
Computational Complexity Theory

Moritz Müller

February 7, 2024

Contents

1 Time 1
1.1 Computation . 1

1.1.1 Some problems of Hilbert . 1
1.1.2 What is a problem? . 2
1.1.3 What is an algorithm? . 4
1.1.4 What does it mean to decide a problem? 7

1.2 Time bounded computation . 9
1.2.1 Some problems of Gödel and von Neumann 9
1.2.2 Polynomial time . 10
1.2.3 Time hierarchy . 12

1.3 Circuit families . 14
1.3.1 The fundamental lemma . 17

2 Nondeterminism 19
2.1 NP . 19
2.2 Nondeterministic time . 20

2.2.1 Nondeterministic time hierarchy . 23
2.3 NP-completeness . 24

2.3.1 Polynomial time reductions . 24
2.3.2 The Cook-Levin theorem . 26

2.4 NP-completeness – examples . 28
2.5 NP-completeness – theory . 32

2.5.1 Schöningh’s theorem . 33
2.5.2 Berman and Hartmanis’ theorem . 34
2.5.3 Mahaney’s theorem . 35
2.5.4 Ladner’s theorem . 36

2.6 Sat solvers . 37
2.6.1 Self-reduciblity . 37
2.6.2 Levin-optimal Sat solvers . 38

2.7 History and significance of P versus NP . 39

i

CONTENTS CONTENTS

3 Space 41
3.1 Space bounded computation . 41

3.1.1 Space hierarchy . 42
3.1.2 Savitch’s theorem . 43

3.2 Polynomial space . 44
3.3 Nondeterministic logarithmic space . 46

3.3.1 Implicit logarithmic space computability 47
3.3.2 Immerman and Szelepcsényi’s theorem 48

4 Alternation 50
4.1 Co-nondeterminism . 50
4.2 Unambiguous nondeterminism . 52
4.3 The polynomial hierarchy . 53

4.3.1 Alternating time . 55
4.3.2 Oracles . 56

4.4 Time-space trade-offs . 57

5 Size 60
5.1 Non-uniform polynomial time . 60

5.1.1 Karp and Lipton’s theorem . 61
5.2 Shannon’s theorem and size hierarchy . 62

5.2.1 Kannan’s theorem . 63
5.3 Lower bounds for bounded depth circuits . 64

5.3.1 Decision trees . 64
5.3.2 H̊astad’s Switching Lemma . 66
5.3.3 The lower bound . 67

6 Randomness 69
6.1 How to evaluate an arithmetical circuit . 69
6.2 Primer on probability theory . 70
6.3 Randomized computations . 71

6.3.1 Probability amplification . 72
6.3.2 Polynomial identity testing . 73
6.3.3 Zero error . 74
6.3.4 Adleman’s trick . 75

6.4 Hashing . 75
6.4.1 Trading randomness for alternation . 76
6.4.2 Witness isolation . 77
6.4.3 Approximate counting . 79
6.4.4 Approximate sampling . 80

6.5 Learning and anticheckers . 81
6.5.1 An improvement of the Karp-Lipton theorem 85

6.6 Exact counting . 86

ii

CONTENTS CONTENTS

6.6.1 Counting problems . 86
6.6.2 Toda’s theorem . 87

iii

Chapter 1

Time

1.1 Computation

1.1.1 Some problems of Hilbert

On the 8th of August in 1900, at the International Congress of Mathematicians in Paris,
David Hilbert challenged the mathematical community with 23 open problems. These prob-
lems had great impact on the development of mathematics in the 20th century. Hilbert’s
10th problem asks whether there exists an algorithm solving the problem

Diophant
Input: a diophantine equation.

Problem: does the equation have an integer solution?

Recall that a diophantine equation is of the form p(x1, x2, . . .) = 0 where p ∈ Z[x1, x2, . . .]
is a multivariate polynomial with integer coefficients.

Recall that a first-order sentence is valid if it is true in all models interpreting its
language. In 1928 Hilbert asked for an algorithm solving

Entscheidung
Input: a first-order sentence φ.

Problem: is φ valid?

At the time these questions have been informal. To understand the questions formally
one has to define what “problems” are, what “algorithms” are, and what it means for an
algorithm to “decide” some problem. This is what we do in this chapter, and in particular
define decidable and computably enumerable problems. The answers to the above-mentioned
problems read as follows.

Theorem 1.1.1 (Gödel 1928) Entscheidung is computably enumerable.

This follows from Gödel’s completeness theorem. However, the notion of algorithm has
been formalized only later by Church and Turing. This allowed them to prove

1

1.1. COMPUTATION CHAPTER 1. TIME

Theorem 1.1.2 (Church, Turing 1936) Entscheidung is not decidable.

This contrasts with the following result of Trachtenbrot. Being valid in the finite means
to be true in all models with a finite universe.

Theorem 1.1.3 (Trachtenbrot 1953) The following is not computably enumerable.

Entscheidung(fin)
Input: a first-order sentence φ.

Problem: is φ valid in the finite?

Building on earlier work of J. Robinson, Davis and Putnam, Hilbert’s 10th problem
has finally been solved by Matiyasevich:

Theorem 1.1.4 (Matiyasevich 1970) Diophant is not decidable.

1.1.2 What is a problem?

Definition 1.1.5 A (decision) problem is a subset Q of {0,1}∗.

Here, {0,1}∗ = ⋃n∈N{0,1}n is the set of binary strings. We write a binary string x ∈ {0,1}n
as x1⋯xn and say it has length ∣x∣ = n. Note there is a unique string λ of length 0. We
write {0,1}⩽n ∶= ⋃i⩽n{0,1}i for the strings of length at most n. We also write

[n] ∶= {1, . . . , n}

for n ∈ N and understand [0] = ∅.

Example: encoding graphs One may object against this definition that many (intu-
itive) problems are not about finite strings, e.g.

Acyclic
Input: a (finite) directed graph G.

Problem: is G acyclic?

A directed graph is a pairG = (V,E) with a non-empty set V of vertices and an irreflexive
set E ⊆ V × V of edges. A path (in G) is a nonempty finite sequence of pairwise distinct
vertices v0⋯vℓ such that (vi, vi+1) ∈ E for all i < ℓ; it is a path from v0 and to vℓ−1; its length
is ℓ, the number of edges. It is a cycle (in G) if v0 = vℓ and ℓ > 0. A directed graph is
acyclic if there are no cycles in G.

The objection is usually rebutted by saying that the definition captures such problems
up to some encoding. For example, say the directed graph G = (V,E) has vertices V = [n]
for some n ∈ N, and consider its adjacency matrix (aij)i,j∈[n] given by

aij = {
1 if (i, j) ∈ E
0 else

.

This matrix can be written as a binary string ⌜G⌝ = x1x2⋯xn2 where x(i−1)n+j = aij. We
identify Acyclic with {⌜G⌝ ∣ G is an acyclic directed graph} ⊆ {0,1}∗.

2

1.1. COMPUTATION CHAPTER 1. TIME

Example: encoding numbers and pairs Consider the Independent Set problem

IS
Input: a graph G and a natural k ∈ N.

Problem: does G contain an independent set of cardinality k?

A graph is a directed graph G = (V,E) with symmetric E. That X ⊆ V is independent
means E ∩X2 = ∅. The natural number k is encoded by its binary representation, that is,
the binary string bin(k) = x1⋯x⌈log(k+1)⌉ such that

k =
⌈log(k+1)⌉

∑
i=1

xi ⋅ 2⌈log(k+1)⌉−i.

Then IS can be viewed as the following problem in the sense of Definition 1.1.5:

{⟨⌜G⌝, bin(k)⟩ ∣ G is a graph containing an independent set of cardinality k},

where ⟨⋅, ⋅⟩ ∶ {0,1}∗ × {0,1}∗ → {0,1}∗ is a suitable pairing function, e.g.

⟨x1⋯xn, y1⋯ym⟩ ∶= x1x1⋯xnxn01y1y1⋯ymym.

This defines an injection and it is easy to ‘read off’ x and y from ⟨x, y⟩. Longer tuples
(x1, . . . , xk) ∈ ({0,1}∗)k for k > 2 are similarly coded by the string

⟨x1, . . . , xk⟩ ∶= x1
1x

1
1⋯x1

n1
x1
n1
01x2

1x
2
1⋯x2

n2
x2
n2
01⋯01xk

1x
k
1⋯xk

nk
xk
nk

where ni ∶= ∣xi∣ and xi = xi
1⋯xi

ni
for i ∈ [k].

In general, we are not interested in the details of the encoding.

Example: bit-graphs Another and better objection against our definition of “problem”
is that it formalizes only decision problems, namley yes/no-questions, whereas many nat-
ural problems ask, given x ∈ {0,1}∗, to compute f(x), where f ∶ {0,1}∗ → {0,1}∗ is some
function of interest. For example, one might be interested not only in deciding whether a
given graph has or not an independent set of a given cardinality, but one might want to
compute such an independent set in case there exists one. This is a valid objection and
we are going to consider such ‘search’ problems. But most phenomena we are interested
in are already observable when restricting attention to decision problems. For example,
computing f ‘efficiently’ is roughly the same as deciding “efficiently” the bit-graph of f :

BitGraph(f)
Input: x ∈ {0,1}∗, a natural i ∈ N and a bit b ∈ {0,1}.

Problem: does the ith bit of f(x) exist and equal b?

We shall see that an algorithm ‘efficiently’ solving IS can be used to also ‘efficiently’
solve the associated search problem.

3

1.1. COMPUTATION CHAPTER 1. TIME

1.1.3 What is an algorithm?

Let’s start with an intuitive discussion: what are you doing when you are performing a
computation? You have a scratch pad on which finitely many out of finitely many possible
symbols are written. You read some symbol, change some symbol or add some symbol
one at a time depending on what you are thinking in the moment. For thinking you
have finitely many (relevant) states of consciousness. But, in fact, not much thinking is
involved in doing a computation: you are manipulating the symbols according to some
fixed “calculation rules” that are applicable in a purely syntactical manner, i.e. their
“meaning” or what is irrelevant. By this is meant that your current state of consciousness
(e.g. remembering a good looking calculation rule) and the current symbol read (or a
blank place on your paper) determines how to change the symbol read, the next state of
consciousness and the place where to read the next symbol.

It is this intuitive description that Alan Turing formalized in 1936 by the concept of a
Turing machine. It seems unproblematic to say that everything computable in this formal
sense is also intuitively computable. The converse is generally accepted, mainly on the
grounds that nobody ever could come up with an (intuitive) counterexample. Another
reason is that over time many different formalizations have been given and they all turned
out to be equivalent. As an example, even a few months before Turing, Alonzo Church
gave a formalization based on the so-called λ-calculus.

[Turing] has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on the formalism
chosen. Kurt Gödel, 1946

The Church-Turing Thesis claims that the intuitive and the formal concept coincide. Note
this is a philosophical claim and cannot be subject to mathematical proof or refutation.

All arguments which can be given are bound to be, fundamentally, appeals to
intuition, and for this reason rather unsatisfactory mathematically. Alan
Turing, 1936

Definition 1.1.6 Let k > 0. A (k-tape) Turing machine is a pair A = (S, δ) where S is a
finite set of states containing an initial state sstart ∈ S and a halting state shalt ∈ S, and

δ ∶ S × {▷,◻,0,1}k → S × {▷,◻,0,1}k × {1,0,−1}k

is the transition function satisfying the following: if δ(s, a) = (s′, b,m) where a = a1⋯ak
and b = b1⋯bk are in {▷,◻,0,1}k and m =m1⋯mk in {−1,0,1}k, then for all i ∈ [k]

(a) ai = ▷ if and only if bi = ▷,

(b) if ai = ▷, then mi ≠ −1,
(c) if s = shalt, then s = s′, a = b and mi = 0.

A 1-tape Turing machine is called single-tape.

4

1.1. COMPUTATION CHAPTER 1. TIME

We informally describe for how a single-tape Turing machine computes. The tape is
what we called a scratch pad above, and is an infinite array of cells each containing a
symbol 0 or 1 or being blank, i.e. containing ◻. The machine has a head moving on the
cells, at each time scanning exactly one cell. At the start the machine is in its initial state,
the head scans cell number 0 and the input x = x1⋯xn ∈ {0,1}n is written on the tape,
namely, cell 1 contains x1, cell 2 contains x2 and so on. Cell 0 contains a special symbol
▷ that marks the end of the tape. It is never changed nor written in some other cell
(condition (a)) and if some head scans ▷ it cannot move left (condition (b)) and fall of the
tape. All other cells are blank. Assume the machine currently scans a cell containing a
and is in state s. Then δ(s, a) = (s′, b,m) means that it changes a to b, changes to state s′

and moves the head on the input tape one cell to the right or one cell to the left or stays
depending on whether m is 1, −1 or 0 respectively. If shalt is reached, the computation
stops in the sense that the current configuration is repeated forever (condition (c)).

Definition 1.1.7 Let k,n ∈ N, k > 0, and A = (S, δ) be a k-tape Turing machine and
x = x1⋯xn ∈ {0,1}n. A configuration of A is a tuple (s, j, c) where s ∈ S, j ∈ Nk and c
is a k-tuple of functions from N into {0,1,◻,▷}; we write j = j1⋯jk and c = c1⋯ck. A
configuration (s, j, c) is halting if s = shalt.

Writing 0k for the k-tuple 0⋯0, the start configuration of A on x is (sstart,0k, c) where
c = c1⋯ck is defined as follows. For all i ∈ [k], j ∈ N

ci(j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

▷ if j = 0
◻ if j > 0, i > 1 or j > n, i = 1
xj if i = 1, j ∈ [n]

.

That is, written as sequences, in the start configuration ci for i > 1 reads ▷ ◻ ◻⋯ and
c1 reads ▷ x1 x2⋯xn ◻ ◻⋯. The successor configuration of (s, j, c) is the configuration
(s′, j′, c′) such that there exists m =m1⋯mk ∈ {−1,0,1}k such that for all i ∈ [k]:

(a) δ(s, c1(j1)⋯ck(jk)) = (s′, c′1(j1)⋯c′k(jk),m),
(b) j′i = ji +mi,

(c) ci(ℓ) = c′i(ℓ) for all ℓ ≠ ji.

A run of A or a computation of A is a (finite or infinite) sequence of configurations, each
(besides the first) being a successor of the previous one. If the first configuration is the
start configuration of A on x, the the run is on x. If it is finite and ends in a halting
configuration, then it is complete.

Occasionally we consider Turing machines with input tape. On this tape the input is
written in the start configuration and this content is never changed. Moreover, the machine
is not allowed to move the input head far into the infinite array of blank cells after the cell
containing the last input bit. On an output tape the machine only writes moving the head
stepwise from left to right.

5

1.1. COMPUTATION CHAPTER 1. TIME

Definition 1.1.8 For k > 1, a k-tape Turing machine with (read-only) input tape is one
that in addition to (a)–(c) of Definition 1.1.6 also satisfies

(d) a1 = b1;
(e) if a1 = ◻, then m1 ≠ 1.

For k > 1, a k-tape Turing machine with (write-only) output tape is one that in addition to
(a)–(c) of Definition 1.1.6 also satisfies mk /= −1.

Computation tables Computation tables serve well for visualizing computations. As
an example let’s consider a 2-tape Turing machine A = (S, δ) that reverses its input string:
its states are S = {sstart, shalt, sr, sℓ} and its transition function δ satisfies

δ(sstart,▷▷) = (sr,▷▷,10),
δ(sr, b▷) = (sr, b▷,10) for b ∈ {0,1},
δ(sr,◻▷) = (sℓ,◻▷,−11),
δ(sℓ, b◻) = (sℓ, bb,−11) for b ∈ {0,1},
δ(sℓ,▷◻) = (shalt,▷◻,00).

We are not interested where the remaining triples are mapped to, but we can explain this
in a way making A a 2-tape machine with input tape and with output tape.

The following table pictures the computation of A on input 10. The ith row of the
table shows the ith configuration in the sense that it lists the symbols from the input tape
up to the first blank followed by the contents of the worktape; the head positions and the
machines state are also indicated:

(▷, sstart) 1 0 ◻ (▷, sstart) ◻ ◻ ◻ ◻
▷ (1, sr) 0 ◻ (▷, sr) ◻ ◻ ◻ ◻
▷ 1 (0, sr) ◻ (▷, sr) ◻ ◻ ◻ ◻
▷ 1 0 (◻, sr) (▷, sr) ◻ ◻ ◻ ◻
▷ 1 (0, sℓ) ◻ ▷ (◻, sℓ) ◻ ◻ ◻
▷ (1, sℓ) 0 ◻ ▷ 0 (◻, sℓ) ◻ ◻

(▷, sℓ) 1 0 ◻ ▷ 0 1 (◻, sℓ) ◻
(▷, shalt) 1 0 ◻ ▷ 0 1 (◻, shalt) ◻

Here is the definition for the case of a single-tape machine:

Definition 1.1.9 Let A = (S, δ) be a single-tape Turing machine, x ∈ {0,1}∗ and t ⩾ 1.
The computation table of A on x up to step t is the following matrix (Tij)ij over the
alphabet {0,1,◻,▷} ∪ ({0,1,◻,▷} × S) with i ∈ [t] and j ⩽ t̃ ∶= max{∣x∣, t} + 1. For i ∈ [t]
let (si, ji, ci) be the ith configuration in the run of A on x. The ith row Ti0⋯Tit̃ equals
ci(0)ci(1)⋯ci(t̃) except that the (ji + 1)th symbol σ is replaced by (σ, si) respectively.

Note that the last column of a computation table contains only blanks ◻.

6

1.1. COMPUTATION CHAPTER 1. TIME

1.1.4 What does it mean to decide a problem?

Definition 1.1.10 Let k ⩾ 1 and A = (S, δ) be a k-tape Turing machine and x ∈ {0,1}∗.
Assume there exists a complete run of A on x, say ending in a halting configuration with
cell contents c = c1⋯ck; the output of the run is the binary string ck(1)⋯ck(j) where j + 1
is the minimal cell number such that ck(j + 1) = ◻; this is the empty string λ if j = 0. The
run is accepting if ck(1) = 1 and rejecting if ck(1) = 0.

The machine A computes the partial function that maps x to the output of a complete
run of A on x and is undefined if no complete run of A on x exists. The machine A is
said to accept x or to reject x if there is an accepting or rejecting (complete) run of A on x
respectively. It is said to decide a problem Q ⊆ {0,1}∗ if it accepts every x ∈ Q and rejects
every x ∉ Q. Finally, it is said to accept the problem

L(A) ∶= {x ∣ A accepts x}.

A problem is called decidable if there is a Turing machine deciding it. A partial func-
tion is computable if there is a Turing machine computing it. A problem is computably
enumerable if there is a Turing machine accepting it.

In a certain sense, the number of tapes does not matter:

Lemma 1.1.11 For every k > 1 and every k-tape Turing machine A, there exists c ∈ N
and a single-tape Turing machine B such that for all x ∈ {0,1}∗, t ∈ N, if there is a halting
(accepting, rejecting) computation of A on x of length t, then there is a halting (accepting,
rejecting) computation of B on x of length ⩽ c ⋅ (t2 + ∣x∣) + c.

Proof: We first define a single-tape Turing machine A′ that instead with bits {0,1} works
with a larger finite alphabet Σ. The definition machines is straightforward.

For concreteness assume k = 4. The alphabet Σ contains {0,1, 0̂, 1̂}4. The computation
of A′ on x produces for every configuration C in the run of A on x a configuration C ′ that
codes C as follows. A cell in C ′ has letter 0̂10̂1 if C has 0 in this cell on the first tape, 1
on the second, 0 on the third, and 1 on the fourth; moreover, in C the first and third head
currently scan the cell.

One step of A is simulated by scanning the tape from left to right (until the first blank)
and back, collecting (and storing by moving to an appropriate state) the information which
symbols the 4 heads are reading, say 0110. It then moves forth and back the tape and
changes the first components of each symbol according to the action of the first head of A.
E.g. if writes 1 and moves right, the letter 0̂10̂1 above is changed to 010̂1 and the next
letter, say 1000̂ is changed to 1̂000̂. A′ proceeds like this for all 4 heads in turn.

This way the ith step of A is simulated by ⩽ 10 ⋅k ⋅max{i, ∣x∣}+10 many steps of A′. In
the beginning, A′ replaces its input x = (x1, . . . , xn) by (▷̂▷̂▷̂▷̂, x1x1x1x1, . . . xnxnxnxn).
This takes ⩽ 10 ⋅n+10 steps. In total, A′ takes ⩽ d ⋅ t2+d steps for a suitable constant d ∈ N,
i.e., independent of the input x.

We next change the alphabet Σ back to {0,1}. The machine B proceeds as A′ but
instead of a symbol in Σ∪{◻} stores a binary code of the symbol of length s ∶= ⌈log(∣Σ∣+1)⌉.

7

1.1. COMPUTATION CHAPTER 1. TIME

E.g., when A′ writes one symbol and moves one cell left, A writes the corresponding s bits
and then moves 2s cells left. Note that one step is simulated by constantly many steps.

Since A′ finishes in cell 0, B can finally change, in constantly many steps, the first cell
to 1 or 0 according to whether As run simulated by A′ is accepting or rejecting. ◻

Exercise 1.1.12 Define a bidirectional Turing machine to be one whose tapes are infinite
also to the left, i.e. numbered by integers Z instead naturals N. Simulate one such tape by
two usual tapes: when the bidirectional machines want to moves the head to cell -1, the
usual machine moves the head on the second tape to 1.

Define Turing machines with 3-dimensional tapes and simulate them by usual Tur-
ing machines. Proceed with Turing machines that operate with more than one head per
worktape. Proceed with some other fancy variant.

Proposition 1.1.13 A problem Q is decidable if and only if both Q and {0,1}∗ ∖Q are
computably enumerable.

Proof: Obviously, a machine A deciding Q also accepts Q, and a machine deciding {0,1}∗∖
Q is obtained from A by running A and interchanging acceptance and rejection. Conversely,
assume Q = L(A1) for some k1-tape machine A1, and {0,1}∗ ∖Q = L(A0) for some k0-tape
machine. Define a k1 + k2 + 1-tape machine B that behaves as follows: on input x, copy
x to tape k0 + 1 and then simultaneously run A0 on the first k0 tapes and A1 on the last
k1 tapes. If A0 accepts, then accept, i.e., write 1 into cell 1 of tape k0 + k1 + 1 and halt.
Similarly, if A0 accepts, then reject. ◻

Exercise 1.1.14 Verify the following claims. A problem Q is decidable if and only if its
characteristic function χQ ∶ {0,1}∗ → {0,1} that maps x ∈ {0,1}∗ to

χQ(x) ∶= {
1 if x ∈ Q
0 if x ∉ Q

is computable. A nonempty problem is computably enumerable if and only if it is the
range of a computable total function.

Exercise 1.1.15 (Halting) Let ⌜A⌝ be a ‘reasonable’ encoding of Turing machines by
binary strings. Show the Halting problem is computably enumerable and undecidable:

Halting
Input: a single-tape Turing machine A.

Problem: Does A halt on input λ?

Roughly, the following shows that besides halting on the empty input, also every other
non-trivial property is undecidable.

Exercise 1.1.16 (Rice’s theorem) Let C be a nonempty set of computably enumerable
problems and assume ∅ ∉ C. Show the following is undecidable.

Rice(C)
Input: a single-tape Turing machine A.

Problem: is L(A) ∈ C?

