
Example 2. Networks that have too many connections between
too many neurons often do not work well (Müller et al. 1995;
Rojas & Feldman 1996). This is perhaps not surprising, since it
essentially means that almost no weights (connections) are
close to zero. Given the high apoptosis rate in the developing
brain, one might wonder whether or not any mental disorders
are associated with defects in this apoptotic process. Indeed,
autism is associated with unusually large brain size (Courchesne
et al. 2004). Perhaps future therapies for autism could be based
upon restoring normal apoptotic mechanisms during infancy.

Contrasting mechanisms of neurogenesis, neural sprouting,
and new synapse formation would also be important in regulating
neural network performance. Abnormalities in those new con-
nections and activity, because of either genetic or environmental
issues, could lead to problems such as structural non-uniformity
in computational models (Rumelhart & McClelland 1986).

Example 3. An efficient neural network must appropriately
switch between flexible and stable states (Haykin 1998; Rumel-
hart & McClelland 1986). The stable state of a neural network
might be akin to a focused state. Perhaps difficulties in reaching
and maintaining stable states in children’s brains manifest as the
lack of focus and hyperactivity of attention deficit/hyperactivity
disorder (ADHD) (American Psychological Association 2000).
Perhaps understanding overactive brain circuits may also
inform our understanding of abnormally active cortex in epilepsy.
Alternatively, states that are too stable may appear like the psy-
chomotor retardation of depression (Sadock & Sadock 2004).
Perhaps treatments such as electroconvulsive therapy in adults
are a sort of “reset,” helping the brain out of a state of excessive
stability. Thinking about mentally ill brains as connectionist
neural networks which have an impaired ability to attain, main-
tain, and switch between stable states may lead to novel therapies
aimed at augmenting these brain mechanisms.

Analogy does indeed lie at the heart of the acquisition of
human cognition, as Leech et al. posit. Connectionist models of
the neural networks in brains may help explain how the acqui-
sition of cognitive skills in humans actually works. In addition,
apparent errors in the development and maintenance of these
networks, which may be modelled computationally, may mimic
aspects of mental illness and lead to improved and alternative
treatments. This kind of innovative approach may be especially
helpful to understand and treat infants and children who are
learning critical cognitive skills, yet are not necessarily able to
communicate their problems clearly.
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Abstract: Leech et al. present a connectionist algorithm as a model of
(the development) of analogizing, but they do not specify the
algorithm’s associated computational-level theory, nor its computational
complexity. We argue that doing so may be essential for connectionist
cognitive models to have full explanatory power and transparency, as
well as for assessing their scalability to real-world input domains.

Leech et al. describe a connectionist algorithm that reproduces
several known effects in the development of analogy-making.
The authors claim that this algorithm models how children
develop the ability to make analogies in a manner not yet cap-
tured by previous (primarily non-connectionist) models of
analogy such as Structure Mapping Theory (SMT) (Gentner
1983). The current version of the algorithm does not account
for (the development of) the complex analogies made by adults.
Moreover, Leech et al.’s target article is silent on two issues
prominent in previous work on analogy, namely: (1) a compu-
tational-level theory in the sense of Marr (1982), that is, a
precise formulation of a cognitive ability as an input-output
function, of which the presented connectionist model sup-
posedly provides an algorithmic-level implementation; and (2)
the computational complexity of the proposed algorithm
and/or its associated computational-level theory. In this com-
mentary, we discuss why consideration of (1) and (2) may be
essential for making progress in research programs such as
Leech et al.’s.

