⊆B0 ⊆ A1.

Choose A0 ⊆B0 according to the previous lemma. By existential closure, (B0)A0 satisfies
all universal L(A0)-sentences that are true in (A0)A0 , or, equivalently, proved by De(A0).
By Lemma 4.4, Da((B0)A0) ∪ De(A0) has a model. By Lemma 4.3, we can assume its
L(A0)-reduct A′ extends (B0)A0 . By Lemma 4.28, a ↦ cA

′
a is an elementary embedding

from A0 into A′↿L. But this map is the identity (cA
′

a = c(B0)A0
a = a), so A0 ≼ A′↿L =∶ A1.

This completes the construction of the sandwich. As A1 ⊧ T∀∃ we get a sandwich B1,A2

with A1 in the role of A0, and so on:

A0 ⊆ B0 ⊆ A1 ⊆ B1 ⊆ A2 ⊆ B2 ⊆ A3 ⊆ ⋯
A0 ≼ A1 ≼ A2 ≼ A3 ≼ ⋯

where all Bn satisfy T . Then ⋃nAn = ⋃nBn. By (3), this structure satisfies T . By Tarski’s
Lemma 4.39, A0 ≼ ⋃nAn, so A0 ⊧ T as was to be shown.

Exercise 4.43. The class of partial orders with minimal elements is not ∀∃-axiomatizable.

Corollary 4.44. If T is model complete, then T ≡ T∀∃
Proof. By model completeness, chains of models of T are elementary. By Tarski’s lemma,
Theorem 4.42 (3) follows.

4.4.2 Ax-Grothendieck on polynomial maps

Let I = (I,<I) where I is the set of positive naturals and i <I j if i is a proper divisor of j.
Then I = (I,<I) is a directed partial order.

Let p be a prime. From algebra we know that for every i ∈ I there is, up to ≅, exactly
one field Fpi of size pi; moreover, Fpi ⊆ Fpj if i <I j. In other words, (Fpi)I is a directed

system. It is also known from algebra that F̃p ∶= ⋃I Fpi is algebraically closed.

Theorem 4.45. The field of complex numbers satisfies every ∀∃-sentence that is true in
all finite fields.

Proof. Let ϕ be such a sentence. By Exercise 3.22 it suffices to show ACFp ⊢ ϕ for all
primes p. Since ACFp is complete, it suffices to show F̃p ⊧ ϕ. Since ϕ is ∀∃ it suffices to
show Fpi ⊧ ϕ for all i > 0. This follows from the assumption.
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Let A be a field and k, ` > 0 be naturals. A function f ∶ Ak → A` is polynomial if there
are polynomials P0(x̄), . . . , P`−1(x̄) (with coefficients in A) such that for all ā ∈ Ak:

f(ā) = (P0(ā), . . . , P`−1(ā)).

Corollary 4.46 (Ax-Grothendieck). Let k > 0 be natural. Every injective polynomial
function from Ck into Ck is surjective.

Proof. Assume f ∶ Ck → Ck is an injective polynomial function that is not surjective. Say,
f is given by the polynomials P0(x̄), . . . , Pk−1(x̄). Recall Pi is equivalent to an L(C)-
term tPi(x̄) (Section 4.2.1). Let ti(x̄, ȳi) be obtained by replacing the constants ca, a ∈ C,
in tPi(x̄) by variables ȳi. Let ȳ collect all ȳi. For a tuple of variables z̄ = (z0, . . . , zk−1) let
t̄(x̄, ȳ) = z̄ abbreviate ⋀i<k ti(x̄, ȳi) = zi; further, let x̄ ≠ x̄′ abbreviate ⋁i<k ¬xi = x′i. Set

ϕ(ȳ) ∶= ∃x̄x̄′z̄(x̄ ≠ x̄′ ∧ t̄(x̄, ȳ) = z̄ ∧ t̄(x̄′, ȳ) = z̄) ∨ ∀z̄∃x̄ t̄(x̄, ȳ) = z̄.

Then the coefficients of the Pi’s do not satisfy ϕ(ȳ) in C. Hence, C /⊧ ∀ȳϕ(ȳ). But this is
an ∀∃-sentence that is obviously true in all finite fields – contradicting Theorem 4.45.

4.5 Model companions

Let T be an L-theory. Let T∀ be the set of universal L-sentences proved by T .

Remark 4.47. Let T ∗ be an L-theory. Then T ∗ ⊢ T∀ if and only if every model of T ∗

embeds into a model of T . In particular, T ∗
∀
= T∀ if and only if models of T ∗ embed into

models of T and vice-versa.

Proof. ⇒: assume T ∗ ⊢ T∀ and let A∗ ⊧ T ∗. Then A∗ ⊧ T∀. By Lemma 4.4, A∗ →a B ⊧ T
for some B. ⇐: let A∗ ⊧ T ∗. We have to show A∗ ⊧ T∀. This is clear by the r.h.s.:
A∗ →a B ⊧ T for some B.

Definition 4.48. Let T be an L-theory. A model companion of T is a model complete
L-theory T ∗ with T ∗

∀
= T∀. A model A of T is existentially closed in T if A is existentially

closed in all extensions that model T ; the class of such models is denoted E(T ).

Example 4.49. The theory of dense linear orders without endpoints is the model com-
panion of the theory of linear orders.

Indeed: it is model complete by Exercise 4.22; every linear oder A embeds into a dense
linear order without endpoints, e.g., Q ×A for Q the order of the rationals.

We shall see many natural examples of model companions in Section 6.3.1.

Lemma 4.50.

1. If T is a ∀∃-theory and T ∗ is a model companion of T , then T ∗ ⊢ T .

2. T has at most one model companion up to equivalence.
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Proof. 1: Let A0 ⊧ T ∗. Choose B0 ⊧ T with A0 ⊆B0. Choose A1 ⊧ T ∗ with B0 ⊆ A1, etc..
Since T ∗ is model complete, A0 ≼ A1 ≼ ⋯, so ⋃nAn ⊧ T ∗. But ⋃nAn = ⋃nBn ⊧ T since T
is ∀∃. As A0 ≼ ⋃nAn by Tarski’s lemma, A0 ⊧ T .

2: Let T ∗, T + be model companions of T . Then T ∗
∀
= T∀ = T +

∀
, so T ∗ is a model

companion of T +. By Corollary 4.44, T + ≡ T +
∀∃

. By (1), T ∗ ⊢ T +.

Theorem 4.51. Assume T is a ∀∃-theory. An L-theory T ∗ is a model companion of T if
and only if T ∗ axiomatizes E(T ).

Proof. ⇒: We first show that every A ⊧ T ∗ is in E(T ). By the previous lemma, A ⊧ T .
Let A ⊆B ⊧ T . We have to show that A is existentially closed in B. Let BA ⊧ ϕ for ϕ an
existential L(A)-sentence. We have to show AA ⊧ ϕ. Choose B ⊆ A∗ ⊧ T ∗. Then BA ⊆ A∗

A.
Since ϕ is existential, A∗

A ⊧ ϕ. By model completeness, A ≼ A∗. Hence AA ⊧ ϕ.
We now show that every B ∈ E(T ) models T ∗. Since B ⊧ T there is B ⊆ A ⊧ T ∗. By

the lemma, A ⊧ T . Hence B is existentially closed in A. By Lemma 4.41, B ⊧ T ∗
∀∃

. But
T ∗
∀∃

≡ T ∗ by Corollary 4.44.
⇐: since structures in E(T ) model T , we have T ∗ ⊢ T . That T ∗ is model complete thus

follows from Robinson’s test. A model of T ∗ embeds into a model of T , namely itself. A
model of T embeds into a model of T ∗ by the next lemma.

Lemma 4.52. If T is an ∀∃-theory, then every model of T has an extension in E(T ).

Proof. We claim that every A ⊧ T has an extension A∗ ⊧ T such that

A∗
A satisfies every existential L(A)-sentence ϕ that is true

in some extension that models T .
(∗)

The claim implies the lemma as follows. Given A0 ⊧ T , let A1 ∶= A∗
0,A2 ∶= A∗

1, . . .. Then
A ∶= ⋃nAn ⊧ T since T is ∀∃. Assume AA ⊆ BA ⊧ ϕ where ϕ is existential. Choose n ∈ N
such that ϕ is an L(An)-sentence. Then (An+1)An ⊆BAn ⊧ ϕ. By (∗), (An+1)An ⊧ ϕ. Since
ϕ is existential and An+1 ⊆ A we have AA ⊧ ϕ.

To prove the claim choose a list (ϕα)α∈κ of all existential L(A)-sentences – for a suitable
cardinal κ. Define a chain (Aα)α∈κ of L-structures as follows. Set A0 ∶= A. For α a limit,
set Aα ∶= ⋃β<αAβ. For Aα+1 choose an extension of Aα such that (Aα)A ⊧ T ∪{ϕα}; if there
is none, set Aα+1 ∶= Aα.

Set A∗ ∶= ⋃α∈κAα. We show A∗ satisfies our claim. A∗ ⊧ T because by construction all
Aα model T and T is ∀∃. To verify (∗), let α ∈ κ and assume A∗

A ⊆ BA ⊧ T ∪ {ϕα} for
some B. Then (Aα)A ⊆BA ⊧ T ∪ {ϕα}. By construction, (Aα+1)A ⊧ T ∪ {ϕα}. Since ϕα is
existential and Aα+1 ⊆ A∗

A, we have A∗
A ⊧ ϕα.

Since T and T∀ have the same model-companions, we get for arbitrary T :

Corollary 4.53. T ∗ is a model companion of T if and only if T ∗ axiomatizes E(T∀).

Example 4.54 (Existentially closed fields). Let T be the theory of fields. Once you observe
in algebra that every non-constant polynomial over a given field has a root in some field
extension, you see that fields in E(T ) are algebraically closed (see Proposition 4.26). Then
the above implies that every field has an algebraically closed extension. We shall see later
(Example 6.28) that, in fact, ACF is the model-companion of T , so axiomatizes E(T ).
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4.5.1 Groups and rings are not companionable

Proposition 4.55. The theory of groups does not have a model companion.

Proof. We use the following group theoretic result: if A is a group and a, b ∈ A have the
same order, then a, b are conjugate in some group B ⊇ A.

Assume T ∗ is a model companion of the theory of groups T . Then

T ∗ ∪ {¬nc = 0 ∧ ¬nd = 0 ∣ n > 0} ⊢ ∃x x + c + (−x) = d.

where c, d are new constants. Indeed: if A models the l.h.s., A↿LGr ∈ E(T ) and cA, bA ∈ A
have infinite order. By the result above, ∃x x + c + (−x) = d is true in some A ⊆ B ⊧ T .
Since A↿LGr is existentially closed in B↿LGr, we have A ⊧ ∃x x + c + (−x) = d.

By compactness, there is n0 such that T ∗ ∪ {¬nc = 0 ∧ ¬nd = 0 ∣ n < n0} proves
∃x x + c + (−x) = d. This is false: let B be a group with elements b, b′ of orders n0, n0 + 1.
By Lemma 4.52 there is B ⊆ C ∈ E(T ), so C ⊧ T ∗. Let C′ expand C interpreting c, d by
b, b′. Then C′ satisfies ¬nc = 0 ∧ ¬nd = 0 for all n < n0 but not ∃x x + c + (−x) = d.

In Section 6.3.1 we shall see that the theories of torsion-free and of ordered abelian
groups do have model companions, namely the theories of divisible such groups.

Proposition 4.56 (Cherlin). The theory of (commutative unitary) rings does not have a
model companion.

Recall that an element a ∈ A of a ring A is nilpotent if an = 0 for some n ∈ N; it is
idempotent if a2 = a ≠ 0. We need an algebraic lemma:

Lemma 4.57. Let A be a ring and a ∈ A. Then a is not nilpotent if and only if it divides
an idempotent b ∈ B for some ring B ⊇ A.