8

1.2. TIME BOUNDED COMPUTATION CHAPTER 1. TIME

1.2 Time bounded computation

1.2.1 Some problems of Gödel and von Neumann

We consider the problem to compute the product of two given natural numbers k and ℓ.
The Näıve Algorithm starts with 0 and adds repeatedly k and does so for ℓ times. Note that
we agreed to consider natural numbers as given in binary representations bin(k), bin(ℓ),
so bin(k ⋅ ℓ) has length roughly ∣bin(k)∣ + ∣bin(ℓ)∣. Assuming that one addition can be done
in roughly this many steps, the Näıve Algorithm performs roughly ℓ ⋅ (∣bin(k)∣ + ∣bin(ℓ)∣)
many steps, which is roughly 2∣bin(ℓ)∣ ⋅ (∣bin(k)∣ + ∣bin(ℓ)∣). Algorithms that take 2constant⋅n

steps on inputs of length n are what we are going to call simply exponential.
Remember the School Algorithm – here is an example multiplying k = 19 with ℓ = 7:

1 0 0 1 1 ⋅ 1 1 1
1 0 0 1 1 0 0

1 0 0 1 1 0
1 0 0 1 1

1 0 0 0 0 1 0 1

The size of this table is roughly (∣bin(k)∣ + ∣bin(ℓ)∣)2. As the table is easy to produce,
this gives a rough estimate of the number of steps. Algorithms that take nconstant steps on
inputs of length n are what we are going to call polynomial time.

For large inputs the School Algorithm is much faster and the difference is drastic: to
compute the product of two 22 digit numbers on a computer performing a million steps
per second takes time more than twice the age of the universe with the Näıve Algorithm,
and less than half a second with the School Algorithm. Thus, when badly programmed,
even a modern supercomputer is easily outrun by any school boy, already on inputs of
moderate size. Whether or not a problem is “efficiently solvable” or “feasible” or “prac-
tically solvable” is not so much a question of technological progress, i.e. of hardware, but
more of the availability of fast algorithms, i.e., of software. It is thus sensible to formalize
the notion of feasibility as a property of problems leaving aside any talk about computing
technology. The most important formalization of feasibility, albeit contested by various
rivals, is polynomial time due to Cobham and Edmonds in 1965.

An immediate philosophical objection against the formalization of the intuitive notion
of feasibility by polynomial time is that the latter notion depends on the particular machine
model chosen. However, this does not seem to be the case, in fact reasonable models of
computation simulate on another with only polynomial overhead.

Another nearlying objection is that running times of n100 or 1010
10 ⋅ n can hardly be

considered feasible. It is a matter of experience that most natural problems in P already
have a quadratic or cubic time algorithm with leading constants of tolerable size.

Ahead of their time, both Gödel and von Neumann troubled about complexity theoretic
questions before the field was born.

Throughout all modern logic, the only thing that is important is whether a result
can be achieved in a finite number of elementary steps or not. The size of the

9

1.2. TIME BOUNDED COMPUTATION CHAPTER 1. TIME

number of steps which are required, on the other hand, is hardly ever a concern
of formal logic. Any finite sequence of correct steps is, as a matter of principle,
as good as any other. It is a matter of no consequence whether the number
is small or large, or even so large that it couldn’t possibly be carried out in a
lifetime, or in the presumptive lifetime of the stellar universe as we know it.
In dealing with automata, this statement must be significantly modified. In the
case of an automaton the thing which matters is not only whether it can reach
a certain result in a finite number of steps at all but also how many such steps
are needed. John von Neumann, 1948

A still lasting concern of the time has been the philosophical question as to what extent
machines can be intelligent or conscious. In this respect Turing proposed 1950 what became
famous as the Turing Test. A similar philosophical question is whether mathematicians
could be replaced by machines. Church and Turing’s Theorem 1.1.2 is generally taken to
provide a negative answer, but in the so-called Lost Letter of Gödel to von Neumann from
March 20, 1956, Gödel reveils that he has not been satisfied by this answer. He considers
the following bounded version of Entscheidung

Gödel
Input: a first-order sentence φ and a natural n.

Problem: does φ have a proof with at most n symbols

This is trivially decidable and Gödel asked whether it can be decided in O(n) or O(n2)
many steps for every fixed φ. It is known that an affirmative answer would imply P = NP
(see the next section). Gödel said:

that would have consequences of the greatest importance. Namely, this would
clearly mean that the thinking of a mathematician in the case of yes-or-no
questions could be completely1 replaced by machines, in spite of the unsolvability
of the Entscheidungsproblem. [. . .] Now it seems to me to be quite within the
realm of possibility Kurt Gödel, 1956

1.2.2 Polynomial time

We now define our first complexity classes, the objects of study in complexity theory. These
collect problems solvable using only some prescribed amount of a certain resource like time,
space, randomness, nondeterminism, advice, oracle questions and what. A complexity class
can be thought of as a degree of difficulty of solving a problem. Complexity theory then is
the theory of degrees of difficulty.

Definition 1.2.1 Let t ∶ N → N. A Turing machine A is t-time bounded if for every
x ∈ {0,1}∗ there exists a complete run of A on x that has length at most t(∣x∣).

1Gödel remarks in a footnote “except for the formulation of axioms”.

10

1.2. TIME BOUNDED COMPUTATION CHAPTER 1. TIME

TIME(t) is the class of problems Q such that there is some c ∈ N and some (c ⋅t+c)-time
bounded A that decides Q. The classes

P ∶= ⋃c∈NTIME(nc)
E ∶= ⋃c∈NTIME(2c⋅n)
EXP ∶= ⋃c∈NTIME(2nc)

are called polynomial time, simply exponential time and exponential time.

Landau notation The above definition is such that constant factors are discarded as
irrelevant. In fact, we are interested in the number of steps an algorithm takes in the sense
of how fast it grows (as a function of the input length) asymptotically.

Definition 1.2.2 Let f, g ∶ N→ N.
– f ⩽ O(g) if there is c ∈ N such that f(n) ⩽ c ⋅ g(n) + c for all n ∈ N,
– f ⩾ Ω(g) if g ⩽ O(f),
– f = Θ(g) if f ⩽ O(g) and g ⩽ O(f),
– f ⩽ o(g) if for all c ∈ N there is nc ∈ N such that for all n ⩾ nc ∶ c ⋅ f(n) ⩽ g(n),
– f ⩾ ω(g) if g ⩽ o(f).

Exercise 1.2.3 Assume g(n) > 0 for all n ∈ N.

(a) f ⩽ o(g) if and only if lim supn
f(n)
g(n) = 0.

(b) f ⩾ ω(g) if and only if lim infn
f(n)
g(n) = ∞.

Exercise 1.2.4 Let p(x) be a polynomial with natural coefficients and degree d. Then
p = Θ(nd) and p ⩽ o(2(logn)2).

Example 1.2.5 The following problem is in P.

Reachability
Input: a directed graph G = (V,E), v, v′ ∈ V .

Problem: is there a path from v to v′ in G?

Proof: The following algorithm decides Reachability: it first computes the smallest set
that contains v and is closed under E-successors, and then checks whether it contains v′.

1. X ← {v}, Y ← ∅
2. X ←X ∪ Y

3. for all (u,w) ∈ E
4. if u ∈X then Y ← Y ∪ {w}
5. if Y /⊆X then goto line 2

6. if v′ ∈X then accept

7. reject

11

1.2. TIME BOUNDED COMPUTATION CHAPTER 1. TIME

To estimate the running time, let n denote the input size, i.e. the length of the binary
encoding of the input. Let’s code X,Y ⊆ V by binary strings of length ∣V ∣ - the ith bit
encodes whether the ith vertex belongs or not to the subset. It is then easy to compute
the unions in line 2 and 4 and it is also easy to check the “if”-conditions: e.g., Y /⊆X can
be checked in ∣V ∣ steps with two worktapes, the first containing the string encoding Y and
the second the one for X; then the machine moves their heads stepwise from left to right
and checks whether at some point the first head reads 1 while the second reads 0.

The for all loop in lines 3 and 4 is run for ∣E∣ ⩽ n times, so takes time O(n2). Hence,
lines 2 to 5 take time O(n2). These lines are executed once in the beginnning and then
always when the algorithm (in line 5) jumps back to line 2. But this happens at most
∣V ∣ − 1 < n times because X grows by at least 1 before jumping. In total, the algorithm
runs in time O(n3). ◻

Exercise 1.2.6 Acyclic ∈ P.

Exercise 1.2.7 This exercise exemplifies so-called amortized time analysis and shows that
x↦ bin(∣x∣) is computable in linear time. The machine scans its input x from left to right,
each step updating a binary counter. Implement this in a way such that the k-th update
takes ⩽ 10 ⋅ k steps. Then argue the total time is O(∣x∣).

1.2.3 Time hierarchy

Fix some reasonable encoding of single-tape Turing machines A by binary strings ⌜A⌝. For
this we assume that A’s set of states is [s] for some s ∈ N. The encoding should allow you
to find δ(q, a) given (q, a) in time O(∣⌜A⌝∣). Recall Definition 1.1.9.

Of course, an algorithm is said to run in quadratic time if it is O(n2)-time bounded.

Theorem 1.2.8 (Polynomial time universal machine) There exists a Turing machine
that, given the code ⌜A⌝ of a single-tape Turing machine A, a string x ∈ {0,1}∗ and
1t = 11⋯1 for some t ∈ N, computes in quadratic time the tth row of the computation
table of A on x up to step t.

Proof: Note that a symbol in the table can be encoded with O(log s) many bits where s
is the number of states of A. A row of the table is encoded by a binary string of length
O(log s ⋅max{t, ∣x∣}). Given a row the next row can be computed in linear time. Thus the
t-th row can be computed in time O(∣⌜A⌝∣ ⋅ t2 ⋅ ∣x∣), ◻

This theorem is hardly surprising in times where PCs executing whatever software
belong to daily life (of the richer part of the world population). But historically, it is
hard to underestimate the insight that instead of having different machines for different
computational tasks one single machine suffices:

It is possible to invent a single machine which can be used to compute any
computable sequence. Alan Turing 1936

12

1.2. TIME BOUNDED COMPUTATION CHAPTER 1. TIME

Definition 1.2.9 A function t ∶ N → N is time-constructible if and only if t(n) ⩾ n for all
n ∈ N and the function x↦ bin(t(∣x∣)) is computable in time O(t(∣x∣)).

Exercise 1.2.10 Show the class of time constructible functions is closed under addition,
multiplication and conclude that all polynomials are time-constructible. With f also 2f is
time-constructible. The functions

√
n, logn are time-constructible.

Exercise 1.2.11 Let g ∶ N2 → N be a computable. Show that there exists an increasing
time-constructible function f ∶ N→ N such that f(n + 1) > g(f(n), n) for all n ∈ N.

Theorem 1.2.12 (Time hierarchy) TIME(t6) ∖TIME(t) ≠ ∅ for time-constructible t.

Proof: Consider the problem

Qt

Input: a single-tape Turing machine A.
Problem: is it true that A does not accept ⌜A⌝ in at most t(∣⌜A⌝∣)3 many steps?

To show Qt ∈ TIME(t6), consider the following algorithm:

1. s← t(∣⌜A⌝∣)3

2. simulate A on ⌜A⌝ for at most s steps

3. if the simulation halts and accepts then reject

4. accept

With t also t3 is time-constructible, so line 1 requires at most O(t(∣⌜A⌝∣)3) many steps.
Line 2 requires at most O((∣⌜A⌝∣ + s)2) ⩽ O(t(∣⌜A⌝∣)6) many steps (recall t(n) ⩾ n) using
the universal machine.

We show that Qt ∉ TIME(t). Assume otherwise. Then by Lemma 1.1.11 there is a
single-tape machine B which (a) decides Qt and (b) is (c ⋅ t2 + c)-time bounded for some
c ∈ N. We can assume (c) ∣⌜B⌝∣ > c – otherwise add some dummy states to B.

Assume B does not accept ⌜B⌝. Then ⌜B⌝ ∈ Qt by definition of Qt, so B does not
decide Qt – contradicting (a). Hence B accepts ⌜B⌝, so ⌜B⌝ ∈ Qt by (a). By definition of Qt

we conclude that B needs strictly more than t(∣⌜B⌝∣)3 steps on ⌜B⌝. But

c ⋅ t2(∣⌜B⌝∣) + c < ∣⌜B⌝∣ ⋅ t2(∣⌜B⌝∣) − t2(∣⌜B⌝∣) + ∣⌜B⌝∣ ⩽ ∣⌜B⌝∣ ⋅ t2(∣⌜B⌝∣) ⩽ t(∣⌜B⌝∣)3

using (c) and t(∣⌜B⌝∣) ⩾ ∣⌜B⌝∣ (since t is time-construcible). This contradicts (b). ◻

Remark 1.2.13 Something stronger is known: TIME(t′)∖TIME(t) ≠ ∅ for time-constructible
t, t′ with t(n) ⋅ log t(n) ⩽ o(t′(n)).

Corollary 1.2.14 P ⊊ E ⊊ EXP.

Proof: Note nc ⩽ O(2n) for every c ∈ N , so P ⊆ TIME(2n). By the Time Hierarchy Theorem
E ∖P ⊇ TIME(26n) ∖TIME(2n) ≠ ∅. Similarly, 2cn ⩽ O(2n2) for every c ∈ N, so by the Time
Hierarchy Theorem EXP ∖ E ⊇ TIME(26n2) ∖TIME(2n2) ≠ ∅. ◻

Exercise 1.2.15 Find t0, t1, . . . such that P ⊊ TIME(t0) ⊊ TIME(t1) ⊊ ⋯ ⊆ E.

13

1.3. CIRCUIT FAMILIES CHAPTER 1. TIME

1.3 Circuit families

In this section we give a characterization of P by families of Boolean circuits. This is
a lemma of central conceptual and technical importance. To emphasize its fundamental
character we spell out the definition abstractly for any first-order structure A interpreting
a functional language: this consists of a set A ≠ ∅, a family F of function symbols f , each
having an arity rf ∈ N, and for each f ∈ F an interpretation fA ∶ Arf → A. For rf = 0 we
call f a constant and identify fA witH its unique value in A.

Definition 1.3.1 Let s, n ∈ N, and X̄ = X1⋯Xn and Ȳ = Y1⋯Ys be tuples of variables.
An A-circuit C = C(X̄) is a sequence of s equalities E1, . . . ,Es. Each Ei has one of the
following forms:

(a) Yi =Xj for some j ∈ [n], or,
(b) Yi = f(Yi1 , . . . , Yirf

) for some f ∈ F and i1, . . . , irf ∈ [i − 1].

The number s is the size of C and denoted ∣C ∣. The variables X̄ are input variables, the
variables Ȳ are gates. A gate Yi is an input gate if Ei is of type (a) or (b) for a constant f .

The depth of C is d(s) where d(i) is the depth of gate Yi: if Ei is of type (b) with rf > 0,
then d(i) ∶=max{d(i1), . . . , d(irf)}; otherwise, i.e., if Yi is an input gate, d(i) ∶= 0.

Definition 1.3.2 For ā = a1⋯an ∈ An the computation of C on ā is the tuple b̄ = b1⋯bs ∈ As

such that for all i ∈ [s] we have bi = aj if Yi is of type (a), and bi = fA(bi1 , . . . , birf) if Yi is

of type (b); for a constant f this means bi = fA ∈ A. The output of C on ā is C(ā) ∶= bs.
The circuit computes the function ā↦ C(ā) from An into A.

Let m ∈ N. An A-circuit C with m output gates is an A-circuit together with an m-tuple
ō = o1⋯om ∈ [s]m. The output of C on ā ∈ An is C(ā) ∶= bo1⋯bom ∈ Am where b̄ = b1⋯bs ∈ As

is the computation of C on ā. The circuit computes the function ā↦ C(ā) from An into Am.

It should be clear that this is well-defined: for each ā there exists exactly one compu-
tation of C on ā.

Graphical representation A circuit C(X̄) of size ∣C ∣ = s is pictured as a directed
acyclic graph (V,E) with a labeling λ: the nodes are V ∶= [s] and the edges E contain
(j, i) if Ei is of type (b) and Yj appears on the r.h.s. of Ei. The label λ(i) is Xj for Yi of
type (a), and the f ∈ F appearing the equation for Ei of type (b).

Note, the depth of C(X̄) is the maximal length of some path in the above graph.

We are mainly interested in Boolean circuits:

Definition 1.3.3 A Boolean circuit with unbounded fan-in is an A-circuit where A = {0,1}
and F contains constants 0 and 1, ¬ of arity 1 and ∧n,∨n of arity n for each n ⩾ 2. The
interpretations are 0A ∶= 0,1A ∶= 1,¬A(a) ∶= 1 − a,∧A

n (a1, . . . , an) ∶= min{a1, . . . , an} and
∨A(a1, . . . , an) ∶=max{a1, . . . , an}.

A Boolean circuit or just circuit allows ∧n,∨n only for n = 2. We write ∧,∨ instead
∧2,∨2, and write ¬Y,Y ∧Z,Y ∨Z instead ¬(Y),∧(Y,Z),∨(Y,Z) for variables Y,Z.

14

1.3. CIRCUIT FAMILIES CHAPTER 1. TIME

Exercise 1.3.4 The following problem is in P.

Circuit-Eval
Input: a string x ∈ {0,1}∗ and a circuit C = C(X1, . . . ,X∣x∣).

Problem: is C(x) = 1?

For the following circuits it is unknown whether their evaluation problem is in P. We
shall study the question in Chapter 6.

Definition 1.3.5 An arithmetical circuit is an A-circuit where A = Z and F contains
constants 1,−1 and +,× of arity 2. The interpretations are 1A ∶= 1,−1A ∶= −1,+A(a1, a2) ∶=
a1 + a2 and ×A(a1, a2) ∶= a1 ⋅ a2.

Boolean formulas We assume basic familiarity with (Boolean) formulas. Recall, these
are those words α over the alphabet

(,),0,1,¬,∧,∨,X1,X2 . . .

that are obtained by finitely many applications of the rules:

Xi 0 1

α

¬α
α β

(α ∧ β)
α β

(α ∨ β)
.

An assignment A maps the (Boolean) variables X1,X2, . . . into {0,1}. It uniquely extends
to a function, again denoted A, on the set of all Boolean formulas with the properties

A(¬α) = 1 −A(α), A((α ∧ β)) =min{A(α),A(β)}, A((α ∨ β)) =max{A(α),A(β)}.

Clearly, A(α) depends only on the values of A on the variables appearing in α. If n ∈ N
is the maximal index of a variable in α (and n = 0 if there are none), then α computes the
function that maps ā = a1⋯an ∈ {0,1}n to A(α) ∈ {0,1} where A maps every Xi to ai. We
write α(ā) for A(α). If the value is 1, we write A ⊧ α or ā ⊧ α.

Definition 1.3.6 A (Boolean) circuit or formula C with n input variables is satisfiable if
there is ā ∈ {0,1}n such that C(ā) = 1; C is satisfied by ā. If C(ā) = 1 for all ā ∈ {0,1}∗,
then C is tautological. Two circuits or formulas are equivalent if they compute the same
function.

Proposition 1.3.7 Let s ∈ N.

(a) For every formula α of length s there is an equivalent circuit Cα of size ⩽ s.
(b) For every circuit C of size s there is an equivalent formula αC of length ⩽ 3s.

15

1.3. CIRCUIT FAMILIES CHAPTER 1. TIME

Proof: For (a), let α be a formula and let α1, . . . , αs′ enumerate its subformulas so that: if
αi is a subformula of αj, then i ⩽ j. Note s′ ⩽ s since at each position of α starts at most
one subformula. The size s′ circuit Cα has i-th equation depending on the main connective
of αi: e.g., if αi = (αj ∧ αk), it is Yi = Yj ∧ Yj (note j, k < i); the other cases are similar.

For (b), given C = (E1,⋯,Es) we define αi equivalent to (E1, . . . ,Ei) by recursion on
i ⩽ s. E.g., if Ei is Yi = Yj ∧ Yk we set αi ∶= (αj ∧ αk). The other cases are similar. Let
ℓi ∶=maxj⩽i ∣αj ∣. Then ℓ1 = 1 and ℓi+1 ⩽ 2ℓi + 3. Hence αC ∶= αs has length ⩽ ℓs ⩽ 3s. ◻

Every f ∶ {0,1}n → {0,1} is computed by a formula of size 2O(n): the disjunction of

¬1−a1X ∧ . . . ∧ ¬1−anXn

for those ā = a1⋯an ∈ {0,1}n with f(ā) = 1; we write ¬1α ∶= ¬α,¬0α ∶= α.

For circuits we can do slightly better:

Proposition 1.3.8 For all sufficiently large n and all m ⩾ 1, every f ∶ {0,1}n → {0,1}m
is computable by a circuit of size ⩽ 21 ⋅m ⋅ 2n/n.

Proof: It suffices to prove this for m = 1. For every g ∶ {0,1}m → {0,1} with m ⩽ n let s(g)
be the minimal size of a circuit computing g. For a bit b ∈ {0,1} let f b be the function that
maps x1⋯xn−1 ∈ {0,1}n−1 to f(x1⋯xn−1b). Write f 010 for ((f 0)1)0 and similarly f y for any
string y of length at most n.

Observe that s(f) ⩽ 5+s(f 0)+s(f 1): the circuit “(C1∧Xn)∨(C0∧¬Xn)” computes f ;
it is built from 5 gates plus a circuit C0 computing f 0 and a circuit C1 computing f 1.
Replace the circuit C0 by 5 gates plus circuits computing f 00 and f 01 and similarly for C1.
This results in a circuit for f with 5 + 2 ⋅ 5 gates plus circuits for f 00, f 01, f 10, f 11. So s(f)
is bounded by 5 + 2 ⋅ 5 plus the sum of s(g) for g ∈ {f 00, f 01, f 10, f 11}. In general,

s(f) ⩽ ∑k−1
i=0 5 ⋅ 2i +∑g s(g) ⩽ 5 ⋅ 2k +∑g s(g).

where k ⩽ n and g ranges over {f y ∣ y ∈ {0,1}k}; note such g has arity n − k. For k ∶= n
every s(g) is 1, so f is computed by a circuit of size ⩽ 6 ⋅2n. To get the bound claimed, set

k ∶= n − ⌈logn⌉ + 2

which is ⩽ n for large enough n. Then the sum ranges over at most 22
⌈logn⌉−2

many functions
g ∶ {0,1}⌈logn⌉−2 → {0,1}. Each g has a circuit of size ⩽ 6 ⋅ 2⌈logn⌉−2 ⩽ 6 ⋅ 2logn+1−2 = 3n. So,

s(f) ⩽ 5 ⋅ 2(n−logn+2) + 22
logn+1−2 ⋅ 3n ⩽ 20 ⋅ 2n/n + 2n/2 ⋅ 3n.

Our claim follows, noting 2n/2 ⋅ 3n ⩽ 2n/n for sufficiently large n. ◻

16

1.3. CIRCUIT FAMILIES CHAPTER 1. TIME

1.3.1 The fundamental lemma

Lemma 1.3.9 (Fundamental) A problem Q is in P if and only if there exists a family
of circuits (Cn)n∈N such that for every n ∈ N the circuit Cn = Cn(X1, . . . ,Xn) is computable
from 1n in polynomial time and decides Q on {0,1}n, i.e., for all x ∈ {0,1}n

x ∈ Q ⇐⇒ Cn(x) = 1.

Proof: Assume a family (Cn)n as stated exists. Then a polynomial time algorithm for
Q proceeds as follows. On input x ∈ {0,1}∗ it computes (an encoding of) C∣x∣ and then
checks whether C∣x∣(x) = 1. Computing C∣x∣ needs time p(∣x∣) for some polynomial p, so
the encoding of C∣x∣ has length at most p(∣x∣). By Exercise 1.3.4, the check can be done in
time q(∣x∣ + p(∣x∣)) for some polynomial q.

