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Abstract The classes of the W-hierarchy are the most important classes of intractable
problems in parameterized complexity. These classes were originally defined via the
weighted satisfiability problem for Boolean circuits. Here, besides the Boolean con-
nectives we consider connectives such as majority, not-all-equal, and unique. For
example, a gate labelled by the majority connective outputs TRUE if more than half
of its inputs are TRUE. For any finite set C of connectives we construct the corre-
sponding W(C)-hierarchy. We derive some general conditions which guarantee that
the W-hierarchy and the W(C)-hierarchy coincide levelwise. If C only contains the
majority connective then the first levels of the hierarchies coincide. We use this to
show that a variant of the parameterized vertex cover problem, the majority vertex
cover problem, is W[1]-complete.
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1 Introduction

Parameterized complexity is a refinement of classical complexity theory, in which
one takes into account not only the total input length n, but also other aspects of the
problem codified as the parameter k. In doing so, one attempts to confine the exponen-
tial running time needed for solving many natural problems strictly to the parameter.
For example, the classical VERTEX-COVER problem can be solved in O(2k ·n) time,
when parameterized by the size k of the solution sought [10] (significant improve-
ments to this algorithm are surveyed in [11]). This running time is practical for in-
stances with small parameter, and in general is far better than the O(nk) running time
of the brute-force algorithm. More generally, a problem is said to be fixed-parameter
tractable if it has an algorithm running in time f (k) · p(n), where n is the length
of the input, k its parameter, f an arbitrary computable function and p a polyno-
mial. Such an algorithm is said to run in fpt-time, and FPT denotes the class of all
parameterized problems that are fixed-parameter tractable.

Parameterized complexity theory not only provides methods for proving prob-
lems to be fixed-parameter tractable but also gives a framework for dealing with ap-
parently intractable problems. There are a great variety of classes of parameterized
intractable problems. However, the most important of these classes are the classes
W[1],W[2], . . . of the W-hierarchy, on top of which there are the classes W[SAT]
and W[P],

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ · · · ⊆ W[SAT] ⊆ W[P].

These classes were originally defined via the weighted satisfiability problem for Boo-
lean circuits. In this context Boolean circuits are allowed to contain NOT gates, small
AND and OR gates of fan-in ≤ 2 and large AND and OR gates of arbitrary finite
fan-in. The weft of such a circuit is the maximum number of large gates on a path
from an input to the output, its depth the maximum number of all gates on a path
from an input to the output. The (Hamming) weight of an assignment of truth values
to the input variables of the circuit is the number of variables set to TRUE. A circuit
is k-satisfiable if there is an assignment of weight k satisfying it. The parameterized
weighted satisfiability problem p-WSAT(�) for a class � of circuits is the problem

p-WSAT(�)

Input: A circuit D in � and a natural number k.
Parameter: k.

Question: Is D k-satisfiable?

By definition W[t] is the class of parameterized problems reducible to p-WSAT(�t,d)

for some d ≥ 1, where �t,d is the class of Boolean circuits of weft ≤ t and depth ≤ d .
The classes W[SAT] and W[P] are obtained when taking as � the class of all propo-
sitional formulas and the class of all circuits respectively. Using these definitions one
easily verifies that the parameterized independent set problem p-INDEPENDENT-SET
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(when parameterized by the size of the solution sought) is in W[1] and that the pa-
rameterized dominating set problem p-DOMINATING-SET is in W[2]. In fact, these
problems are complete problems for W[1] and W[2], respectively.

Some problems suggest an analysis of the weighted satisfiability problem for cir-
cuits with other types of gates. For example, let us consider the parameterized prob-
lem

p-MAJORITY-VERTEX-COVER

Input: A graph G = (V ,E) and k ∈ N.
Parameter: k.

Question: Is there a set of k vertices in G which covers a majority of
the edges of G, i.e., is there S ⊆ V with |S| = k and
|{e ∈ E | e ∩ S �= ∅}| > |E|/2 ?

It is not hard to reduce this problem to the weighted satisfiability problem for majority
circuits of weft 1 and depth 2 (see Sect. 6). The gates of such a circuit are (only!)
majority gates, that is, they are labelled by the connective Maj, which outputs TRUE

if more than half of its inputs are TRUE. Such a gate is small if it has fan-in ≤ 3. What
is the complexity of the weighted satisfiability problem for circuits based purely on
majority gates? This paper addresses questions of this kind.

Besides the majority connective there are other quite natural connectives. We men-
tion

the not-all-equal connective NAE (there are inputs set to TRUE and inputs set
to FALSE)

the unique connective U (exactly one input is set to TRUE)
the connective c> (at most c − 1 inputs are set to TRUE).
the connective c≤ (at least c inputs are set to TRUE)

(here we assume that c is a natural number ≥ 1). We call the connectives c> and c≤
the threshold connectives.

All these connectives are symmetric in the sense that their value depends only on
the number of input gates set to TRUE and the number of input gates set to FALSE, that
is, their value is invariant under permutations of the inputs. For example, conjunctions∧

and disjunctions
∨

(of arbitrary fan-in) are symmetric, but the classical binary
implication → is not. In this paper we consider symmetric gates only.

The connective NAE has the property that if we set one input to TRUE and set
another to FALSE, then the value of an NAE-gate will be TRUE no matter what the
truth values of the other inputs are. Similarly, the connectives U , c>, and c≤ have
the property that a “bounded number of inputs determine the value”. The majority
connective Maj does not have this property. In Sect. 3 we discuss the connectives C

which share the bounded property. The corresponding bound determines what should
be called a small C-gate. This allows us to define the W(C)-hierarchy in the same
way as the W-hierarchy was defined.

For a given set C of bounded connectives we ask how the W-hierarchy and the
W(C)-hierarchy relate. There are various respects in which this question is interest-
ing.
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We will see that, if C satisfies some further property, then the two hierarchies coin-
cide levelwise. Informally, this suggests a certain robustness in the notion of weft: if
we replace Boolean connectives by certain others, the weft remains the key parameter
governing the parameterized complexity of weighted satisfiability problems.

On the other hand, besides the W-hierarchy there is a huge variety of parameter-
ized intractable classes like those of the M-, the W∗-, the Wfunc- or the A-hierarchy
just to mention a few. We hope that the results and techniques presented in this paper
turn out to be useful to sort out the relationships of all these classes.

Typical problems complete for W[1] are antimonotone. For the parameterized
independent set problem p-INDEPENDENT-SET, famously W[1]-complete, anti-
monotonicity means that an input graph with an independent set of size k also has
an independent set of size k′ for any k′ ≤ k. We refer to [3] for a precise definition
of (anti)monotonicity. So far only a few monotone problems are known to be W[1]-
complete [9]. To this short list we add three new ones.

The contents of the paper can be described as follows. For three groups of connec-
tives we study the properties of the classes of the corresponding W-hierarchy.

The first group is formed by the bounded connectives and is dealt with in Sect. 4.
We first show how the property of boundedness entails that the W(C)-hierarchy is
contained levelwise in the W-hierarchy. We then explore the issue of possible reverse
inclusions. The following observation hints on how this can be achieved.

A �t Boolean circuit as defined by Sipser [12] consists of t levels of large gates
that alternate AND and OR with an AND gate at the top and with the bottom level
gates connected to the input variables and their negations. Such a circuit is in �+

t if
negations do not occur and in �−

t if all variables are negated. It is well-known [5]
that:

• if t is even, then p-WSAT(�+
t ) is complete for W[t];

• if t > 1 is odd, then p-WSAT(�−
t ) is complete for W[t].

Let t > 1. Circuits in �+
t (if t is even) or in �−

t (if t is odd) can equivalently be
written as propositional formulas of the form

¬
∨

i1

¬
∨

i2

· · ·¬
∨

it

Yi1...it (1)

with variables Yi1...it . Let NOR be the connective “defined” by the equivalence

NOR[Y1, . . . , Yn] ≡ ¬
∨

i∈[n]
Yi.

Then (1) shows that for every connective C that is capable of simulating NOR by a cir-
cuit of weft 1 and of constant depth, the W(C)-hierarchy will contain the W-hierarchy
levelwise for t > 1. This applies to the connectives NAE, U , and c>. Together with
the result mentioned above, it follows that for bounded connectives C capable of sim-
ulating NOR the W- and the W(C)-hierarchy coincide levelwise for t > 1. We shall
exhibit a weaker condition ensuring this coincidence for all t .