To start, we find it useful to re-cast the problem of deriving
models of cognitive development (be they algorithmic- or com-
putational-level) in terms of satisfying various constraints. The
most basic of these is the empirical constraint, that is, the
model must mimic/predict observed cognitive behavior.
Though this is often construed only in terms of adult cognitive
behavior, the model should be able to fit performance across
the different stages of development (e.g., in infancy, childhood,
and adulthood) and account for any apparent discontinuities
between different stages (e.g., relational shift in the case of
analogy). This constraint holds for any model of natural phenom-
ena. In the case of cognitive abilities, which develop over time,
Leech et al. point out the need for a developmental constraint,
that is, “all proposed mechanisms [of the model] must have a
developmental origin” (sect. 5.5, para. 1). That is, the model
should incorporate mechanisms which allow the ability to
mature consistent with the empirical constraint. Overlooked or
ignored so far is a third and equally important constraint, the
computational constraint; that is, a cognitive model must satisfy
both the empirical constraint and the developmental constraint
while operating within the computational resource-limits
imposed by the human body and its environment.

Computational complexity analysis is the tool of choice for
assessing whether or not a cognitive model can satisfy the compu-
tational constraint, thereby placing such analysis at the heart of
cognitive modeling. This is not to say that such analysis is easy:
Though well-developed measures such as worst-case asymptotic
time complexity are applicable to algorithms operating on digital
computational architectures, it is not obvious which measures
are most appropriate for connectionist algorithms. Potential
measures include the time it takes for the network to settle, the
number of training-cycles required to develop a given level of
performance, and the number of nodes and layers in a network
required for computing a given input-output mapping. Once
defined, such measures can be used in conjunction with a suit-
able criterion for computational tractability (see, e.g., van Rooij
2003; in press). Doing so would enable cognitive modelers
such as Leech et al. to evaluate how their models’ computational
resource requirements scale for the larger inputs that are charac-
teristic of real-world domains of analogizing, and to show
whether or not modifications are necessary to accommodate
adult-level analogizing.

Though algorithmic-level models can be evaluated against the
three constraints mentioned above, there are additional benefits
in specifying the computational problems that these algorithms
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are supposed to be solving – that is, formulating computational-
level theories. The first benefit is explanatory transparency: A
computational-level theory provides a precise input-output
characterization of the cognitive capacity that is to be explained,
which is the primary explanandum.1 In the absence of such a
characterization, it is hard to tell if the proposed algorithmic-
level theory is explaining anything at all (Cummins 2000).
The second benefit is explanatory power: Computational-level
theories postulate organizing principles that govern cognitive
abilities, which in turn give insight into the rationale of cognitive
computations. This is not obviously supported by algorithmic-
level theories, especially when we are dealing with connectionist
algorithms (Cummins 1995). The third benefit is analytical
power: Computational-level complexity analyses can demon-
strate that no algorithm (let alone a given algorithm) meets the
computational constraint for a particular computational-level
theory (see also Tsotsos 1990). Moreover, the same analyses
can highlight aspects of one’s theory that are responsible for
excessive resource demands, and as such can guide the formu-
lation of new theories that meet the computational constraint
(see van Rooij & Wareham, in press; van Rooij et al. 2005;
Wareham 1999).

Formulating computational-level theories of cognitive
capacities is not easy, and seems to be particularly hard for con-
nectionist architectures. Yet, such theories can be formulated
(for an example, see Thagard 2000), and given the benefits we
have identified, it may well be worth the effort. Such theories
may counteract the acknowledged temptation to focus on
getting connectionist algorithms to work rather than focusing
on why they work (Mareschal & Thomas 2007, p. 148), and
enable them to actually count as explanations (Green 2001).
Such theories may also enable the exploitation of known connec-
tionist-oriented complexity results (Bruck & Goodman 1990;
Judd 1990; Parberry 1994), which, given the computational
intractability of theories of analogy such as SMT (Veale &
Keane 1997), may be crucial in helping approaches such as
Leech et al.’s scale to adult-level performance. Finally, compu-
tational-level connectionist theories may more clearly expose
relationships to non-connectionist theories. For example,
reading the target article, we wonder to what extent connectionist
algorithms could be trained to map analogies according to
the criteria set forth by SMT, and hence to what degree
these approaches are complementary rather than competing.
Lacking a characterization of the problem that the connectionist
network is supposed to be solving, we are so far unable to tell.