To see the converse direction, assume Q ∈ P. By Lemma 1.1.11 there is a single-tape
Turing machine A = (S, δ) that decides Q and is p-time bounded for some polynomial p.
We can assume that p(n) ⩾ n for all n ∈ N. Given n ∈ N, we describe the circuit Cn. It will
be obvious that it can be computed from 1n in polynomial time.

Fix some x ∈ {0,1}n and consider the computation table (Tij)i∈[p(n)],j⩽p(n)+1 of A on x
up to step p(n). It has entries in Σ ∶= {0,1,▷,◻} ∪ ({0,1,▷,◻} × S).

Entry Tij of the table can be determined by T(i−1)(j−1), T(i−1)j, T(i−1)(j+1) and the tran-
sition function of A. In other words, there exists a function f ∶ Σ3 → Σ such that

f(T(i−1)(j−1), T(i−1)j, T(i−1)(j+1)) = Tij,

for all ij with i ≠ 1 and j ∉ {p(n) + 1,0}. This is referred to as “locality of computation”
and constitutes the key insight behind the proof.

We write the table in binary, coding every σ ∈ Σ by ⌜σ⌝ ∈ {0,1}s for (the constant)
s ∶= ⌈log(∣Σ∣ + 1)⌉. Choose a circuit C with 3s variable-gates and s output gates such that

C(⌜σ1⌝⌜σ2⌝⌜σ3⌝) = ⌜f(σ1, σ2, σ3)⌝,

for all σ1, σ2, σ3 ∈ Σ. The size of C is constant in the sense that it does not depend on x.
For each ij make a copy Cij of C and identify

– its first s inputs with the outputs of C(i−1)(j−1),

– its second s inputs with the outputs of C(i−1)j,

– its third s inputs with the outputs of C(i−1)(j+1).

For the marginal value j = 0 use a similar circuit with 2s many inputs: observe that an
entry in the first column Ti0 is determined by the two entries T(i−1)0, T(i−1)1 one row above.
For the marginal value j = p(n)+1 you can use a circuit that constantly outputs the s bits
of ⌜◻⌝ (recall that the rightmost column of a computation table contains only ◻).

The circuit sofar has p(n) + 2 many blocks of s inputs corresponding to the encoding
of the first row of the table:

Ti0⋯Ti(p(n)+1) = (▷, sstart) x1 ⋯ xn ◻ ⋯ ◻ .

17

1.3. CIRCUIT FAMILIES CHAPTER 1. TIME

Identify the (i + 1)th block of s inputs (i.e. the one corresponding to xi) with the outputs
of some fixed circuit computing b ↦ ⌜b⌝ for bits b ∈ {0,1}; its single input variable is Xi.
The first block of s inputs is assigned 0,1 according ⌜(▷, sstart)⌝ and all other blocks are
assigned 0,1 according ⌜◻⌝.

This gives a a circuit that computes from x the encoding of the halting configuration
of A on x. Finally, add a constant size circuit that maps the second block of s gates to 1
or 0 depending on whether the configuration is accepting or not. ◻

Exercise 1.3.10 Let f ∶ {0,1}∗ → {0,1}∗ be a function computable in polynomial time
such that there exists a function ℓ ∶ N→ N such that ∣f(x)∣ = ℓ(∣x∣) for all x ∈ {0,1}∗. Then
there is a polynomial time function mapping 1n to a circuit Cn computing f ↿ {0,1}n.

18

Chapter 2

Nondeterminism

2.1 NP

Definition 2.1.1 A relation R ⊆ {0,1}∗ × {0,1}∗ is polynomially bounded if and only if
there is a polynomial such that ∣y∣ ⩽ p(∣x∣) for all (x, y) ∈ R.

Of course, that R is in P means that {⟨x, y⟩ ∣ (x, y) ∈ R} is in P. The domain of R is

dom(R) ∶= {x ∣ ∃y ∈ {0,1}∗ ∶ (x, y) ∈ R}.

Definition 2.1.2 Nondeterministic polynomial time NP is the set of problems Q such that
Q = dom(R) for some polynomially bounded R ⊆ {0,1}∗ × {0,1}∗ in P.

Exercise 2.1.3 Show that every Q ∈ NP is the domain of a binary relation R in P such
that for some polynomial p we have ∣y∣ = p(∣x∣) for all (x, y) ∈ R.

Examples 2.1.4 The problems

Circuit-Sat
Input: a Boolean circuit C.

Problem: is C satisfiable?

Sat
Input: a propositional formula α.

Problem: is α satisfiable?

are in NP: for the first problem let R contain the pairs (C,x) such that C is a circuit with
one output and ∣x∣ variable-gates and C(x) = 1. For the second let R contain the pairs
(α,A) such that A is an assignment to the variables appearing in α that satisfies α.

As a further example, the independent set problem IS (cf. section 1.1.2) is in NP as can
be seen by letting R relate pairs (G,k) (i.e. their encodings ⟨⌜G⌝, bin(k)⟩) to (encodings
of) X where X is an independent set of cardinality k in the graph G.

19

2.2. NONDETERMINISTIC TIME CHAPTER 2. NONDETERMINISM

Intuitively, (x, y) ∈ R means that y is a solution to problem instance x. To check if
a given y is indeed a solution to instance x is easy (polynomial time). But, of course, it
may be more difficult to find a solution y. Note there are exponentially many candidate
solutions for instance x, so exhaustive search takes exponential time in the worst case:

Proposition 2.1.5 P ⊆ NP ⊆ EXP.

Proof: Any problem Q in P is the domain of R = Q × {0} and hence in NP. To see the
second inclusion let Q ∈ NP and choose R in P such that Q = dom(R). Further choose a
polynomial p witnessing that R is polynomially bounded. Observe that given any string y
it is easy to compute its successor y+ in the lexicographical order λ,0,1,00,01, . . . (where
λ denotes the empty string). Consider the algorithm that on input x proceeds as follows:

1. y ← λ

2. if (x, y) ∈ R then accept

3. y ← y+

4. if ∣y∣ ⩽ p(∣x∣) goto line 2

5. reject

Lines 2-4 can be executed in polynomial time, say time q(∣x∣). The number of times they
are executed is bounded by the number of strings y of length ⩽ p(∣x∣). In total, the running
time is O(q(∣x∣) ⋅ 2p(∣x∣)+1) which is O(2∣x∣c) for some suitable c ∈ N. ◻

It is not known whether any of these inclusions is strict. But recall that we know
P ≠ EXP by Corollary 1.2.14.

2.2 Nondeterministic time

We now give a machine characterization of NP.

Definition 2.2.1 Let k ∈ N, k > 0. A k-tape nondeterministic Turing machine is a triple
(S, δ0, δ1) such that both (S, δ0) and (S, δ1) are k-tape Turing machines. A configuration of
A is a configuration of (S, δ0) (which is also one of (S, δ1)), and a successor configuration of
A of another configuration of A is one of (S, δ0) or (S, δ1). A run or computation of A is a
sequence of configurations of A each besides the first being a successor of the previous one.
It is on x ∈ {0,1}∗ if the first is the start configuration of A on x, namely the start configu-
ration of (S, δ0) on x (which equals that of (S, δ1)). It is it is complete if it ends in a halting
configuration of A which is a halting configuration of (S, δ0) (equivalently, of (S, δ1)). It is
accepting (rejecting) if cell 1 contains 1 (contains 0) in the halting configuration. A accepts
x if there is an accepting run of A on x. A accepts the problem

L(A) ∶= {x ∣ A accepts x}.

20

2.2. NONDETERMINISTIC TIME CHAPTER 2. NONDETERMINISM

For t ∶ N → N we say A is t-time bounded if all complete runs of A on x with the halting
configuration not repeated have length at most t(∣x∣). Being polynomial time bounded
means that this holds for some polynomial t.

In general there are many complete runs of A on x. The intuition is that at every
configuration A nondeterministically chooses which one of the two transition functions to
apply. An input is accepted if there exist choices causing it to accept. The idea is that these
choices correspond to guessing a solution that is then deterministically checked. If there
exists a solution, then there exists an accepting run, otherwise the check will fail no matter
what has been guessed. This is sometimes referred to as the “guess and check” paradigm.
We introduce the following handy mode of speech, continuing the above definition:

Definition 2.2.2 Let t ∈ N and let ρ be a run of length t > 0 of A = (S, δ0, δ1) on x.
A string y = y1⋯y∣y∣ ∈ {0,1}∗ of length ∣y∣ ⩾ t − 1 is said to determine ρ if the (i + 1)-th
configuration is a successor configuration of (S, δyi).

Obviously, any string determines at most one complete run. As said above, the intuitive
idea is that strings encoding accepting runs “are” solutions.

Proposition 2.2.3 Let Q be a problem. The following are equivalent.

1. Q ∈ NP.
2. There exists a polynomial p and a nondeterministic Turing machine A such that

Q = {x ∈ {0,1}∗ ∣ there is an accepting run of A on x of length ⩽ p(∣x∣)}.

3. There exists a polynomial time bounded nondeterministic Turing machine that ac-
cepts Q.

Proof: (1) implies (2): this follows the mentioned “guess and check” paradigm. Choose
a polynomially bounded relation R such that Q = dom(R) and consider the following
nondeterministic machine A. On input x it guesses a string y and checks whether (x, y) ∈ R.
More precisely, take A as a nondeterministic machine with input tape and one work tape.
It has states sguess, s?, scheck and two transition functions δ0, δ1 such that for b ∈ {0,1}

δb(sstart,▷▷) = (s?,▷▷,01),
δ0(s?,▷◻) = (sguess,▷◻,00),
δ1(s?,▷◻) = (scheck,▷◻,00),

δb(sguess,▷◻) = (s?,▷b,01).

Upon reaching state scheck some binary string y has been written on the worktape. From
scheck both transition functions move to the initial state of a polynomial time Turing ma-
chine that checks whether the pair (x, y) is in R.

21

2.2. NONDETERMINISTIC TIME CHAPTER 2. NONDETERMINISM

It is clear, that A accepts only inputs that are in Q. Conversely, let x ∈ Q and choose a
nondecreasing polynomial q witnessing that R is polynomially bounded. Then there is y of
length ∣y∣ ⩽ q(∣x∣) such that (x, y) ∈ R. There exists a run of A that in 1+2∣y∣+1 ⩽ O(q(∣x∣))
steps writes y on the tape and then moves to scheck. After that (x, y) ∈ R is verified in time
p(∣x∣ + ∣y∣) ⩽ p(∣x∣ + q(∣x∣)) for a suitable polynomial p.

(2) implies (3): given A and p as in (2) let the machine B on x simulate A for p(∣x∣)
many steps. If the simulation halts and accepts, B accepts. Otherwise B rejects.

(3) implies (1): let p be a polynomial and A be a p-time bounded nondeterministic
machine accepting Q. Let R contain the pairs (x, y) such that ∣y∣ = p(∣x∣) and y determines
an accepting run of A on x. Then R is in P, polynomially bounded and has domain Q. ◻

Remark 2.2.4 The above proof implies the claim in Exercise 2.1.3.

Definition 2.2.5 Let t ∶ N → N. By NTIME(t) we denote the class of problems Q such
that there is some c ∈ N and some c ⋅ t + c-time bounded nondeterministic Turing machine
A that accepts Q. The classes

NE ∶= ⋃c∈NNTIME(2c⋅n)
NEXP ∶= ⋃c∈NNTIME(2nc)

are called nondeterministic simply exponential time and nondeterministic exponential time
respectively.

In this notation, the equivalence of (1) and (3) in Proposition 2.2.3 reads:

Corollary 2.2.6 NP = ⋃c∈NNTIME(nc).

Exercise 2.2.7 Generalize Proposition 2.1.5 by showing the following. If t ∶ N → N is
time-constructible, then NTIME(t) ⊆ ⋃c∈NTIME(2c⋅t).

Proposition 2.2.8 If P = NP, then E = NE.

Proof: The proof is done by so-called “padding”: make the input artificially long. Assume
P = NP and let Q ∈ NE. Choose a nondeterministic machine A that accepts Q and is
(c ⋅ 2c⋅n + c)-time bounded for some c ∈ N. We claim Q ∈ E. Consider the problem

Q′ ∶= {⟨x,12∣x∣⟩ ∣ x ∈ Q}.

The following machine witnesses that Q′ ∈ NP: it first checks in polynomial time that the
input is of the form ⟨x,12∣x∣⟩. If this is not the case it rejects. Otherwise it runs A on x -
these are at most c ⋅ 2c⋅∣x∣ + c ⩽ c ⋅ ∣⟨x,12∣x∣⟩∣c + c many steps.

By assumption Q′ ∈ P. To decide Q, proceed as follows. On input x, simulate a
polynomial time machine for Q′ on y ∶= ⟨x,12∣x∣⟩. The computation of y takes time 2O(∣x∣)

and the simulation takes time polynomial in ∣⟨x,12∣x∣⟩∣, so at most 2O(∣x∣). ◻

Exercise 2.2.9 Prove: if E = NE, then EXP = NEXP.

22

2.2. NONDETERMINISTIC TIME CHAPTER 2. NONDETERMINISM

2.2.1 Nondeterministic time hierarchy

Theorem 2.2.10 (Nondeterministic time hierarchy) Assume t ∶ N → N is time-con-
structible and increasing and let t′ ∶ N→ N be given by t′(n) ∶= t(n + 1)6. Then

NTIME(t′) ∖NTIME(t) ≠ ∅.

Proof: Let A0,A1, . . . be an enumeration of all nondeterministic single-tape Turing ma-
chines such that for every such machine A there are infinitely many i such that Ai = A and
such that the map 1i ↦ ⌜Ai⌝ is computable in time O(i).

The proof is by so-called “slow” or “lazy” diagonalization. Let f ∶ N → N be an
increasing function to be determined later. The “diagonalizing” machine D on input 1n

with n in the intervall between f(i) and f(i + 1) tries to “diagonalize” against Ai:

D(1n)

1. i←min{j ∈ N ∣ n ⩽ f(j + 1)}.
2. if n < f(i + 1) then
3. simulate t(n + 1)3 steps of Ai on 1n+1

4. if the simulated run is complete and accepts then accept.

5. reject

6. if n = f(i + 1) then for all y ∈ {0,1}t(f(i)+1)3

7. if y determines an accepting run of Ai on 1f(i)+1 then reject

8. accept

Whatever f is, we claim L(D) ∉ NTIME(t). Otherwise there are c, i0 ∈ N such that
L(Ai0) = L(D) and Ai0 is (c ⋅t2+c)-time bounded (Lemma 1.1.11 holds for nondeterministic
machines). We can assume i0 is sufficiently large such that f(i0) ⩾ c (note f(n) ⩾ n
since f is increasing). For n > f(i0), the machine Ai0 on 1n halts within c ⋅ t2(n) + c <
nt2(n) − t2(n) + n ⩽ t3(n) steps.

We claim that for all f(i0) < n < f(i0 + 1):

Ai0 accepts 1n ⇐⇒ Ai0 accepts 1n+1.

Indeed, both sides are equivalent to D accepting 1n: the l.h.s. by assumption L(Ai0) =
L(D), and the r.h.s. because the run simulated in line 3 is complete. Thus

Ai0 accepts 1f(i0)+1 ⇐⇒ Ai0 accepts 1f(i0+1).

But lines 7 and 8 ensure that the l.h.s. is equivalent to D rejecting 1f(i0+1). Thus, D and
Ai0 answer differently on 1f(i0+1), a contradiction.

It remains to choose f such that D on 1n halts in time O(t(n + 1)6). If we choose f
time-constructible, then lines 1 and 2 and can be executed in time O(n2) (Exercise below).

23

2.3. NP-COMPLETENESS CHAPTER 2. NONDETERMINISM

Lines 3-5 need time O(t(n + 1)3) to compute t(n + 1)3, time O(i) ⩽ O(n) to compute ⌜Ai⌝
and then time O((i+t(n+1)3)2) for the simulation: guess a binary string of length t(n+1)3
and simulate the (possibly partial) run of A on 1n+1 determined by it using the universal
machine from Theorem 1.2.8. Similarly, line 7 needs time O((i + t(f(i) + 1)3)2) and is
executed up to 2t(f(i)+1)

3
many times. Note this is done only if n = f(i + 1). This time

is O(n) if f satisfies 2t(f(i)+1)
3 ⋅ (i + t(f(i) + 1)3)2) ⩽ O(f(i + 1)). Then D halts in time

O(t(n + 1)6) as desired. By Exercise 1.2.11, a function f as required exists. ◻

Exercise 2.2.11 Let t ∶ N → N be time-constructible and increasing. Show that the
function 1n ↦min{j ∈ N ∣ n ⩽ t(j + 1)} can be computed in time O(n2).
Hint: compute t(0), t(1), . . . until the computation of t(i) does not halt in c ⋅ n steps or
halts with output ⩾ n; here, c is a suitable constant.

Remark 2.2.12 Theorem 2.2.10 is not optimal: it suffices to assume t(n + 1) ⩽ o(t′(n)).

As in Corollary 1.2.14 it is now easy to derive the following.

Corollary 2.2.13 NP ⊊ NE ⊊ NEXP.

2.3 NP-completeness

2.3.1 Polynomial time reductions

Intuitively, finding in a given graph G a set of pairwise non-adjacent vertices of a given
size k (i.e. an independent set) is not harder than the problem of finding a set of pairwise
adjacent vertices of size k, i.e. a clique. An independent set in G is the same as a clique
in the dual graph G which has the same vertices as G and an edge between two distinct
vertices precisely if G does not. So instead of deciding IS on instance (G,k) we may decide
Clique on (G,k):

Clique
Input: a graph G and k ∈ N.

Problem: does G contain a clique of size k?

Clearly, this ‘refomulation’ of the question can be done in polynomial time. We compare
the difficulty of problems according to the availability of such ‘refomulations’:

Definition 2.3.1 Let Q,Q′ be problems. A function r ∶ {0,1}∗ → {0,1}∗ is a reduction
from Q to Q′, symbolically r ∶ Q ⩽p Q′, if for all x ∈ {0,1}∗

x ∈ Q ⇐⇒ r(x) ∈ Q′.

It is polynomial time if it is so computable. If such a reduction exists, we write Q ⩽p Q′ and
say Q is polynomial time reducible to Q′. If both Q ⩽p Q′ and Q′ ⩽p Q, we write Q ≡p Q′

and say Q and Q′ are polynomial time equivalent.

24

2.3. NP-COMPLETENESS CHAPTER 2. NONDETERMINISM

It is easy to see that ⩽p is transitive and that ≡p is an equivalence relation.

Example 2.3.2 IS ≡p Clique.

Proof: Mapping a string encoding a pair (G,k) of a graph G and k ∈ N to an encoding of
(G,k), and other strings to themselves witnesses both IS ⩽p Clique and Clique ⩽p IS.◻
Definition 2.3.3 A set C ⊆ P ({0,1}∗) is closed under ⩽p if Q ⩽p Q′ ∈ C implies Q ∈ C
for all problems Q,Q′. A problem Q is C-hard (under ⩽p) if Q′ ⩽p Q for every Q′ ∈ C; if
additionally Q ∈ C, then Q is C-complete (under ⩽p).
Exercise 2.3.4 Assume C ⊆ P ({0,1}∗) is closed under ⩽p and show the following. Any
two C-complete problems are polynomial time equivalent. Given two polynomial time
equivalent problems, one is C-complete if and only if so is the other. Any problem to which
some C-hard problem is polynomial time reducible, is also C-hard.

Lemma 2.3.5 P,NP,EXP,NEXP are closed under ⩽p.
Proof: We treat NP, the other classes are treated similarly. Assume Q ⩽p Q′ ∈ NP and let
A′ be a p-time bounded nondeterministic Turing machine accepting Q′ where p is some
non-decreasing polynomial (Corollary 2.2.6). Let r be a polynomial time reduction from
Q to Q′. There is a polynomial q such that ∣r(x)∣ ⩽ q(∣x∣) for all x ∈ {0,1}∗. Now consider
the following nondeterministic machine A: on input x, it computes r(x) and then runs A′

on r(x). Computing r can be done in polynomial time and then A′ takes at most p(q(∣x∣))
many steps. Hence, A is polynomial time bounded. Further, A accepts x if and only if A′

accepts r(x), if and only if r(x) ∈ Q′ (since A′ accepts Q′), if and only if x ∈ Q (since r is
a reduction). Thus, A witnesses that Q ∈ NP. ◻
Corollary 2.3.6 Let Q be a problem.

1. If Q is NP-hard, then Q ∈ P only if P = NP.
2. If Q is NP-complete, then Q ∈ P if and only if P = NP.
Having an NP-complete problem we can thus reformulate the question whether P =

NP as a question whether this concrete problem can be solved in polynomial time. The
following exercise asks to prove that NP-complete problems exist. More surprisingly, we
shall see that many natural problems are NP-complete.

Exercise 2.3.7 Show that the following problem is NP-complete.

Bounded Halting
Input: a nondeterministic Turing machine A, x ∈ {0,1}∗ and 1t for some t ∈ N.

Problem: is there an accepting run of A on x of length t?

Exercise 2.3.8 Use padding to show that a problem is E-hard if and only if it is EXP-hard.
Show that Exp Halt is in E and EXP-complete under ⩽p. Further, for every problem in E
there is a linear time computable reduction to Exp Halt.

Exp Halt
Input: a single-tape Turing machine A, x ∈ {0,1}∗, t ∈ N (in binary).

Problem: does A accept x in ⩽ t steps?

25

2.3. NP-COMPLETENESS CHAPTER 2. NONDETERMINISM

2.3.2 The Cook-Levin theorem

Theorem 2.3.9 (Cook 1971, Levin 1973) 3Sat is NP-complete.

3Sat
Input: a 3-CNF α.

Problem: is α satisfiable?

A k-CNF is a conjunction of k-clauses, i.e. disjunctions of at most k literals.

Lemma 2.3.10 Circuit-Sat ⩽p 3Sat.

Proof: Let C = (E1, . . . ,Es) be a circuit, say, with input variables X1, . . . ,Xn. For i ∈ [s] let
the formula αi express Ei, that is, if Ei is Yi = Yj ∧ Yk, Yi = Yj ∨ Yk, Yi = ¬Yj, Yi = Xj, Yi = 0
or Yi = 1, then αi is (Yi ↔ Yj ∧ Yk), (Yi ↔ Yj ∨ Yk), (Yi ↔ ¬Yj), (Yi ↔ Xj), (Yi ↔ 0) or
(Yi ↔ 1), respectively. Clearly, an assignment A satisfies these formulas if and only if
y ∶= A(Y1)⋯A(Ys) ∈ {0,1}s is a computation of C on x ∶= A(X1)⋯A(Xn) ∈ {0,1}n. Hence
their conjunction together with Ys is satisfiable if and only if so is C.

To get to 3Sat replace (Yi ↔ Yj ∧ Yk) by the three clauses (¬Yi ∨ Yj), (¬Yi ∨ Yk) and
(¬Yj ∨ ¬Yk ∨ Yi), and similarly for the other equivalences. ◻

Corollary 2.3.11 Circuit-Sat ⩽p NaeSat.

NaeSat
Input: a 3-CNF α.

Problem: is there a satisfying assignment of α that does not satisfy all literals in
any clause of α?

Proof: Given a circuit C compute αC as in the previous proof. Let X0 be a new variable.
The 3-CNF βC is obtained from αC by adding X0 to every clause of αC with < 3 literals.
We claim βC is a “yes” instance of NaeSat if and only if C is satisfiable.

Assuming the former, let A be an assignment witnessing this. We can assume A(X0) = 0
(otherwise switch to the assignment 1 − A). But then A satisfies αC , so C is satisfiable.
Conversely, assume C is satisfiable. Then so is αC , and extending this assignment by
mapping X0 to 0, we get an assignment A satisfying βC . We have to check that all 3-
clauses of αC contain a literal that is false under A. This follows by inspection. ◻

Proof of Theorem 2.3.9: It is clear that 3Sat is in NP (see Example 2.1.4). To show it is
NP-hard, by Lemma 2.3.10 (and Exercise 2.3.4) it suffices to show that Circuit-Sat is
NP-hard. That is, given Q ∈ NP, we have to show Q ⩽p Circuit-Sat.