Our second group of connectives is formed by the threshold connectives c≤ and
is dealt with in Sect. 5. For these the general results of Sect. 4 do not apply and, in
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fact, the picture we gain is quite different. The parameterized weighted satisfiability
problem for such circuits is:

• solvable in polynomial time if the depth is bounded by a constant;
• W[1]-complete if the depth is bounded in terms of the parameter;
• W[SAT]-complete if the depth is logarithmic in the circuit size and the circuit

contains only small gates;
• W[P]-complete for circuits of arbitrary depth

(recall that the weighted satisfiability problem for propositional formulas is complete
for W[SAT]). The second result is the first of our new examples of monotone W[1]-
complete problems.

Finally, in Sect. 6 we deal with the majority connective Maj. We show that the
W-hierarchy is contained levelwise in the W(Maj)-hierarchy. While we conjecture
that W[t] � W[t](Maj) for t > 1, we can show that the first levels coincide. This
gives our second example of a monotone W[1]-complete problem. As a corollary we
get a third: p-MAJORITY-VERTEX-COVER, a majority version of the parameterized
vertex cover problem, is W[1]-complete.

We close in Sect. 7 with a discussion of a key question that we have failed to settle,
namely, how W[t] and W[t](Maj) relate for t > 1. As a starting point we show that
certain majority versions of the W[2]-complete parameterized dominating set and
hitting set problems have the same complexity and are contained in W[2](Maj).

2 Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a
natural number n let [n] := {1, . . . , n}.

For detailed introductions to parameterized complexity theory the reader should
consult one of the monographs [5, 8, 11] or the recent surveys [6]. A parameterized
problem P is a subset of �∗ × N, where � is a finite alphabet and �∗ is the set of
finite strings over �. If (x, k) ∈ �∗ × N is an instance of P , then x is the input and
k the parameter. P is fixed-parameter tractable if there is an algorithm that decides
whether (x, k) ∈ P in time f (k) ·p(|x|), where f is an arbitrary computable function,
and p is a polynomial (here |x| denotes the length of the string x).

Let P ⊆ �∗ × N and P ′ ⊆ (�′)∗ × N be parameterized problems.
An fpt-reduction, from P to P ′ is a mapping R : �∗ × N → (�′)∗ × N such that:

1. For all (x, k) ∈ �∗ × N we have: (x, k) ∈ P ⇐⇒ R(x, k) ∈ P ′.
2. There exists a computable function f : N → N such that R is computable in time

f (k) · |x|c for some c ∈ N.
3. There exists a computable function g : N → N such that for all (x, k) ∈ �∗ × N,

say with R(x, k) = (x′, k′), we have k′ ≤ g(k).

We write P ≤fpt P ′ if there is an fpt-reduction from P to P ′ and we write P ≡fpt P ′
if P ≤fpt P ′ and P ′ ≤fpt P .
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3 The W-Hierarchy for Bounded Connectives

In this section we lay down the framework of our investigations. We introduce a
notion of a symmetric connective and say what it means for it to be bounded. For a
set of bounded connectives we define the classes of the corresponding W-hierarchy.

Definition 1 A symmetric connective C (abbreviated connective) is a function that
maps any pair (m,n) ∈ N×N with m+n ≥ 1 to a value in {1,0} and can be computed
in time polynomial in (m + n).

We interpret C(m,n) = 1 as “C outputs a ‘1’ (= TRUE), if it gets as input m-many
‘1’s and n-many ‘0’s.” Examples of connectives are the (big) conjunction

∧
, (big)

disjunction
∨

, the not-all-equal connective NAE, the unique connective U , for c ∈ N

the c-threshold connectives c> and c≤, the majority connective Maj defined by 1

∧
(m,n) = 1 ⇐⇒ n = 0;

∨
(m,n) = 1 ⇐⇒ m �= 0;

NAE(m,n) = 1 ⇐⇒ m ≥ 1 and n ≥ 1;
U(m,n) = 1 ⇐⇒ m = 1;
c>(m,n) = 1 ⇐⇒ m < c;
c≤(m,n) = 1 ⇐⇒ c ≤ m;

Maj(m,n) = 1 ⇐⇒ m > n;
NOR(m,n) = 1 ⇐⇒ m = 0.

Let C be a finite set of connectives (throughout this paper C will always denote a
finite set of connectives). A C -circuit D is a finite connected acyclic directed graph
with multiple edges; mostly we will call the vertices of D gates. Each gate of D of
positive fan-in is labelled with a symbol C ∈ C . We then call it a C-gate. As usual we
call a NOR-gate of fan-in one a ¬-gate.

Gates with fan-in zero are the input gates; they are labeled with variables
X1,X2, . . . or with the Boolean constants � and ⊥. We only consider circuits having
exactly one gate of fan-out zero, the output gate. We let X,Y,Y1, Y2, . . . ,Z denote
variables. We denote by CIRC(C ) the class of all C -circuits. A Boolean circuit is a
{NOR,

∧
,
∨}-circuit.

The size ‖D‖ of a C -circuit D is defined as the sum of the number of gates of D

and the number of edges of D.
An assignment or valuation for a C -circuit D is a mapping V from a set of variables

containing all the variables occurring in D to {1,0}. In the obvious bottom-up way
one defines the value V (g) for any gate g of D:

If g is labelled by a variable X, then V (g) := V (X).
If g is labelled by �, then V (g) := 1.
If g is labelled by ⊥, then V (g) := 0.

1Whenever we write C(m,n) we assume that m + n ≥ 1.
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If g is labelled by C and has entries from the gates (gi)i∈I (where a gate g′
occurs exactly m times in the enumeration (gi)i∈I if there are exactly m edges
from g′ to g), then

V (g) := C
(|{i ∈ I | V (gi) = 1}|, |{i ∈ I | V (gi) = 0}|).

The assignment satisfies the circuit if its value for the output gate is 1. A C1-circuit
D1 and a C2-circuit D2 are equivalent, D1 ≡ D2, if they are satisfied by the same
assignments defined on all variables occurring in D1 or D2.

The weight of an assignment is the number of variables set to 1. A circuit D

is k-satisfiable (where k ∈ N), if there is an assignment for the input variables of
D of weight k satisfying D. For a set � of C -circuits, the parameterized weighted
satisfiability problem p-WSAT(�) for circuits in � is the following problem:

p-WSAT(�)

Input: A circuit D ∈ � and k ∈ N.
Parameter: k.

Question: Is D k-satisfiable?

A C -circuit where all gates, besides the output gate, have fan-out one is a C -formula.
They constitute the formulas of propositional logic with connectives from C . Thus
these formulas can be viewed as the strings obtained from the propositional variables
X1,X2, . . . and the constants � and ⊥ by finitely many applications of the rule:

If n ∈ N and α1, . . . , αn are C -formulas and C ∈ C , then C[α1, . . . , αn] is a
formula.

We denote by FORM(C ) the class of all C -formulas.

Definition 2 A connective C is bounded if there is b ∈ N such that for all m, n,
n′ ∈ N with n,n′ ≥ b

C(m,n) = C(m,n′) and C(n,m) = C(n′,m).

We then say that C is b-bounded. Clearly, if C is b-bounded and b < b′, then C is
b′-bounded. The smallest b such that C is b-bounded is denoted by b(C).

Example 3 The reader will easily verify that

b(NOR) = 1, b
(∧)

= 1, b
(∨)

= 1, b(NAE) = 1, b(U) = 2,

b(c>) = c and b(c≤) = c.

Maj is not bounded.

Weft and the W-Hierarchy Let C be a set of bounded connectives. Let D be a
C -circuit. A C-gate of D is small if it has fan-in less than 2(b(C) + 1); otherwise
it is large. A circuit is small if it only contains small gates. The weft of D is the max-
imum number of large gates on any path from the input gates of D to its output gate.
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The depth of D is the maximum number of (large and small) gates of positive fan-in
on any path from the input gates of D to its output gate. We set

�t,d(C) := {D | D a C -circuit of weft ≤ t and depth ≤ d}.
By definition, for t ≥ 1, W[t] is the class of parameterized problems fpt-reducible to
p-WSAT(�t,d({NOR,

∧
,
∨})) for some d ∈ N.2 The classes W[1],W[2], . . . consti-

tute the W-hierarchy. Furthermore:

• W[SAT] is the class of parameterized problems that are fpt-reducible to the prob-
lem p-WSAT(FORM({NOR,

∧
,
∨}));

• W[P] is the class of parameterized problems that are fpt-reducible to the problem
p-WSAT(CIRC({NOR,

∧
,
∨})).

Therefore we define:

Definition 4 Let C be a class of connectives.

• W[SAT](C ) is the class of parameterized problems that are fpt-reducible to the
problem p-WSAT(FORM(C));

• W[P](C ) is the class of parameterized problems fpt-reducible to the problem
p-WSAT(CIRC(C)).

Let C be a class of bounded connectives.