Proof. ⇐: if a∣b = b2 then an∣bn = b ≠ 0, so an ≠ 0 for all n ∈ N.
⇒: let B ∶= A[x]/((ax)2−ax) and b ∶= ax mod ((ax)2−ax). Clearly, a∣b = b2 in B. We

claim b ≠ 0. Otherwise there is P (x) ∶= ∑i aix
i ∈ A[x], say of degree d, such that in A[x]

ax = P (x) ⋅ ((ax)2 − ax) = a0a
2x2 − a0ax + a1a

2x3 − a1ax
2 +⋯ + adxd+2 − adaxd+1

This implies −a = a0a, a0a2 = a1a, a1a2 = a2a, . . . , ad−1a2 = ada, ada2 = 0, hence −a2 =
a1a, −a3 = a2a, . . . ,−ad+1 = ada,−ad+2 = 0, so a is nilpotent.

Proof of Proposition 4.56. Assume T ∗ is a model companion of the theory of rings. Then

T ∗ ∪ {¬cn = 0 ∣ n ∈ N} ⊢ ∃xy(x2 = x ∧ ¬x = 0 ∧ c ⋅ y = x)

by the lemma. By compactness, there is n0 ∈ N such that T ∗ ∪ {¬cn = 0 ∣ n < n0} proves
the r.h.s.. and thus ¬cn0 = 0. This is false.

In Section 6.3.1 we shall see that the theory of integral domains does have a model
companion, namely ACF.



Chapter 5

Types

Let L be a language, T an L-theory and A an L-structure.

5.1 Realizing types

Definition 5.1. A (partial) n-type of T is a set p = p(x0, . . . , xn−1) of L-formulas ϕ(x0, . . . , xn−1)
such that T ∪ p is consistent, that is, there exists B ⊧ T and b̄ ∈ Bn such that B ⊧ p[b̄]; we
say b̄ realizes p in B. A model where p is not realized is said to omit p. p is complete if
ϕ(x̄) ∈ p or ¬ϕ(x̄) ∈ p for all L-formulas ϕ(x̄).

An n-type of A is an n-type of Th(A). An n-type of A over X ⊆ A is an n-type of AX .
The complete n-type of ā ∈ An over X is

tpA(ā/X) ∶= {ϕ(x̄) ∣ ϕ(x̄) is an L(X)-formula such that AX ⊧ ϕ[ā]}.

By a type we mean an n-type for some n ∈ N.

Remark 5.2. Let n ∈ N.

1. An n-type p(x̄) of A is also an n-type of AX for all X ⊆ A.

Indeed, by Lemma 4.30, p(x̄) is consistent with De(A) = Th(AA) ⊇ Th(AX).
2. p(x̄) is an n-type of A over X if and only if AX ⊧ ∃x̄(ϕ0(x̄) ∧⋯∧ϕ`(x̄)) for all ` ∈ N

and ϕ0(x̄), . . . , ϕ`(x̄) ∈ p(x̄).
Indeed: ⇐ follows from compactness. ⇒: by assumption, Th(AX) is consistent with
ψ ∶= ∃x̄(ϕ0(x̄) ∧⋯ ∧ ϕ`−1(x̄)); since Th(AX) is complete, Th(AX) ⊢ ψ, so AX ⊧ ψ.

3. Every n-type p(x̄) of T is contained in a complete n-type.

Indeed: p(x̄) ⊆ tpB(b̄) for b̄ realizing p(x̄) in B ⊧ T .

Exercise 5.3 (Types versus ultrafilters). Let n ∈ N. Recall the n-th Lindenbaum algebra
Ln(T ) from Example 2.2 (4). There is a bijection from the set of complete n-types of T
onto the set of ultrafilters in Ln(T ) given by

p↦ Fp ∶= {ϕ(x̄)/T ∣ ϕ(x̄) ∈ p(x̄)}.

51
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Lemma 5.4. Let P be a set of types of A. Then there exists B ≽ A that realizes all types
in P ; moreover, ∣B∣ ⩽ max{∣A∣, ∣P ∣, ∣L∣}.

Proof. We first show that every n-type p(x̄) of A is realized in some elementary exten-
sion of A. Indeed: for new constants c̄ the theory p(c̄) is consistent with Th(A). By
Lemma 4.30, p(c̄) ∪De(A) has a model C, say d̄ interpret c̄ in C. By Lemma 4.28, there is
π ∶B ≅ C↿L for some B ≽ A. Then π−1(d̄) realizes p(x̄) in B.

Given P , choose for every p(x̄) ∈ P an own tuple of constants c̄p. As above, it suffices to
show that ⋃p∈P p(c̄p)∪Th(A) is consistent. By compactness, we can assume P = {p0, . . . , pk}
is finite. Choose A0 ≽ A realizing p0, then A1 ≽ A0 realizing p1, etc.. Then Ak realizes all pi.

For the moreover-part, let B′ ≽ A realize all types in P . By Theorem 4.35 there
is B ≼ B′ that contains A and these realizations and has the claimed size. Further,
A ⊆B ≼B′ and A ≼B′ imply A ≼B.

Examples 5.5.

1. Let Q,R be the natural orders on Q and R. A cut in Q is pair (L,R) with L,R ⊆ Q
such that Q = L ∪ R and q < q′ for all q ∈ L, q′ ∈ R. Let p(L,R)(x) be the set of
{<}∪{cq ∣ q ∈ Q}-formulas cq < x∧x < cq for q ∈ L, q′ ∈ R. This is a 1-type of Q over Q
and QQ omits it. If L has no maximum and R no minimum, then RQ realizes it – R
is the order on the reals.

Indeed: given finitely many formulas cqi < x ∧ x < cq′i from p(L,R)(x) choose q ∈ Q
between maxi qi and mini q′i; then q satisfies the given formulas in QQ, so the given
finite set is consistent with Th(QQ). If L has no maximum and R no minimum, then
infR ∈ R realizes p(L,R)(x) in RQ.

2. Let Z be the natural order on Z. Let p(x0, x1) contain the formula ∃y0⋯∃y` x0 < y0 <
⋯ < y` < x1 for every ` ∈ N. Then p(x0, x1) is a 2-type of Z (over ∅). Z omits it, in
Z + Z e.g. ((0,0), (1,0)) realizes it.

3. Consider the theory of ordered fields; write n for 1+⋯+1 (n times). Let p(x) contain
n < x for all n ∈ N. Then p(x) is a 1-type of the theory that is omitted e.g. in the
ordered field of reals, and generally in archimedian ordered fields. Fields realizing
the type have infinitesimal elements, i.e., elements realizing the 1-type containing
0 < x ∧ n ⋅ x < 1 for all n ∈ N.

4. Let A be a field. Recall, we let ⟪B⟫A denote the subfield generated by B ⊆ A in A
(Section 3.1.3). Let p(x) be the set of L(B)-formulas

td = 0 ∨ ¬ td ⋅ xd +⋯ + t1 ⋅ x + t0 = 0

where d ∈ N, d > 0 and the ti are L(B)-terms.

Then p(x) is realized by exactly those a ∈ A that are transcendental over ⟪B⟫A. If
A is infinite, then p(x) is a 1-type of A over B.

Indeed: note L(B)-terms correspond to polynomials over the ring ⟨B⟩A; an element
that is not a root of any such polynomial, is not a root of any polynomial over the
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field ⟪B⟫A. Every finite subset of p(x) ∪Th(AB) is consistent because given finitely
many non-constant polynomials over ⟪B⟫A we find a ∈ A outside the union of their
roots, a finite set.

Exercise 5.6. Let κ > ℵ0 be a cardinal and n ∈ N. If A is a countable L-structure with
at least κ many complete n-types, then it has at least κ many pairwise non-isomorphic
countable elementary extensions.

Exercise 5.7. The standard LRing-structure N on N has 2ℵ0 many complete 1-types.

Hint: for every set X of primes define a 1-type “x is divisible by the primes in X but not
by the primes outside X”.

Definition 5.8. Let κ be a cardinal. A is κ-saturated if for every X ⊆ A with ∣X ∣ < κ every
1-type of A over X is realized in AX .

Notation: for ā = (a0, . . . , an−1) ∈ An let (A, ā) be the the L ∪ {ci ∣ i < n}-expansion of A
interpreting constants ci ∉ L by ai.

We shall be mainly concerned with ℵ0-saturation. Clearly, A is ℵ0-saturated if and only
if for all (finite) tuples ā from A the expansion (A, ā) realizes all its 1-types.

Example 5.9. The rational order Q is ℵ0-saturated.

Proof. Let p(x) be a 1-type of (Q, q̄). By Lemma 5.4, there is a countable (Q′, q̄) ≽ (Q, q̄)
realizing p(x), say by q′. Further, q̄ ↦ q̄ ∈ ISk(Q′,Q) ∶ Q′ ≅p Q (Lemma 3.11). By
Theorem 3.8, there is π ∶Q′ ≅Q fixing q̄. Then π(q′) realizes p(x) in (Q, q̄).

Exercise 5.10. Finite structures are ℵ0-saturated. Infinite ∅-structures are ℵ0-saturated.

Lemma 5.11. Let A be ℵ0-saturated. For every n ∈ N and every tuple ā from A, (A, ā)
realizes all its n-types.

Proof. Assume the lemma holds for n-types, and let p(x̄, x) be a complete (n + 1)-type
of (A, ā). Let p′(x̄) ⊆ p(x̄, x) be the subset of formulas in variables x̄. This is an n-type
of (A, ā), so realized, say by b̄ ∈ An.

Let c̄ be the constants naming b̄ in (A, āb̄) and consider p(c̄, x). This is a 1-type
of (A, āb̄). Indeed: let ϕ0(c̄, x), . . . , ϕ`−1(c̄, x) ∈ p(c̄, x); then ∃x⋀i<`ϕi(x̄, x) ∈ p′(x̄) since
p(x̄, x) is complete, so (A, āb̄) ⊧ ∃x⋀i<`ϕi(c̄, x).

If b realizes p(c̄, x) in (A, āb̄), then b̄b realizes p(x̄, x) in (A, ā).

Theorem 5.12. Every L-structure has an ℵ0-saturated elementary extension.

Proof. Let A be an L-structure. By Lemma 5.4, there is an elementary chain A0 ∶= A ≼ A1 ≼
A2 ≼ ⋯ such that (An+1)An realizes all 1-types of (An)An for all n ∈ N. Then B ∶= ⋃nAn

is ℵ0-saturated: given a finite X ⊆ B and a 1-type p of B over X, choose n ∈ N such that
X ⊆ An. By Tarskis’s lemma 4.39, An ≼B, so p is a 1-type of An over X ⊆ An, so realized
in (An+1)An , say by a. By An+1 ≼B, a realizes p in BX .
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Exercise 5.13. Prove a version of the above for κ-saturation.

The following implies Lemma 3.20:

Remark 5.14. Every ℵ0-saturated A ⊧ ACF is “large” in the sense of Lemma 3.20.

Proof. Let B ⊆ A be a finitely generated subfield of A, say B = ⟪B⟫A for finite B ⊆ A.
Then A realizes the 1-type p(x) over B from Remark 5.2 (4). Any realization of it is
transcendental over B.

5.1.1 ℵ1-saturation of ultraproducts

Theorem 5.15. Assume L is at most countable, (Ai)i∈N is a family of L-structures and F
a free ultrafilter on N. Then A ∶= ∏F Ai is ℵ1-saturated.

Proof. Let X ⊆ A be at most countable, say listed by aF0 , a
F
1 , . . . possibly with repetitions.