Choose a relation R in P such that Q = dom(R) and (x, y) ∈ R only if ∣y∣ = p(∣x∣) for
some polynomial p (Remark 2.2.4). That R is in P means {⟨x, y⟩ ∣ (x, y) ∈ R} ∈ P. Recall
that ⟨x, y⟩ is the string x1x1⋯x∣x∣x∣x∣01y1y1⋯y∣y∣y∣y∣ of length 2∣x∣ + 2 + 2∣y∣.

26

2.3. NP-COMPLETENESS CHAPTER 2. NONDETERMINISM

We describe a polynomial time reduction from Q to Circuit-Sat. On input x ∈ {0,1}n
compute a circuit that decides R on {0,1}2n+2+2p(n), that is, a circuit C(Z1, . . . , Z2n+2+2p(n))
such that for all x ∈ {0,1}n and y ∈ {0,1}p(n)

C(⟨x, y⟩) = 1 ⇐⇒ (x, y) ∈ R.

This can be done in polynomial time by the Fundamental Lemma 1.3.9. The circuit

Dx(Y1, . . . , Yn) ∶= C(x1, x1, . . . , xn, xn,0,1, Y1, Y1, . . . , Yp(n), Yp(n)),

is obtained from C by replacing Zis by xis, constants and variables Yis as indicated. Then

Dx(y) = 1 ⇐⇒ C(⟨x, y⟩) = 1,

for all y ∈ {0,1}p(n). It follows that Dx is satisfiable if and only if (x, y) ∈ R for some
y ∈ {0,1}p(n), if and only if x ∈ dom(R) = Q. Thus, x↦Dx is a reduction as desired. ◻

Corollary 2.3.12 NaeSat, Circuit-Sat, Sat and 3Sat are NP-complete.

Proof: Note 3Sat ⩽p Sat ⩽p Circuit-Sat ⩽p NaeSat. The first two are trivial, the third
is Corollary 2.3.11. By Theorem 2.3.9 (and Exercise 2.3.4) all these problems are NP-hard.
It is easy to see that they belong to NP. ◻

The result that 3Sat is NP-complete is complemented by the following

Theorem 2.3.13 2Sat ∈ P.
2Sat

Input: a 2-CNF α.
Problem: is α satisfiable?

Proof: Let an input, a 2-CNF α be given, say it has variables X1, . . . ,Xn. We can assume
that every clause in α contains two (not necessarily distinct) literals. Consider the folowing
directed graph G(α) ∶= (V,E), where

V ∶= {X1, . . . ,Xn} ∪ {¬X1, . . . ,¬Xn},
E ∶= {(λ,λ′) ∈ V 2 ∣ α contains (λ ∨ λ′) or (λ′ ∨ λ)}.

Here, λ denotes the complementary literal of λ. Note this graph has the following curious
symmetry: if there is an edge from λ to λ′ then also from λ′ to λ.

Claim: α is satisfiable if and only if there is no vertex λ ∈ V such that G(α) contains paths
from λ to λ and from λ to λ.

The r.h.s. can be checked in polyomial time using a polynomial time algorithm for
Reachability (Example 1.2.5). So we are left to prove the claim.

If there is a path from λ to λ′ then α logically implies (λ → λ′). This implies the
forward direction. Conversely, assume the r.h.s.. We construct a satisfying assignment in
stages. At every stage we have a partial assignment A that

27

2.4. NP-COMPLETENESS – EXAMPLES CHAPTER 2. NONDETERMINISM

(a) does not falsify any clause from α,

(b) for all λ ∈ V and all λ′ ∈ V reachable from λ: if A ⊧ λ, then A ⊧ λ′.

Here, A ⊧ λ means that A is defined on the variable occuring in λ and satisfies λ. We start
with A ∶= ∅. If dom(A) ≠ {X1, . . . ,Xn}, choose i ∈ [n] such that A is undefined on Xi. Set

λ0 ∶=
⎧⎪⎪⎨⎪⎪⎩

¬Xi if there is a path from Xi to ¬Xi,

Xi else.

If λ is reachable from λ0, then A /⊧ λ: otherwise λ0 would be evaluated by A because
it is reachable from λ by the curious symmetry. Furthermore, not both λ and λ can be
reachable from λ0. Otherwise there is a path from λ0 to λ0 (by the curious symmetry).
Now, if λ0 = Xi this would be a path from Xi to ¬Xi, contradicting the definition of λ0.
Hence λ0 = ¬Xi and there is a path from Xi to ¬Xi (definition of λ0). But then the path
from λ0 = ¬Xi to λ0 =Xi contradicts our assumption (the r.h.s. of the claim).

It follows that there exists a minimal assignment A′ that extends A and satisfies λ0

and all λ reachable from λ0. Then, A′ has property (b). To see (a), let (λ∨λ′) be a clause
from α and assume A′ ⊧ λ. But there is an edge from λ to λ′, so A′ ⊧ λ′ by (b).

After ⩽ n stages, A is defined on all X1, . . . ,Xn and A satisfies α by (a). ◻

Exercise 2.3.14 The above proof shows that the following search problem associated with
2Sat is solvable in polynomial time (cf. Section 1): given a 2CNF α, compute a satisfying
assignment of α in case there is one, and reject otherwise.

Sketch of a second proof: Observe that applying the resolution rule to two 2-clauses again
gives a 2-clause. In n variables there are at most (2n)2 many 2-clauses. View a given
2-CNF as a set Γ of 2-clauses and, by subsequently applying the Resolution rule, compute
the set Γ∗ of all 2-clauses that can be derived from Γ in Resolution. Then Γ∗ contains the
empty clause if and only if the given 2-CNF is unsatisfiable. ◻

2.4 NP-completeness – examples

Example 2.4.1 IS is NP-complete.

Proof: We already noted that IS ∈ NP in Examples 2.1.4. It thus suffices to show 3Sat
⩽p IS (by Theorem 2.3.9). Let α be a 3-CNF, say with m many clauses. We can assume
that each clause has exactly 3 (not necessarily distinct) literals. Consider the following
graph G(α). For each clause (λ1 ∨ λ2 ∨ λ3) of α the graph G(α) contains a triangle with
nodes corresponding to the three literals. Note that any cardinality m independent set X
of G(α) has to contain exactly one vertex in each triangle. Add an edge between any two
vertices corresponding to complementary literals. Then there exists an assignment for the
variables in α that satisfies those λ that correspond to vertices in X. Thus if (G(α),m)

28

2.4. NP-COMPLETENESS – EXAMPLES CHAPTER 2. NONDETERMINISM

is a “yes”-instance of IS, then α is satisfiable. Conversely, if A is a satisfying assignment
of α, then choose from each triangle a node corresponding to a satisfied literal – this gives
an independent set of cardinality m. ◻

By Example 2.3.2 we know Clique ≡p IS. Recalling Exercise 2.3.4 we get:

Example 2.4.2 Clique is NP-complete.

Example 2.4.3 VC is NP-complete.

VC
Input: a graph G = (V,E) and k ∈ N.

Problem: does G contain a cardinality k vertex cover, i.e., a set of vertices con-
taining at least one endpoint of every edge ?

Proof: It is easy to see that VC ∈ NP. To show NP-hardness it suffices to show IS ⩽p VC.
But note that X is an independent set in a graph G = (V,E) if and only if V ∖X is a
vertex cover of G. Hence ((V,E), k) ↦ ((V,E), ∣V ∣ − k) is a reduction as desired. ◻

Example 2.4.4 3Col is NP-complete.

3Col
Input: a graph G.

Problem: is G 3-colourable, that is, is there a function f ∶ V → {0,1,2} such that
f(v) ≠ f(w) for all (v,w) ∈ E?

Proof: It is easy to see that 3Col ∈ NP. To show NP-hardness it suffices by Corollary 2.3.12
to show NaeSat ⩽p 3Col. Given a 3-CNF α we compute the following graph G = (V,E).
Take as “starting” vertices the literals over variables in α plus an additional vertex v. For
each variable X in α form a triangle on {v,X,¬X}. Then add a triangle for each clause
(λ1 ∨ λ2 ∨ λ3) of α with vertices corresponding to λ1, λ2, λ3. Here we assume that every
clause of α contains exactly three (not necessarily distinct) literals. Add an edge from a
vertex corresponding to λi to its complementary literal λi among the “starting” vertices.

Assume this graph is 3-colorable, say, witnessed by f . Permuting colours, we can
assume f(v) = 2. Then f (restricted to the variables) is an assignment. Consider a
triangle corresponding to a 3-clause (λ1 ∨ λ2 ∨ λ3); the colour of the vertex for λi is either
its truth value or 2; as all colours appear, the clause contains a verified and a falsified
literal. Hence α is a “yes”-instance of NaeSat.

Conversely, let α be a “yes”-instance of NaeSat, and let the assignment A witness
this. In the graph, colour variables according A and v by 2. Every 3-clause contains a true
and a false literal and we colour the corresponding vertices in the triangle by this truth
value; the third vertex gets colour 2. This shows the graph is 3-colourable ◻

Exercise 2.4.5 For k ∈ N define kCol similarly as 3Col but with k instead of 3 colours.
Show that kCol is NP-complete for k ⩾ 3 and in P for k < 3.

29

2.4. NP-COMPLETENESS – EXAMPLES CHAPTER 2. NONDETERMINISM

Given boys and girls and homes plus restrictions of the form (boy, girl, home) – can
you locate every boy with a unique girl in some unique home?

Example 2.4.6 Tripartite Matching is NP-complete.

Tripartite Matching
Input: Sets B,G,H and a relation R ⊆ B ×G ×H.

Problem: is there a perfect trimatching of R, i.e. a set R0 ⊆ R with ∣R0∣ = ∣B∣ such
that for distinct (b, g, h), (b′, g′, h′) ∈ R0 we have b ≠ b′, g ≠ g′, h ≠ h′ ?

Proof: It is easy to see that Tripartite Matching ∈ NP. To show NP-hardness we
reduce from 3Sat. Let a 3-CNF α be given. We can assume that every literal occurs
at most 2 times in α. To ensure this, replace every occurrence of a literal λ by a new
variable Y and add clauses expressing (Y ↔ λ).

For every variable X in α, introduce four homes hX
0 , h

X
1 , h

¬X
0 , h¬X1 (corresponding to the

occurrences of literals with variable X), boys bX0 , b
X
1 and girls gX0 , gX1 with triples

(bX0 , gX0 , hX
0), (bX1 , gX0 , h¬X0), (bX1 , gX1 , hX

1), (bX0 , gX1 , h¬X1).

For boy bX0 one may choose girl gX0 with home hX
0 or girl gX1 with home h¬X1 . For boy

bX1 one may choose girl gX0 with home h¬X0 or girl gX1 with home hX
1 . As the two boys want

different girls either a X-home or a ¬X-home is chosen but not both. This way the choice
for bX0 , b

X
1 determines an assignment for X: map X to 0 if a X-home is chosen and to 1

if a ¬X home is chosen. Thereby, unoccupied homes correspond to satisfied occurrences
of literals. To ensure that the assignment resulting from a perfect trimatching satisfies α,
add for every clause C in α a boy bC , a girl gC and as possible homes for the two the ones
corresponding to the occurrences of literals in C.

The relation constructed has a perfect trimatching if and only if α is satisfiable. ◻

Example 2.4.7 3-Set Cover is NP-complete.

3-Set Cover
Input: A family F of 3-element sets.

Problem: is there a disjoint subfamily F0 ⊆ F with ⋃F0 = ⋃F?

Proof: It is easy to see that 3-Set Cover ∈ NP. To show NP-hardness we reduce from
Tripartite Matching. Given an instance R ⊆ B×G×H output some fixed “no” instance
of 3-Set Cover in case ∣B∣ > ∣G∣ or ∣B∣ > ∣H ∣. Otherwise ∣B∣ ⩽ ∣G∣, ∣H ∣. Then add new
boys B0 to B and equally many new homes H0 to H and B0 × G × H0 to R to get an
equivalent instance with equal number m of boys and girls and a possibly larger number
ℓ of homes. Then add new boys b1, . . . , bℓ−m and girls g1, . . . , gℓ−m and triples (bi, gi, h)
for every home h. We arrive at an equivalent instance R′ ⊆ B′ ×G′ ×H ′ of Tripartite
Matching where ∣B′∣ = ∣G′∣ = ∣H ′∣. Clearly, we can assume that B′,G′,H ′ are pairwise
disjoint. Then, mapping R′ to F ∶= {{b, g, h} ∣ (b, g, h) ∈ R′} gives the desired reduction. ◻

30

2.4. NP-COMPLETENESS – EXAMPLES CHAPTER 2. NONDETERMINISM

Example 2.4.8 DS is NP-complete.

DS
Input: a graph G and k ∈ N.

Problem: does G contain a cardinality k dominating set, i.e. a subset X of vertices
such that each vertex outside X has a neighbor in X?

Proof: It is easy to see that DS ∈ NP. To show NP-hardness we reduce from 3-Set Cover.
Given an instance F of 3-Set Cover let the graph G(F) have vertices F ∪⋃F and two
kinds of edges: an edge between any two vertices in F plus edges (X,u) ∈ F ×⋃F if u ∈X.
We can assume that ∣ ⋃F ∣ is divisible by 3 (otherwise F is a “no”-instance) and ⋃F is
disjoint from F . If G(F) has a dominating set D ⊆ F ∪ ⋃F of cardinality k, then replace
every u ∈ ⋃F by an element X ∈ F containing u, to obtain a dominating set D′ ⊆ F of size
at most k. Note ⋃D′ = ⋃F . If ∣D′∣ ⩽ ∣⋃F ∣/3, then ∣D′∣ = ∣⋃F ∣/3 and the sets in D′ must
be pairwise disjoint. Thus, mapping F to (G(F), ∣ ⋃F ∣/3) is a reduction as desired. ◻

You have a knapsack allowing you to carry things up to some given weight and you
want to load it with items summing up to at least some given value.

Example 2.4.9 The following are NP-complete.

Knapsack
Input: sequences (v1, . . . , vs), (w1, . . . ,ws) ∈ Ns for some s ∈ N, and V,W ∈ N.

Problem: is there S ⊆ [s] with ∑i∈S vi ⩾ V and ∑i∈S wi ⩽W?

Subset Sum
Input: a sequence (m1, . . . ,ms) ∈ Ns for some s, and G ∈ N.

Problem: is there S ⊆ [s] with ∑i∈S mi = G?

Proof: It is easy to see that Knapsack ∈ NP. It suffices to show that Subset Sum, a
“special case” of Knapsack, is NP-hard. We reduce from 3-Set Cover.

Let an instance F of 3-Set Cover be given, and assume ⋃F = [n] for some n ∈ N.
View a subset X of [n] as an n bit string (the ith bit being 1 if i ∈ X and 0 otherwise);
think of this n bit string as the (∣F ∣ + 1)-adic representation of mX ∶= ∑i∈X 1 ⋅ (∣F ∣ + 1)i−1.
Observe that if ℓ ⩽ ∣F ∣ and X1, . . . ,Xℓ ⊆ [n] then

X1, . . . ,Xℓ are pairwise disjoint ⇐⇒ mX1∪⋯∪Xℓ
=mX1 +⋯ +mXℓ

⇐⇒ ∃Z ⊆ [n] ∶mZ =mX1 +⋯ +mXℓ
.

This observation follows noting that when adding up the mXj
s then no carries can occur

(due to ℓ ⩽ ∣F ∣). The reduction maps F to the following instance: as sequence take (mX)X∈F
and as “goal” G take m[n] which has (∣F ∣ + 1)-adic representation 1n. To see this can be
computed in polynomial time, note ∣bin(G)∣ ⩽ O(log((∣F ∣ + 1)n+1)) ⩽ O(n ⋅ log ∣F ∣). ◻

31

2.5. NP-COMPLETENESS – THEORY CHAPTER 2. NONDETERMINISM

Proposition 2.4.10 There exists a Turing machine that decides Knapsack and runs in
time polynomial in W ⋅ n on instances of size n with weight bound W .

Proof: On an instance ((v1, . . . , vs), (w1, . . . ,ws),W,V), it suffices to compute val(w, i) for
each w ⩽ W and i ⩽ s: the maximum v such that there exists S ⊆ [i] with ∑i∈S vi = v
and ∑i∈S wi ⩽ w. This can easily be done iteratively: val(w,0) = 0 for all w ⩽ W , and
val(w, i + 1) is the maximum of val(w, i) and vi+1 + val(w −wi+1, i). ◻

Remark 2.4.11 Note that the previous algorithm is not polynomial time because W
is exponential in the length of its encoding bin(W). Assuming P ≠ NP, the last two
propositions imply that Knapsack is not NP-hard when W is encoded in unary. Under
the same assumption, it also follows that every polynomial time reduction from some NP-
hard Q to Knapsack produces instances with superpolynomially large W .

Such explosions of “parameters” block the interpretation of an NP-completeness result
as a non-tractability result if one is mainly interested in instances with small “parameter”.
Parameterized Complexity Theory is a more fine-grained complexity analysis that takes
this into account. This is an important topic but outside the scope of this lecture.

We saw 13 examples of NP-complete problems and end the list here. It has been Karp
in 1972 who famously proved the NP-completeness of 21 problems. After that a flood of
NP-completeness results have been proven by countless researchers. The flood petered out
and culminated in Garey and Johnsson’s monograph listing hundreds of such problems.

For all NP-complete problems the existence of a polynomial time algorithm is equivalent
to P = NP. Many of them are important in computational practice, so programmers all
over the world are trying to find as fast as possible algorithms for them every day. This is
somewhat of “empirical” evidence for the hypothesis that P ≠ NP.

2.5 NP-completeness – theory

We now take a more abstract view on NP-completeness. Definition 2.5.1 distinguishes
‘thin’ and ‘fat’ problems. All our 13 NP-complete problems are ‘fat’. We shall show:

1. Note that finitely many errors can be corrected: Q ∈ P if there is a polynomial time
algorithm that decides Q except for finitely many inputs. We show that for ‘fat’ prob-
lems even polynomially many errors can be corrected. Hence, ‘fat’ NP-hard problems
are ‘far from’ being in P: polynomial time algorithms make superpolynomially many
errors unless P = NP (Theorem 2.5.4).

2. ‘Fat’ NP-complete problems are pairwise p-isomorphic (Theorem 2.5.6). Intuitively,
this means they are the same up to an effective re-writing of strings. So, despite their
apparent wealth, we know only one NP-problem up to p-isomorphism.

3. ‘Thin’ NP-hard problems do not exist unless P = NP (Theorem 2.5.8).

32

2.5. NP-COMPLETENESS – THEORY CHAPTER 2. NONDETERMINISM

4. The maybe most interesting insight about NP-completeness in this section is that,
unless P = NP, there exist problems of ‘intermediate’ complexity: problems in NP
that are neither in P nor NP-complete (Theorem 2.5.10).

Definition 2.5.1 A problem Q is sparse if ∣Q ∩ {0,1}n∣ is polynomially bounded in n. A
problem Q is paddable if there is a polynomial time computable injection pad ∶ {0,1}∗ ×
{0,1}∗ → {0,1}∗ such that for all x, y ∈ {0,1}∗

(a) pad(x, y) ∈ Q⇐⇒ x ∈ Q;

(b) ∣pad(x, y)∣ ⩾ ∣x∣ + ∣y∣;
(c) the partial functions pad(x, y) ↦ y and pad(x, y) ↦ x are polynomial time com-

putable.

Here, a partial function f from binary strings to binary strings is said to be polynomial
time computable if there is a polynomial time bounded Turing machine that rejects inputs
x on which f is not defined and outputs f(x) otherwise.

Exercise 2.5.2 Paddable problems are empty or infinite. Non-empty paddable problems
are not sparse. Every problem Q is polynomial time equivalent to a paddable one.

Examples 2.5.3 Every problem from Section 2.4 is paddable. E.g., for Sat map (α, y)
to (α ∧ (1 ∨ ⋀ yi)). For Clique map, say, ((G,k),0110) with k > 3 to (G′, k) where G′

results from G = (V,E) by first disjointly adding a path of length 4+∣V ∣ (where 4 = ∣0110∣),
and then adding a vertex with edges to the 2nd and 3rd vertex in the path.

2.5.1 Schöningh’s theorem

For a time-bounded algorithm A and a problem Q, the error of A on Q is the function
from N to N given by

n↦ ∣{x ∈ {0,1}⩽n ∣ A(x) ≠ χQ(x)}∣.

Here, A(x) denotes the output of A on x, and χQ the characteristic function of Q: it maps
x ∈ {0,1}∗ to 1 or 0 depending on whether x ∈ Q or not.

Theorem 2.5.4 (Schöningh) A paddable problem Q is in P if and only if there exists a
polynomial time bounded (deterministic) Turing machine with polynomially bounded error
on Q.

Proof: Assume Q is paddable and A is polynomially time bounded with error on Q bounded
by nc for n ⩾ 2 and some constant c ∈ N. We show that Q ∈ P.

Let y1, y2, . . . enumerate all strings in lexicographic order. We define an algorithm B:
on x ∈ {0,1}∗ and t ∈ N it outputs the majority value of

A(pad(x, y1)), . . . ,A(pad(x, yt)).

33

2.5. NP-COMPLETENESS – THEORY CHAPTER 2. NONDETERMINISM

Here, pad witnesses that Q is paddable. Let d ∈ N be a constant such that every pad(x, yi)
has length at most (∣x∣ + ∣yt∣)d. Among the inputs of at most this length there are at most
(∣x∣ + ∣yt∣)d⋅c many where A has output different from χQ. Thus B outputs χQ(x) if

t > 2 ⋅ (∣x∣ + ∣yt∣)d⋅c.

This holds true for t ∶= 2 ⋅ (2∣x∣)d⋅c and long enough x: note t > ∑ℓ<∣yt∣ 2
ℓ = 2∣yt∣, so ∣yt∣ ⩽ log t.

Running B on x and this t needs time polynomial in ∣x∣. Hence Q ∈ P. ◻

2.5.2 Berman and Hartmanis’ theorem

Definition 2.5.5 An injection f ∶ {0,1}∗ → {0,1}∗ is p-invertible if the partial function
f−1 is polynomial time computable. Two problems Q,Q′ are p-isomorphic if there is a
polynomial time reduction from Q to Q′ (or, equivalently, vice-versa) which is bijective
and p-invertible.

Note a reduction witnessing that Q and Q′ are p-isomorphic is an isomorphism from
the structure ({0,1}∗,Q) onto the structure ({0,1}∗,Q′).

Theorem 2.5.6 (Berman, Hartmanis 1977) Two paddable problems are polynomial
time equivalent if and only if they are p-isomorphic.

Our proof mimicks a particularly elegant proof of the following historical set-theoretic

Proposition 2.5.7 (Schröder-Bernstein) Let X,Y be sets and assume there are injec-
tions f from X into Y and g from Y into X. Then there is a bijection from X onto Y .

Proof: For x in X define the preimage sequence

g−1(x), f−1(g−1(x)), g−1(f−1(g−1(x))), . . .

as long as it is defined. E.g., this is the empty sequence if x is not in the image of g. Then

h(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

g−1(x) if the preimage sequence of x has odd length,

f(x) if the preimage sequence of x has even or infinite length.

defines a bijection from X onto Y . We only verify verify surjectivity: given y ∈ Y , set
x ∶= g(y). Then the preimage sequence of x is not empty. If its length is odd, then
h(x) = g−1(x) = y. If it is even or infinite, then it has length at least 2, so x′ ∶= f−1(y) exists
and the length of its preimage sequence is also even or infinite; hence h(x′) = f(x′) = y. ◻
Proof of Theorem 2.5.6: Let Q,Q′ be paddable, and let f ∶ Q ⩽p Q′ and g ∶ Q′ ⩽p Q.
Without loss of generality, f, g are p-invertible and length-increasing (i.e. they map each
string to some longer string). Indeed, if, say, f would not have these properties, replace it
by x↦ pad(f(x),1x) where pad witnesses paddability of Q′.