NOTE
1. Following Cummins (2000), we consider cognitive capacities to be

the primary explananda of cognitive science. The effects considered by
Leech et al., on the other hand, are secondary explananda in that they
help constrain (via the empirical constraint) theoretical accounts of the
cognitive capacity for forming analogies.

Development and evolution of cognition: One
doth not fly into flying!
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Abstract: Abstract thought, in general, and – reasoning by analogy, in
particular, have been said to reside at the very summit of human
cognition. Leech et al. endeavor to comprehend the development of
analogous thinking in human beings. Applying Leech et al.’s general

approach to the evolution of analogical behavior in animals might also
prove to be of considerable value.

He who wisheth one day to fly, must first learn standing and walking
and running and climbing and dancing—one doth not fly into flying!

— Friedrich Nietzsche, Thus Spoke Zarathustra

Highly complex and abstract skills – such as analogous thinking –
have frequently been deemed to represent the very pinnacle of
human cognition (e.g., Penn et al. 2008). Leech et al. appear to
accept this view, but they do not appear to be content to revel
in it. Instead, they seek to understand the emergence of analo-
gous thinking, thereby making its study a decidedly developmen-
tal matter.

Leech et al. hypothesize that analogical completion arises from
simple cognitive mechanisms. Specifically, they suggest that rela-
tional priming is a basic building block for completing analogies.
To the extent that their innovative account is successful, at least
some key aspects of analogical reasoning may not require the
hypothesization of analogy-specific mechanisms.

Leech et al. further suggest that analogical processing may best
be viewed as an umbrella term that comprises different task-
specific concatenations of basic memory and control processes.
Analogy-specific mechanisms may very well exist, but other pos-
sibilities should be entertained first because of their greater par-
simony and plausibility for infants and young children. Finally,
any shifts in children’s strategies of task mastery are believed to
be the result of children acquiring greater and richer relational
knowledge. Leech et al. thus stress the interaction between
learning mechanisms and environmental experiences in deter-
mining children’s developmental trajectory.

Leech et al.’s approach suggests how an advanced cognitive
competence – such as analogy formation and performance – can
be grounded in more elementary processes, and it promises to
provide a fuller picture of the mechanisms underlying the tran-
sition from simple to more complex reasoning. If there is at
least a seed of truth to Ernst Haeckel’s recapitulation theory
that “ontogeny recapitulates phylogeny,” then applying Leech
et al.’s approach to the evolution of analogical behavior might
prove to be valuable as well.

For instance, different species of animals appear to be more or
less successful in solving a wide range of relational discrimination
problems (Wasserman & Zentall 2006). One of the most inten-
sely studied of such relational discrimination problems is same-
different discrimination learning (Cook & Wasserman 2006;
Delius 1994). Here, the behavioral evidence suggests that
pigeons, baboons, chimpanzees, and humans all can discriminate
first-order same-different relations; they can reliably report
whether two or more stimuli are identical (A¼A or B ¼ B) or
nonidentical (A = B).

An even more advanced form of same-different discrimination
involves higher-order relations between first-order relations.
Task mastery here requires organisms to discriminate groups of
two or more stimuli that involve the same higher-order relations
([A ¼ A] ¼ [B ¼ B] or [A = B] ¼ [C = D]; both groups of
stimuli are the same or both groups of stimuli are different)
from groups of two or more stimuli that entail different higher-
order relations ([A ¼ A] = [C = D]; one group of stimuli is
the same and the other group of stimuli is different). Such
higher-order relations may share important similarities with
human analogical reasoning (Thompson & Oden 2000).

Can only human beings discriminate such higher-order
relations and exhibit analogical reasoning? Perhaps not. Premack
(1983) and Thompson and Oden (2000) have suggested that
both humans and apes can appreciate higher-order stimulus
relations. Comparative study thus becomes critical in deciding
among these and other rival hypotheses and in elucidating the
evolutionary origins of analogical thinking.

Such comparative study is already under way. Cook and
Wasserman (2007) and Fagot et al. (2001) have reported that
pigeons and baboons, respectively, can discriminate second-
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