Write AX as (∏F Ai, aF0 , a
F
1 , . . .). Then AX is ∏F (Ai, a0(i), a1(i), . . .). Thus, it suffices to

show that A realizes all 1-types p(x) of A (over ∅).
Let ϕ0(x), ϕ1(x), . . . list p(x) and set ψn(x) ∶= ⋀i⩽nϕi(x) for n ∈ N. By Remark 5.2 (2)

we have A ⊧ ∃xψn(x), so Yn ∶= {i ∣ Ai ⊧ ∃xψn(x)} ∈ F by  Los. Set

Xn ∶= Yn ∩ {i ∣ i ⩾ n}.

Since F is free, Xn ∈ F . Further X0 ⊇X1 ⊇X2 ⊇ ⋯ and ⋂nXn = ∅.
For i ∈X0 let n(i) ∈ N be maximal such that i ∈Xn(i). Let a ∈ ∏iAi be a function that

maps i ∈X0 to some a(i) ∈ Ai such that Ai ⊧ ψn(i)[a(i)]. Then for all i ∈X0

Xn(i) ⊆ {j ∣ Aj ⊧ ψn(i)[a(j)]}.

Indeed: if j ∈Xn(i) then n(j) ⩾ n(i), so Aj ⊧ ψn(j)[a(j)] implies Aj ⊧ ψn(i)[a(j)].
Given n ∈ N we have to show A ⊧ ϕn[aF ], that is, by  Los, {j ∣ Aj ⊧ ϕn[a(j)]} ∈ F . By

the above, it suffices to show that there exists i ∈ X0 such that n ⩽ n(i). But if n(i) < n
for all i ∈X0, then i ∉Xn(i)+1 ⊇Xn, so Xn = ∅, contradicting Xn ∈ F .

5.2 Homogeneity

Definition 5.16. Let A,B be L-structures. A partial function f from A to B is elementary
if tpA(ā) = tpB(f(ā)) for all tuples ā from dom(f).

Let Ie(A,B) be the set of finite such functions, that is,

Ie(A,B) = {ā↦ b̄ ∣ tpA(ā) = tpB(b̄)}.

A is ℵ0-homogenous if Ie(A,A) ∶ A ≅p A, equivalently, Ie(A,A) satisfies (Forth).

Remark 5.17.
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1. Ie(A,B) ≠ ∅ if and only if ∅ ∈ Ie(A,B), if and only if A ≡B.

2. If B is ℵ0-saturated, then Ie(A,B) has (Forth). In particular, ℵ0-saturated structures
are ℵ0-homogenous.

Indeed: given ā ↦ b̄ ∈ Ie(A,B) and a ∈ A, then tp(A,ā)(a) is a 1-type of (B, b̄). Let

b ∈ B realize it. Then (A, āa) ≡ (B, b̄b), i.e., āa↦ b̄b ∈ Ie(A,B).
3. If A,B are ℵ0-saturated, then: A ≡B⇐⇒ A ≅p B.

Indeed, ⇒ follows from the previous two points, and ⇐ is Theorem 3.9.

4. If A,B realize the same types and B is ℵ0-homogenous, Ie(A,B) ≠ ∅ has (Forth).

Indeed, ∅ ∈ Ie(A,B) as A,B realize the same 0-types. Let tpA(ā) = tpB(b̄) and
a ∈ A. Choose c̄c from B with tpB(c̄c) = tpA(āa). Then tpB(c̄) = tpB(b̄). Since B is
ℵ0-homogeneous, there is b ∈ B such that tpB(b̄b) = tpB(c̄c) = tpA(āa).

5. If A,B are ℵ0-homogenous and realize the same types, then A ≅p B.

Corollary 5.18. A consistent L-theory T is complete if and only if any two ℵ0-saturated
models of T are partially isomorphic.

Proof. ⇒: by Remark 5.17 (3). ⇐: given A,B ⊧ T , choose ℵ0-saturated elementary
extensions A∗,B∗. Then A∗ ≅p B∗ by assumption. By Theorem 3.9, A ≡ A∗ ≡B∗ ≡B.

Corollary 5.19. Assume A is countable and ℵ0-homogenous. If ā, b̄ are tuples from A
with tpA(ā) = tpA(b), then there is an automorphism π of A with π(ā) = b̄.

Proof. By Remark 5.17 (4), ā↦ b̄ ∈ Ie(A,A) ∶ A ≅p A. Apply Theorem 3.8.

The following clarifies the relationship between saturation and homogeneity.

Proposition 5.20. For an L-structure A, the following are equivalent.

1. A is ℵ0-saturated.

2. A is ℵ0-homogenous and weakly saturated: it realizes all its types.

3. A is ℵ0-homogenous and ℵ0-universal: B→e A for every countable B ≡ A.

Proof. 1⇒ 3: by Remark 5.17 (2), A is ℵ0-homogenous. Let B ≡ A be countable, say listed
by b0, b1, . . .. By Remark 5.17 (1) and (2), ∅ ∈ Ie(B,A) has (Forth). Choose successively
a0, a1, . . . in A such that b0 ↦ a0, b0b1 ↦ a0a1, . . . ∈ I(B,A). Then B→e A via bi ↦ ai.

3 ⇒ 2: let p(x̄) be a type of A. Choose a countable B ≡ A realizing p(x̄), say by b̄.
Choose π ∶B→e A. Then π(b̄) realizes p(x̄) in A.

2 ⇒ 1: let p(x) be a 1-type of (A, ā), say realized in (B, ā) ≽ (A, ā) by b. Choose
c̄c ∈ A realizing tpB(āb) in A. Then ā ↦ c̄ ∈ Ie(A,A). Use (Back) to get a ∈ A such that
āa↦ c̄c ∈ Ie(A,A). Then āa realizes tpB(āb) in A, so a realizes p(x) in (A, ā).



CHAPTER 5. TYPES 56

Lemma 5.21. Let L0, L1 be languages and L = L0∩L1. Let A be a countable L0-structure,
and B be a countable L1-structure such that A↿L ≡B↿L.

Then there exist countable elementary extensions A∗ ≽ A and B∗ ≽ B such that both
A∗↿L and B∗↿L are ℵ0-homogenous and A∗↿L and B∗↿L are isomorphic.

Proof. Set A0 ∶= A,B0 ∶= B. We construct elementary chains A0 ≼ A1 ≼ A2 ≼ ⋯ and B0 ≼
B1 ≼B2 ≼ ⋯ such that for all n ∈ N:

1. An and Bn are countable;

2. (a) for all k ∈ N and ā, ā′ ∈ Akn and all a ∈ An, if tpAn↿L(ā) = tpAn↿L(ā′), then there
exists a′ ∈ An+1 such that tpAn+1↿L(āa) = tpAn+1↿L(ā′a′);

(b) every type realized in Bn↿L, is realized in An+1;

3. (a) for all k ∈ N and b̄, b̄′ ∈ Bk
n and all b ∈ Bn, if tpBn↿L(b̄) = tpBn↿L(b̄′), then there

exists b′ ∈ Bn+1 such that tpBn+1↿L(b̄b) = tpBn+1↿L(b̄′b′);
(b) every type realized in An↿L, is realized in Bn+1.

Having An,Bn, we construct An+1. In 2a we want (An+1, ā′) realize tp(An↿L,ā)(a): this

is a type of (An, ā′) because (An↿L, ā) ≡ (An↿L, ā′). In 2b we want An+1 realize tpBn↿L(b̄)
for b̄ from Bn: this is a type of An because An↿L ≡ A↿L ≡B↿L ≡Bn↿L.

All together, these are countably many (partial) types of (An)An . Lemma 5.4 gives a
countable C ≽ (An)An realizing them all. Set An+1 ∶= C↿L0.

The construction Bn+1 is analogous. Given the chains, set A∗ ∶= ⋃nAn,B∗ ∶= ⋃nBn.
By Tarski’s lemma, A = A0 ≼ A∗. We claim A∗↿L is ℵ0-homogenous. Let ā ↦ ā′ ∈
Ie(A∗↿L,A∗↿L) and a ∈ A. Choose n ∈ N such that ā, ā′, a are from An. By Tarski’s lemma,
tpAn↿L(ā) = tpAn↿L(ā′). By 2a there is a′ ∈ An+1 such that tpAn+1↿L(āa) = tpAn+1↿L(ā′a′). By
Tarski’s lemma, tpA∗↿L(āa) = tpA∗↿L(ā′a′), i.e., āa↦ ā′a′ ∈ Ie(A∗↿L,A∗↿L).

We claim A∗ realizes tpB∗↿L(b̄) for every b̄ from B∗: choose n ∈ N such that b̄ is from Bn.
Since tpBn↿L(b̄) = tpB∗↿L(b̄), by 2b, this type is realized in An+1, so also in A∗.

Analogously, B∗↿L is ℵ0-homogenous and realizes all types realized in An↿L. Then
A∗↿L ≅p B∗↿L by Remark 5.17 (5). Thus A∗↿L ≅B∗↿L by Theorem 3.8.

Not all countable structures have ℵ0-saturated elementary extensions (see Exercise 5.10).
In contrast (for possibly uncountable L):

Corollary 5.22. Every countable L-structure has a countable ℵ0-homogenous elementary
extension.

We can now give an algebraic characterization of type equality.

Theorem 5.23. Assume A is infinite and let ā, b̄ be tuples from A. Then tpA(ā) = tpA(b̄)
if and only if there are B ≽ A and an automorphism π of B such that π(ā) = b̄.

Proof. ⇐ is clear. ⇒: for a unary function symbol f define the theory

T ∶= Th(A, āb̄) ∪ “f is an automorphism wrt L and maps c̄ to d̄”,
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where c̄, d̄ are the constants for ā, b̄ in (A, āb̄) By Lemma 4.30 it suffices to show that T is
consistent. By compactness, we can assume that L is finite. Then Th(A, āb̄) has a count-
able model (A′, ā′b̄′). Then tpA′(ā′) = tpA′(b̄′) because Th(A, āb̄) contains (ϕ(c̄) ↔ ϕ(d̄))
for every L-formula ϕ(x̄). By Corollary 5.22 we can assume that A′ is ℵ0-homogenous. By
Corollary 5.19, there is an automorphism π of A′ with π(ā′) = b̄′. Then the expansion of
(A′, ā′b̄′) that interprets f by π models T .

Exercise 5.24. Let κ be an infinite cardinal and assume A,B are κ-saturated. Let I
be the set of partial elementary functions f with ∣f ∣ < κ. Then I ∶ A ≅p B or I = ∅. If
additionally A ≡B and ∣A∣, ∣B∣ = κ, then A ≅B.

Exercise 5.25 (Uniqueness of ultrapowers). Assume the continuum hypothesis. Assume
L is countable and A has cardinality ℵ1. Let F,F ′ be free ultrafilters on N. Then AN

F ≅ AN
F ′ .

5.3 Omitting types

Which types of a complete theory can be omitted? Trivially, finite types cannot be omitted,
or, similarly, types that are finitely axiomatized over the theory cannot be omitted. We
shall see that this is the only obstacle. Let T be an L-theory.

Definition 5.26. A type p(x̄) of T is principal if there exists an L-formula ψ(x̄) such that
T ∪ {ψ(x̄)} is consistent and T ⊢ (ψ(x̄) → ϕ(x̄)) for all ϕ(x̄) ∈ p(x̄).

A type is free if it is not principal.

Exercise 5.27. The bijection from complete n-types onto ultrafilters in Ln(T ) of Exer-
cise 5.3 maps the principal complete types of T onto the principal ultrafilters in Ln(T ).

Proposition 5.28. If T is complete, every model of T realizes all principal types of T .

Proof. Let A ⊧ T and let p(x̄) a principal type, say witnessed by ψ(x̄). Since T is complete
and consistent with ∃x̄ψ(x̄), it proves it, so there is ā in A such that A ⊧ ψ[ā]. Then
A ⊧ ϕ[ā] for all ϕ(x̄) ∈ p(x̄), so ā realizes p(x̄).