34

2.5. NP-COMPLETENESS – THEORY CHAPTER 2. NONDETERMINISM

But then the lengths of the strings in a pre-image sequence decrease. By p-invertibility,
pre-image sequences are computable in polynomial time. This implies that h, defined as in
the previous proposition, is polynomial time computable. It is clearly a reduction. That
h−1 is polynomial time computable follows from the proof of surjectivity of h. ◻

The Berman-Hartmanis Conjecture states that in fact all NP-complete problems are
pairwise p-isomorphic. This is open but many researchers tend to believe that it fails.

2.5.3 Mahaney’s theorem

Theorem 2.5.8 (Mahaney 1980) If P ≠ NP, then sparse NP-hard problems do not exist.

Proof: Let <lex be the lexicographic order on strings. For a string y = y1⋯ym and a
propositional formula α = α(X1, . . . ,Xn) let y ⊧ α mean that n ⩽ m and α is satisfied by
the assignment Xi ↦ yi. The following problem is NP-complete: it is obviously in NP and
it is NP-hard, since α ↦ (α,1∣α∣) is a (polynomial time) reduction from Sat.

Left Sat
Input: a propositional formula α and x ∈ {0,1}∗.

Problem: does there exist y ⩽lex x such that y ⊧ α ?

Assume there is a sparse NP-hard problem Q, say ∣Q∩ {0,1}⩽ℓ∣ ⩽ ℓc for some c ∈ N. Let
r: Left Sat ⩽p Q. We give a polynomial time algorithm solving Sat.

Given α = α(X1, . . . ,Xn), the algorithm computes for every 1 ⩽ i ⩽ n a sequence

xi
1 <lex ⋯ <lex xi

si

of strings in {0,1}i such that si ⩽ N ∶= (maxx∈{0,1}n ∣r(⟨α,x⟩)∣)
c + 2, and

if there exists z ∈ {0,1}n such that z ⊧ α, then there is j ∈ [si] such that
xi
j is an initial segment of the <lex-minimal such z.

(∗)

Once the sequence for i = n has been computed, the algorithm simply checks whether
an element of it satisfies α. For i = 1 take 0 <lex 1 (note 2 ⩽ N). Assume we computed the
sequence for i < n. We explain how to compute the sequence for i + 1.

Write y2j−1 ∶= xi
j0 and y2j ∶= xi

j1 and note y1 <lex ⋯ <lex y2si . If 2si ⩽ N , we are done.
Otherwise we delete some of the yjs such that (∗) is preserved, namely each yj such that
r(⟨α, yj′1n−i−1⟩) = r(⟨α, yj1n−i−1⟩) for some j′ < j. This gives a subsequence z1 <lex ⋯ <lex zs′
with (∗) and pairwise distinct values r(⟨α, zj1n−i−1⟩), j ∈ [s′]. If s′ ⩽ N , we are done.
Otherwise we delete all but the last N many zjs. This preserves (∗): if a deleted zj would
be initial segment of some x ⊧ α, then x ⩽lex zj1n−i−1, so r(⟨α, zj1n−i−1⟩) ∈ Q and all later
values r(⟨α, zj′1n−i−1⟩), j′ ⩾ j, would be in Q too – but there are at most N of them. ◻

Remark 2.5.9 Under a stronger assumption, Burhmann and Hitchcock showed in 2008
that even problems Q with ∣Q ∩ {0,1}n∣ ⩽ 2n

o(1)
cannot be NP-hard. The assumption

ΣP
3 ≠ PH, that we shall introduce later, is sufficient for this.

35

2.5. NP-COMPLETENESS – THEORY CHAPTER 2. NONDETERMINISM

2.5.4 Ladner’s theorem

Theorem 2.5.10 (Ladner 1975) Assume NP ≠ P. Then NP contains problems which
are neither NP-complete nor in P.

It suffices to apply the following proposition to an NP-complete Q. Indeed, if NP ≠ P,
then NP ∖ P contains an infinite descending ⩽p-chain of pairwise non-equivalent problems:

Proposition 2.5.11 If Q is a decidable problem outside P, then there exists a problem Q′

such that Q′ ⩽p Q and Q′ /≡p Q and Q′ ∉ P.

Proof: The proof is again by “slow diagonalization” (cf. Theorem 2.2.10). We define

Q′ ∶= {x ∈ Q ∣D(∣x∣) is even}

for a certain “diagonalizing” function D ∶ N → N. The value D(n) will be computable in
time polynomial in n, so Q′ ⩽p Q follows.

Let Q decide Q. Let (A0, c0), (A1, c1), . . . enumerate all pairs (A, c) of (deterministic)
single-tape Turing machines A and c ∈ N such that the ith pair can be computed in
time O(i). We set D(0) ∶= 0 and compute D(n) for n > 0 as follows: compute D(0) = 0
and then recursively the values D(1),D(2), . . . as many as you can within ⩽ n steps. Let k
be the last value computed, and let (A, c) be the ⌊k/2⌋th pair. What happens next depends
on the parity of k. In any case the algorithm outputs k or k + 1.

If k is even, the algorithm will output k + 1 only if A is not a (nc + c)-time bounded
machine deciding Q′. If k is odd, the algorithm will output k+1 only if A is not a (nc + c)-
time bounded reduction from Q to Q′.

To do so, the algorithm runs Witness Test on (A, c, x, k) successively for all strings x
in lexicographic order. It does so for at most n steps in total, and it outputs k + 1 in case
Witness Test accepted at least once; otherwise it outputs k. In the pseudo-code A(x)
denotes the output of A on x; note ∣x∣, ∣y∣ < n, so D is already defined.

Witness Test on input (A, c, x, k)

1. simulate A on x for at most ∣x∣c + c steps

2. if the simulation does not halt then accept

3. if k is even then m←D(∣x∣)
4. if A rejects x and Q accepts x and m is even then accept

5. if A accepts x and (Q rejects x or m is odd) then accept

6. if k is odd then y ← A(x); m←D(∣y∣)
7. if Q rejects x and Q accepts y and m is even then accept

8. if Q accepts x and (Q rejects y or m is odd) then accept

9. reject

36

2.6. SAT SOLVERS CHAPTER 2. NONDETERMINISM

Obviously, D assumes a value k + 1 only if it assumes value k, so its range is an initial
segment of N. The reader easily verifies that D is nondecreasing. We are thus left to show
that D is unbounded.

Assume otherwise, so there are k ∈ N such that D(n) = k for all large enough n. Write
A ∶= A⌊k/2⌋ and c ∶= c⌊k/2⌋. Then Witness Test rejects (A, c, x, k) for every x ∈ {0,1}∗.
Indeed, if Witness Test accepts (A, c, x, k), its run is simulated by our algorithm for
large enough n, and then our algorithm would output k+1. It follows that A halts in time
(nc + c): otherwise Witness Test would accept (A, c, x, k) for suitable x in line 2. We
arrive at the desired contradiction by showing Q ∈ P. We have two cases.

If k is even, then Q and Q′ agree on sufficiently long inputs. Hence, it suffices to show
Q′ ∈ P. But this is true because A decides Q′: otherwise Witness Test would accept
(A, c, x, k) for suitable x in line 4 or 5.

If k is odd, then Q′ is finite, so it suffices to show Q ⩽p Q′. But this is true because A
computes a reduction from Q to Q′: otherwise Witness Test would accept (A, c, x, k)
for suitable x in line 7 or 8. ◻

2.6 Sat solvers

2.6.1 Self-reduciblity

We present the “search-to-decision reduction” for Sat: from an algorithm deciding Sat
we get an algorithm that solves the search version of Sat, namely to compute satisfying
assignments on satisfiable inputs. A similar reduction exists for all NP-complete problems.

Definition 2.6.1 A Sat solver is an algorithm that given a satisfiable formula α computes
a satisfying assignment of α.

Note a Sat solver is allowed to do whatever it wants on inputs x ∉ Sat.

Theorem 2.6.2 Sat ∈ P if and only if there exists a polynomial time bounded Sat solver.

Proof: If p is a polynomial and A a p-time bounded Sat solver, then Sat ∈ P: given α,
run A on α for p(∣α∣) steps and check it outputs a satisfying assignment of α.

The converse exploits the so-called “self-reducibility” of Sat. Let B decide Sat in
polynomial time. The algorithm A on an input formula α runs the following algorithm
A∗ on α together with the empty partial assignment. The algorithm A∗ given a Boolean
formula α(X1, . . . ,Xn) and a partial assignment A proceeds as follows.

1. if n = 0 then output A

2. if B accepts α(X1, . . . ,Xn−1,0) then
3. run A∗ on (α(X1, . . . ,Xn−1,0),A ∪ {(Xn,0)})
4. run A∗ on (α(X1, . . . ,Xn−1,1),A ∪ {(Xn,1)})

37

2.6. SAT SOLVERS CHAPTER 2. NONDETERMINISM

It is easy to see that A has the claimed properties. ◻

Exercise 2.6.3 Recall the discussion at the end of Section 1.1.2. Observe that a graph
G has an independent set of size k > 0 which contains vertex v if and only if G′ has an
independent set of size k−1 where G′ is obtained from G by deleting v and all its neighbors
from G. Use this to prove an analogue of the above theorem for IS instead of Sat.

Exercise 2.6.4 Assume P = NP. Show that for every polynomially bounded R ⊆ ({0,1}∗)2
in P with NP-complete Q ∶= dom(R) there is a polynomial time computable partial function
f ⊆ R with dom(f) = Q. Hint: Recall the proof of the Cook-Levin Theorem.

2.6.2 Levin-optimal Sat solvers

For a (deterministic) algorithm A we let tA(x) be the length of the run of A on x; the
function tA takes values in N ∪ {∞}.

Theorem 2.6.5 (Levin 1973) There exists a Sat solver O which is Levin-optimal: for
every Sat solver A there exists a polynomial pA such that for all α ∈ Sat:

tO(α) ⩽ pA(tA(α) + ∣α∣).

Proof: Let R ⊆ ({0,1}∗)2 in P contain the pairs (x, y) such that x codes a Boolean formula
and y codes a satisfying assignment of it. Let A0,A1, . . . be an enumeration of all algorithms
such that Ai can be computed in time O(i). We define O on input x as follows.

1. ℓ← 0

2. for all i ⩽ ℓ do
3. simulate ℓ steps of Ai on x

4. if the simulated run halts and outputs y such that (x, y) ∈ R
5. then halt and output y

6. ℓ← ℓ + 1

7. goto 2

It is easy to check that O is a Sat solver. The time needed in lines 2-4 can be bounded
by (ℓ + ∣x∣ + 2)d for suitable d ∈ N. Let A be a Sat solver and α ∈ dom(R) = Sat. Choose
iA ∈ N such that A = AiA . Then O on α halts in line 4 if ℓ ⩾ tA(α), iA – or earlier. Hence,

tO(α) ⩽ O(∑tA(α)+iA
ℓ=0 (ℓ + ∣α∣ + 2)d) ⩽ cA ⋅ (tA(α) + ∣α∣)d

for a suitable constant cA ∈ N. ◻

Remark 2.6.6 The proof shows that the degree of pA does not depend on A. It is open
whether there is a similarly optimal decision algorithm for Sat.

38

2.7. HISTORY AND SIGNIFICANCE CHAPTER 2. NONDETERMINISM

Exercise 2.6.7 Make precise and prove: let R be a binary relation in P. There exists an
“optimal” algorithm that given x finds y such that (x, y) ∈ R provided such y exist.

Cook’s theorem casts the P versus NP question as one about one particular problem.
Levin’s theorem allows to cast the question as one about one particular algorithm.

Corollary 2.6.8 Let O be an optimal Sat solver. Then P = NP if and only if there is a
polynomial p such that tO(α) ⩽ p(∣α∣) for every α ∈ Sat.

Proof: By Theorem 2.6.2, P = NP implies there is a Sat solver A that is q-time bounded
for some polynomial q. By Theorem 2.6.5, tO(α) ⩽ pA(q(∣α∣) + ∣α∣)) for α ∈ Sat.

The converse follows from Theorem 2.6.2 and the NP-completeness of Sat. ◻

2.7 History and significance of P versus NP

Usually, the P versus NP is dated 1971, the year when Cook published the NP-completeness
of Sat. The likely first formal statement dates 1967 in lecture notes of Cook.

Recall from Section 1.2.1 that Gödel asked 1956 whether an NP-complete problem is
decidable in quadratic time and states this is “quite within the realm of possibility”. Is
this the first formulation of the P versus NP problem and did he conjecture that P = NP?
It is the author’s understanding that he rather intended to stress that a refutation is un-
known. Also, Gödel asks for quadratic time while polynomial time as a formalization of
‘efficient computability’ has been put forward only later in 1965 by Cobham and Edmonds.
Remarkably, Gödel aks more generally: “It would be interesting to know [. . .] how signif-
icantly in general for finitist combinatorial problems the number of steps can be reduced
when compared to mere trying.” E.g., NP ⊆ TIME(2

√
n) would clearly constitute a general

and significant reduction of “mere trying”. It seems fair to say that, within his context,
Gödel addressed questions that later condensed as the P versus NP problem.

Following Gödel’s letter, NP-completeness bears on the philosophy of mind (e.g., Tur-
ing’s Test or Searle’s Room) and, further, cognitive science (Marr’s computational level of
explanation). These are only examples, few scientific concepts spread as broadly through
science. Papadimitriou said in 1995 that “about 6000 papers each year have the term ‘NP-
complete’ on their title, abstract, or list of keywords.” Why? Wigderson states that “NP
actually captures far more than computational tasks. After appropriately formalizing the
recognition process, all mathematical tasks, many engineering tasks, and central scientific
tasks as well fall into NP.” Going further, he claims NP is “a mathematical definition of all
interesting problems” – why start looking for something if you don’t know when you found
it? Informally, then P = NP states that all interesting problems are efficiently solvable.

The vast majority of experts believes that P ≠ NP. As Impagliazzo puts it, “as soon
as a feasible algorithm for an NP-complete problem is found, the capacity of computers
will become that currently depicted in science fiction.” Indeed, “almost any optimization
problem would be easy and automatic [. . .] Programming languages would not need to
specify how the computation should be performed. Instead, one would just specify the

39

2.7. HISTORY AND SIGNIFICANCE CHAPTER 2. NONDETERMINISM

properties that a desired output should have in relation to the input.[. . .] One could [. . .]
automatically train a computer to perform any task that humans can [. . .] computers
could find proofs for any theorem in time roughly the length of the proof.”

As Wigderson puts it, “while elusive to define, people feel that creativity, ingenuity
or leap-of-thought which lead to discoveries are the domain of very singular, talented and
well-trained individuals, and that the process leading to discovery is anything but the
churning of a prespecified procedure or recipe. These few stand in sharp contrast to the
multitudes who can appreciate the discoveries after they are made.”

As Aaronson puts it, “if P = NP, then the world would be a profoundly different place
than we usually assume it to be. There would be no special value in ‘creative leaps,’ no
fundamental gap between solving a problem and recognizing the solution once it’s found.
Everyone who could appreciate a symphony would be Mozart; everyone who could follow
a step-by-step argument would be Gauss”.

40

Chapter 3

Space

3.1 Space bounded computation

Recall that a configuration of a deterministic or nondeterministic Turing machine A with
input tape and k worktapes is a tuple (s, iȷ̄, cc̄) where s is the current state of the machine,
i and ȷ̄ = j1⋯jk are the positions of the input head and the heads on the k worktapes, c
and c̄ = c1⋯ck are the contents of the input tape and the k worktapes.

Definition 3.1.1 Let A be a deterministic or nondeterministic Turing machine with input
tape and k worktapes. Let S ∈ N. A configuration (s, iȷ̄, cc̄) of A is S-small if j1, . . . , jk ⩽ S
and on all worktapes all cells with number bigger than S are blank; it is on x = x1⋯xn if
c(0)c(1)⋯ reads ▷ x1⋯xn ◻ ◻⋯.

Let s ∶ N → N. We say A is s-space bounded if for every x ∈ {0,1}∗ all configurations
in all computations of A on x are s(∣x∣)-small. The set SPACE(s) (NSPACE(s)) contains
the problems Q that are for some constant c ∈ N decided (accepted) by a (c ⋅ s + c)-space
bounded (nondeterministic) Turing machine. We define

L ∶= SPACE(log),
NL ∶= NSPACE(log),
PSPACE ∶= ⋃c∈N SPACE(nc),
NPSPACE ∶= ⋃c∈NNSPACE(nc).

Space complexity measures memory requirements to solve problems. While sublinear
time restrictions are boring in the sense that they prohibit to read the input, this is not
the case for space restrictions because they only apply to the work tapes. In fact, the most
interesting classes are L and NL above. We are however only interested in space bounds
that are at least log. Otherwise the space restriction does not even allow us to remember
the fact that we have read a certain bit at a certain position in the input.

An S-small configuration of A on x ∈ {0,1}∗ can be specified giving the positions i, ȷ̄
plus the contents of the worktapes up to cell S. It thus can be coded by a string of length

O(log ∣⌜A⌝∣ + log ∣x∣ + k logS + kS).

41

3.1. SPACE BOUNDED COMPUTATION CHAPTER 3. SPACE

Definition 3.1.2 Assume A is s-space bounded for some s ⩾ log and x ∈ {0,1}∗. Then
s(∣x∣)-small configurations of A on x can be coded as explained above by a string of length
exactly e ⋅ s(∣x∣) for e ∈ N some suitable constant. The configuration graph of A on x is the
directed graph

GA
x ∶= ({0,1}e⋅s(∣x∣),EA

x)

where EA
x contains (c, d) if c codes a non-halting configuration and d a successor of it.

The next proposition concerns how time and space relate as complexity measures.

Proposition 3.1.3 Let s ∶ N→ N be space-constructible. Then

NTIME(s) ⊆ SPACE(s) ⊆ NSPACE(s) ⊆ ⋃c∈NTIME(2c⋅s).

Proof: Let Q in NTIME(s), say A is a nondeterministic (c ⋅ s + c)-time bounded Turing
machine that accepts Q where c ∈ N is a suitable constant. Every run of A on an input x
is determined by a binary string of length c ⋅ s(∣x∣) + c. To see Q ∈ SPACE(s) consider
the machine that on x goes lexicographically through all strings y of length c ⋅ s(∣x∣) + c
and simulates the run of A on x determined by y. It accepts if one of the simulations is
accepting. The space needed is the space to store the current y plus the space needed by
a run of A on x. But this latter space is O(s(∣x∣)) because A is O(s) time-bounded.

The second inclusion is trivial. For the third, suppose Q is accepted by an O(s)-space
bounded nondeterministic Turing machine A. Given x, compute bin(s(∣x∣)) running the
machine witnessing space constructibility. This machine stops in time 2O(s(∣x∣)): otherwise
the machine would enter some configuration twice and thus never halt. Given bin(s(∣x∣)) it
is easy to compute the graph GA

x in time 2O(s(∣x∣)). Then apply a polynomial time algorithm
for Reachability to check whether there exists a path from the starting configuration of
A on x to some accepting configuration. This needs time (polynomial in) 2O(s(∣x∣)). ◻

Corollary 3.1.4 L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

It is commonly conjectured that all inclusions are strict. We know P ≠ EXP; in Sec-
tion 3.1.2 we shall see that NL ≠ PSPACE = NPSPACE; no other inequalities are known.

3.1.1 Space hierarchy

We next prove a hierarchy theorem for space as we did for time. The proof is similar but
gives a tight result.

Definition 3.1.5 A function s ∶ N → N is space-constructible if s(n) ⩾ logn for all n ∈ N
and the function x↦ bin(s(∣x∣)) is computable by a O(s)-space bounded Turing machine.

Theorem 3.1.6 (Space Hierarchy) Let s be space-constructible and s′ ⩽ o(s) arbitrary.
Then SPACE(s) ∖ SPACE(s′) ≠ ∅.

42

3.1. SPACE BOUNDED COMPUTATION CHAPTER 3. SPACE

Proof: Recall ⌜A⌝ denotes the binary encoding of a Turing machine A and consider

Ps

Input: a Turing machine A with input tape.
Problem: for k the number of worktapes of A, is it true that A on ⌜A⌝ visits cell

⌊s(∣⌜A⌝∣)/k⌋ on some of its worktapes or does not accept?

To decide Ps one simulates A on ⌜A⌝ but stops rejecting once the simulation wants
to visit cell ⌊s(∣⌜A⌝∣)/k⌋. The simulation computes the successor configuration from the
current configuration and then deletes the current configuration. This way only two con-
figurations need to be stored. Each configuration can be written using

O(log ∣⌜A⌝∣ + log ∣⌜A⌝∣ + k ⋅ s(∣⌜A⌝∣)/k)

many bits. These are at most c ⋅ s(∣⌜A⌝∣) many where c ∈ N is a suitable constant. Thus
the simulation can be aborted after 2c⋅s(∣⌜A⌝∣) many steps as then A must have entered a
loop. To signal abortion we increase a binary counter for each simulated step. The counter
needs space roughly log 2c⋅s(∣⌜A⌝∣) = c ⋅ s(∣⌜A⌝∣). This shows that Ps ∈ SPACE(s).

Let s′ ⩽ o(s) and assume for the sake of contradiction that Ps ∈ SPACE(s′). Choose an
algorithm B that decides Ps and is (c ⋅ s′ + c)-space-bounded for some constant c ∈ N. Let
k be its number of worktapes. We have c ⋅ s′(n) + c < ⌊s(n)/k⌋ for all n bigger than some
suitable n0 ∈ N. By adding, if necessary, dummy states to B we can assume that ∣⌜B⌝∣ > n0.

If B would not accept ⌜B⌝, then ⌜B⌝ ∈ Ps by definition, so B wouldn’t decide Ps. Hence
B accepts ⌜B⌝. Hence ⌜B⌝ ∈ Ps. Hence B on ⌜B⌝ visits cell ⌊s(∣⌜B⌝∣)/k⌋. As ∣⌜B⌝∣ > n0 we get
c ⋅ s′(∣⌜B⌝∣) + c < ⌊s(∣⌜B⌝∣)/k⌋, contradicting the assumed space bound of B. ◻

3.1.2 Savitch’s theorem

Theorem 3.1.7 (Savitch 1970) Reachability ∈ SPACE(log2).

Proof: Let (V,E) be a directed graph and assume V = [n] for some n ∈ N. Call a triple
(u,w, i) good if there is a path of length ⩽ 2i from u to w. Observe that (u,w, i) is good if
and only if there is a v ∈ V such that both (u, v, i − 1) and (v,w, i − 1) are good.

Algorithm A decides whether (u,w, i) is good. Clearly, A on (u,w, ⌈logn⌉) decides
whether there is a path from u to w. On inputs from V × V × {i} the space required
is O(mi ⋅ logn where mi is the maximal number of triples stored. Clearly, m0 = 0 and
mi+1 =mi + 1. For i ⩽ ⌈logn⌉) we have mi ⩽ logn. Hence, A is O(log2 n) space bounded. ◻

43

3.2. POLYNOMIAL SPACE CHAPTER 3. SPACE

A on (u,w, i) and (V,E)

1. if i = 0 check whether u = w or (u,w) ∈ E
2. v ← 1

3. while v ⩽ n
4. write (u, v, i − 1) on tape

5. if A accepts (u, v, i − 1)
6. replace (u, v, i − 1) by (v,w, i − 1)
7. if A accepts (v,w, i − 1), erase (v,w, i − 1) and accept

8. erase last triple on tape

9. v ← v + 1

10. reject

Corollary 3.1.8 If s is space-constructible, then NSPACE(s) ⊆ SPACE(s2).