• For t ≥ 1, W[t](C) is the class of parameterized problems fpt-reducible to
p-WSAT(�t,d(C)) for some d ∈ N. The classes W[1](C),W[2](C), . . . constitute
the W(C )-hierarchy.

Clearly, for a class C of bounded connectives, we have

W[1](C) ⊆ W[2](C) ⊆ · · · ⊆ W[SAT](C) ⊆ W[P](C).

4 Comparing the W-Hierarchy and the W(C)-Hierarchy for Classes C of
Bounded Connectives

In this section we show that the W-hierarchy and the W(C)-hierarchy coincide level-
wise for a set of bounded connectives C satisfying some further conditions. First we
prove for such a C that the W(C)-hierarchy is contained levelwise in the W-hierarchy.
We use two facts holding for a bounded connective C:

• For m,n ≥ b(C) we have C(m,n) = C(b(C), b(C)) (compare the definition of a
bounded connective).

• A C-gate with fan-in less than 2 · (b(C) + 1) can be simulated by a small Boolean
circuit of constant depth (by functional completeness of {¬,∧,∨, }).

2Note that in [5] the depth is defined without taking into account the ¬-gates. Clearly, this difference has
no effect on the definition of W[t].
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Proposition 5 Let C be a set of bounded connectives. There is a d0 ∈ N and a poly-
nomial time algorithm assigning to every C -circuit D an equivalent Boolean circuit
D′ such that:

• if D ∈ �t,d(C), then D′ ∈ �t,d·d0 ;
• if D is a C -formula, then D′ is a Boolean propositional formula.

Proof For C ∈ C an assignment V satisfies a C-formula of the form C[Y1, . . . , Yn] if
and only if:

• there is an r < b(C) such that C(r,n − r) = 1 and V satisfies exactly r of the Yi ,
or

• there is an s < b(C) such that C(n − s, s) = 1 and V satisfies exactly n − s of the
Yi , or

• C(b(C), b(C)) = 1 and V satisfies at least b(C) of the Yi and at least b(C) of the
Yi are not satisfied by V .

We find Boolean formulas γ1, γ2, γ3 “expressing these cases”—namely:

γ1 :=
∨

r<b(C),C(r,n−r)=1

( ∨

1≤i1<···<ir≤n

(Yi1 ∧ · · · ∧ Yir )

∧
∧

1≤j1<···<jr+1≤n

(¬Yj1 ∨ · · · ∨ ¬Yjr+1)

)

.

γ2 is defined similarly. γ3 is ⊥ in case C(b(C), b(C)) = 0 and else

γ3 :=
∨

1≤i1<···<ib(C)≤n

(Yi1 ∧ · · · ∧ Yib(C)
)

∧
∨

1≤j1<···<jb(C)≤n

(¬Yj1 ∧ · · · ∧ ¬Yjb(C)
).

Here and later we omit
∨∅ and

∧∅. Then we have

C[Y1, . . . , Yn] ≡ (γ1 ∨ γ2 ∨ γ3). (2)

One easily verifies that there is a d0 ∈ N such that for every C ∈ C :

• if n < 2(b(C) + 1), then the Boolean formula (γ1 ∨ γ2 ∨ γ3) in (2) can be chosen
of weft 0 and depth ≤ d0;

• if n ≥ 2(b(C) + 1), then the Boolean formula (γ1 ∨ γ2 ∨ γ3) in (2) can be chosen
of weft 1 and depth ≤ d0.

Let D be a C -circuit. For C ∈ C we replace, bottom-up, each C-gate in D according
to the equivalence (2), thus obtaining an equivalent Boolean circuit D′. Clearly, the
mapping D �→ D′ is computable in polynomial time and maps formulas to formulas.
If D ∈ �t,d(C), then we have D′ ∈ �t,d·d0 . �



320 Theory Comput Syst (2010) 46: 311–339

Corollary 6 If C is a set of bounded connectives, then

W[t](C) ⊆ W[t] for all t ≥ 1, W[SAT](C) ⊆ W[SAT], W[P](C) ⊆ W[P].

For the last inclusion of this corollary we do not need the boundedness of the
connectives in C , that is:

Proposition 7 If C is a set of connectives, then W[P](C) ⊆ W[P].

Proof The following nondeterministic algorithm decides the W[P](C)-complete
problem p-WSAT(CIRC(C)): On input (D, k) the algorithm first guesses k in-
put variables of D (by guessing k · log‖D‖ bits) and then in time polynomial
in ‖D‖ checks whether the assignment setting exactly these variables to TRUE

satisfies D. By the machine characterization of [4] this algorithm witnesses that
p-WSAT(CIRC(C)) ∈ W[P]. �

We turn to the converse inclusions. We look for conditions on C that allow us to
find a weft-preserving translation from Boolean circuits to C -circuits.

Definition 8 Let C be a connective.

• C is monotone if and only if C(m,n) ≤ C(m + r, n − r) for all m,n ∈ N and all
r ∈ [n].

• C is
∨

-closed if and only if there are m,n ∈ N such that for all r ≥ 1 and all s ∈ [r]
C(m,n + r) �= C(m + s, n + r − s).

We say that a class C of connectives is monotone if and only if all connectives in C
are monotone. C is

∨
-closed if and only if at least one connective in C is

∨
-closed.

Example 9

(a) The connectives c≤ and Maj are monotone.
(b) The connectives NAE, U , and c> are not monotone as seen by taking

m = 1, r = 1, and n = 1 for NAE;
m = 1, r = 1, and n = 1 for U ;

m = c − 1, r = 1, and n = 1 for c>.

(c) The connectives
∨

,NAE, U , c>, and c≤ are
∨

-closed as seen by taking

m = 0 and n = 0 for
∨

m = 0 and n = 1 for NAE;
m = 1 and n = 0 for U ;

m = c − 1 and n = 0 for c>;
m = c − 1 and n = 0 for c≤.

Lemma 10 Let C be a bounded connective. Then:



Theory Comput Syst (2010) 46: 311–339 321

1. if C is
∨

-closed, then there are m,n ∈ N with m + n < 2b(C) such that for all
r ≥ 1 and all s ∈ [r] we have C(m,n + r) �= C(m + s, n + r − s);

2. if C is not monotone, then there are m,n, r ∈ N with m+n+ r ≤ 2b(C) such that
C(m + r, n) < C(m,n + r).

Proof Let C be bounded. To prove (1) assume that C is
∨

-closed. Choose m,n ∈ N

such that for all r ≥ 1 and all s ∈ [r] we have C(m,n + r) �= C(m + s, n + r − s). In
case n > b(C) we can replace it by b(C), so we can assume n ≤ b(C). But m < b(C)

as otherwise for sufficiently large r

C(m,n + r) = C(m + 1, n + r) = C(m + 1, n + r − 1)

contradicting the choice of m and n.
To prove (2) assume that C is not monotone. It follows from Definition 8 that

there are m,n, r ∈ N such that C(m + r, n) < C(m,n + r). We have to show that
we can find such m,n, r with m + n + r ≤ 2b(C). In fact, if both m,n ≥ b(C), then
C(m + r, n) = C(m,n + r). Assume now that m < b(C) and n ≥ b(C). Then we can
replace n by b(C). If m + r ≤ b(C), we are done. If m + r > b(C), then we replace
r by b(C) − m. The remaining cases are treated similarly. �

Proposition 11 Let C be a set of bounded connectives which is
∨

-closed and not
monotone. There is a d0 ∈ N (we can even choose d0 = 3) and a polynomial time
algorithm assigning to every Boolean circuit D an equivalent C -circuit D′ such that:

• if D ∈ �t,d , then D′ ∈ �t,d·d0(C);
• if D is a Boolean propositional formula, then D′ is a C -formula.

Proof Choose a connective C ∈ C which is not monotone. By Lemma 10(2) there are
m,n, r ∈ N with m + n + r ≤ 2b(C) such that

0 = C(m + r, n) �= C(m,n + r) = 1.

Then we get:

¬Y and C[�, . . . ,�
︸ ︷︷ ︸

m

,Y, . . . , Y
︸ ︷︷ ︸

r

,⊥, . . . ,⊥
︸ ︷︷ ︸

n

] are equivalent. (3)

This shows how we can replace ¬-gates of Boolean circuits by C-gates; moreover,
the occurrence of C in (3) is small as m + n + r ≤ 2b(C) < 2(b(C) + 1).

Furthermore, C is
∨

-closed. Hence there are C′ ∈ C and m,n ∈ N such that for all
r ≥ 1 and all s ∈ [r]

C′(m,n + r) �= C′(m + s, n + r − s).