Theorem 5.29 (Omitting types). Assume L is at most countable and P is an at most
countable set of free types of T . Then there exists a model of T that omits all types in P .

Proof. We first consider the case that P = {p(x̄)} for an n-type p(x̄) of T . Let L′ ∶= L ∪C
where C is a countable set of new constants. Let ϕ0, ϕ1, . . . list all L′-sentences, and let
c̄0, c̄1, . . . list Cn. We construct a sequence of L′-sentences χ0, χ1, . . . such that (χi+1 → χi)
is valid and T ∪{χi} is consistent for all i ∈ N. Set χ0 ∶= ∀x x = x and assume χ2i is defined.

We define χ2i+1: set χ′2i+1 ∶= (χi ∧ϕi) if this is consistent with T ∪ {χ2i}, and otherwise
χ′2i+1 ∶= χi. In the first case and if ϕi = ∃xψ(x) for some L′-formula ψ(x), set χ2i+1 ∶=
(χ′2i+1 ∧ψ(c)) for some constant c ∈ C that does not appear in χ′2i; otherwise χ2i+1 ∶= χ′2i+1.
It is straightforward to check that T ∪ {χ2i+1} is consistent.
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We define χ2i+2: write χ2i+1 = χ(c̄i, c̄) for χ(x̄, ȳ) an L-formula, and c̄ constants from C
distinct from c̄i. Clearly, T∪{∃ȳχ(x̄, ȳ)} is consistent. Since p(x̄) is free there is ϕ(x̄) ∈ p(x̄)
such that T ∪ {∃ȳχ(x̄, ȳ),¬ϕ(x̄)} is consistent. We set χ2i+2 ∶= (χ2i+1 ∧ ¬ϕ(c̄i)). Again, it
is straightforward to check that T ∪ {χ2i+1} is consistent.

Let A be a model of T ′ ∶= T ∪ {χi ∣ i ∈ N}, and consider A0 ∶= {cA ∣ c ∈ C} ⊆ A. We use
Tarski’s test to verify A0 is the universe of an elementary substructure A0 ≼ A. Since every
element of A0 interprets a constant, we can restrict attention to L′-formulas. So let a ∈ A
satisfy the L′-formula ψ(x) in A; say ∃xψ(x) = ϕi; then ϕi is consistent with T ′. But T ′

proves χ2i+1 and hence ψ(c) for some c ∈ C. Thus, A ⊧ ψ[cA] and cA ∈ A0.
Thus, A0 ⊧ T ′. We claim A0 omits p(x̄). Otherwise, there is j ∈ N such that c̄A0

j realizes
p(x̄) in A0. But T ′ proves χ2j+2 and hence ¬ϕ(c̄j) for some ϕ(x̄) ∈ p(x̄).

This finishes the proof for singleton P . For P = {p0, p1, . . .} proceed similarly using for
each i ∈ N a list of tuples c̄i0, c̄

i
1, . . . from C, of length according to pi. Modify χ2i+2: add

¬ϕ(c̄i0i1) for some ϕ(x̄) ∈ pi0 : here, i↦ (i0, i1) is some surjection from N onto N ×N.

Exercise 5.30. If p(x) is a free type of A, then there is an elementary extension of A with
infinitely many realizations of p(x).
Hint: it suffices to show that Th(A) ∪ {p(ci) ∣ i ∈ N} ∪ {¬ci = cj ∣ i ≠ j} is consistent. To
this end show that every ϕ(x) ∈ p(x̄) is contained in infinitely many types of A.

5.3.1 McDowell-Specker

Let L = LRing ∪ {<}. Peano arithmetic PA is the L-theory given by some base theory (like
Robinson’s Q) and induction for all formulas, i.e., the universal closure of

ϕ(0, x̄) ∧ ∀y(ϕ(y, x̄) → ϕ(y + 1, x̄)) → ϕ(x, x̄).

We write ∃x<y ϕ for ∃x(x < y ∧ ϕ) and ∃∞xϕ for ∀u∃x(u < x ∧ ϕ) for some u not free
in ϕ. It is known that PA proves the following version of the pigeonhole principle for every
formula ϕ(x, y, x̄):

∃∞x∃y<z ϕ(x, y, x̄) → ∃y<z∃∞xϕ(x, y, x̄).

Theorem 5.31 (McDowell-Specker). Every countable model A of PA has a proper ele-
mentary end extension, i.e., B ≽ A such that B ∖A ≠ ∅ and a <B b for a ∈ A, b ∈ B ∖A.

Proof via omitting types. Let c be a new constant, and consider the L(A) ∪ {c}-theory
T ∶= De(A) ∪ {ca < c ∣ a ∈ A}. By Lemma 4.30 its models have L-reducts isomorphic to
proper elementary extensions of A. It thus suffices to find a model of T that omits

pa(x) ∶= {x < ca} ∪ {¬ca′ = x ∣ a′ ∈ A}.

for every a ∈ A. Hence, it suffices to show that pa(x) is free. Assume it is principal, say
witnessed by ψ(x, c) where ψ(x, y) is an L(A)-formula. Then T proves, for all a′ ∈ A

(ψ(x, c) → x < ca), (ψ(x, c) → ¬x = ca′).
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Since T ∪ {ψ(x, c)} is consistent, there is B ⊧ T and b ∈ B satisfying ψ(x, c) in B.
We can assume A ≼ B. Since B ⊧ ∃y>ca′∃x<ca ψ(x, y) for all a′ ∈ A, we have A ⊧
∀z∃y>z∃x<ca ψ(x, y), that is, A ⊧ ∃∞y∃x<ca ψ(x, y). By the pigeonhole principle, A ⊧
∃x<ca∃∞y ψ(x, y). Choose a0 <A a such that A ⊧ ∃∞y ψ(ca0 , y).

We get the desired contradiction, showing that T ∪{ψ(ca0 , c)} is consistent. Otherwise,
by compactness, there is a1 ∈ A such that De(A) ∪ {ca1 < c} ⊢ ¬ψ(ca0 , c). Then De(A) ⊢
(y > ca1 → ¬ψ(ca0 , y)), contradicting the choice of a0.

Proof via definable ultrapowers. Recall Exercise 4.33. It is straightforward to check that
all models of PA have definable Skolem functions. Let B be the definable ultrapower of
A modulo F (chosen below). A is isomorphic to the elementary substructure of B with
universe {fFa ∣ a ∈ A}; here, fa is the function constantly a. It suffices to find an ultrafilter
F on A such that for all a ∈ A and all b <B fFa there is a′ ∈ A such that b = fFa′ .

Let D denote the set of functions from A to A that are definable in AA. Note D ×A
is countable. Let (f0, a0), (f1, a1), . . . list D × A. We set X0 ∶= A and define unbounded
sets X0 ⊇ X1 ⊇ ⋯, each definable in AA. Assume Xi is defined. Consider the function
a ↦ min{fi(a), ai}. By the pigeonhole principle, it is constant on an unbounded subset
of Xi, say equal to ãi ⩽A ai. Set Xi+1 ∶= {a ∈Xi ∣ fi(a) = ãi}.

We choose for F an ultrafilter containing every Xi and verify our claim above. Assume
b <B fFa for b ∈ B,a ∈ A. Say b = fF for f ∈D. By  Los, X ∶= {a ∣ f(a) <A a} ∈ F . Then a ≠ 0.
Choose i ∈ N such that fi = f and ai+A1 = a. Then ãi <A a and X ∩Xi ⊆ {a ∣ f(a) = fãi(a)}.
Hence, fF = fFãi .

5.4 Countable models

Assume L is countable and T is a complete L-theory with an infinite model, and hence,
without finite models. This section proves three results relating properties of the Linden-
baum algebras Ln(T ) to (special) countable models of T . In particular, we ask for ‘large’
countable models realizing many types (ℵ0-saturated ones), and ‘small’ countable models
realizing as few as possible – these are the following:

Lemma 5.32. For every L-structure A the following are equivalent.

1. A is prime: A→e B for every B ≡ A.

2. A is countable and atomic: every type realized in A is principal.

Proof. 1⇒ 2: by Löwenheim-Skolem-Tarski, Th(A) has countable models, so A is count-
able. If ā realizes a free type p(x̄) in A, Omitting Types gives a countable B ≡ A that
omits p(x̄). Then π ∶ A→e B would imply that π(ā) realizes p(x̄) in B, so A /→e B.

2⇒ 1: let B ≡ A. We claim that Ie(A,B) has (Forth). Let ā↦ b̄ ∈ Ie(A,B) and a ∈ A.
Then (A, ā) ≡ (B, b̄), so tp(A,ā)(a) is a type of (B, b̄). It is principal because tpA(āa) is.

By Proposition 5.28, it is realized in (B, b̄), say by b ∈ B. Then āa↦ b̄b ∈ Ie(A,B).
Let a0, a1, . . . list A; using (Forth) choose successively b0, b1, . . . in B such that a0 ↦

b0, a0a1 ↦ b0b1, . . . ∈ Ie(A,B); then A→e B for π via ai ↦ bi.
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Corollary 5.33. T has at most one prime model up to isomorphism.

Proof. Let A,B ⊧ T be countable and atomic. By the proof above Ie(A,B) ∶ A ≅p B.
Hence A ≅B by Theorem 3.8.

Theorem 5.34. T has a prime model if and only if for all n ∈ N, Ln(T ) is atomic.

Proof. Let A ⊧ T be prime, so countable and atomic, and ϕ(x̄)/T be non-zero in Ln(T ).
Then T ∪ {∃x̄ϕ(x̄)} is consistent. Since T is complete, T ⊢ ∃x̄ϕ(x̄), so A ⊧ ϕ[ā] for some
ā ∈ An. Since p(x̄) ∶= tpA(ā) is principal, so is the ultrafilter Fp in Ln(T ) (see Exercise 5.27).
Let ψ(x̄)/T be the atom determining it. Then ψ/T ⩽ ϕ/T .

Conversely, we show there is a countable atomic model of T . For n ∈ N such that
Ln(T ) is infinite, let Fn be a free ultrafilter (Exercise 2.26). Then Fn contains ¬ϕ/T for
all atoms ϕ/T of Ln(T ). Then the set pn(x̄) of ¬ϕ(x̄) for all atoms ϕ/T is a subset of
the (complete) type corresponding to Fn according to Exercise 5.3, so is a (partial) n-type
of T . We show it is is free. Let ψ(x̄) be an L-formula consistent with T , i.e., ψ/T ≠ 0.
Since Ln(T ) is atomic, there is an atom ϕ(x̄)/T ⩽ ψ(x̄)/T , i.e., T ⊢ ϕ(x̄) → ψ(x̄). Then
T /⊢ ψ(x̄) → ¬ϕ(x̄) as otherwise ϕ(x̄)/T = 0, contradicting ϕ(x̄)/T being an atom.

By Omitting Types there is A ⊧ T that omits all these pn(x̄). We can assume A is
countable. To see it is atomic, let ā ∈ An. If Ln(T ) is finite, all ultrafilters are principal,
so tpA(ā) is principal. If Ln(T ) is infinite, then A omits pn(x̄), so A ⊧ ϕ[ā] for some atom
ϕ(x̄)/T of Ln(T ), so tpA(ā) is principal.

Theorem 5.35. T has a countable ℵ0-saturated model if and only if for all n ∈ N, Ln(T )
has at most countably many ultrafilters.

Proof. ⇒: by Lemma 5.11 and Exercise 5.3. ⇐: by Exercise 5.3 T has at most countably
many (n-)types (any n). By Lemma 5.4 there is a countable A ⊧ T that realizes all types
of T = Th(A) (recall T is complete). By Corollary 5.22 there is a countable B ≽ A that is
ℵ0-homogenous. Note B realizes all its types. By Proposition 5.20, B is ℵ0-saturated.