Proof: Suppose Q is accepted by a (c ⋅ s + c)-space bounded nondeterministic Turing ma-
chine A. We can assume that A has at most one accepting configuration cacc reachable
from x. To decide whether x ∈ Q it suffices to decide whether there is a path from cstart to
cacc in GA

x . But this graph is too large to be written down if one is to respect the desired
space bound. Instead one runs Savitch’s algorithm and whenever this algorithm wants to
check (c, d) ∈ EA

x (in line 1) one runs a logarithmic space subroutine deciding EA
x . ◻

The above proof showcases an important idea, that we are going to formalize in Sec-
tion 3.3.1: a small space algorithm works with the huge object GA

x given implicitly.
Corollary 3.1.8 together with the space hierarchy theorem yields:

Corollary 3.1.9 NL ⊆ SPACE(log2) ≠ PSPACE = NPSPACE.

It is open whether NL ⊆ SPACE(o(log2)). It is also open whether Reachability can
be decided by a machine that runs simultaneously in space O(log2) and polynomial time.

3.2 Polynomial space

Quantified Boolean logic is obtained from propositional logic by adding the syntactical
rules declaring ∃Xα and ∀Xα to be quantified Boolean formulas whenever α is one and
X is a propositional variable. The semantics are explained such that an assignment A
satisfies ∃Xα (resp. ∀Xα) if A 0

X or (resp. and) A 1
X satisfies α. Here, A b

X maps X to
b and agrees with A on all other variables. A quantified Boolean sentence is a quantified
Boolean formula without free variables. Such a sentence is either true (satisfied by some
(equivalently all) assignments) or false (otherwise).

44

3.2. POLYNOMIAL SPACE CHAPTER 3. SPACE

Exercise 3.2.1 For every quantified Boolean formula α with r quantifiers there exists a
(quantifier free) propositional formula β that is equivalent to α of length ∣β∣ ⩽ 2r ⋅ ∣α∣.

Exercise 3.2.2 Given a Boolean circuit C(X̄) = C(X1, . . . ,Xr) with one output gate and
q ∈ {∃,∀} one can compute in polynomial time a quantified Boolean formula qZ̄ α(X̄, Z̄)
with α quantifier free, such that for all x ∈ {0,1}r

qZ̄ α(x, Z̄) is true ⇐⇒ C(x) = 1.

Exercise 3.2.3 There is a polynomial time algorithm that given a quantified Boolean
formula computes an equivalent one in prenex form, that is, of the form

q1X1⋯qrXrβ

where the qis are quantifiers ∃ or ∀ and β is quantifier free.

Theorem 3.2.4 QBF is PSPACE-complete.

QBF
Input: a quantified Boolean sentence α.

Problem: is α true?

Proof: By Exercise 3.2.3 it is sufficient to design an algorithm that works as desired on
inputs in prenex form q1X1⋯qrXrβ(X1, . . . ,Xr).

If r = 0, the sentence is a Boolean combination of 0 and 1 and its truth value can be
computed in polynomial time. If r > 0, run A on q2X2⋯qrXrβ(0,X2 . . . ,Xr) and store the
truth value b ∈ {0,1} obtained. Then erase all other workspace used in this computation.
Then run A on q2X2⋯qrXrβ(1,X2 . . . ,Xr) and store the truth value b′ ∈ {0,1} obtained.
Then again erase all other workspace used in this computation. Finally, accept in case
max{b, b′} = 1 and q1 = ∃, or min{b, b′} = 1 and q1 = ∀; otherwise reject.

Let sA(n, r) denote the space required by this algorithm on sentences of size at most n
with at most r variables. Then sA(n, r) ⩽ sA(n, r − 1) +O(n) and thus sA(n, r) ⩽ O(r ⋅ n).
This implies that A runs in polynomial space.

To see that QBF is PSPACE-hard let Q ∈ PSPACE and choose a polynomial p and
a p-space bounded Turing machine A that decides Q. Let x ∈ {0,1}∗ and consider the
configuration graph GA

x = ({0,1}m,EA
x) of A on x; here, m ⩽ O(p(∣x∣)). We assume there is

at most one accepting configuration cacc reachable from the start configuration cstart of A
on x. By Lemma 1.3.9 we find a circuit C(X1, . . . ,Xm, Y1, . . . , Ym) (depending on x) such
that for all c, d ∈ {0,1}m

C(c, d) = 1 ⇐⇒ (c, d) ∈ EA
x .

We want to compute a formula σi(X̄, Ȳ) such that for all c, d ∈ {0,1}m

σi(c, d) is true ⇐⇒ there is a length ⩽ 2i path from c to d in GA
x

45

3.3. NONDETERMINISTIC LOGARITHMIC SPACE CHAPTER 3. SPACE

Then x↦ σm(cstart, cacc) is a reduction as desired. For σ0(X̄, Ȳ) we take σ(X̄, Ȳ) ∨ X̄ = Ȳ
where X̄ = Ȳ stands for ⋀m

i=1(Xi ↔ Yi), and σ(X̄, Ȳ) expresses C(X̄, Ȳ) = 1 according to
Exercise 3.2.2. For σi+1(X̄, Ȳ) we follow Savitch, an take a formula equivalent to

∃Z̄(σi(X̄, Z̄) ∧ σi(Z̄, Ȳ)).

We cannot use this formula because then σm would have length ⩾ 2m. Instead we take

σi+1(X̄, Ȳ) ∶= ∃Z̄∀Ū∀V̄ ((Ū V̄ = X̄Z̄ ∨ Ū V̄ = Z̄Ȳ) → σi(Ū , V̄)).

Note that then ∣σi+1∣ ⩽ O(m)+∣σi∣, so ∣σm∣ ⩽ O(m2+∣σ∣). It follows that σm can be computed
from x in polynomial time. ◻

3.3 Nondeterministic logarithmic space

The following improves Example 1.2.5.

Example 3.3.1 Reachability ∈ NL.

Proof: Given a directed graph (V,E), say with V = [n], and v, v′ ∈ V then

1. u← v

2. while u ≠ v′

3. guess w ∈ [n]
4. if (u,w) ∈ E, then u← w

5. accept

is a nondeterministic algorithm that runs in logarithmic space. ◻

We give a simple, but useful characterization of NL paralleling Proposition 2.2.3.

Definition 3.3.2 Consider a (deterministic) Turing machine A with an input tape and
with a special work-tape called guess tape; the head of the guess tape is not allowed to
move left. A computation of A is on (x, y) if it starts in the configuration with all heads
on cell 0, x written on the input tape, y written on the guess tape, and all other cells on
any tape blank. A accepts (rejects) (x, y) if there is an accepting (rejecting) computation
of A on (x, y). If there is c ∈ N such that for all (x, y) the computation of A on (x, y)
does not contain a configuration with head position c ⋅ log ∣x∣ + c on some work tape except
possibly the guess tape, then A is said to be a logspace verifier.

Proposition 3.3.3 Let Q be a problem. The following are equivalent.

1. Q ∈ NL.

46

3.3. NONDETERMINISTIC LOGARITHMIC SPACE CHAPTER 3. SPACE

2. There is a logspace verifier for Q, i.e., there is a logspace verifier A and a polynomial
p such that for all x ∈ {0,1}∗

x ∈ Q ⇐⇒ ∃y ∈ {0,1}⩽p(∣x∣) ∶ A accepts (x, y).

Proof: To see (1) implies (2) let Q ∈ NL and choose a nondeterministic logspace bounded
machine B that accepts Q. We can assume that B is p-time bounded for some polynomial p.
Every y ∈ {0,1}p(∣x∣) determines a run of B on x. A logspace verifier A on (x, y) simulates
B on x applying the transition function corresponding to the bit read on the guess tape.
It moves the head on the guess tape one cell to the right for every simulated step.

Conversely, let A accord (2). A machine witnessing Q ∈ NL simulates A without the
guess tape: it guesses the symbol read whenever A moves right on the guess tape. ◻

Remark 3.3.4 In (2) one can assume A to move the head one cell to the right in every
step; furthermore, one can replace y ∈ {0,1}⩽p(∣x∣) by y ∈ {0,1}p(∣x∣) or y ∈ {0,1}∗.

Example 3.3.5 The following is a logspace verifier for Reachability. Given an x en-
coding an instance ((V,E), v, v′) of Reachability the logspace verifier A expects ‘the
proof’ y to encode a path ū from v to v′.

Say, y encodes the sequence ū = u0⋯uℓ−1 of vertices in V . Then A copies the first vertex
u0 to the work tape and checks u0 = v; it then replaces the worktape content by (u0, u1) and
checks (u0, u1) ∈ E; it replaces the worktape content by (u1, u2) and checks (u1, u2) ∈ E;
and so on. Finally it checks uℓ−1 = v′. If any of the checks fails, A rejects. It is clear that
this can be done moving the head on the guess tape (containing y) from left to right. It is
easy to make A also reject every y that does not even encode a sequence of vertices ū.

Some words on the significance of NL versus NP: the latter contains problems whose
“yes” instances have proofs that can be checked by a polynomial time verifier, e.g., a proof
for α ∈ Sat is a satisfying assignment. Problems in NL have “yes” instances with proofs
that can be streamed to a verifier with logarithmic memory. Is it possible to design a notion
of ‘proof’ of satisfiability that can be similarly verified?

3.3.1 Implicit logarithmic space computability

Reingold proved that Reachability is in L when restricted to undirected graphs. But
in general it is not known whether Reachability ∈ L. We now show that the answer is
no unless L = NL. We do so by showing that the problem is NL-complete under a suitable
notion of reduction. The notion used sofar does not work: NL is not closed under ⩽p unless
it equals P. To come up with the right notion we face the problem that we want allow the
reduction to output strings that are longer than logn, so in logspace we are not even able
to write down the string to be produced. The right notion is that logspace allows to answer
all questions about this string. Recall the bit-graph of a function from Section 1.1.2.

47

3.3. NONDETERMINISTIC LOGARITHMIC SPACE CHAPTER 3. SPACE

Definition 3.3.6 f ∶ {0,1}∗ → {0,1}∗ is implicitly logspace computable if it is polynomially
bounded (i.e. ∣f(x)∣ ⩽ ∣x∣O(1) for all x ∈ {0,1}∗) and BitGraph(f) ∈ L. A problem Q is
logspace reducible to another Q′ if there is an implicitly logspace computable reduction
from Q to Q′; we write Q ⩽log Q′ to indicate this. That C ⊆ P ({0,1}∗) is closed under ⩽log,
that a problem is hard or complete for C under ⩽log is explained analogously as for ⩽p.

Exercise 3.3.7 Every implicitly logspace computable function is polynomial time com-
putable. Hence ⩽p-closed classes are ⩽log-closed.

Lemma 3.3.8 If Q ⩽log Q′ and Q′ ⩽log Q′′, then Q ⩽log Q′′.

Proof: It suffices to show that f ○ g is implicitly logspace computable if both f and g
are. Clearly, f ○ g is polynomially bounded since f and g are. To decide the bit graph of
f ○ g, let A be an algorithm witnessing BitGraph(f) ∈ L. Given an instance (x, i, b) of
BitGraph(f ○ g) simulate A on g(x) without computing g(x): maintain (the code of)
a configuration of A on g(x) plus the current input symbol scanned: this requires space
O(log ∣g(x)∣) ⩽ O(log ∣x∣). From this it is easy to compute the successor configuration of A
on g(x). If A scans, say, cell j of the input tape, determine the symbol scanned by running
a logspace algorithm for BitGraph(g) on (x, j,0) and (x, j,1). ◻

Exercise 3.3.9 Q ∈ L if and only ifQ ⩽log {1}; hence, L is ⩽log-closed. Also NL is ⩽log-closed.

Theorem 3.3.10 Reachability is NL-complete under ⩽log.

Proof: By Example 3.3.1 it suffices to show that Reachability is NL-hard. Let Q ∈ NL
and a logarithmic space bounded nondeterministic machine A accepting Q. Again we
assume that there is at most one accepting configuration cacc reachable from the start
configuration cstart of A on x. It is easy to see that GA

x is implicitly logspace computable
from x. The reduction maps x to the instance (GA

x , cstart, cacc) of Reachability. ◻

3.3.2 Immerman and Szelepcsényi’s theorem

Theorem 3.3.11 (Immerman, Szelepcsényi 1987) NonReachability ∈ NL.

NonReachability
Input: a directed graph (V,E) and v, v′ ∈ V .

Problem: there is no path from v to v′ in (V,E)?

Proof: Let ((V,E), v, v′) be given and assume V = [n] with n > 1. For i < n let

Ri ∶= {u ∈ V ∣ there is a length ⩽ i path from v to u}.

We define a logspace verifier A for NonReachability. It expects a ‘proof’ y on the guess
tape of the form y = (ρ1. . . . , ρn−1) and proceeds in such a way that after reading ρi it stores
the number ∣Ri∣ or rejects. In the beginning it stores ∣R0∣ = 1. Details follow.

48

3.3. NONDETERMINISTIC LOGARITHMIC SPACE CHAPTER 3. SPACE

For i < n − 1, the string ρi+1 is an n-tuple

ρi+1 = (π1, . . . , πn)

where every πu, u ∈ V = [n], has the form

πu ∶= (ū1v1, . . . , ūsvs)

where the ūjvj are sequences in V such that the following conditions hold:

(a) every ūjvj is a length ⩽ i path from v (to vj);

(b) s = ∣Ri∣;
(c) v1 < ⋯ < vs.

Reading πu = (ū1v1, . . . , ūsvs) from left to right, A checks these conditions in logspace: for
(a) see Example 3.3.5, for (b) this is easy as A stores ∣Ri∣ when reading ρi+1, and for (c) A
needs to remember only the last node vj read.

The conditions imply that v1, . . . , vs lists Ri. A increases a counter if vj = u or (vj, u) ∈ E
for at least one j ∈ [s]; this happens if and only if u ∈ Ri+1. Thus, having read ρi+1, the
counter stores ∣Ri+1∣.

Further counters signal A when it is reading ρn−1 and therein πv′ ; then A accepts if
during reading πv′ the counter is not increased. ◻

Definition 3.3.12 For C ⊆ P ({0,1}∗) let coC ∶= {{0,1}∗ ∖Q ∣ Q ∈ C}.

Remark 3.3.13 If coC ⊆ C, then C = cocoC ⊆ coC, so C = coC

It is easy to see that coTIME(t) = TIME(t) and coSPACE(t) = SPACE(t). Concerning
nondeterministic time classes, it is widely believed that NP /= coNP but this is not known
– see next chapter. In contrast, for nondeterministic space we get:

Corollary 3.3.14 If s be space-constructible, then NSPACE(s) = coNSPACE(s). In par-
ticular, NL = coNL

Proof: By the remark, it suffices to show coNSPACE(s) ⊆ NSPACE(s). Suppose {0,1}∗∖Q
is accepted by a (c⋅s+c)-space bounded nondeterministic Turing machine A. We can assume
that A on x has at most one reachable accepting configuration cacc. To decide whether
x ∈ Q we check that there is no path from cstart to cacc in GA

x . We run the logspace verifier
from Theorem 3.3.11 without computing GA

x : whenever it wants to check (c, d) ∈ EA
x , run

a logarithmic space subroutine deciding EA
x .

Corollary 3.3.15 2Sat is NL-complete under ⩽log.

49

Chapter 4

Alternation

4.1 Co-nondeterminism

Intuitively, a ‘proof’ of a statement is an object that allows an easy check of its truth.
Statements of concern are “x ∈ Q” for some problem Q. The following abstract notion
takes this property as definitorial:

Definition 4.1.1 Let Q be a nonempty problem. A proof system for Q is a polynomial
time computable function P ∶ {0,1}∗ → {0,1}∗ with image Q; pre-images of x ∈ Q are
P -proofs of x. If for some polynomial p every x ∈ Q has a P -proof y with ∣y∣ ⩽ p(∣x∣), then
P is polynomially bounded.

Proposition 4.1.2 A nonempty problem Q is in NP if and only if there is a polynomially
bounded proof system for Q.

Proof: Let Q = dom(R) for R in P polynomially bounded. A polynomially bounded proof
system P for Q is obtained by mapping ⟨x, y⟩ with (x, y) ∈ R to x and all other strings to
some fixed element of Q.

Conversely, if P is a proof system for Q that is polynomially bounded, say via p, then
Q is the domain of R ∶= {(P (y), y) ∣ ∣y∣ ⩽ p(∣x∣)}. ◻

Mathematical logic studies many proof systems for

Taut
Input: a propositional formula α.

Problem: is α tautological?

and it is open whether there is one that is polynomially bounded. This is equivalent to
NP = coNP (recall Definition 3.3.12):

Proposition 4.1.3 Taut is coNP-complete.

50

4.1. CO-NONDETERMINISM CHAPTER 4. ALTERNATION

Taut
Input: a propositional formula α.

Problem: is α valid?

Proof: Since Sat is NP-complete, its complement is coNP-complete. But Taut ≡p {0,1}∗∖
Sat: note a formula α is not satisfiable if and only if ¬α is valid. ◻

Proposition 4.1.4 Let Q ≠ {0,1}∗ be a problem. The following are equivalent.

1. Q ∈ coNP.
2. There is a polynomially bounded proof system for {0,1}∗ ∖Q.

3. There is R ⊆ ({0,1}∗)2 in P and a polynomial p such that for all x ∈ {0,1}∗

x ∈ Q ⇐⇒ ∀y ∈ {0,1}⩽p(∣x∣) ∶ (x, y) ∈ R.

The proof is easy. (2) characterizes coNP as the problems Q where true statements
“x ∉ Q” have short proofs. (3) characterizes coNP with a universal quantifier similarly as NP
is defined using an existential one. For NP we turned this into a machine characterization
of NP by introducing nondeterministic Turing machines. In Section 4.3.1 we shall proceed
similarly for coNP – in a more general context.

By previous propositions NP∩ coNP contains the problems Q where true statements of
the form “x ∈ Q” and “x ∉ Q” have short proofs. Recall our convention that a run answers
“yes” or “no” depending on the bit stored finally in cell 1; we now interpret a blank in this
cell as “I don’t know”. Recall also that χQ denotes the characteristic function of Q.

Definition 4.1.5 A nondeterministic Turing machine A honestly accepts a problem Q if
for all inputs x every complete run of A on x reaches a halting configuration with the first
cell containing either χQ(x) or ◻; moreover, at least one run reaches a halting configuration
containing χQ(x) in the first cell.

Proposition 4.1.6 Let Q be a nonempty problem. The following are equivalent.

1. Q ∈ NP ∩ coNP.

2. There are polynomially bounded proof systems both for Q and for {0,1}∗ ∖Q.

3. There exists a polynomial time bounded nondeterministic Turing machine A that
honestly accepts Q.

Proof: By Propositions 4.1.2 and 4.1.4, (1) and (2) are equivalent. To see (1) implies (3),
assume Q ∈ NP ∩ coNP and choose polynomial time nondeterministic Turing machines A1

and A0 such that A1 accepts Q and A0 accepts its complement. A machine as in (3) is
obtained by simulating both A1 and A0 and saying “yes” in case A1 accepts and “no” in
case A0 accepts and “I don’t know” otherwise.

Conversely, a machine A according (3) already witnesses Q ∈ NP. The machine that
simulates A and accepts precisely if A says “no”, witnesses Q ∈ coNP. ◻

51

4.2. UNAMBIGUOUS NONDETERMINISM CHAPTER 4. ALTERNATION

Remark 4.1.7 Cook’s program asks to prove that natural proof systems for Taut known
from mathematical logic are not polynomially bounded. The corresponding research area
is known as Proof Complexity. This line to attack the coNP versus NP question hits at
open problems from mathematical logic concerning the independence of certain statements
from weak theories of arithmetic.

4.2 Unambiguous nondeterminism

We continue to play around with the acceptance condition for nondeterministic machines.

Definition 4.2.1 The set UP contains precisely those problems Q that are accepted by
polynomial time bounded unambiguous Turing machines; these are nondeterministic Turing
machines which on every input have at most one accepting run.

The inclusions P ⊆ UP ⊆ NP are generally conjectured to be strict.

Definition 4.2.2 A worst-case one-way function is a polynomial time computable, honest
injection f ∶ {0,1}∗ → {0,1}∗ that is not p-invertible. Being honest means that there is a
polynomial p ∈ N such that for all x ∈ {0,1}∗ we have ∣x∣ ⩽ p(∣f(x)∣).

Remark 4.2.3 Cryptography needs that such functions exist. It needs more: for secure
encryption functions that are easy to invert on “many” inputs albeit maybe difficult to
invert on all inputs are not useful. Instead one needs “average-case” one-way functions.

Proposition 4.2.4 The following are equivalent.

1. P ≠ UP.
2. There is a honest polynomial time computable injection whose image is not in P.

3. Worst-case one-way functions exist.

Proof: To see (1) implies (2), let A be a polynomial time unambiguous machine accepting
a problem Q ∉ P. Runs of A on x are determined by strings y ∈ {0,1}p(∣x∣) where p is
a polynomial. Define the function f to map ⟨x, y⟩ to 1x if y ∈ {0,1}p(∣x∣) determines an
accepting run of A on x; other strings z are mapped to 0z.

Then f is polynomial time computable and honest. It is injective because A is unam-
biguous. Its image is not in P because it contains 1x if and only if x ∈ Q.

That (2) implies (3) is trivial. To see (3) implies (1), let f be a worst-case one-way
function. The following decision problem encapsulates the problem to invert f :

Qf ∶= {⟨x, y⟩ ∣ ∃z ⩽lex x ∶ f(z) = y},

where ⩽lex denotes the lexicographic order. The nondeterministic machine that on ⟨x, y⟩
guesses z and checks that z ⩽lex x and f(z) = y, witnesses that Qf ∈ UP; note it is
unambiguous because f is injective. We are left to show Qf ∉ P.

52

4.3. THE POLYNOMIAL HIERARCHY CHAPTER 4. ALTERNATION

Otherwise f would be p-invertible by ‘binary search’: given y, check y ∈ im(f) by
checking in polynomial time that ⟨1p(∣y∣), y⟩ ∈ Qf . Here, p witnesses that f is honest. If the
check fails, then reject. Otherwise check successively ⟨1p(∣y∣)−1, y⟩ ∈ Qf , ⟨1∣y∣

c−2, y⟩ ∈ Qf , . . .
until ⟨1ℓ−1, y⟩ ∉ Qf . Then ∣f−1(y)∣ = ℓ. Check ⟨01ℓ−1, y⟩ ∈ Qf . If so, f−1(y) starts with 0 and
otherwise with 1; in other words, f−1(y) has first bit b1 ∶= 1 − χQf

(⟨01ℓ−1, y⟩). Similarly,
f−1(y) has second bit b2 ∶= 1 − χQf

(⟨b101ℓ−2, y⟩), and so on. ◻

Exercise 4.2.5 (2) with ‘injection’ replaced by ‘function’ is equivalent to P ≠ NP.

We intend to interpret complexity classes as degrees of difficulties of natural problems,
e.g., NP as the degree of difficulty of Sat and NL as the degree of difficulty of Reacha-
bility. It is unknown whether NP∩ coNP or UP can be understood in this way: complete
problems, natural or not, are not known to exist. Propositions 4.1.6 and 4.2.4, however,
evidence a certain naturality.

Exercise 4.2.6 If P ≠ UP, then P ≠ NP ∩ coNP.