We have that, if C′(m,n + r) = 1, then

¬
∨

i∈[r]
Yi and C′[�, . . . ,�

︸ ︷︷ ︸
m

,Y1, . . . , Yr ,⊥, . . . ,⊥
︸ ︷︷ ︸

n

] are equivalent (4)
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and, if C′(m,n + r) = 0, then

∨

i∈[r]
Yi and C′[�, . . . ,�

︸ ︷︷ ︸
m

,Y1, . . . , Yr ,⊥, . . . ,⊥
︸ ︷︷ ︸

n

] are equivalent. (5)

By Lemma 10(1) we can assume that m + n < 2b(C). Then for r = 2 it follows
that m + n + r < 2b(C) + 2 and hence the formulas on the right hand side are small.

From (3), (4), and (5) one gets the desired translation D �→ D′. �

Corollary 12 Let C be a set of bounded connectives which is
∨

-closed and not
monotone. Then

W[t] ⊆ W[t](C) for all t ≥ 1, W[SAT] ⊆ W[SAT](C), W[P] ⊆ W[P](C).

Remark 13 The preceding proof together with Example 9 shows that if for some
c ≥ 1 we have c> ∈ C , we can obtain an equivalent C -circuit not containing the con-
stant ⊥. Furthermore, if c = 1 the equivalent C -circuit can be chosen such that it
contains neither ⊥ nor �.

Putting Corollary 6 and Corollary 12 together we obtain the main result of this
section, namely:

Theorem 14 Let C be a set of bounded connectives which is not monotone and∨
-closed. Then

W[t] = W[t](C) for all t ≥ 1, W[SAT] = W[SAT](C), W[P] = W[P](C).

Again, for the last equality, we do not need the boundedness of the connectives.

Corollary 15 Let C be one of the following classes:

• {NOR,
∧

,
∨

,NAE,U, c1>, . . . , cs>, c′
1≤, . . . , c′

r≤}, where s, r ∈ N and c1, . . . , cs ,
c′

1, . . . , c
′
r ≥ 1, or

• {NAE} or {U} or {c>}, where c ≥ 1.

Then the W-hierarchy and the W(C)-hierarchy coincide levelwise and the classes
W[SAT] and W[SAT](C) and the classes W[P] and W[P](C) coincide.

Pure Circuits In the Boolean context we can do without the constants � and ⊥.
A similar result holds for some of the connectives considered so far.

Definition 16 A C -circuit is pure if and only if it does not contain the constants �
and ⊥. By �t,d(C) we denote the class of all pure circuits in �t,d(C).

In the following, for C = {C}, we often write C-circuit for C -circuit and use anal-
ogous conventions for other notions.
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Theorem 17 Let c ≥ 1 and let C be a set of bounded connectives containing
one of the connectives NAE, U , or c>. Then, for sufficiently large d , the problem
p-WSAT(�t,d(C)) is W[t]-complete under fpt-reductions.

Proof Let C ∈ {NAE,U, c>} and t, d ≥ 1. By Corollary 15 it suffices to show that
there is a d ′ such that

p-WSAT(�t,d(C)) is fpt-reducible to p-WSAT(�t,d ′(C)).

First let C = NAE. Let (D, k) be an instance of p-WSAT(�t,d(NAE)). Let Y1, . . . , Yn

be the variables of D. We may assume that n > k. First we get rid of ⊥ by replacing
it everywhere by NAE[Y1, Y1] thus obtaining a circuit D′ with D ≡ D′. Let Z be a
new variable and

α := NAE[Y1, . . . , Yn,Z].
Clearly every assignment of weight k + 1 satisfies α. Let D′ Z

� be the circuit obtained
from D′ by replacing all occurrences of � by Z. Note that the two occurrences of
NAE displayed in

NAE

[

α,NAE

[

α,D′ Z
� ,Z

]]

are small ones, while the one in α will be large in general. Hence the weft of this
circuit is ≤ max{1,weft(D)}. Moreover, we have:

NAE[α,NAE[α,D′ Z
� ,Z]] is k + 1-satisfiable

⇐⇒ there is an assignment of weight k + 1 not satisfying NAE[α,D′ Z
� ,Z]

⇐⇒ there is an assignment of weight k + 1 satisfying D′ Z
� and Z

⇐⇒ D′ is k-satisfiable.

Thus (D, k) �→ (NAE[α,NAE[α,D′ Z
� ,Z]], k + 1) yields the desired reduction.

Now let C = U . Let (D, k) be an instance of p-WSAT(�t,d(U)). We may assume
that D contains a variable X. Replacing, if necessary, ⊥ by U(X,X), we can further-
more assume that ⊥ does not occur in D. Again let Z be a new variable and let D Z

�
be the circuit obtained from D by replacing all occurrences of � by Z. We consider
the circuit

D′ := U

[

D
Z

� ,U

[

D
Z

� ,Z

]

,U

[

D
Z

� ,Z

]]

. (6)

We have

D′ is k + 1-satisfiable

⇐⇒ there is an assignment of weight k + 1 satisfying D Z
�

and not satisfying U [D Z
� ,Z]

⇐⇒ there is an assignment of weight k + 1 satisfying D Z
� and Z

⇐⇒ D is k-satisfiable.
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As the additional occurrences of U in D′ displayed in (6) are small, (D, k) �→
(D′, k + 1) is the desired reduction.

Finally let C = c>. Let (D, k) be an instance of p-WSAT(�t,d(c>)). Again by
Proposition 5, Proposition 11, and Remark 13 we can assume that ⊥ does not occur
in D and in case c = 1 we already get our claim. So assume that c > 1. Let Y be a
variable in D (clearly, we can assume that D contains at least one variable). Then
the circuit D′ obtained from D replacing every occurrence of � by c>Y yields the
desired equivalent circuit of the same weft. �

5 The Threshold Connectives c≤

From Sect. 3, we know that the threshold connectives of the form c≤ with c ≥ 1 are
monotone and bounded.

By the first property, if an assignment V satisfies a c≤-circuit, then so does every
extension of V , that is, every assignment V ′ such that V (Y ) ≤ V ′(Y ) for all variables
Y in the domain of V . By the second property, we get from Corollary 6

W[t](c≤) ⊆ W[t]
for all t ≥ 1. However, we can even show that W[t](c≤) is contained in PTIME.

Furthermore, we exhibit classes of c≤-circuits such that the weighted satisfiability
problem is W[1]-complete, W[SAT]-complete and W[P]-complete.

Theorem 18 Let c, d ≥ 1. There is a polynomial time algorithm that, given a
c≤-circuit D of depth ≤ d and k ∈ N decides whether D is k-satisfiable.

The following notion will be helpful for the proof of this and also of later results.

Definition 19 Let D be a c≤-circuit. A thin subcircuit D′ of D is a c≤-circuit satis-
fying:

• the directed graph D′ is a subgraph of D and every gate is labelled in D′ as in D;
• the output gate of D is contained in D′;
• every gate of D′ has fan-in = c.

The proof of the following facts is immediate:

Lemma 20 Let D be a c≤-circuit.

1. Every thin subcircuit of D has at most (1 + c)d gates and at most (1 + c)d edges,
where d is the depth of D.

2. Let k ∈ N be less than or equal to the number of variables occurring in D. Then
the following are equivalent:

• D is k-satisfiable;
• D has a thin subcircuit with at most k variables.
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Proof of Theorem 18 Assume c, d ≥ 1. Let D be a c≤-circuit of depth d and k ∈ N.
Furthermore let � be the maximum fan-in of the gates of D. Then D contains at most
(
�
c

)d
thin subcircuits. Thus an exhaustive search for a thin subcircuit with at most k

variables runs in polynomial time. This yields the desired algorithm by the previous
lemma. �

A W[P]-Complete Problem The previous result shows that the W-hierarchy and the
W(c≤)-hierarchy do not coincide levelwise; however, W[P] and W[P](c≤) coincide
as shown by Theorem 21 below.

In the following proofs we shall use the equivalence

∨

i∈[n]
Yi ≡ c≤[Y1, . . . , Y1︸ ︷︷ ︸

c times

, . . . , Yn, . . . , Yn︸ ︷︷ ︸
c times

] (7)

and for c > 1 the equivalence

(Y1 ∧ Y2) ≡ c≤[Y1, . . . , Y1︸ ︷︷ ︸
c−1 times

, Y2]. (8)

Recall that by Definition 2, a c≤-gate is small if it has fan-in less than 2 · (c + 1).
Note that the occurrence of c≤ in (8) is small and that for n = 2 the occurrence of c≤
in (7) is small, too.

Theorem 21 Let c > 1. Then p-WSAT(CIRC(c≤)) is W[P]-complete under fpt-
reductions. Furthermore, the weighted satisfiability problem of pure {c≤}-circuits
containing no large gates, is W[P]-complete under fpt-reductions.