By Corollary 5.18 and Theorem 3.8, T has at most one countable ℵ0-saturated model
up to isomorphism. By Exercise 2.27 the previous two results imply:

Corollary 5.36. If T has a countable ℵ0-saturated model, then it has a prime model.

5.4.1 Ryll-Nardzewski

Definition 5.37. Let κ be an infinite cardinal. Then T is κ-categorical if any two models
of T of size κ are isomorphic.

Examples 5.38. By Corollaries 3.12 and 3.16 the theory of dense linear orders with-
out endpoints and the theory of atomless Boolean algebras are ℵ0-categorical. By Theo-
rem 3.46, the theory of the random graph is ℵ0-categorical.

Theorem 5.39 (Ryll-Nardzewski). The following are equivalent.
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1. T is ℵ0-categorical.

2. Ln(T ) is finite for all n ∈ N.

3. All models of T are ℵ0-saturated.

Proof. 1⇒ 2: if Ln(T ) is infinite, then, by Exercise 2.26, there is a free ultrafilter in Ln(T ).
By Exercises 5.3 and 5.27, T has a free n-type p(x̄). By Omitting Types there is a
countable model of T that omits p(x̄). By Lemma 5.4 there is a countable model of T that
realizes p(x̄). These two models are not isomorphic, so T is not ℵ0-categorical.

2⇒ 3: let A ⊧ T , m ∈ N, ā ∈ Am and p(x) be a 1-type of (A, ā). By Proposition 5.28,
it suffices to show p(x) is principal. Let M ∈ N be the size of Lm+1(T ), that is, up to T -
provable equivalence, there are M pairwise non-equivalent L-formulas ϕ(y0, . . . , ym−1, x).
Every formula in p(x) can be written ϕ(c̄, x) for an L-formula ϕ(ȳ, x) and c̄ the constants
for ā. Thus, up to equivalence in (A, ā), p(x) contains at most M many formulas. Let
ψ(x) be their conjunction. Clearly, (A, ā) ⊧ ∀x(ψ(x) → ϕ(x)) for all ϕ(x) ∈ p(x).

3⇒ 1: by Corollary 5.18 and Theorem 3.8.

Corollary 5.40. Let ā be a tuple from A. Then Th(A) is ℵ0-categorical if and only if
Th(A, ā) is ℵ0-categorical.

Exercise 5.41. Let A be a set and G a group of permutations of A. G is oligomorphic if
for all n ∈ N the action (g, ā) ↦ g(ā) of G on An has finitely many orbits.

Show that T is ℵ0-categorical if and only if every countable model of T has an oligo-
morphic automorphism group.

5.4.2 Vaught’s never two

Theorem 5.42 (Vaught). There is no complete theory in an at most countable language
with exactly two countable models, up to isomorphism.

Proof. Assume T is such a theory, say in the at most countable language L. By Exercise 5.6
it has at most countably many n-types, for all n ∈ N. By Exercise 5.3, Ln(T ) has at most
countably many ultrafilters. By Theorem 5.35, T has a countable ℵ0-saturated model B.
By Corollary 5.36, T has a prime model A.

By Ryll-Nardzewski there is n ∈ N such that Ln(T ) is infinite. As seen in the proof, T
has a free n-type p(x̄). By Lemma 5.32, p(x̄) is omitted in A and realized in B, say by
b̄ ∈ Bn. In particular, A /≅ B. By Corollary 5.40, T ′ ∶= Th(B, b̄) is not ℵ0-categorical. By
Ryll-Nardzewski, T ′ has a countable model that is not ℵ0-saturated. Write this model as
(C, c̄) for C and L-structure. Then C is not ℵ0-saturated, so C /≅B. Further, C /≅ A because
c̄ realizes p(x̄) in C. Thus, A,B,C are pairwise non-isomorphic models of T .

Exercise 5.43 (Ehrenfeucht’s example). Define T to be the theory of dense linear orders
without endpoints plus an increasing sequence denoted by constants c0, c1, . . .. Show T is
complete and has exactly three countable models (up to ≅): the sequence is cofinal, or has
a supremum, or is not cofinal without supremum.
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Quantifier elimination

Let L be a language and A,B,C be L-structures.

6.1 Craig interpolation

Theorem 6.1 (Craig’s interpolation theorem). Let L0, L1 be languages, ϕ0(x̄) an L0-
formula and ϕ1(x̄) an L1-formula. If the implication (ϕ0 → ϕ1) is valid, then it has an
interpolant: an L0 ∩L1-formula ψ(x̄) such that both (ϕ0 → ψ) and (ψ → ϕ1) are valid.

Proof. Replacing x̄ by constants we can assume ϕ0, ϕ1 are sentences. We can further
assume L0, L1 are finite. Write L ∶= L0∩L1. Recall Lemma 3.29 and write τ kA for τ kA,ā where
ā is the empty tuple. For k > 0 set

ψk ∶= ⋁
A⊧ϕ0

τ kA↿L.

where A ranges over L0-structures. Note (ϕ0 → ψk) is valid. By compactness, it suffices to
show {ψk ∣ k > 0} ⊢ ϕ1. Let B be an L1-structure satisfying all ψk. By Löwenheim-Skolem-
Tarski we can assume that B is at most countable. We have to show B ⊧ ϕ1.

For every k > 0 choose an L0-structure Ak ⊧ ϕ0 and B ⊧ τ kAk↿L. By Lemmas 3.28 and

3.29, B↿L ≡k Ak↿L. Since B ⊧ τ kB↿L, we have Ak↿L ⊧ τ kB↿L. But k was arbitrary and
(ψk → ψ`) is valid for k ⩾ ` > 0 (because (τ kC → τ `C) is valid for all C by Lemma 3.29). Thus,

{ϕ0} ∪ {τ kB↿L ∣ k > 0}

is consistent by compactness. Let A be an at most countable model of this L0-theory.
Then A↿L ≡k B↿L for all k > 0, so A↿L ≡ B↿L (Remark 3.26 (1)). Then there exist

A∗ ≽ A and B∗ ≽ B such that A∗↿L ≅ B∗↿L: if A is infinite, then so is B and we apply
Lemma 5.21; if A is finite, then A↿L ≅B↿L follows from A↿L ≡B↿L (recall Exercise 3.31).

Say, π ∶ A∗↿L ≅ B∗↿L. Define an L0 ∪ L1-expansion C of B∗ such that π ∶ A∗ ≅ C↿L0.
Since A ≼ A∗ we have A∗ ⊧ ϕ0, so C ⊧ ϕ0. Since (ϕ0 → ϕ1) is valid, C ⊧ ϕ1. Since
B ≼B∗ = C↿L1 we have B ⊧ ϕ1.

62
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Corollary 6.2 (Robinson’s joint consistency lemma). Let L0, L1 be languages, T0 an L0-
theory and T1 an L1-theory. If T0∪T1 is inconsistent, then there exists an L0∩L1-sentence
ψ such that T0 ⊢ ψ and T1 ⊢ ¬ψ.

Proof. By compactness, X0 ∪ X1 is inconsistent for some finite X0 ⊆ T0,X1 ⊆ T1. Then
(⋀X0 → ¬⋀X1) is valid. An interpolant satisfies our claim

Corollary 6.3 (Beth’s definability theorem). Let R ∈ L be a relation symbol and T an
L-theory. Assume T implicitly defines R: every L ∖ {R}-structure has at most one L-
expansion to a model of T . Then T explicitly defines R: there is an L∖{R}-formula ϕ(x̄)
such that T ⊢ (Rx̄↔ ϕ(x̄)).

Proof. Let L0 be L plus new constants c̄ and L1 ∶= (L0∖{R})∪{R′} where R′ is a copy of R.
Let T ′ be obtained from T by replacing R by R′. Let T0 ∶= T ∪{Rc̄} and T1 ∶= T ′ ∪{¬R′c̄}.
Since T implicitly defines R, T0∪T1 is inconsistent. Choose ψ according to joint consistency.
Then ψ = ϕ(c̄) for some L ∖ {R}-formula ϕ(x̄). Then T0 ⊢ ψ implies T ⊢ (Rx̄ → ϕ(x̄)).
And T1 ⊢ ¬ψ implies T ′ ⊢ (¬R′x̄→ ¬ϕ(x̄)), so T ⊢ (ϕ(x̄) → Rx̄).
Exercise 6.4. Formulate and prove a version of the above for a function symbol.

6.2 Expressivity of first-order logic

Infinitary logic extends the syntax of first-order logic by declaring ⋀Φ an infinitary L-
formula if Φ is a nonempty set of infinitary L-formulas. Such a formula is declared true in
an L-structure A under an assignment β in A if A ⊧ ϕ[β] for all ϕ ∈ Φ. We write ⋁Φ for
¬⋀¬Φ where ¬Φ ∶= {¬ϕ ∣ ϕ ∈ Φ}.

For an L-theory T and an infinitary L-formula ϕ, T ⊢ ϕ means A ⊧ ϕ[β] for all L-
structures A ⊧ T and all assignments β in A.

Lemma 6.5. Let T be an L-theory, ϕ an L-formula, I a nonempty set and for every i ∈ I
let Φi be a nonempty set of L-formulas. Assume

T ⊢ ϕ↔⋁i∈I ⋀Φi.

Then there exist a finite ∅ ≠ I0 ⊆ I and for every i ∈ I0 a finite ∅ ≠ Φi
0 ⊆ Φi such that

T ⊢ ϕ↔⋁i∈I0 ⋀Φi
0.

Proof. Let i ∈ I. By assumption, T ∪Φi ⊢ ϕ. By compactness, T ∪Φi
0 ⊢ ϕ for some finite

∅ ≠ Φi
0 ⊆ Φi. Hence T ⊢ ϕi → ϕ for ϕi ∶= ⋀Φi

0.
It thus suffices to show T ⊢ ϕ → ⋁i∈I0 ϕi for some finite ∅ ≠ I0 ⊆ I. But this follows

from compactness: by assumption, T ∪ {ϕ} ∪ {¬ϕi ∣ i ∈ I} is inconsistent.

Definition 6.6. Let n ∈ N and Φ be a set of L-formulas ϕ(x0, . . . , xn−1). The Φ-type of
ā ∈ An in A is

Φ-tpA(ā) ∶= {ϕ ∈ Φ ∪ ¬Φ ∣ A ⊧ ϕ[ā]}
For Φ the set of atomic (quantifier free) L-formulas, Φ-tpA(ā) is the atomic (quantifier
free) type of ā in A.
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Remark 6.7. Let ⟨Φ⟩ be the set of Boolean combinations of formulas from Φ, i.e., the
smallest superset of Φ closed under ¬,∧. Then for all ā ∈ An, b̄ ∈ Bn:

Φ-tpA(ā) = Φ-tpB(b̄) ⇐⇒ ⟨Φ⟩-tpA(ā) = ⟨Φ⟩-tpB(b̄).

Exercise 6.8. The following are equivalent:

1. ā in A has the same atomic type as b̄ in B.

2. ā in A has the same quantifier free type as b̄ in B.

3. There exists π ∶ ⟨ā⟩A ≅ ⟨b̄⟩B with π(ā) = b̄.

Moreover, given ā, b̄ there is at most one π as in (3).

Lemma 6.9. Let T be an L-theory, ψ(x̄) an L-formula and Φ a set of L-formulas ϕ(x̄).
Then ψ(x̄) is T -provably equivalent to a formula in ⟨Φ⟩, i.e.,

T ⊢ ψ↔ ϕ

for some ϕ ∈ ⟨Φ⟩, if and only if for all A,B ⊧ T and all ā, b̄:

if ā ∈ ψ(A) and Φ-tpA(ā) = Φ-tpB(b̄), then b̄ ∈ ψ(B).