4.3 The polynomial hierarchy

That a relation R ⊆ ({0,1}∗)t is in P means that {⟨x1, . . . , xt⟩ ∣ (x1, . . . , xt) ∈ R} ∈ P. The
following generalizes the definition of NP.

Definition 4.3.1 Let t ⩾ 1. A problem Q is in ΣP
t if there are a relation R ⊆ ({0,1}∗)t+1

in P and polynomials p1, . . . , pt such that for all x ∈ {0,1}∗:

x ∈ Q ⇐⇒ ∃y1 ∈ {0,1}⩽p1(∣x∣)∀y2 ∈ {0,1}⩽p2(∣x∣)⋯qyt ∈ {0,1}⩽pt(∣x∣) ∶ (x, y1, . . . , yt) ∈ R.

Here, q stands for ∀ or ∃ depending on whether t is even or odd, respectively. Further, we
set ΠP

t ∶= coΣP
t , and write PH for the polynomial hierarchy ⋃t⩾1Σ

P
t .

Observe that NP = ΣP
1 and coNP = ΠP

1 .

Exercise 4.3.2 One can equivalently write yi ∈ {0,1}p(∣x∣) for a single polynomial p.

Exercise 4.3.3 Show that ΣP
t and ΠP

t and PH are ⩽p-closed and contained in ΣP
t+1 ∩ΠP

t+1.

It is not known whether any of ΣP
t and ΠP

t are equal. The hypotheses ΣP
t ≠ ΠP

t are
stepwise strengthenings of the hypothesis P ≠ NP. We shall see that these strengthenings
are ‘useful’ hypotheses, in the sense that they tell us interesting things we do not know
how to infer from the weaker hypothesis that P ≠ NP.

Theorem 4.3.4 Let t ⩾ 1. If ΣP
t = ΠP

t , then PH = ΣP
t . Further, if P = NP, then P = PH.

53

4.3. THE POLYNOMIAL HIERARCHY CHAPTER 4. ALTERNATION

Proof: The second statement follows from the first: assume P = NP. Then NP = coNP, so
PH = NP by the first statement, and hence PH = P using the assumption again.

Assuming ΣP
t = ΠP

t , we show ΣP
t+k ⊆ ΣP

t by induction on k. Assume the claim for k and
let Q ∈ ΣP

t+k+1. Choose a relation R in P such that

x ∈ Q ⇐⇒ ∃y1∀y2⋯qyt+k+1 ∶ (x, y1, . . . , yt+k+1) ∈ R.

Here, the yis range over {0,1}⩽pi(∣x∣) for suitable polynomials pi. Observe

x ∈ Q ⇐⇒ ∃y1 ∶ ⟨x, y1⟩ ∈ Q′

for suitable Q′ ∈ ΠP
t+k. But ΠP

t+k = coΣP
t+k ⊆ coΣP

t = ΠP
t = ΣP

t , where the inclusion follows
from the induction hypothesis. Thus Q′ ∈ ΣP

t and we can write

⟨x, y1⟩ ∈ Q′ ⇐⇒ ∃y′2∀y′3⋯qy′t+1 ∶ (⟨x, y1⟩, y′2, . . . , y′t+1) ∈ R′

for some R′ in P. Here, the y′is range over {0,1}⩽p′i(∣x∣) for suitable polynomials p′i.
Let R′′ contain the tuples (x, z, y′3, . . . , y′t+1) such that there are y1 with ∣y1∣ ⩽ p1(∣x∣)

and y′2 with ∣y′2∣ ⩽ p′2(∣x∣) such that z = ⟨y1, y′2⟩ and (⟨x, y1⟩, y′2, y′3 . . . , y′t+1) is in R′. Then
R′′ witnesses that Q ∈ ΣP

t . ◻

Corollary 4.3.5 If there is a problem that is complete for PH, then PH collapses, i.e.
PH = ΣP

t for some t ⩾ 1.

Proof: If Q is complete for PH, then Q ∈ ΣP
t for some t. As ΣP

t is ⩽p-closed, PH ⊆ ΣP
t . ◻

Thus, PH cannot be interpreted as the degree of difficulty of some problem unless it
collapses. We now observe that the levels ΣP

t do have natural complete problems.

Definition 4.3.6 A quantified Boolean formula is a Σt-formula if it has the form

∃X̄1∀X̄2⋯qX̄tβ

where β is quantifier free, and q is ∀ for even t and ∃ for odd t.

Theorem 4.3.7 For every t ⩾ 1, ΣtSat is ΣP
t -complete.

ΣtSat
Input: a Σt-sentence α.

Problem: is α true?

Proof: It is easy to see that ΣtSat ∈ ΣP
t . The hardness proof generalizes the proof of the

Cook-Levin Theorem 2.3.9. Given Q ∈ ΣP
t choose a relation R in P such that

x ∈ Q ⇐⇒ ∃y1∀y2⋯qyt ∶ (x, y1, . . . , yt) ∈ R,

for all x ∈ {0,1}n, with the yis ranging over {0,1}p(∣x∣) for some polynomial p (Exer-
cise 4.3.2). As R is in P we can write the condition (x, y1, . . . , yt) ∈ R as C(x, y1, . . . , yt) = 1

54

4.3. THE POLYNOMIAL HIERARCHY CHAPTER 4. ALTERNATION

for some suitable circuit C computable in polynomial time from ∣x∣ (by the Fundamental
Lemma 1.3.9). By Exercise 3.2.2 the latter is equivalent to the truth of qZ̄ α(Z̄, x, y1, . . . , yt)
for some quantifier free formula α(Z̄, X̄, Ȳ1, . . . , Ȳt) which is computable from C in poly-
nomial time. Then

x↦ ∃Ȳ1∀Ȳ2⋯qȲtZ̄ α(Z̄, x, Ȳ1, . . . , Ȳt)

defines the desired reduction. ◻

Corollary 4.3.8 P ⊆ NP = ΣP
1 ⊆ ΣP

2 ⊆ ⋯ ⊆ PH ⊆ PSPACE and all inclusions are strict
unless PH collapses.

Proof: To see that PH ⊆ PSPACE note ΣtSat ⩽p QBF ∈ PSPACE for every t ⩾ 1. The
inclusion is strict by Corollary 4.3.5 since PSPACE has complete problems. The other
inclusions are trivial and strict by Theorem 4.3.4: ΣP

t = ΣP
t+1 implies ΠP

t ⊆ ΣP
t and thus

ΣP
t = coΠP

t ⊆ coΣP
t = ΠP

t , so ΣP
t = ΠP

t . ◻

4.3.1 Alternating time

We give a machine characterization of ΣP
t analogously as we did for NP in Proposition 2.2.3.

Definition 4.3.9 An alternating Turing machine is a nondeterministic Turing machine A
whose set of states is partitioned into a set of existential and a set of universal states. It
is said to accept a problem Q if it accepts precisely the strings x which are in Q. That it
accepts x means that the starting configuration of A on x is good, where the set of good
configurations is the minimal set satisfying

– an accepting halting configuration is good,

– a configuration with an existential state is good, if it has some good successor,

– a configuration with a universal state is good, if all its successors are good.

For t ⩾ 1, A is t-alternating if starting state is existential and every run of A on any
input moves less than t times from an existential to a universal state or vice versa.

For f ∶ N→ N the set ATIME(f) (resp. ΣtTIME(f)) contains the problems Q such that
there are c ∈ N and a (c ⋅ f + c)-time bounded (resp. t-)alternating machine that accepts Q.
Alternating polynomial time and t-alternating polynomial time are, respectively,

AP ∶= ⋃c∈NATIME(nc),
ΣtP ∶= ⋃c∈NΣtTIME(nc).

Note Σ1TIME(f) = NTIME(f) and especially ΣP
1 = NP = Σ1P. More generally:

Proposition 4.3.10 For all t ⩾ 1, ΣtP = ΣP
t .

55

4.3. THE POLYNOMIAL HIERARCHY CHAPTER 4. ALTERNATION

Proof: It is easy to solve ΣtSat by a t-alternating machine in polynomial time. It is also
easy to see that ΣtP is ⩽p-closed. This implies ⊇ by Theorem 4.3.7.

To see ⊆, let Q be accepted by a p-time bounded t-alternating machine A, where p is
some polynomial. Every run of A on x can be divided into ⩽ t subruns such that the first
block contains only configurations with existential states, the second only universal states,
and so on. Let R ⊆ ({0,1}∗)t+1 contain those (x, y1, . . . , yt) such that the run of A on x
‘determined’ by (y1, . . . , yt) ∈ ({0,1}p(∣x∣))t is accepting: namely, the run taking the jth
step in the ith block according to the jth bit of yi. Then R witnesses Q ∈ ΣP

t . ◻

Proposition 4.3.11 AP = PSPACE.

Proof: Note that AP is ⩽p-closed. By Theorem 3.2.4 it thus suffices to show that Qbf is
AP-complete. It is easy to see that Qbf ∈ AP. For hardness, suppose Q is accepted by a
p-time bounded alternating Turing machine A where p is some polynomial. Then

x ∈ Q ⇐⇒ ∃y1∀z1⋯∃yp(∣x∣)∀zp(∣x∣) (x, y, z) ∈ R

where yi, zi range over bits {0,1}. Let R contain the triples (x, y1⋯yp(∣x∣), z1⋯zp(∣x∣)) such
that the following run of A on x is accepting: the ith step is detemined by either yi or
zi depending on whether the state of the current configuration is existential of universal.
Now continue as in the proof of Theorem 4.3.7. ◻

Exercise 4.3.12 Define ΠtP like ΣtP except that the starting state sstart is demanded to
be universal. Show that ΠtP = coΣtP, in particular, Π1P = coNP.

4.3.2 Oracles

In actual programming one uses instructions to call a previously defined program for an-
other problem X. This allows to study the complexity of problems relative to X. Theo-
retically, this makes sense for every X, e.g., undecidable X.

Recall, χX denotes the characteristic function of X ⊆ {0,1}∗.

Definition 4.3.13 Let X be a problem. An oracle machine with oracle X is a (determin-
istic or nondeterministic) Turing machine with a special worktape, called oracle tape, and
special states s?, s0, s1; the successor of a configuration with state s? is the same configu-
ration but with s? changed to sb where b = χX(z) and z is the query of the configuration:
the string of bits stored on the oracle tape in cell number one up to exclusively the first
blank cell; such a step in the computation is a query step.

The class PX (NPX) contains the problems accepted by a polynomial time bounded
(nondeterministic) oracle machine with oracle X.

For C ⊆ P ({0,1}∗) we set PC ∶= ⋃X∈C PX and NPC ∶= ⋃X∈C NP
X .

Exercise 4.3.14 NPC is ⩽p-closed for every C ⊆ P ({0,1}∗). If Q ⊆ {0,1}∗ is C-hard, then
NPC ⊆ NPQ.

56

4.4. TIME-SPACE TRADE-OFFS CHAPTER 4. ALTERNATION

Exercise 4.3.15 To address a maybe confusing point in the notation, think about whether
P = NP implies PX = NPX for all X ⊆ {0,1}∗.

Theorem 4.3.16 For every t ⩾ 1, ΣP
t+1 = NP

ΣtSat.

Proof: For ⊆ it suffices to show Σt+1Sat ∈ NPΣtSat by Theorem 4.3.7. Take the machine
that given as input a Σt+1-sentence ∃X̄∀Ȳ ∃Z̄⋯α(X̄, Ȳ , Z̄, . . .) first guesses values b̄ for X̄
and asks the oracle for the truth of the Σt-sentence ∃Ȳ ∀Z̄⋯¬α(b̄, Ȳ , Z̄, . . .), i.e. it writes
this sentence on the oracle tape and enters state s?. If the oracle answers “no”, i.e. the
query step ends in s0, then the machine accepts; otherwise it rejects.

Conversely, suppose p is a polynomial and Q is accepted by a p-time bounded nonde-
terministic oracle machine A with oracle X ∶= ΣtSat. We can assume that A only makes
queries that encode Σt-sentences. Say, a query step is according to a bit b if it ends in
state sb. As usual, we say a non query step is according to 0 or 1, if the first or the second
transition function is used. Then A accepts an input x if and only if the following holds:
there exists strings y, a ∈ {0,1}⩽p(∣x∣) the run of A with ith query step according ai and ith
non query step according yi is accepting and produces a sequence of queries α1, . . . , α∣a∣
such that a = χX(α1)⋯χX(α∣a∣) – this means that the sentence

β ∶= ⋀∣a∣i=1 ¬1−ai αi,

is true; recall the notation ¬0α = α and ¬1α = ¬α. Elementary formula manipulations allow
to transform β to an equivalent Σt+1-sentence β′ in polynomial time. Thus Q ∈ Σt+1P = ΣP

t+1

(Proposition 4.3.10) is witnessed by the following (t+ 1)-alternating Turing machine: first
existentially guess (via nondeterministic steps in existential states) the strings y, a and
then simulate the run of A determined by y and a; check it accepts and β′ is true – this
can be done in (t + 1)-alternating polynomial time (Proposition 4.3.10). ◻

Corollary 4.3.17 ΣP
1 = NP, ΣP

2 = NP
NP, ΣP

3 = NP
NPNP

, ΣP
4 = NP

NPNPNP

. . ..

Proof: ΣP
t+1 = NP

ΣtSat = NPΣP
t by Theorems 4.3.16 and 4.3.7. ◻

Exercise 4.3.18 Define (NPNP)NP and prove that it equals NPNP.

Exercise 4.3.19 For t ⩾ 1 show ΣP
t ∪ΠP

t ⊆ PΣP
t = PΠP

t ⊆ ΣP
t+1 ∩ΠP

t+1.

4.4 Time-space trade-offs

Definition 4.4.1 Let t, s ∶ N → N. The class TISP(t, s) contains the problems decidable
by a (deterministic) Turing machine with input tape that is both (c ⋅ t + c)-time bounded
and (c ⋅ s + c)-space bounded for some constant c ∈ N.

Theorem 4.4.2 (Lipton, Viglas 1999) If a <
√
2, then NTIME(n) /⊆ TISP(na, no(1)).

57

4.4. TIME-SPACE TRADE-OFFS CHAPTER 4. ALTERNATION

We prove this via three lemmas. The first is proved by padding:

Lemma 4.4.3 Let t, s ∶ N → N be functions and c ∈ N. If NTIME(n) ⊆ TISP(t(n), s(n)),
then NTIME(nc) ⊆ TISP(n ⋅ t(nc), s(nc)).

Proof: We can assume c > 1. Let Q ∈ NTIME(nc) and choose a nondeterministic Turing
machine A accepting Q in time O(nc). Further, let

Q′ ∶= { xx⋯x
²
∣x∣c−1 times

∣ x ∈ Q}.

To see that Q′ is in linear nondeterministic time it suffices to check, given an input y
of length m, that y has the form x⋯x above and, in case, compute x. First, guess an
initial segment x of y and compute n ∶= ∣x∣. This takes time O(m) using Exercise 1.2.7.
Alternatively, use a lavish time O(n2) algorithm and reject if it does not halt in time m:
time m suffices if m is large enough and the guess is right. Second, compute nc−1 (in
binary): this takes time polynomial in logn, so at most m if m is large enough. Third,
check y = x⋯x by scanning y from left to right; during reading each copy of x increase a
binary counter (time 10 logn < n if n is large enough) and finally check it equals nc−1.

By assumption Q′ is decided by a machine B running in time O(t) and space O(s).
Now decide Q as follows. On x, run B on xx⋯x without computing xx⋯x: instead, make
sure the input head always scans the same bit as B’s input head; e.g., if B moves right
from one x-copy into the next, then move to cell 1. Clearly, O(∣x∣) steps suffice for one
step of B. Hence, the simulation runs in time O(∣x∣ ⋅ t(∣x∣c)) and space O(s(∣x∣c)). ◻

Lemma 4.4.4 Let a, b ⩾ 1 be rational. If NTIME(n) ⊆ TIME(na), then Σ2TIME(nb) ⊆
NTIME(nba).

Proof: Let Q ∈ Σ2TIME(nb). By the proof of Proposition 4.3.10 there is R ⊆ ({0,1}∗)3
decidable in linear time such that for all long enough x ∈ {0,1}∗

x ∈ Q ⇐⇒ ∃y1∀y2 ∶ (x, y1, y2) ∈ R,

where y1, y2 range over {0,1}∣x∣b ; here and below we write ∣x∣b instead ⌊∣x∣b⌋. We claim

Q′ ∶= {⟨x, y1⟩ ∣ ∃y2 ∶ (x, y1, y2) /∈ R}

can be accepted in time O(∣x∣b): guess and and verify the binary representation of ∣x∣b;
compute 1∣x∣

b
; guess y2 of length ⩽ ∣x∣b; check (x, y1, y2) /∈ R.

By assumption, whether ⟨x, y1⟩ ∈ Q′ can be decided in deterministic time O(∣x∣ba). But

x ∈ Q ⇐⇒ ∃y1 ∶ ⟨x, y1⟩ /∈ Q′,

and Q ∈ NTIME(nba) follows. ◻
The third and final lemma is the heart of the proof. It states that, in certain contexts,

time can be traded for alternation.

58

4.4. TIME-SPACE TRADE-OFFS CHAPTER 4. ALTERNATION

Lemma 4.4.5 Let c ∈ N, c ⩾ 1. Then TISP(n2c, no(1)) ⊆ Σ2TIME(nc+ϵ) for every real ϵ > 0.

Proof: Let Q be a problem decided by a machine A in time O(n2c) and space no(1). Let
e ⩾ 1 be an arbitrary natural. Every configuration of A on x ∈ {0,1}n can be coded by
a string of length ⩽ n1/e (for sufficiently large n). The 2-alternating machine existentially
guesses nc such codes c1, . . . , cnc and verifies that the last one is accepting. This can be
done in time O(nc ⋅ n1/e). Understanding c0 as the start configuration, it then universally
guesses an index i < nc and verifies that A reaches ci+1 from ci in at most nc many steps.

Since e was arbitrary it suffices to show that this algorithm can be implemented in time
O(nc+2/e). First, to guess ci the machine needs to know ⌊n1/e⌋: guess an verify this number
in time O(n). Second, for the simulation of A, start with ci and successively compute
(codes of) successor configurations. Given a configuration c plus the input bit scanned
its successor can be computed in quadratic time O(∣c∣2) (for some reasonable encoding;
besides 2, also any other constant would be good enough). In order to have the input bit
available we move our input head according to the simulation; in the beginning we move
it to the cell scanned by ci. Thus the simulation runs in time O(n2/e ⋅ nc). ◻

Proof of Theorem 4.4.2: Assume NTIME(n) ⊆ TISP(na, no(1)) for some rational
√
2 > a ⩾ 1.

Let c ∈ N be ‘large enough’ and such that (2c − 1)/a ⩾ 1 is integer. Then

NTIME(n(2c−1)/a) ⊆ TISP(n2c, no(1)) by Lemma 4.4.3
⊆ Σ2TIME(nc+(1/a)) by Lemma 4.4.5
⊆ NTIME(nac+1) by Lemma 4.4.4.

By the Nondeterministic Time Hierarchy Theorem in the strong form of Remark 2.2.12,
we arrive at a contradiction if (2c − 1)/a > ac + 1, and thus if 2c−1

c+1 > a2. This is true for
‘large enough’ c, because 2c−1

c+1 →c 2 > a2. ◻

Remark 4.4.6 The bound a <
√
2 ≈ 1.41 in Theorem 4.4.2 has been improved to a <

2 cos(π/7) ≈ 1.80. This marks the current record due to Williams, 2007. Getting to
arbitrarily large a would entail Sat ∉ L, and thus NP ≠ L.

59

Chapter 5

Size

5.1 Non-uniform polynomial time

The class P/poly contains the problems that can be solved by small circuits. It is generally
believed that NP /⊆ P/poly but currently even NEXP /⊆ P/poly is unknown.

Definition 5.1.1 The set P/poly contains the problems Q such that there exists a poly-
nomial p such that for all n ∈ N there exists a size ⩽ p(n) circuit that decides Q on {0,1}n

Exercise 5.1.2 P/poly is ⩽p-closed.

By the Fundamental Lemma 1.3.9 this is a ‘non-uniform version’ of P in that there are
no computability conditions imposed on the map n ↦ C. It is thus clear that P ⊆ P/poly.
The converse is fails because P/poly contains undecidable problems.

Definition 5.1.3 Let a ∶ N → {0,1}∗. A Turing machine with advice a is just a Turing
machine A but its starting configuration on x is redefined to be the starting configuration
of A on ⟨x, a(∣x∣)⟩. The advice a is polynomially bounded if there is a polynomial p such
that ∣a(n)∣ ⩽ p(n) for all n ∈ N.

Recall Definition 2.5.1 of sparsity.

Proposition 5.1.4 Let Q be a problem. The following are equivalent.

1. Q ∈ P/poly.
2. There is a polynomial time bounded Turing machine with polynomially bounded advice

that decides Q.

3. There are Q′ ∈ P and a ∶ N→ {0,1}∗ polynomially bounded such that for all x ∈ {0,1}∗

x ∈ Q ⇐⇒ ⟨x, a(∣x∣)⟩ ∈ Q′.

4. There is a sparse X ⊆ {0,1}∗ such that Q ∈ PX .

60

5.1. NON-UNIFORM POLYNOMIAL TIME CHAPTER 5. SIZE

Proof: (1) implies (2): let the advice a(n) be the code of Cn and on input x ∈ {0,1}n
evaluate Cn on x.

(2) implies (3): let Q′ contain the strings ⟨x, y⟩ that are accepted by the machine in (2).
(3) implies (1): use the Fundamental Lemma 1.3.9 to obtain for n,m ∈ N a circuit

Dn,m(X1⋯Xn, Y1⋯Ym) of size polynomial in (n+m) such that for all (x, y) ∈ {0,1}n×{0,1}m

⟨x, y⟩ ∈ Q′⇐⇒Dn,m(x, y) = 1.

Then Cn(X̄) ∶=Dn,∣a(n)∣(X̄, a(n)) decides Q on {0,1}n.
(4) implies (2): assume a p-time bounded A with sparse oracle X decides Q, where p

is a polynomial. Simulate A in polynomial time using as advice a(n) a list of all elements
of X ∩ {0,1}⩽p(n). Note ∣a(n)∣ ⩽ nO(1) since X is sparse.

(2) implies (4): choose A, a according (2). It suffices to find a sparse X such that
1n ↦ a(n) can be computed in polynomial time with oracle X. We can assume that
∣a(n)∣ = nc for some c ∈ N and large enough n. Then let X contain for 1 ⩽ i ⩽ nc such that
the ith bit of a(n) is 1 the string 0⋯010⋯0 of length nc with a 1 at the ith position. ◻

Exercise 5.1.5 Formulate and prove a variant of this proposition for NP instead of P.

Exercise 5.1.6 Define NEXP/poly to contain the problems that are accepted by exponen-
tial time bounded nondeterministic Turing machines with polynomially bounded advice.
Show NEXP/poly is closed under complementation.

Hint: the advice for {0,1}n ∖Q contains the number ∣Q ∩ {0,1}n∣ (in binary).

5.1.1 Karp and Lipton’s theorem

Assuming the polynomial hierarchy does not collapse we show that polynomial advice does
not help to solve Sat. We need the following non-uniform analogue of Theorem 2.6.2.

Exercise 5.1.7 If Sat ∈ P/poly, then there is a polynomial time machine with polynomi-
ally bounded advice that when given a satisfiable formula outputs a satisfying assignment.

Theorem 5.1.8 (Karp-Lipton 1980) If NP ⊆ P/poly, then PH = ΣP
2 .

Proof: Assume Sat ∈ P/poly and choose A according to the above exercise, say, A uses
advice a ∶ N→ {0,1}∗ satisfying ∣a(n)∣ ⩽ nc for n > 1. A formula α is satisfiable if and only
if the output A(⟨α, a(∣α∣)⟩) is a satisfying assignment of α.