Proof Let c > 1. As the connective c≤ is bounded, Proposition 5 shows that the
problem p-WSAT(CIRC(c≤)) is in W[P].

For hardness we use the fact that the weighted satisfiability problem of positive
Boolean circuits with no large gates is W[P]-complete [1]. Using (7) and (8) we can
translate such circuits into pure c≤-circuits containing no large gates. �

A W[1]-Complete Problem In order to describe weighted satisfiability problems for
c≤-circuits that are complete for W[1], we have to consider instances (D, k) where
the depth of D depends on the parameter k (this is reminiscent of the defining prob-
lems for the classes of the W∗-hierarchy, cf. [7]).

Let f : N → N be a computable function. The weighted satisfiability problem
p-WSAT(c≤, f ) of c≤-circuits of depth f is given by

p-WSAT(c≤, f )

Input: k ∈ N and a c≤-circuit D of depth ≤ f (k).
Parameter: k.

Question: Does C have a satisfying assignment of weight k?

We want to show:
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Theorem 22 Let c > 1 and f be a computable function such that f (k) ≥ 2 + 2 logk

for all k ∈ N. Then p-WSAT(c≤, f ) is W[1]-complete under fpt-reductions.

We obtain part of the theorem by:

Lemma 23 Let f be a computable function. Then p-WSAT(c≤, f ) is in W[1].

Proof By Lemma 20, the following nondeterministic algorithm A solves the problem
p-WSAT(c≤, f ). Given k ∈ N and a {c≤}-circuit D of depth ≤ f (k) the algorithm
A first guesses at most (1 + c)f (k) gates and edges of D and then in time depending
only on the parameter (and the constant c) checks that they constitute a thin subcircuit
of D with at most k variables. To finish the proof we have two options. The reader
familiar with the characterization of W[1] in terms of nondeterministic random access
machines [4] will easily see that the algorithm A can be simulated by a program for
such a machine. The second option: It is not hard, using the algorithm A, to construct
an fpt-reduction of p-WSAT(c≤, f ) to the parameterized short halting problem for
nondeterministic single-tape Turing machines, a problem in W[1] (see [2]). �

To obtain a proof of the W[1]-hardness of p-WSAT(c≤, f ) we reduce to it a vari-
ant of the parameterized clique problem.

Let p-MULTICOLOURED-CLIQUE be the problem:

p-MULTICOLOURED-CLIQUE

Input: A graph G = (V ,E), a number k ∈ N, and a function h :
V → [k].

Parameter: k.
Question: Does G contain a clique C ⊆ V of size k with h(C) = [k]?

Here h(C) := {h(a) | a ∈ C} for C ⊆ V . We call sets C with h(C) = [k] colourful.
We refer to h as a colouring and to the elements of [k] as colours. The vertices of
colour i ∈ [k] are those in the set {a ∈ V | h(a) = i}.

Although we believe the following result to be known we are not aware of a refer-
ence and therefore we include the simple proof.

Lemma 24 p-MULTICOLOURED-CLIQUE is W[1]-complete.

Proof To show membership in W[1] we observe that an instance (G, k,h) of
p-MULTICOLOURED-CLIQUE is a “yes"-instance if and only if the graph G′ has
a clique of size k, where we obtain G′ from G by deleting all edges between ver-
tices of the same colour. This defines an fpt-reduction to the W[1]-complete problem
p-CLIQUE.

To show the W[1]-hardness we reduce from p-CLIQUE. Let G = (V ,E) be a
graph and k ∈ N. Let the graph G′ = (V ′,E′) have set of vertices V ′ := V × [k] and
an edge between (u, i) and (v, j) if and only if {u,v} ∈ E and i �= j . The colouring
h′ of G′ is the projection to the second component. It is easy to verify that (G, k) �→
(G′, k, h) is an fpt-reduction. �
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Lemma 25 Let c > 1 and f be a computable function such that f (k) ≥ 2 + 2 logk

for all k ∈ N. Then there is a fpt reduction from p-MULTICOLOURED-CLIQUE to
p-WSAT(pure c≤, f ).

Proof Let (G, k,h) be an instance of p-MULTICOLOURED-CLIQUE with G =
(V ,E). We may assume that for each two colours there is at least one edge in G

between vertices of these colours (otherwise, (G, k,h) is a “no”-instance). First we
construct a Boolean circuit D such that

(G, k,h) ∈ p-MULTICOLOURED-CLIQUE ⇐⇒ D is k-satisfiable. (9)

It is important to pay attention to the form of the circuit D, as this will be important
later. The circuit D has variables Xv for v ∈ V . The input level of D consists of k

blocks, where the ith block contains the vertices v of colour i, v ∈ h−1(i); vertex
v is labelled by Xv . The first level contains gates arranged in

(
k
2

)
blocks, one for

each pair {i, j} of different colours. The {i, j}th block contains a gate g{u,v} for each
edge {u,v} ∈ E with h({u,v}) = {i, j}. Each such gate g{u,v} gets inputs from gu and
gv and is labelled by ∧. The second level contains, for each pair {i, j} of different
colours, a gate g{i,j} labelled by

∨
that receives inputs from all the gates in the {i, j}th

block from the first level. Finally we want to take the conjunction of all these
(
k
2

)

∨
-gates from the second level. We do this by adding �log

(
k
2

)� levels containing

≤ (
k
2

)
gates of fan-in 2, all labelled by ∧. Hence, D has weft 1 and depth ≤ 2 +

�logk(k − 1)�.
By the construction, every assignment satisfying all

∨
-gates of D must set at

least one variable in h−1(i) to TRUE for all i ∈ [k]. Hence, one easily verifies the
equivalence (9).

Finally, we pass from the Boolean circuit D to an equivalent c≤-circuit D′ of the
same weft and depth using the equivalences (7) and (8). �

Proof of Theorem 22 Immediate from the Lemmas 23, 24 and 25. �

Remark 26 The very same argument shows that Theorem 22 remains true if we re-
strict the problem p-WSAT(c≤, f ) to pure c≤-circuits.

A W[SAT]-Complete Problem The weighted satisfiability problem for arbitrary
{c≤}-circuits turns out to be W[P]-complete (see Theorem 21). To obtain a W[1]-
complete problem, we considered circuits where the depth was bounded in terms of
the parameter; for W[SAT] we have to consider {c≤}-circuits where the depth is log-
arithmic in the circuit size. We used the lower case letter f for functions bounding
the depth in terms of the parameter; we shall use the capital letter F for functions
bounding the depth in terms of the circuit size. Recall that a small circuit is a circuit
without large gates. We set

p-WSAT(small c≤; F)

Input: k ∈ N and a small {c≤}-circuit D of depth ≤ F(‖D‖).
Parameter: k.

Question: Does D have a satisfying assignment of weight k?
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We aim at:

Theorem 27 For sufficiently large d the problem p-WSAT(small c≤; d · logn) is
W[SAT]-complete under fpt-reductions.

Here, by p-WSAT(small c≤; d · logn) we mean p-WSAT(small c≤; F) for
F(n) := d · logn.

The theorem is proven with the following lemmas.

Lemma 28 For all d ∈ N we have p-WSAT(small c≤;d · logn) ∈ W[SAT].

Proof Let d ∈ N. Furthermore let D be a small {c≤}-circuit with depth ≤ d · log‖D‖.
Bottom up, we define for every gate g a Boolean propositional formula αg equivalent
to the induced subcircuit of D with output gate g. For gates g of fan-in 0 we let αg

be its label. If the gate g has fan-in r and receives incoming edges from the gates
g1, . . . , gr with 1 ≤ r < 2(c + 1) we let

αg :=
∨

1≤i1<···<ic≤r

(αgi1
∧ . . . ∧ αgic

). (10)

Then αgo ≡ D for the output gate go of D.
Clearly, the time needed to obtain αgo is polynomial in ‖αgo‖. As r < 2(c + 1)

one easily verifies that there is a constant M (depending on c) such that ‖αgo
‖ ≤

Md·log‖D‖, a value polynomial in ‖D‖. �

For the hardness proof we need the following “positive version” [14] of a result
due to Spira [13].

Lemma 29 There is a d0 ∈ N and a polynomial time algorithm assigning to every
small positive Boolean formula α an equivalent small positive Boolean formula α′ of
depth ≤ d0 · log‖α′‖.

Using the fact that the weighted satisfiability problem of small positive Boolean
formulas is W[SAT]-complete [5, Theorem 13.7] we obtain from the previous lemma:

Lemma 30 There is a d0 ∈ N such that the weighted satisfiability problem of small
positive Boolean formulas α of depth less than d0 · log‖α‖ is W[SAT]-complete under
fpt-reductions.