Proof. Assume T ⊢ ψ ↔ ϕ for some ϕ ∈ ⟨Φ⟩ and Φ-tpA(ā) = Φ-tpB(b̄) where A,B ⊧ T .
Then ⟨Φ⟩-tpA(ā) = ⟨Φ⟩-tpB(b̄). If ā ∈ ψ(A), then ā ∈ ϕ(A), so ϕ ∈ ⟨Φ⟩-tpA(ā), so B ⊧ ϕ[b̄],
so b̄ ∈ ψ(B). Conversely, assume the r.h.s.. By Lemma 6.5 it suffices to show

T ⊢ ψ(x̄) ↔ ⋁{⋀Φ-tpA(ā) ∣ A ⊧ T, ā ∈ ψ(A)}.

Let B ⊧ T and b̄ ∈ Bn. If b̄ ∈ ψ(B), then ⋀Φ-tpB(b̄) is a disjunct of the r.h.s..
Conversely, if b̄ satisfies the r.h.s., there is A ⊧ T and ā ∈ ψ(A) such that Φ-tpB(b̄) =
Φ-tpA(ā); by assumption, B ⊧ ψ[b̄].

Theorem 6.10 (Hauptsatz on expressivity). Let T be an L-theory and for every n ∈ N let
Φn ≠ ∅ be a set of L-formulas ϕ(x0, . . . , xn−1). The following are equivalent.

1. Every L-formula ψ(x0, . . . , xn−1) is T -provably equivalent to some ϕ ∈ ⟨Φn⟩.
2. If A,B ⊧ T , n ∈ N and ā ∈ An has the same Φn-type in A as b̄ ∈ Bn in B, then

tpA(ā) = tpB(b̄).

3. If A,B ⊧ T are ℵ0-saturated, then I = ∅ or I ∶ A ≅p B where

I ∶= ⋃
n∈N

{ā↦ b̄ ∣ ā ∈ An, b̄ ∈ Bn,Φn-tpA(ā) = Φn-tpB(b̄)}.
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Proof. 1⇔ 2 follows from the previous lemma: note tpA(ā) = tpB(b̄) if and only if tpA(ā) ⊆
tpB(b̄). For 2⇒ 3 note (2) implies I = Ie; apply Remark 5.17 (1) and (2).

3⇒ 2: by Theorem 5.12 it suffices to verify (2) for ℵ0-saturated A,B. The assumption
of (2) means ā ↦ b̄ ∈ I. By (3), (A, ā) ≅p (B, b̄), so (A, ā) ≡ (B, b̄) by Theorem 3.9, i.e.,
tpA(ā) = tpB(b̄).

Exercise 6.11. Let I be the set of ā ↦ b̄ such that ā has the same atomic type in A as b̄
in B. Show: I ∶ A ≅p B⇐⇒ ISk(A,B) ∶ A ≅p B.

Exercise 6.12 (Application to discrete orders). For k ∈ N write a formula δk(x, y) such
that for every discrete linear order without endpoints A and all a, b ∈ A:

A ⊧ δk[a, b] ⇐⇒ dA(a, b) ⩽ k

(notation from Section 3.2.1). Let Φ0 be the set of all sentences, and for n > 0 let Φn(x̄) be
the set of all formulas xi < xj, δk(xi, xj) where k ∈ N and i, j < n. Verify Theorem 6.10 (3).

6.3 Quantifier elimination

Let T be an L-theory.

Definition 6.13. T eliminates quantifiers if every L-formula is T -provably equivalent to
a quantifier free L-formula.

Remark 6.14. Assume T eliminates quantifiers. If n > 0 and ϕ = ϕ(x0, . . . , xn−1) is T -
provably equivalent to ψ = ψ(x̄, y0, . . . , ym−1), then also to ψ(x̄, x0, . . . , x0) – so we can
assume the formulas have the same free variables. For n = 0 and an L-sentence ϕ, we can
write ϕ = ϕ(x0) and get a T -provably equivalent quantifier free formula ψ(x0). Then ϕ is T -
provably equivalent to ∀x0ψ(x0). It follows that every L-formula is T -provably equivalent
to a universal L-formula, so T is model complete by Theorem 4.24.

Exercise 6.15. Assume T eliminates quantifiers. Let C be a set of constants. Show
that T , viewed as an L ∪C-theory, eliminates quantifiers.

Definition 6.16. A simply existential L-formula has the form ∃xϕ for ϕ a conjunction of
literals.

Lemma 6.17. T eliminates quantifiers if and only if every simply existential L-formula is
T -provably equivalent to a quantifier free L-formula.

Proof. The set of formulas T -provably equivalent to a quantifier free formula is clearly
closed under ∧,¬. It thus suffices to show that ∃xϕ for quantifier-free ϕ is T -provably
equivalent to a quantifier free formula. Write ϕ as ⋁iψi for ψi conjunctions of literals.
Then ∃xϕ is logically equivalent to ⋁i ∃xψi. Each ∃xψi is T -provably equivalent to a
quantifier free χi. Thus, ∃xϕ is T -provably equivalent to ⋁i χi.



CHAPTER 6. QUANTIFIER ELIMINATION 66

We first treat a special case.

Proposition 6.18. Assume L is a finite relational language and T is complete with an
infinite model. Then T eliminates quantifiers if and only if there exists A ⊧ T with
ISk(A,A) ∶ A ≅p A. If so, then T is ℵ0-categorical.

Proof. If T eliminates quantifiers, then it is ℵ0-categorical by Ryll-Nardzweski: for fixed x̄,
by assumption on L, there are only finitely many pairwise non-equivalent quantifier free
formulas in x̄. Let A ⊧ T be countable. By Corollary 5.22 and ℵ0-categoricity, A is
ℵ0-homogeneous, i.e., Ie(A,A) ∶ A ≅p A. By quantifier elimination, ISk(A,A) = Ie(A,A).

Conversely, assume ISk(A,A) ∶ A ≅p A. Since T is complete, it suffices to show every
formula ϕ(x̄) is in A equivalent to a quantifier free formula. For a tuple ā from A let ψā(x̄)
be the conjunction of all literals satisfied by ā in A - these are finitely many by assumption
on L. Then ϕ(x̄) is in A equivalent to the quantifier free formula

ψ(x̄) ∶= ⋁
ā∈ϕ(A)

ψā(x̄)

Indeed, ϕ(A) ⊆ ψ(A) is clear. Conversely, if b̄ ∈ ψ(A), choose ā ∈ ϕ(A) such that A ⊧ ψā[b̄].
Then ā↦ b̄ ∈ ISk(A,A). By assumption, (A, ā) ≅p (A, b̄), so (A, ā) ≡ (A, b̄) by Theorem 3.8,
so A ⊧ ϕ[b̄].

Theorem 6.19 (Hauptsatz on quantifier elimination). The following are equivalent.

1. T eliminates quantifiers.

2. If A,B ⊧ T , and ā, b̄ are non-empty tuples of the same atomic type in A,B, then
tpA(ā) = tpB(b̄).

3. If A,B ⊧ T are ℵ0-saturated, then ISk(A,B) = ∅ or ISk(A,B) ∶ A ≅p B.

4. If A ⊧ T and C ⊆ A, then T ∪Da(C) is complete.

5. If A,B are models of T with a common substructure C ⊆ A,B, then every simply
existential L(C)-sentence which is true in AC is also true in BC.

Proof. Let Φ0 be the set of L-sentences and for n > 0, let Φn be the set of atomic L-
formulas in the variables x0, . . . , xn. Then (1), (2), (3) are equivalent to the corresponding
statements of Theorem 6.10 (recall Exercise 6.11). Hence, (1)-(3) are equivalent.

1 ⇒ 4: we claim that every B ⊧ T ∪Da(C) models Th(AC). By Lemma 4.3, we can
assume C ⊆ B. Let AC ⊧ ϕ(c̄) for ϕ(x̄) and L-formula. Choose a T -provably equivalent
quantifier free ϕ0(x̄). Then CC ⊧ ϕ0(c̄), so BC ⊧ ϕ0(c̄), hence BC ⊧ ϕ(c̄) since B ⊧ T .

4⇒ 5: note AC ≡BC because both structures model T ∪Da(C), complete by (4).
5 ⇒ 1: by Lemma 6.17 is suffices to show that every simply existential ϕ(x̄) is T -

provably equivalent to a quantifier free formula. We apply Lemma 6.9: assume A,B ⊧ T ,
ā ∈ ϕ(A) and b̄ has the same atomic type in B as ā in A. We have to show b̄ ∈ ϕ(B). By
Exercise 6.8, there is π ∶ ⟨ā⟩A ≅ ⟨b̄⟩B with π(ā) = b̄. We can assume π is the identity, so
b̄ = ā and C ∶= ⟨ā⟩A ⊆B. By (5), A ⊧ ϕ[ā] implies B ⊧ ϕ[ā].
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The following clarifies the relationship of quantifier elimination and model completeness
(cf. Definition 3.39).

Definition 6.20. T has amalgamation if for all A,B,B′ ⊧ T with A ⊆ B,B′ there exist
C ⊧ T and π ∶B→a C and π′ ∶B′ →a C such that π↿A = π′↿A.

Proposition 6.21. T eliminates quantifiers if and only if T is model complete and T∀ has
amalgamation.

Proof. ⇒: let A,B,B′ ⊧ T∀ with A ⊆B,B′. By Lemma 4.4, there are extensions B̂, B̂′ ⊧ T
of B,B′. By Theorem 6.19, T ∪Da(A) is complete. Hence, B̂A ≡ B̂′

A. By Exercise 4.31,

there is π ∶ B̂A →e CA ≽ B̂′
A for some L-structure C. Let π′ ∶ B̂′

A →e CA be the identity.

Then π(a) = π(cB̂Aa ) = cCAa = a = π′(a) for every a ∈ A.
⇐: We verify Theorem 6.19 (4). Given A ⊆B ⊧ T we show every model of T ∪Da(A)

is ≡ BA. By Lemma 4.3 the L-reduct of such a model is isomorphic to some B′ ⊧ T with
A ⊆ B′. By amalgamation, there are embeddings π,π′ of B,B′ into some C′ ⊧ T∀ such
that π↿A = π′↿A. By Lemma 4.4, C′ has an extension C ⊧ T . Then π,π′ are embeddings
into C. Since T is model complete, π and π′ are elementary. Let C0 ⊆ C be the image of π
and note π ∶BA →e CC0 and π′ ∶B′

A →e CC0 . Thus BA ≡ CC0 ≡B′
A.

Exercise 6.22. If T∀ has amalgamation, then also T .

Exercise 6.23 (General Nullstellensatz). Assume T has amalgamation. Let A ⊧ T and ϕ
be an existential L(A)-sentence. Let A ⊆ C ∈ E(T ). Then CA ⊧ ϕ if and only if there exists
A ⊆B ⊧ T with BA ⊧ ϕ.

6.3.1 Examples

We first give a direct argument without using Theorem 6.19.

Example 6.24. The theory of divisible ordered abelian groups eliminates quantifiers. It
is the model companion of the theory of ordered abelian groups.

Proof. By Lemma 6.17 is suffices to show every simply existential formula is (provably
in the theory) equivalent to a quantifier free one. Let ∃yϕ(y, x̄) be a simply existential
formula. We extend the notation mx to m ∈ Z to mean −nx if m = −n for n ∈ N.

Write ϕ(y, x̄) as a disjunction of conjunctions of atoms of the form

0 =my + t, 0 <my + t

where m ∈ Z and t = t(x̄) is a term. This can be done: ¬t0 = t1 is equivalent to (0 <
t0 − t1 ∨ 0 < t1 − t0) and ¬t0 < t1 to (0 = t0 − t1 ∨ 0 < t0 − t1); further, for every term t(y, x̄)
the theory proves t(y, x̄) =my + t′(x̄) for a certain m ∈ Z and a term t′(x̄).