Replacing (small) ∧-gates and ∨-gates by small c≤-gates according to (7) and (8),
we get:

Lemma 31 Let c > 1. For sufficiently large d ∈ N the problem p-WSAT(small c≤;d ·
logn) is W[SAT]-hard under fpt-reductions.

Proof of Theorem 27: Immediate by Lemma 28 and Lemma 31. �
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6 The Majority Connective

Recall from Sect. 3 that the majority connective Maj is defined so that

Maj[Y1, . . . , Yn]
gets the value TRUE if and only if more than half of the Yi ’s have the value TRUE. We
have seen that Maj is monotone and not bounded.

In this section we show that the W(Maj)-hierarchy contains the W-hierarchy lev-
elwise and that the first levels coincide.

Because Maj is not bounded, the notion of small Maj-gate is not defined so far. As

(Y1 ∧ Y2) ≡ Maj[Y1, Y2], (11)

(Y1 ∨ Y2) ≡ Maj[�, Y1, Y2], (12)

it seems to be natural to identify small Maj-gates with Maj-gates of fan-in less than
or equal to three.

Furthermore, we have:

∨

i∈[n]
Yi ≡ Maj

[
Y1, . . . , Yn,�, . . . ,�

︸ ︷︷ ︸
n times

]
; (13)

∧

i∈[n]
Yi ≡ Maj

[
Y1, . . . , Yn,⊥, . . . ,⊥

︸ ︷︷ ︸
n−1 times

]
. (14)

Finally, let the variables Y1, . . . , Yn be pairwise distinct and i ∈ [n]. Then an easy
computation shows that for assignments of weight k to these variables, where 2k ≤ n,
the formulas

¬Yi and Maj
[
Y1, . . . , Yi−1, Yi+1, . . . , Yn, �, . . . ,�

︸ ︷︷ ︸
n−1−2k+2 times

]
(15)

are equivalent. In general, the Maj-gate in the formula on the right hand side will be
large.

Theorem 32 W[P] = W[P](Maj).

Proof We get W[P] ⊆ W[P](Maj) by (11)–(15) and the fact that on the Boolean side
we can restrict ourselves to instances (D, k), where

• ¬-gates only appear immediately above input variables in D;
• 2k ≤ n, where n is the number of input variables of D.

The inclusion W[P](Maj) ⊆ W[P] follows from Proposition 7. �

Theorem 33 For all t ≥ 1

W[t] ⊆ W[t](Maj).



330 Theory Comput Syst (2010) 46: 311–339

We prove this result in three steps: in the first step, we prove the claim for even t

(Lemma 34); in the second step, for odd t > 1 (Lemma 35); finally, we treat the
special case of t = 1 (Lemma 36). Recall from Sect. 1 the definition of the classes
�+

t and �−
t of circuits (in fact, of propositional formulas).

Lemma 34 Let t be even. Then p-WSAT(�+
t ) ∈ W[t](Maj).

Proof Let t be even. Recall that �+
t -formulas have the form

∧

i1

∨

i2

∧

i3

· · ·
∨

it

Yı̄

with variables Yı̄ . We obtain an equivalent formula in �t,t (Maj) by inductively re-
placing all

∨
and

∧
according to (13) and (14), respectively. This gives a reduc-

tion of p-WSAT(�+
t ) to p-WSAT(�t,t (Maj)) and hence the former problem is in

W[t](Maj). �

Lemma 35 Let t > 1 be odd. Then p-WSAT(�−
t ) ∈ W[t](Maj).

Proof Let t > 1 be odd. Let α ∈ �−
t and k ∈ N, say

α =
∧

i1

∨

i2

∧

i3

· · ·
∨

it−1

βı̄ (16)

with formulas βı̄ ∈ �−
1 , i.e., each βı̄ is a large conjunction of negated variables. Let

n be the number of variables in α.
In a first step, we replace these βı̄ ’s as follows (later we will replace the

∧
and the∨

as we did it in the previous proof). Let Xı̄
1, . . . ,X

ı̄
nı̄

be the variables of α which
do not occur in βı̄ . We may assume that nı̄ ≥ 2k for all ı̄. This assumption can be en-
forced by the following preprocessing in fpt-time. If some nı̄ is smaller than 2k this
means that βı̄ is the conjunction of the negations of more than n − 2k of the n vari-
ables. For each weight k assignment to the remaining variables, we check whether
combining it with 0’s for the other variables satisfies α. The number of these assign-
ments is bounded in terms of the parameter k. If we find a satisfying assignment, then
(α, k) is a “yes”-instance, otherwise we know that no weight k-assignment satisfying
α satisfies βı̄ . We then delete βı̄ from α.

We set

γı̄ := Maj
(
Xı̄

1, . . . ,X
ı̄
nı̄

, �, . . . ,�
︸ ︷︷ ︸

nı̄−2k+1 times

)
.

Note that nı̄ − 2k + 1 is the smallest number m such that k + m > (nı̄ + m)/2. This
means that an assignment V to the variables of α of weight k satisfies γı̄ if and only
if V satisfies k variables not occurring in βı̄ , that is, if and only if V satisfies βı̄ . Thus
with respect to assignments of weight k the formula in (16) and the formula

∧

i1

∨

i2

∧

i3

· · ·
∨

it−1

γı̄
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are equivalent. We can replace the
∧

and the
∨

as we did it in the previous proof
using (14) and (13). �

In order to prove the claim of Theorem 33 for t = 1 we introduce the parameterized
problem

p-MAJORITY-VERTEX-COVER

Input: A graph G = (V ,E) and k ∈ N.
Parameter: k.

Question: Is there a set of k vertices in G which covers a majority of
the edges of G, i.e., is there S ⊆ V with |S| = k and
|{e ∈ E | e ∩ S �= ∅}| > |E|/2 ?

Even though the parameterized vertex cover problem is fixed-parameter tractable,
we will show the W[1]-completeness of this variant.

Lemma 36 The parameterized problem p-MAJORITY-VERTEX-COVER is

(a) contained in W[1](Maj), and
(b) W[1]-hard under fpt-reductions.

Proof Let (G, k) be an instance of p-MAJORITY-VERTEX-COVER. We construct a
Maj-circuit D of weft 1 and depth 2 such that

(G, k) ∈ p-MAJORITY-VERTEX-COVER ⇐⇒ D is k-satisfiable. (17)

Let G = (V ,E) and n = |V | and m = |E|. The set V together with an additional
gate will be the set of input gates of D; vertex v is labelled by a variable Xv and the
additional gate by �. Beyond these input gates we have a level of Maj-gates of fan-in
3, one for each edge e ∈ E. The gate associated with the edge e = {u,v} is connected
to the gates u, v and the gate labelled by �. Note that all these Maj-gates are small
and each of them is satisfied by an assignment if and only if the edge associated
with this gate is incident to at least one vertex selected by the assignment. Finally the
circuit D has as output a further Maj-gate which receives its input from all the small
Maj-gates.

One easily verifies that (17) holds and thus (G, k) �→ (D, k) is an fpt-reduction
from p-MAJORITY-VERTEX-COVER to p-WSAT(�1,2(Maj)); hence the former
problem is in W[1](Maj).

We prove part (b) by reducing the W[1]-complete parameterized independent set
problem p-INDEPENDENT-SET to p-MAJORITY-VERTEX-COVER.

Let (G, k) be an instance of p-INDEPENDENT-SET. We may assume that k + 1 <

n/4, since otherwise the trivial brute-force algorithm runs in fpt-time. We construct
an equivalent instance (G′, k′) of p-MAJORITY-VERTEX-COVER as follows. Let
n = |V | and for v ∈ V let dG(v) denote the number of vertices adjacent to v in G.
The graph G′ = (V ′,E′) is constructed from G in two steps. First, for every v ∈ V ,
we add n − 1 − d(v) new vertices, which are connected only to v and hence have
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degree one. Let m0 be the number of edges of the graph obtained so far. Clearly

m0 ≥ n · (n − 1)

2
. (18)

We choose the smallest s ∈ N such that

k · (n − 1) + s >
m0 + s

2
. (19)

In the second step we add a vertex v∗ and s further vertices to our graph and make v∗
adjacent to the s many new vertices, which thus all have degree one. This finishes the
construction of the graph G′. Note that G′ has m0 + s many edges. We set k′ := k+1.
We show that

(G, k) ∈ p-INDEPENDENT-SET ⇐⇒ (G′, k′) ∈ p-MAJORITY-VERTEX-

COVER.

Assume first that S is an independent set of G of size k. Then S ∪ {v∗} covers k ×
(n − 1) + s edges, which by (19) is more than half of the edges of G′.

Conversely, let S′ be a subset of k′ vertices in G′, which cover more than
(m0 + s)/2 edges in G′. Then v∗ ∈ S′, since all other vertices have degree at most
n − 1 and therefore at most (k + 1) · (n − 1) edges can be covered otherwise. How-
ever, as k + 1 < n/4 we get (k + 1) · (n − 1) < n · (n − 1)/4 ≤ m0/2 (the last in-
equality holding by (18)); therefore, at most half of the edges would be covered. We
set S := S′ \ {v∗}. Thus |S| = k and by the choice of s the set S must cover in G′ at
least k · (n − 1) edges. As the vertices in V have degree at most n − 1 in G′ and the
vertices in V ′ \ (V ∪ {v∗}) have degree one, we see that S ⊆ V . Moreover, in order to
cover k · (n − 1) edges, S must be an independent set of G. �

Proof of Theorem 33: Immediate by Lemmas 34–36, as we know that p-WSAT(�+
t )

is W[t]-complete for even t and p-WSAT(�−
t ) is W[t]-complete for odd t > 1. �

While we conjecture that W[t] ⊂ W[t](Maj) for t > 1, we can show:

Theorem 37 W[1] = W[1](Maj).

Proof By the previous lemma, we have to show that W[1](Maj) ⊆ W[1]. We start
with an observation. For any Maj-circuit D let Min(D) be the set of ⊆-minimal
assignments V satisfying D (we identify an assignment V with the set of variables it
sets to 1).

As majority gates are monotone, we know that

D ≡
∨

V ∈Min(D)

∧
V . (20)

Now fix d ≥ 1. We show that p-WSAT(�1,d (Maj)) ∈ W[1], which yields our claim.
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Let D ∈ �1,d (Maj) and let us first assume that the weft 1 of D comes from a
single large majority gate at the output. Let us call such circuits simple. Assume that
the output gate of such a simple D ∈ �1,d (Maj) has fan-in � and receives incoming
edges from gates g1, . . . , g�. We denote by D1, . . . ,D� the subcircuits of D with
output gates g1, . . . , g�, respectively. Then the Dis are small Maj-circuits of depth
< d ; in particular, they have ≤ 1+3d−1 gates. Therefore there are constants c′, c′′ ∈ N

depending only on d such that for each Di we know

|Min(Di)| ≤ c′′ and |V | ≤ c′ for each V ∈ Min(Di).

An assignment V satisfies the circuit D if and only if

N(V ) := |{i ∈ [�] | V satisfies Di}| > �/2.

According to (20) the assignment V satisfies Di if and only if V is a superset of some
V ′ ∈ Min(Di). Let V [≤c′] be the set of assignments of weight ≤ c′ which are subsets
of V , i.e. V [≤c′] := {V ′ ⊆ V | |V ′| ≤ c′}. Hence, again by monotonicity,

N(V ) =
∣
∣
∣
∣

⋃

V ′∈V [≤c′]

{
i ∈ [�] | V ′ ∈ Min(Di)

}

︸ ︷︷ ︸
=:Sat(V ′)

∣
∣
∣
∣.

Let V [≤c′] contain r elements, say, V [≤c′] = {V1, . . . , Vr}. Applying the inclusion-
exclusion principle we get

N(V ) =
r∑

j=1

(−1)j+1 ·
∑

i1<···<ij

∣
∣Sat(Vi1) ∩ · · · ∩ Sat(Vij )

∣
∣

=
c′′

∑

j=1

(−1)j+1 ·
∑

i1<···<ij

∣
∣Sat(Vi1) ∩ · · · ∩ Sat(Vij )

∣
∣,

where the second equality holds since |Min(Ds)| ≤ c′′ for all s ∈ [�], so that the
intersection of more than c′′ many Sat(Vi ) will be the empty set.

Let m be the number of variables of D. Then there are at most mc′
assignments of

weight ≤ c′ to these variables and hence there are at most O(mc′·c′′
) intersections of

the form Sat(Vi1) ∩ · · · ∩ Sat(Vij ), where j ∈ [c′′] and V1, . . . , Vj are distinct assign-
ments of weight ≤ c′. Thus this number is polynomial in the size of D.

Hence, the following nondeterministic algorithm A solves the weighted satisfia-
bility problem for simple circuits in �1,d (Maj). Let (D, k) be an instance with simple
D. First A computes all these intersections just mentioned and stores all the numbers
|Sat(V1) ∩ · · · ∩ Sat(Vj )|. Then A nondeterministically guesses an assignment V of
weight k and using the stored information computes N(V ) in time bounded in terms
of the parameter k. If N(V ) > �/2 (as above, � is the fan-in of the output gate of D),
then A accepts, and rejects otherwise.

In the case where D is not simple, D is equivalent to a Boolean combination of
simple subcircuits such that this combination has no large Boolean gates and is of
size bounded in terms of d . In this case the algorithm A, in its first phase, in addition
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computes and stores all assignments of the output nodes of the simple subcircuits that
lead to an assignment satisfying D and then essentially proceeds as in the preceding
case.

To finish the proof, again there are two options. The reader familiar with the char-
acterization of W[1] in terms of nondeterministic random access machines will eas-
ily see that the algorithm A can be simulated by a program for such a machine.
The second option: it is not hard using algorithm A to construct an fpt-reduction of
p-WSAT(�1,d (Maj)) to the parameterized short halting problem for nondeterminis-
tic single-tape Turing machines, a problem in W[1]. �

Corollary 38 p-MAJORITY-VERTEX-COVER is W[1]-complete under fpt-reduc-
tions.

Pure Majority Circuits In this paragraph we ask whether we can restrict our-
selves to pure circuits when considering weighted satisfisfiability problems for Maj-
circuits.

We always can eliminate the Boolean constant � as follows: Let D be a Maj-
circuit containing an input gate labelled with �. We may assume that there is exactly
one such gate. Let Z be a new variable. Let D′ be the Maj-circuit obtained from D

by replacing the label � by Z and by adding on top of D the output gate of D′, a
new (small) Maj-gate of in-degree two connected to the output gate of D and to the
input gate now labelled by Z. Then, for any k ∈ N, we have that D is k-satisfiable if
and only if D′ is k + 1-satisfiable. The circuit D′ has the same weft as D and a depth
increased by one.

We can also eliminate the occurrence of ⊥ in D but thereby increasing the weft
by one: Let Z1, . . . ,Zn be the variables of D and let k be such that 2k ≤ n (we can
assume this without loss of generality when considering k-satisfiability). Then we can
replace every occurrence of ⊥ by Maj[Z1, . . . ,Zn] without changing k-satisfiability.

In view of Theorem 32 we have shown:

Theorem 39 The weighted satisfiability problem for pure Maj-circuits is W[P]-com-
plete under fpt-reductions.

In the proof of part (a) of Lemma 36 we presented a reduction of the parameterized
problem p-MAJORITY-VERTEX-COVER to p-WSAT(�1,2(Maj)). For instances of
p-MAJORITY-VERTEX-COVER we obtained circuits in �1,2(Maj) containing � but
not containing ⊥. Hence, by the preceding observation:

Theorem 40 The weighted satisfiability problem for pure circuits in �1,3(Maj) is
W[1]-complete under fpt-reductions.

Fix t > 1. We do not know whether for some d ∈ N the weighted satisfiability
problem for pure circuits in �t,d(Maj) is W[t](Maj)-complete under fpt-reductions.
However, we can show W[t]-hardness of the problem:

Proposition 41 For all t > 1, the weighted satisfiability problem for pure circuits in
�t,t+1(Maj) is W[t]-hard under fpt-reductions.
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Proof Let t > 1 and let α be in �+
t,1 or in �−

t,1 depending on whether t is even or odd
respectively. We can assume that α does not contain � and ⊥. The construction in
the proofs of Lemmas 34 and 35 produces a majority formula in �t,t (Maj) containing
both � and ⊥. We have already seen how to move to a formula in �t,t+1(Maj) with-
out �. The occurrences of ⊥ are due to the simulation of big conjunctions according
to the equivalence (14). We now show an alternative way to simulate big conjunctions
without using ⊥.

Let � be the maximum fan-in of any gate in α. Let Y1, . . . , Y�·(k+1)−1 be new
variables. Let

∧
i∈[�′] αi with �′ ≤ � be a conjunction in α. Then

∧
i∈[�′] αi has a

satisfying assignment of weight k if and only if so does the formula

Maj
[
α1, . . . , α1︸ ︷︷ ︸
k+1 times

, α2, . . . , α2︸ ︷︷ ︸
k+1 times

, . . . , α�′ , . . . , α�′
︸ ︷︷ ︸

k+1 times

, Y1, . . . , Y�′·(k+1)−1

]
.