We can thus assume ϕ(y, x̄) is a conjunction of such atoms. Let ϕ′(y, x̄) be the sub-
conjunction of such atoms with m ≠ 0. It suffices to show ∃yϕ′(y, x̄) is equivalent to a
quantifier free formula ψ(x̄).
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Assume an atom 0 = my + t appears, say with m > 0 (the case m < 0 is similar) let
ψ(x̄) be obtained replacing, informally speaking y by −t/m, i.e., every 0 = m′y + t′ by
0 = −m′t +mt′ and every 0 <m′y + t′ by 0 < −m′t +mt′.

Otherwise, ϕ′(y, x̄) is a conjunction of atoms 0 < my + t. Informally, such y has to be
> −t/m for the positive m, and < −t/m for the negative m; it exists if and only if for every
positive m and every negative m′ we have −t/m < −t/m′, i.e., m′t < mt. Let ψ(x̄) be the
conjunction of these atoms.

2nd statement: an ordered abelian group embeds into a divisible one. Indeed, order
the divisible hull of A (Exercise 4.14) setting a/n < a′/m if and only if ma <A na′.

Exercise 6.25. The theory of divisible torsion-free abelian groups eliminates quantifiers.
It is the model companion of the theory of torsion-free abelian groups.

The back and forth systems of Sections 3.1.1-3.1.3 imply quantifier elimination:

Example 6.26. The theory of dense linear orders without endpoints eliminates quantifiers.
It is the model companion of the theory of linear orders.

Proof. Lemma 3.11 verifies Theorem 6.19 (3) or Proposition 6.18. 2nd statement: Exer-
cise 4.49.

Example 6.27. The theory of (nontrivial) atomless Boolean algebras eliminates quanti-
fiers. It is the model companion of the theory of nontrivial Boolean algebras.

Proof. Lemma 3.15 verifies Theorem 6.19 (3). 2nd statement: Exercise 4.6.

Example 6.28. ACF eliminates quantifiers. It is the model-companion of the theory of
integral domains (or fields).

Proof. We verify Theorem 6.19 (3). Let A,B ⊧ ACF be ℵ0-saturated. If A,B have
distinct characteristic, then ISk(A,B) = ∅. Otherwise ISk(A,B) ∶ A ≅p B by Lemma 3.18
and Exercise 3.19 – recall A,B are “large” by Remark 5.14.

2nd statement: an integral domain embeds into its quotient field, and a field embeds
into an algebraically closed one (Example 4.54).

6.3.2 Quantifier elimination in Fräıssé limits

Corollary 6.29. Assume L is a finite relational language and K a Fräıssé class of (finite)
L-structures. Then the theory of the Fräıssé limit of K is ℵ0-categorical and eliminates
quantifiers.

Proof. Let A be the Fräıssé limit of K. Then ISk(A,A) ∶ A ≅p A by Remark 3.38 (2)
and (4). Apply Proposition 6.18.

This provides an alternative proof that the theory of dense linear orders without end-
points eliminates quantifiers (recall Examples 3.43). For atomless Boolean algebras we
generalize the above to languages with function symbols:
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Theorem 6.30. Assume L is finite and K is a Fräıssé class of finite L-structures such
that for all n ∈ N there are, up to isomorphism, only finitely many structures in K that are
generated by n elements. Then the theory of the Fräıssé limit of K is ℵ0-categorical and
eliminates quantifiers.

Proof. For every n ∈ N there are, up to ≅, only finitely many (K, k̄) with K ∈ K and k̄ ∈Kn

and K = ⟨k̄⟩K. It is not hard to write an L-formula ψK,k̄(x̄) such that for every L-structure
B and b̄ ∈ Bn we have B ⊧ ψK,k̄[b̄] if and only if there is f ∶ ⟨b̄⟩A ≅ K with f(b̄) = k̄. Note
there is at most one isomorphism with f(b̄) = k̄. Further, ψK,k̄ = ψK′,k̄′ if (K, k̄) ≅ (K′, k̄′),
so there are only finitely many such formulas.

Let A be the Fräıssé limit of K and ϕ(x0, . . . , xn−1) with n > 0 is an L-formula. Then
ϕ(x̄) is in A equivalent to the quantifier free formula

⋁
ā∈ϕ(A)

ψ⟨ā⟩A,ā(x̄).

Indeed, if b̄ ∈ ψ⟨ā⟩A,ā(A) and ā ∈ ϕ(A), then there is f ∶ ⟨ā⟩A ≅ ⟨b̄⟩A with f(ā) = b̄; by
ultrahomogeneity, there is an automorphism of A extending f ; hence b̄ ∈ ϕ(A).

By Remark 3.38 (3) we are left to show every B ≡ A has skeleton K and is K-saturated.
Sk(B) = K: let K ∈ K and choose k̄ generating it; then A and hence B satisfies

∃x̄ψK,k̄(x̄), so K ∈ Sk(B). Conversely, let b̄ ∈ Bn. With A also B satisfies ∀x̄⋁(K,k̄)ψK,k̄(x̄)
where (K, k̄) ranges over pairs as above with k̄ ∈Kn. Hence ⟨b̄⟩B ≅ K for some K ∈ K.
K-saturation: let f0 ∶ K0 →a B and K0 ⊆ K1 ∈ K. Choose k̄0 generating K0 and k̄1

such that k̄0k̄1 generates K1. Note f ∶ K0 →a B means b̄0 ∶= f0(k̄0) satisfies ψK0,k̄0(x̄) in
B. It suffices to find b̄1 such that b̄0b̄1 satisfies ψK1,k̄0k̄1(x̄, ȳ) in B: then we get f1 ∶ K1 ≅
⟨b̄0b̄1⟩B ⊆B with f1(k̄0k̄1) = b̄0b̄1; such f1 extends f0. But such a b̄1 does indeed exist: A is
K-saturated, so A and hence B satisfy ∀x̄∃ȳ(ψK0,k̄0(x̄) → ψK1,k̄0k̄1(x̄, ȳ)).

Corollary 6.31. The theory of the random graph eliminates quantifiers.

6.4 Applications to algebraically closed fields

Let A be an algebraically closed field, x̄ = (x0, . . . , xn−1) a tuple of variables and A[x̄] the
polynomial ring over A.

Recall the correspondence t↦ Pt and P ↦ tP between LRing(A)-terms and polynomials
in A[x̄] in the proof of Proposition 4.26.

6.4.1 Hilbert’s Nullstellensatz

We need the following result from algebra:

Theorem 6.32 (Hilbert’s basis theorem). Every ideal of A[x̄] is finitely generated.

Theorem 6.33 (Hilbert’s Nullstellensatz - weak form). Every proper ideal I of A[x̄] has
a common zero in A, i.e., there is ā ∈ An such that P (ā) = 0 for all P (x̄) ∈ I.
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Proof. Let J be a maximal ideal extending I. Let B be an algebraically closed extension of
the field A[x̄]/J (Example 4.54). Setting bi ∶= xi mod J we have P (b̄) = 0 for all P (x̄) ∈ J .
Let J0 be a finite generator of J (Theorem 6.32). Then B ⊧ ∃x̄⋀P ∈J0 tP (x̄) = 0. Since A ⊆B
we have A ≼B by model completeness (Remark 6.14). Hence A ⊧ ∃x̄⋀P ∈J0 tP (x̄) = 0. But
if P (ā) = 0 for all P (x̄) ∈ J0, then P (ā) = 0 for all P (x̄) ∈ J .

Theorem 6.34 (Hilbert’s Nullstellensatz - strong form). Let J be a proper ideal of A[x̄],
P (x̄) ∈ A[x̄] and assume P (ā) = 0 for all ā ∈ An such that for all Q(x̄) ∈ J we have
Q(ā) = 0. Then there is k ∈ N such that P (x̄)k ∈ J .

Proof by Rabinowitsch’s trick. The ideal generated by J ∪ {(1− y ⋅P (x̄))} does not have a
common zero in A. By the weak form,

1 = Q0(x̄, y) ⋅ P0(x̄) +⋯ +Q`−1(x̄, y) ⋅ P`−1(x̄) +Q`(x̄, y) ⋅ (1 − y ⋅ P (x̄))

for certain Pi(x̄) ∈ J and Qi(x̄, y) ∈ A[x̄, y]. Work in the field of rational functions A(x̄, y)
and plug 1/P (x̄) for y:

1 = Q0(x̄,1/P (x̄)) ⋅ P0(x̄) +⋯ +Q`−1(x̄,1/P (x̄)) ⋅ P`−1(x̄).

Choose k ∈ N large enough such that Q′
i(x̄) ∶= Qi(x̄,1/P (x̄)) ⋅ P (x̄)k ∈ A[x̄] for all i < `.

Multiplying the equation gives P (x̄)k ∈ J because

P (x̄)k = Q′
0(x̄) ⋅ P0(x̄) +⋯ +Q′

`−1(x̄) ⋅ P`−1(x̄).

6.4.2 Definability versus constructibility

For E ⊆ A[x̄] and X ⊆ An set

V (E) ∶= {ā ∈ An ∣ P (ā) = 0 for all P (x̄) ∈ E},
I(X) ∶= {P (x̄) ∈ A[x̄] ∣ P (ā) = 0 for all ā ∈X}.

Clearly, X ⊆ V (I(X)) and E ⊆ I(V (E)). Sets of the form V (E) are Zariski closed. It
is straightforward to check that I(X) is a radical ideal of of A[x̄], i.e., P (x̄)k ∈ I implies
P (x̄) ∈ I for all k ∈ N and P (x̄) ∈ A[x̄].

Remark 6.35. By Theorem 6.34, J = I(V (J)) for radical ideals J .

Further, for Zariski closed X, we have X = V (I(X)). In particular, X ↦ I(X) is
injective on Zariski closed sets X. Zariski closed sets are closed under ∩,∪. Indeed, one
easily checks X ∩X ′ = V (I(X) + I(X ′)) and X ∪X ′ = V (I(X) ∩ I(X ′)).

Proposition 6.36. For n ∈ N the Zariski closed subsets of An are the closed subsets of
some topology on An.
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Proof. Let X ≠ ∅ be a set of Zariski closed sets. We have to show that ⋂X is Zariski closed.
Assume otherwise and let X0 ∈ X . Since X0 /= ⋂X there is X ∈ X such that X0 /⊆ X. Set
X1 ∶= X0 ∩X. Continue to get X0 ⊋ X1 ⊋ X2 ⊋ ⋯. Then I(X1) ⊊ I(X1) ⊊ ⋯. Then the
ideal ⋃n I(Xn) is not finitely generated. This contradicts Theorem 6.32.

Theorem 6.37. Let n ∈ N. A set X ⊆ An is definable in AA if and only if it is constructible,
i.e., a Boolean combination of Zariski closed sets.

Proof. ⇒∶ an atomic LRing(A)-formula is equivalent to t(x̄) = 0 for some LRing(A)-term
t(x̄), so defines V (Pt(x̄)) in AA. By quantifier-elimimation, every definable (in AA) set is
a Boolean combinations of such sets, hence constructible.
⇐∶ it suffices to show that every Zariski closed X is definable in AA. But X = V (I(X))

and, by Theorem 6.32, I(X) is generated by a finite set E of polynomials over A. Then
X = V (E) is defined by the conjunction of tP (x̄) = 0 for P (x̄) ∈ E.

Corollary 6.38 (Chevalley’s theorem). The image of a constructible set under a polyno-
mial function is constructible.

Proof. Let X ⊆ An be constructible, and f ∶ An → Am be a polynomial function, say given
by P0(x̄), . . . , Pm−1(x̄). By Theorem 6.37 there is an LRing(A)-formula ϕ(x̄) such that
ϕ(A) =X. Then f(X) is constructible because it is defined by

∃x̄(ϕ(x̄) ∧ ⋀i<m yi = tPi(x̄)).

The following mentions a concept that is central to the development of model theory
beyond the limits of this course.