Why? An assignment satisfying all α1, . . . , α�′ clearly satisfies this formula. Con-
versely if a weight k assignment does not satisfy all α1, . . . , α�′ then the above for-
mula has at most (�′ −1)(k +1) satisfied arguments plus possibly some from the new
variables, but at most k. In total no more than (�′ − 1)(k + 1)+ k arguments are satis-
fied and this is less than half the total number of arguments, which is 2�′(k + 1) − 1.

Let β ∈ �t,t+1(Maj) be the pure majority circuit obtained in this way. Then an
assignment of weight k to the variables of β satisfies β if and only if the restriction
to the variables of α satisfies α.

It follows that α has a satisfying weight k assignment to its variables if and only
if β has a satisfying weight k assignment to its variables. Why? To see necessity
extend an assignment to the variables of α by mapping all new variables Y1, Y2, . . . to
0 and use the above equivalence. Conversely, a satisfying weight k assignment for β

restricts to one of weight at most k satisfying α by the above equivalence; but observe
that α is monotone and hence has a satisfying assignment of weight k if and only if
it has a satisfying assignment of weight at most k. �

7 Open Problems

We have seen (cf. Corollary 6) that in revisiting the original definition of the W-
hierarchy by means of Boolean circuits (large and small), we can explore the concept
of circuit weft (or more simply, large gate depth, in the context of overall bounded
depth) by considering gates labelled by arbitrary bounded connectives. The majority
connective is not bounded, nevertheless the first level of the corresponding hierarchy
coincides with W[1]. For higher levels we only know that W[t] ⊆ W[t](Maj). There
are various open questions related to the question whether these classes are distinct.
For example, let us consider the majority versions of the W[2]-complete parameter-
ized dominating set problem p-DS and of the hitting set problem p-HS.

p-MAJ-DS
Input: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a set of k vertices dominating the majority of

vertices?
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p-MAJ-HS
Input: A hypergraph H and k ∈ N.

Parameter: k.
Question: Does H have a set of k vertices hitting the majority of hyper-

edges?

Here a set S of vertices in a graph G = (V ,E) dominates a vertex u if u ∈ S or there
is a v ∈ S such that {u,v} ∈ E. A set S of vertices in a hypergraph H = (V ,E) hits
an hyperedge e ∈ E if S ∩ e �= ∅.

What we know about the relationship between these problems is indicated by:

Theorem 42

(a) p-DS ≤fpt p-MAJ-DS ≡fpt p-MAJ-HS.
(b) p-MAJ-HS ∈ W[2](Maj).

Proof (a) p-DS ≤fpt p-MAJ-DS: Let (G, k) be an instance of p-DS and G = (V ,E)

with n := |V |. Let G′ be the graph obtained from G by adding n−1 isolated vertices.
Then for k ≤ |V |

(G, k) ∈ p-DS ⇐⇒ (G′, k) ∈ p-MAJ-DS.

In fact, if S is a dominating set of G of size k, then S dominates n vertices of G′ and
hence the majority of vertices. Conversely, if a set S of vertices of size k dominates
the majority of vertices of G′ and contains � of the added isolated vertices, then at
most � vertices of G are not dominated by S. Replacing in S the � isolated vertices
by these ones we obtain a dominating set of G of size ≤ k.

p-MAJ-DS ≤fpt p-MAJ-HS: Let G = (V ,E) be a graph. For every v ∈ V let v∗
be a copy of v. Let H = (V ′,E′) be the hypergraph with

V ′ := V ∪ {v∗ | v ∈ V } and E′ := {N∗(v) | v ∈ V },
where

N∗(v) := {v, v∗} ∪ {u ∈ V | {u,v} ∈ E}.
We added the points v∗ to ensure that |E′| = |V |. We show that

(G, k) ∈ p-MAJ-DS ⇐⇒ (H, k) ∈ p-MAJ-HS.

Note that a set S of vertices of G dominates a vertex v ∈ V if and only if it hits
N∗(v) in the hypergraph H . This yields the direction from left to right. Conversely,
assume that a subset S′ of V ′ hits the majority of hyperedges in H . Then so does the
set obtained from S′ by replacing vertices of the form v∗ by v. This yields the other
direction.

p-MAJ-HS ≤fpt p-MAJ-DS: The proof is similar, though a little bit more in-
volved, to that presented in [8, Example 2.7] for the non-majority versions of the
problems.
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Let (H, k) with H = (V ,E) be an instance of p-MAJ-HS. We may assume that
|V | ≥ k and that E contains at least two nonempty hyperedges. Let n := |V | and
m := |E|. We introduce the graph

G = (V ∪ V ∗ ∪ E,E1 ∪ E2),

where V ∗ := {v∗ | v ∈ V } is a disjoint copy of V . Furthermore, E1 := {{v, e} | v ∈
V, e ∈ E,v ∈ e} and E2 contains edges between all pairs of distinct vertices of V ,
that is, E2 := {{v,w} | v,w ∈ V, v �= w}. Thus G has 2n+m vertices and the vertices
in V ∗ are isolated. Then

(H, k) ∈ p-MAJ-HS ⇐⇒ (G, k) ∈ p-MAJ-DS, (21)

which yields our claim. First observe that for S ⊆ V we have:

S hits more than m/2 (i.e., the majority) of hyperedges of H

⇐⇒ S dominates more than n + m/2 (i.e., the majority) of vertices of G.

This yields the direction from left to right in (21). We call sets of vertices of G

dominating the majority of vertices of G good. For the other direction in (21), let S

be a good set of vertices of G of size k. If S ∩V hits more than half of the hyperedges
in H , we are done (recall that |V | ≥ k). (In particular, by the equivalence above, this
holds if S ⊆ V .) Otherwise, as long as this is not the case and S ∩V ∗ �= ∅, we replace
every vertex of V ∗ in S by some vertex of V contained in a hyperedge of H , which
is not hit by S ∩ V so far. We may thus assume that S ⊆ V ∪ E and S is good. If then
S ∩ V does not hit more than half of the hyperedges of H , we further change S in
order to achieve S ⊆ V : Assume e ∈ E ∩ S. We show that we can replace e in S by
a vertex of V . The vertex e of G only has edges to the elements of e. Therefore, for
every v ∈ e, the set Sv := (S \ {e})∪{v} is good, too. If v /∈ S for some v ∈ e, then the
corresponding Sv has cardinality k, and we replace S by Sv . If e ⊆ S, then we add to
S \ {e} a vertex v ∈ V from some hyperedge of H not hit so far (here, in case e = ∅
we need the assumption that E contains at least two nonempty hyperedges).

(b) p-MAJ-HS ∈ W[2](Maj): Let H = (V ,E) be a hypergraph. We construct a
Maj-circuit D with input variables Yv for v ∈ V such that for every subset S of V we
have

S hits the majority of hyperedges of H

⇐⇒ the assignment {Yv | v ∈ S} satisfies D.

The output gate of D is a large majority gate. For every hyperedge e ∈ E the output
gate receives an input edge from a gate labelled by

∨
, which itself has incoming

edges from the input gates labelled by Yv with v ∈ e. As the
∨

-gates can be replaced
by majority gates according to (13), the circuit D is (equivalent to) a Maj-circuit. �

We close by mentioning two open problems in connection with the previous theo-
rem explicitly:
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• Is p-MAJ-DS ≤fpt p-DS? Is p-MAJ-DS contained in some level W[t] of the
W-hierarchy?

• Is p-MAJ-HS hard under fpt-reductions for the class W[2](Maj)?

8 Summary

Originally, the W-hierarchy is defined by weighted satisfiability problems for cer-
tain Boolean circuits by stepwise increasing their weft. This definition makes sense
for different choices of connectives. For various sets of not necessarily Boolean
connectives C we introduced a W(C)-hierarchy and compared it with the original
W-hierarchy.

We studied the hierarchies for three groups of connectives C . For the first group,
sets of bounded connectives satisfying some further property, we showed that the
levels of the W-hierarchy and the W(C)-hierarchy coincide levelwise.

As a second group of connectives we studied threshold connectives c≤ and showed
that their weighted satisfiability problem is W[1]-complete for circuits whose depth is
bounded in terms of the parameter, W[SAT]-complete for small circuits whose depth
is logarithmic in the input size and W[P]-complete when no restriction is imposed.

Finally, we studied the majority connective and showed first that the corresponding
W(Maj)-hierarchy contains the W-hierarchy levelwise and second that the first levels
coincide. The last result implies that a majority version of the parameterized vertex
cover problem is W[1]-complete. We conjecture that W[t] � W[t](Maj) for t > 1.
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