Corollary 6.39. A is strongly minimal: a subset of A is definable in AA if and only if it
is finite or cofinite.

Proof. A finite {a0, . . . , an−1} ⊆ A is defined by ⋁i<n x = cai . Conversely, a definable subset
of A is a Boolean combination of sets V (P (x)) with P (x) ∈ A[x]; but V (P (x)) is finite.

6.4.3 Types versus prime ideals

Let B ⊆ A be a subfield. We need an algebraic lemma:

Lemma 6.40. For every prime ideal I of B[x̄], there is a prime ideal J of A[x̄] with

J ∩B[x̄] = I.

Proof. Let Î = A[x̄] ⋅ I be the ideal generated by I in A[x̄]. Let G ⊆ A be a basis for A as
a vectorspace over B with 1 ∈ G. Then every Q ∈ A[x̄] can be uniquely written ∑g∈GPg ⋅ g
with Pg ∈B[x̄], finitely many ≠ 0. If Q ∈ Î, all Pg are in I. If additionally P ∈B[x̄], all Pg
with g ≠ 1 are 0, so Q ∈ I. Hence, Î ∩B[x̄] = I.
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Hence there exists ideals J of A[x̄] that are disjoint from Ī ∶= B[x̄] ∖ I. By Zorn’s
lemma there is a maximal such ideal J . We are left to show that J is prime.

Given P,P ′ ∉ J , we show PP ′ ∉ J . By maximality, the ideals generated by J ∪{P} and
J ∪{P ′} intersect Ī. Hence there are Q0,Q′

0 ∈ J and Q1,Q′
1 ∈ A[x̄] such that Q0+Q1 ⋅P ∈ Ī

and Q′
0 +Q′

1 ⋅ P ′ ∈ Ī. Since I is prime, Ī is closed under multiplication, so contains

Q0Q
′
0 +Q1Q

′
0 ⋅ P +Q′

1Q0 ⋅ P ′ +Q1Q1 ⋅ PP ′ = Q′′
0 +Q′′

1 ⋅ PP ′

for suitable Q′′
0 ∈ J,Q′′

1 ∈ A[x̄]. As J ∩ Ī = ∅, we have PP ′ ∉ J .

Theorem 6.41. Let n ∈ N. There is a bijection from the set of complete n-types p = p(x̄)
of A over B onto the set of prime ideals of B[x̄] given by

p↦ Ip ∶= {P (x̄) ∣ tP (x̄) = 0 ∈ p}.

Proof. It is straightforward to check that Ip is a prime ideal. Injectivity: if Ip = Iq, then
p, q contain the same quantifier free formulas; by quantifier elimination, p = q.

Surjectivity: let I be a prime ideal of B[x̄]. Choose J according to the previous lemma.
Let C be an algebraically closed field extending the quotient field of A[x̄]/J . For i < n set
ci ∶= xi mod J . By model completeness, A ≼ C, so p(x̄) ∶= tpC(c̄/B) is an n-type of A
over B. For P (x̄) ∈ B[x̄], p contains tP = 0 if and only if P (c̄) = 0 in C, if and only if
P (x̄) ∈ J , if and only if P (x̄) ∈ I. Thus, Ip = I.

6.5 Applications to real closed fields

6.5.1 Background in real algebra

Definition 6.42. A field A is formally real if −1 is not a sum of squares in A. It is real
closed if no proper algebraic extension is formally real. A real closure of A is an algebraic
field extension that is real closed.

Remark 6.43. Every formally real field has a real closure (apply Zorn’s lemma).

We need the following result from real algebra:

Theorem 6.44 (Artin-Schreier). Let A be formally real. The following are equivalent.

1. A is real closed.

2. For every a ∈ A, a or −a is a square in A and every polynomial in A[x] of odd degree
has a root in A.

3. The field extension A(
√
−1) is algebraically closed.

Definition 6.45. The theory RCF of real closed fields is the theory of ordered fields plus,
for every n ∈ N, the universal closures of

∃y(x = y2 ∨ −x = y2), ¬ x2
0 +⋯ + x2

n = −1, ∃y x2n+1 + x2n ⋅ y2n +⋯ + x1 ⋅ y + x0 = 0.
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We write a model of RCF as (A,<A) where A is a real closed field. This abuse of
notation is justified because the order <A is uniquely determined by A:

Lemma 6.46. A real closed field has a unique expansion to an ordered field.

Proof. Assume A is real closed. We first claim that at most one of a,−a is a sum of squares
in A. Indeed, if a, b ∈ A are sums of squares, then so is a/b = (a/b2) ⋅ b.

We define the order setting a <A b if and only if a ≠ b and b − a is a square in A. This
defines a linear order: for transitivity of <A, assume b−a and c− b are squares; then c−a is
a sum of squares, so a − c is not a (sum of) square, so c − a is a square. The other axioms
are trivial, so the expansion is an ordered field. Since in ordered fields squares ≠ 0 are
positive, uniqueness follows.

Lemma 6.47. Assume A is real closed, a, b ∈ A, P (x) ∈ A[x] and P (a) < 0 < P (b). Then
there is a < c < b such that P (c) = 0.

Proof. By Theorem 6.44, A(
√
−1) is algebraically closed. This implies that every Q(x) ∈

A[x] is a product of polynomials of degree 1 or 2. Indeed, in A(
√
−1) write Q(x) as

a product of (X − c) where c = c0 + c1

√
−1 for some c0, c1 ∈ A; since A(

√
−1) has an

automorphism fixing A and mapping
√
−1 to −

√
−1, also c′ ∶= c0 − c1

√
−1 appears; hence,

Q is the product of (x − c) with c1 = 0 and (x − c)(x − c′) with c1 ≠ 0. But (x − c)(x − c′) =
x2 − 2c0x + c2

0 + c2
1 is in A[x].

Let P (x) accord the assumption. We can assume P (x) is irreducible (since some factor
has to change signs). Then P (x) has degree 1 or 2. If P (x) is x − c, then a < c < b. If
P (x) is x2 − 2c0x + c2

0 + c2
1 with c1 ≠ 0, then P (x) = (x − c0)2 + c2

1 > 0 for all values of x,
contradicting P (a) < 0.

We need another result from real algebra. Omitting superscripts, we write an ordered
field A′ as (A,<) for A ∶= A′↿LRing.

Theorem 6.48. Let (A,<) be an ordered field. Then there is a real closure B of A such
that (A,<) ⊆ (B,<B). Moreover, for every real closure B′ of A with (A,<) ⊆ (B′,<B′)
there is an isomorphism from (B,<B) onto (B′,<B′) that fixes A.

6.5.2 Quantifier elimination and Tarski-Seidenberg

Theorem 6.49. RCF eliminates quantifiers.

Proof. We verify Theorem 6.19 (5). Let (A,<A), (B,<B) ⊧ RCF, (C,<) a common sub-
structure, and ∃yϕ(x̄, y) be a simply existential formula. Then C is an integral domain.
We can assume C is a field – note the order extends uniquely to the fraction field. Let
C′ be the relative algebraic closure of C in A: its universe consists of the elements a ∈ A
that are algebraic over C. Theorem 6.44 implies that C′ is a real closure of C; the unique
order <C′ agrees with <A, so extends < on C. Let C′′ be defined analogously within B, in
particular, <C′′ agrees <B and extends < on C. By Theorem 6.48, (C′,<C′), (C′′,<C′′) are
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isomorphic substructures of (A,<A), (B,<B) and the isomorphism fixes C. We can thus
further assume that C is a real closed field.

Assume A ⊧ ϕ[c̄, a] for c̄ from C and a ∈ A. We have to find b ∈ B such that B ⊧ ϕ[c̄, b].
If a is algebraic over C then a ∈ C ⊆ B, and we can choose b ∶= a.

Assume a is transcendental over C. We have a closer look at ϕ. The theory of ordered
fields proves (¬t = t′ ↔ (0 < t − t′ ∨ 0 < t′ − t)) and (¬t < t′′ ↔ (t = t′ ∨ 0 < t′ − t)). Hence
ϕ(x̄, y) is equivalent to a disjunction of conjunctions of atoms of the form t = 0,0 < t for
terms t = t(x̄, y). Choose such a disjunct satisfied by c̄a. Since a is not algebraic over C,
all atoms t(x̄, y) = 0 in this disjunct are trivial in that Pt(c̄, y) is the zero polynomial.
Deleting the equations, leaves a conjunction of 0 < ti(x̄, y) for certain terms ti; let Pi(y) ∶=
Pti(c̄, y) ∈ C[y]. We have to find b ∈ B such that Pi(b) > 0 for all i.

Let c0 < ⋯ < c`−1 list the roots of the polynomials Pi(y) in C (equivalently, in A or B).
Assume cj < a < cj+1 (the cases a < c0 and c`−1 < a are similar). By Lemma 6.47, Pi(y) > 0
for all y between cj and cj+1. Set b ∶= (cj + cj+1)/2 ∈ C ⊆ B.

As in the previous section we get an algebraic characterization of definable sets:

Exercise 6.50. Let (A,<A) ⊧ RCF and n ∈ N. X ⊆ An is definable in (A,<A)A if and only
if it is semi-algebraic: a Boolean combination of sets {ā ∈ An ∣ P (ā) <A 0} with P (x̄) ∈ A[x̄].

In particular, for n = 1, a subset X ⊆ A is definable in AA if and only if it is a finite
union of points and open intervals. This means that A is o-minimal.

Corollary 6.51 (Tarski-Seidenberg). Let (A,<A) ⊧ RCF. If X ⊆ Am+n is semi-algebraic,
then so is {ā ∈ Am ∣ ∃b̄ ∈ An ∶ (ā, b̄) ∈X}.

6.5.3 Hilbert’s 17th problem

Lemma 6.52. Let A be a formally real field and assume a ∈ A is not a sum of squares
in A. Then some real closed extension B of A satisfies a <B 0.

Proof. It suffices to show that the field extension A(
√
−a) is formally real: then a real

closed B ⊇ A(
√
−a) satisfies 0 <B −a since −a is a square in B. Otherwise,

√
−a ∉ A and

−1 = ∑i(ai + bi
√
−a)2 = ∑i(a2

i + 2aibi
√
−a − b2

i a).

for certain bi, ai ∈ A. Since
√
−a ∉ A the 2aibi

√
−a cancel, so −1 = ∑i a

2
i − a∑i b

2
i . Then

a = ∑i a
2
i + 1

∑i b
2
i

= ∑i a
2
i ⋅ ∑i b

2
i +∑i b

2
i

(∑i b
2
i )2

is a sum of squares – contradiction.

The following answers Hilbert’s 17th problem.

Theorem 6.53 (Artin). Let A be a real closed field and f(x̄) ∈ A(x̄) be a rational function.
If 0 <A f(ā) for all tuples ā from A, then f(x̄) is a sum of squares in A(x̄).
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Proof. It is not hard to verify that A(x̄) is formally real. Assume f(x̄) is not a sum of
squares in A(x̄). By the lemma, there is some real closure B of A(x̄) such that f(x̄) <B 0.
Write f(x̄) = P (x̄)/Q(x̄) for polynomials P (x̄),Q(x̄) ∈ A[x̄]. Set

“f(x̄) < 0” ∶= (tP (x̄) < 0 ∧ 0 < tQ(x̄)) ∨ (0 < tP (x̄) ∧ tQ(x̄) < 0).

Then (B,<B)A ⊧ ∃x̄“f(x̄) < 0” witnessed by x̄ viewed as elements of A(x̄). But A ⊆
A(x̄) ⊆ B, so (A,<A) ⊆ (B,<B) by uniqueness of the order. By model completeness,
(A,<A)A ≼ (B,<B)A, so (A,<A)A ⊧ ∃x̄“f(x̄) < 0”. Thus, f(ā) <A 0 for some ā from A.
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