By Theorem 4.3.4 (and Remark 3.3.13) it suffices to show ΠP
2 ⊆ ΣP

2 . Theorem 4.3.7
implies that Π2Sat is ΠP

2 -complete. Hence, by Proposition 4.3.10, it suffices to give a
polynomial time 2-alternating Turing machine accepting Π2Sat.

Π2Sat
Input: ∀X̄∃Ȳ β where β = β(X̄, Ȳ) is a quantifier free Boolean formula.

Problem: is ∀X̄∃Ȳ β true?

61

5.2. SHANNON’S THEOREM AND SIZE HIERARCHY CHAPTER 5. SIZE

On input ∀X̄∃Ȳ β(X̄, Ȳ) of length n, such a machine checks

∃a ∈ {0,1}⩽nc ∀x ∈ {0,1}∣X̄ ∣ ∶ A(⟨β(x, Ȳ), a⟩) satisfies β(x, Ȳ).

Clearly, this condition implies that ∀X̄∃Ȳ β(X̄, Ȳ) is true. To see the converse, we
assume that for all x the encoding length of β(x, Ȳ) is at most n and depends only on β
and not on x. If this length is m we can choose a ∶= a(m). ◻

The following is an analogue for EXP instead NP. It is proved by different means, namely
by a similar trick as in Lemma 4.4.5. We sketch the proof and leave it as an exercise to
fill in the details. Interestingly, we see that P ≠ NP could be proved by establishing circuit
upper bounds – Exercise 5.2.4 and Corollary 5.2.7 improve on this.

Theorem 5.1.9 (Meyer) If EXP ⊆ P/poly, then EXP ⊆ ΣP
2 and P ≠ NP.

Proof: (Sketch) Let Q ∈ EXP, say, witnessed by A. Let fA(x, i) output the i-th bit of the
computation table of A on x. By assumption fA is computed by a small circuit. Decide Q
in 2-alternating polynomial time as follows. Given x, existentially guess a small circuit and
check it computes fA(x, ⋅). This can be done in polynomial time after universally guessing
some entries of the computation table. Hence Q ∈ ΣP

2 . But EXP ⊆ ΣP
2 implies P ≠ NP by

Theorem 4.3.4 and Corollary 1.2.14. ◻

5.2 Shannon’s theorem and size hierarchy

Theorem 5.2.1 (Shannon 1949) Let Sh ∶ N→ N be defined by

Sh(n) ∶= max
f ∶{0,1}n→{0,1}

min{s ∣ there is a circuit of size ⩽ s computing f}.

Then Sh(n) = Θ(2n/n).

Proof: Sh(n) ⩽ O(2n/n) follows from Proposition 1.3.8. To show Sh(n) ⩾ Ω(2n/n) we
show there are less circuits of size ⩽ s ∶= 2n/(10n) than Boolean functions on {0,1}n. Each
equation of a size ⩽ s circuit can be encoded by, say, 5 ⋅ log(s) bits, and the circuit by, say,
10 ⋅ s ⋅ log(s) bits. Hence there are at most 210⋅s⋅log(s) functions computed by such circuits.
This is < 22n : note 10 ⋅ s ⋅ log(s) = 10 ⋅ (2n/10n) ⋅ (n − logn − log 10) < 2n. ◻

Remark 5.2.2 The vast majority of functions f ∶ {0,1}n → {0,1} is not computable by
circuits of size ⩽ s ∶= 2n/(11n). Indeed, if we choose f ∶ {0,1}n → {0,1} uniformly at

random, then it is computed by such a circuit with probability < 2 10
11
⋅2n/22n = 2−2n/11.

Definition 5.2.3 Let s ∶ N → N. The set SIZE(s) contains the problems Q such that for
all large enough n ∈ N there exists a size ⩽ s(n) circuit that decides Q on {0,1}n.

Note P/poly = ⋃c∈N SIZE(nc).

62

5.2. SHANNON’S THEOREM AND SIZE HIERARCHY CHAPTER 5. SIZE

Exercise 5.2.4 EXP ⊆ P/poly if and only if E ⊆ SIZE(nc) for some c ∈ N (Hint: recall
Exercise 2.3.8).

Theorem 5.2.5 (Size hierarchy) SIZE(s) ∖ SIZE(s′) ≠ ∅ for all s, s′ ∶ N → N nonde-
creasing and unbounded with

840 ⋅ s′(n) ⩽ s(n) ⩽ 2n/n.

Proof: By the proofs of Proposition 1.3.8 and Theorem 5.2.1, for large enough ℓ, there is
a function fℓ ∶ {0,1}ℓ → {0,1} which is computable by circuits of size ⩽ 21 ⋅ 2ℓ/ℓ but not
by circuits of size ⩽ 2ℓ/(10ℓ). For large enough n we claim there is a natural ℓ ⩽ n such
that s′(n) ⩽ 2ℓ/(10ℓ) and 21 ⋅ 2ℓ/ℓ ⩽ s(n). This suffices: define Q ∈ SIZE(s) ∖ SIZE(s′) by
declaring x1⋯xn ∈ Q if and only if fℓ(x1⋯xℓ) = 1.

For the claim, it suffices to find a natural ℓ in the real interval [a, b] where

a ∶= log s′(n) + log log s′(n) + log 20;

b ∶= log s(n) + log log s(n) − log 21.

Indeed, ℓ ⩽ n by ℓ ⩽ b and s(n) ⩽ 2n/n. Note that, as functions on R, both 2ℓ/(10ℓ) and
21 ⋅ 2ℓ/ℓ are non-decreasing for large enough ℓ. Further, a ⩽ 2 log s′(n) and b ⩾ log s(n) for
large enough n. Then ℓ ∈ [a, b] implies

2ℓ/(10ℓ) ⩾ 2a/(10a) ⩾ s′(n) ⋅ log s′(n) ⋅ 20
10 ⋅ 2 log s′(n)

= s′(n);

21 ⋅ 2ℓ/ℓ ⩽ 21 ⋅ 2b/b ⩽
21 ⋅ s(n) ⋅ log s(n) ⋅ 1

21

log s(n)
= s(n).

Since s(n) ⩾ 20 ⋅ 21 ⋅ 2 ⋅ s′(n) we have b ⩾ a + 1, so there exists a natural ℓ ∈ [a, b]. ◻

5.2.1 Kannan’s theorem

Theorem 5.2.6 (Kannan 1981) ΣP
2 /⊆ SIZE(nc) for every c ∈ N.

Proof: Let c ∈ N. It suffices to show PH /⊆ SIZE(nc). Then argue for the theorem by
distinguishing two cases: if NP ⊆ P/poly, then PH = ΣP

2 by Theorem 5.1.8 and we are done;
otherwise, ΣP

2 ∖ SIZE(nc) ⊇ NP ∖ P/poly ≠ ∅ and we are done.
By the size hierarchy theorem there exists, for large enough n, a size ⩽ nc+1 circuit

which is not equivalent to any circuit of size ⩽ nc. Let Cn be the lexicographically minimal
such circuit (with respect to some fixed encoding). Clearly,

Q ∶= {x ∈ {0,1}∗ ∣ C∣x∣(x) = 1},

is not in SIZE(nc), so we are left to show Q ∈ PH. By Proposition 4.3.10 is suffices to define
a 6-alternating machine accepting Q.

63

5.3. LOWER BOUNDS FOR BOUNDED DEPTH CIRCUITS CHAPTER 5. SIZE

Given x, existentially guess a circuit C of size ⩽ nc+1 (with n inputs) and check C(x) = 1.
Then verify that C is not equivalent to any size ⩽ nc circuit C ′: universally guess such C ′,
existentially guess y ∈ {0,1}n and check C(y) ≠ C ′(y). Finally, universally guess a size
⩽ nc+1 circuit D and do the following: if D is lexicographically smaller than C, then verify
that it is equivalent to some size ⩽ nc circuit D′: existentially guess such D′, universally
guess y ∈ {0,1}n and check D(y) =D′(y). ◻

It is open whether the above holds for P or NP instead ΣP
2 . Theorem 4.3.4 implies

Corollary 5.2.7 If there is c ∈ N such that P ⊆ SIZE(nc), then P ≠ NP.

5.3 Lower bounds for bounded depth circuits

In this section we prove:

Theorem 5.3.1 Let d ∈ N. There is δ > 0 such that for all n ∈ N every circuit with
unbounded fan-in and depth ⩽ d that decides Parity on {0,1}n has size ⩾ 2nδ

.

Parity
Input: x ∈ {0,1}n.

Problem: does x contain an odd number of 1s?

5.3.1 Decision trees

A decision tree repeats querying input bits, each query depending on the answers received
so far and at some time point outputs a bit.

Definition 5.3.2 Let X̄ = X1⋯Xn be a tuple of variables. A decision tree (with vari-
ables X̄) is a pair (T, ℓ) such that

– T ⊆ {0,1}∗ is a non-empty finite set of nodes, closed under prefixes and whenever
t ∈ T then either both t0, t1 or none is in T ; in the latter case, t is a leaf.

– ℓ maps each leaf into {0,1} and each other t ∈ T to some variable in X̄. We say a
leaf t outputs ℓ(t) and a non-leaf t queries ℓ(t). We require that no proper prefix of
a non-leaf t queries the same variable as t.

The height of (T, ℓ) is maxt∈T ∣t∣. Every x = x1⋯xn ∈ {0,1}n determines a leaf t(x) ∈ T ,
namely the unique leaf t = t1⋯t∣t∣ ∈ T such that for all i ∈ [∣t∣], ti = xj where j ∈ [n] is such
that ℓ(t1⋯ti−1) = Xj. The decision tree computes the function x ↦ ℓ(t(x)) from {0,1}n
into {0,1}. A decision tree is equivalent to another or a Boolean formula or a circuit C if
it computes the same function as C.

Example 5.3.3 Every f ∶ {0,1}n → {0,1} is computed by a decision tree of height n:
the tree queries all bits of its input x and outputs f(x). Formally, T ∶= {0,1}⩽n with
ℓ(t) ∶=X∣t∣+1 for ∣t∣ < n, and ℓ(t) ∶= f(t) for leafs t ∈ {0,1}n– note t(x) = x for all x ∈ {0,1}n.

64

5.3. LOWER BOUNDS FOR BOUNDED DEPTH CIRCUITS CHAPTER 5. SIZE

Example 5.3.4 Every decision tree computing (the characteristic function of) Parity
on {0,1}n has height n.

Proof: Assume (T, ℓ) has height < n. For x ∈ {0,1}n choose i ∈ [n] such that ℓ(t) ≠ Xi for
all prefixes t of t(x); this exists because ∣t(x)∣ < n. Let x′ be x with i-th bit flipped. Then
t(x) = t(x′), so ℓ(t(x)) = ℓ(t(x′)), but exactly one of x,x′ is in Parity. ◻

We are interested in height as a measure of complexity. We show it is closely related
to another natural measure: how many bits of an input x determine f(x)?

Notation: If α = α(X1, . . . ,Xn) is a formula and A is a partial assignment write α↿A for
the formula obtained by substituting the constant A(X) for every X ∈ dom(A).

Proposition 5.3.5 Let k ⩽ n and f ∶ {0,1}n → {0,1}.

1. If f is computed by a decision tree of height k, then f is computed by both a k-DNF
and a k-CNF.

2. If f is computed by both a k-DNF and a k-CNF, then f is computed y a decision tree
of height ⩽ k2.

Proof: (1): Let (T, ℓ) be a decision tree of height k computing f . Let t = t1⋯t∣t∣ range over
the leafs that output 1 and let s = s1⋯s∣s∣ range over the leafs that output 0. Then

⋁t⋀i<∣t∣ ¬1−ti+1ℓ(t1⋯ti) and ⋀s⋁i<∣s∣ ¬si+1ℓ(s1⋯si).

both compute f .
(2): Let α = τ1 ∨ τ2 ∨ ⋯ and β = ζ1 ∧ ζ2 ∧ ⋯ compute f where the τi are k-terms

(conjunctions of ⩽ k literals) and the ζj are k-clauses (disjunctions of ⩽ k literals).
Key observation: if τi is satisfiable and ζj is falsifiable, then they share a variable:

otherwise there exists an assignment satisfying τi and falsifying ζj, so α /≡ β – contradiction.
We specify a decision tree by informally describing what variables to query or stop

with an output, given answers b1, . . . , br−1 to previous queries Xi1 , . . . ,Xir−1 , in other words,
given the partial assignment that maps Xij to bj. Formally, this is a node t = t1⋯tr−1 with
bj = tj+1, ℓ(t1⋯tj) =Xij for all j < r.

The tree proceeds in rounds. In each round a partial assignment A is given; in the first
round A = ∅. The tree outputs 1 if some τi↿A (like e.g. ¬0∧1) or all ζj↿A are tautological;
it outputs 0 if all τi↿A or some ζj↿A are unsatisfiable. Otherwise it queries all variables of
τi0↿A where i0 is minimal with τi0↿A satisfiable.

Note that if the round does not halt with an output, τi0↿A is satisfiable, so shares a
variable with every falsifiable ζj↿A. Thus, after ⩽ k rounds, the assignment A evaluates all
variables of all falsifiable ζj. Then the tree halts with an output. Since every round sets
⩽ k variables, the height of the tree is ⩽ k2. ◻

65

5.3. LOWER BOUNDS FOR BOUNDED DEPTH CIRCUITS CHAPTER 5. SIZE

5.3.2 H̊astad’s Switching Lemma

Theorem 5.3.6 (Switching Lemma) Let k,m,n, h ∈ N with m < n,0 < h and α =
α(X1, . . . ,Xn) be a k-DNF. Let Am

n be the set of all partial assignments A defined on
m many variables from {X1, . . . ,Xn}. Call A ∈ Am

n bad if α↿A is not equivalent to a
decision tree of height < h. Then the number of bad A is

< (12 ⋅ k ⋅ n −m

m
)
h

⋅ ∣Am
n ∣.

Proof: Write α = τ1 ∨ τ2 ∨ . . . for k-terms τi. Say a partial assignment falsifies a term if it
falsifies a literal in it. Let A ∈ Am

n . As in Proposition 5.3.5 we specify a decision tree for
α↿A by informally describing what variables to query given a partial assignment collecting
previous answers. Again, the tree proceeds in rounds.

Round 1 proceeds as follows, given the empty assignment. If A satisfies some τi then
output 1; if A falsifies all τi, then output 0; otherwise, let i1 be minimal such that A does
not falsify τi1 ; query all critical variables in τi1 outside the domain of A. Notation: let V1

denote the set of critical variables and note V1 ≠ ∅; let C1 ∶ V1 → {0,1} denote the unique
partial assignment such that A ∪C1 satisfies τi1 .

Round 2 has given assignment B1 ∶ V1 → {0,1} collecting the answers obtained in
round 1. It proceeds as round 1 but with A replaced by A ∪ B1. To wit: if A ∪ B1

satisfies some τi then output 1; if A ∪B1 falsifies all τi, then output 0; otherwise, let i2 be
minimal such that A ∪B1 does not falsify τi2 ; query all critical variables in τi2 outside the
domain of A∪B1. Notation: let V2 denote the set of critical variables and note V2 ≠ ∅; let
C2 ∶ V2 → {0,1} denote the unique partial assignment such that A ∪B1 ∪C2 satisfies τi2 .

And so on.
Assume A is bad, so this tree has height ⩾ h. Choose a node of length h, say reached in

round r of the tree. The idea of the proof, due to Razborov, is to use this node to define
a short code of A. Then the number of short codes upper bounds the number of bad As.

According to our notation, we have indices i1, . . . , ir, sets of critical variables V1, . . . , Vr

and assignments B1, . . . ,Br and C1, . . . ,Cr to them. Our node of length h in round r
obtained answers B′

r ⊆ Br to critical variables V ′
r ⊆ Vr; set C ′

r ∶= Cr↿V ′
r .

Since ∣V1∣ +⋯+ ∣Vr−1∣ + ∣V ′
r ∣ = h and the sets V1, . . . , Vr and dom(A) are pairwise disjoint,

we get an assignment to m + h variables:

A∗ ∶= A ∪C1 ∪⋯ ∪Cr−1 ∪C ′
r ∈ Am+h

n .

We code A by A∗ plus some auxiliary information. The auxiliary infomation allows to
recover A from A∗ as follows.

Observe i1 is the minimal index such that A∗ does not falsify τi1 . Note V1 is a subset of
the ⩽ k many variables in τi1 , so is determined by k bits v1 ∈ {0,1}k. This determines C1.
Additional ∣V1∣ bits b1 ∈ {0,1}∣V1∣ determine B1 and thus A∗

1 ∶= A ∪B1 ∪C2 ∪⋯ ∪Cr−1 ∪C ′
r.

Observe i2 is the minimal index such that A∗
1 does not falsify τi2 . Note V2 is a subset of

the ⩽ k many variables in τi2 , so is determined by k bits v2 ∈ {0,1}k. This determines C2.
Additional ∣V2∣ bits b2 ∈ {0,1}∣V2∣ determine B2 and A∗

2 ∶= A ∪B1 ∪B2 ∪C3 ∪⋯ ∪C ′
r.

66

5.3. LOWER BOUNDS FOR BOUNDED DEPTH CIRCUITS CHAPTER 5. SIZE

Repeating this r times recovers C1, . . . ,Cr−1,C ′
r and thus A. We code A by A∗ and the

binary strings v1⋯vr and b1⋯br. The first has length kr ⩽ kh and exactly h many 1s, so
there are ⩽ (khh) ⩽ (e ⋅

kh
h)h < (3k)h many. The second has length ∣V1∣ + ⋯∣Vr−1∣ + ∣V ′

r ∣ = h, so
there are 2h many. Hence the number of bad As is < ∣Am+h

n ∣ ⋅ (6k)h. But

∣Am+h
n ∣
∣Am

n ∣
=
(n
m+h
) ⋅ 2m+h

(n
m
) ⋅ 2m

= 2h ⋅ n! ⋅ (n −m)! ⋅m!

(n −m − h)! ⋅ (m + h)! ⋅ n!
⩽ 2h ⋅ (n −m)h

mh
.

The lemma follows. ◻

5.3.3 The lower bound

Lemma 5.3.7 Let d ∈ N. There is a polynomial time algorithm that maps every depth ⩽ d
size s circuit with unbounded fan-in to an equivalent formula of the following form or a
negation thereof:

⋀
i1<s
⋁
i2<s

⋯Cid<sλi1⋯id

where λi1⋯id are literals, and C is ⋀ if d is odd, and C is ⋁ if d is even.

Proof: Given a circuit of depth ⩽ d and size s push all ¬ to the bottom to get an equivalent
circuit where only input gates are wired into ¬-gates. For an ⋀gate Yi = ⋀j<r Yij we can
ensure all Yij are ¬- or ⋁-gates: if otherwise some Yij is a conjunction, replace it by its
conjuncts in the equation for Yi (increasing r); and repeat. Similarly, we can ensure only
¬- and ⋀-gates are wired into ⋁-gates. Deleting or adding duplicates we can ensure all
arities r equal s. Then every sequence i1⋯id of numbers < s determines an input gate or
a negation thereof, so a literal λi1⋯id : take the i1-th gate Z1 wired into the output gate,
then the i2-th gate Z2 wired into Z1, and so on; possibly the literal is reached by a proper
prefix of i1⋯id. Note the gates Z1, Z2, . . . , on this path alternate ⋀,⋁. If the output gate
is ⋀ we have a formula of the displayed form, otherwise a similar formula starting with ⋁
- so equivalent to the negation of a formula of the displayed form. ◻

Proof of Theorem 5.3.1: It suffices to show that every formula α of the form displayed in
the previous lemma that computes Parity or its complement on {0,1}n has s > 2nδ

for
δ < 2−d; here and in the following, we mean ⌊nϵ⌋ writing nϵ for 0 < ϵ < 1.

Assume otherwise, so log s ⩽ nδ =∶ k. Note α is equivalent to

¬⋁id<s ¬⋁id−1<s⋯¬⋁i1<s λi1⋯id

for literals λi1⋯id . Set mt ∶= n−n2−t . We claim that for all large enough n and all t ⩽ d there
exists At ∈ Amt

n that simplifies all formulas βid⋯id−t−1 ∶= ¬⋁it ⋯¬⋁i1 λi1⋯id (for all id⋯id−t−1)
in the sense that βid⋯id−t−1↿At has a decision tree of height < k.

This contradicts Example 5.3.4: both α↿Ad and ¬α↿Ad are computed by decision trees
of height < k = nδ; but one of these formulas computes parity on n2−d ⩾ nδ many variables
(⩾ instead > due to rounding).

67

5.3. LOWER BOUNDS FOR BOUNDED DEPTH CIRCUITS CHAPTER 5. SIZE

We are left to prove the claim. For t = 0, A0 = ∅ ∈ A0
n satisfies the claim. We

assume to have found At for t < d and look for At+1. Note βid⋯id−t−2↿At is the negation of

⋁it+1 βid⋯id−t−1↿At. By Proposition 5.3.5 (1), this is equivalent to a k-DNF. It has n2−t many
variables. Write m′ ∶= n2−t − n2−t−1 and n′ ∶= n2−t . By the Switching Lemma the fraction of
A ∈ Am′

n′ that do not simplify this formula is

< (12 ⋅ k ⋅ (n′ −m′)/m′)k ⩽ (13 ⋅ k ⋅ n−2−t−1)k

where we estimate (n′ −m′)/m′ ⩽ 13
12n

−2−t−1 for large enough n. For large enough n, this is
< 2−dk ⩽ s−d because k ⋅ n−2−t−1 = nδ ⋅ n−2−t−1 ⩽ o(1). Thus there exists a single A ∈ Rm′

n′ that
simplifies all βid⋯id−t−2↿At simultaneously. Set At+1 ∶= At ∪A and note At+1 ∈ Amt+1

n since it
evaluates exactly mt + (n2−t − n2−t−1) =mt+1 many variables. ◻

68

Chapter 6

Randomness

6.1 How to evaluate an arithmetical circuit

Recall Definition 1.3.5 of an arithmetical circuit, and recall the depth of such a circuit is
the maximum length of a path in it (viewed as a directed graph). Such a circuit C(X̄)
computes a polynomial in Z[X̄] in the obvious sense.

Exercise 6.1.1 Let C(X1, . . . ,Xℓ) be an arithmetical circuit of depth at most d with at
most m multiplication gates on any path. Then C computes a polynomial of degree at
most 2m, and for all a1, . . . , aℓ ∈ Zℓ (∣ ⋅ ∣ denotes absolute value)

∣C(a1, . . . , aℓ)∣ ⩽max{2,maxi∈[ℓ] ∣ai∣}d⋅2
m
.

An arithmetical circuit can compute doubly exponential values: e.g., the polynomial
X2k ∈ Z[X] is computed by a circuit with k + 1 gates. It is therefore unclear whether the
arithmetical circuit evaluation problem

ACE
Input: an arithmetical circuit C(X̄) and ā ∈ Z∣X̄ ∣.

Problem: is C(ā) ≠ 0?

is in P. In fact, this is an open question. Even ACE ∈ NP is not obvious - but here is a
clever idea: we have b ∶= ∣C(ā)∣ ⩽ ud⋅2m where u ∶= max{2,maxi∈[ℓ] ∣ai∣} and d,m are as in
the exercise above. Then b has at most log b ⩽ d2m logu ⩽ 22n many prime divisors where
we assume that n, the size of the input (C, ā), is large enough. By the Prime Number
Theorem we can assume that there are at least 210n/(20n) many primes below 210n and
(much) less than half of them divide of b. Guess 10n bits determining a number r < 210n.
Guessing uniformly at random gives a prime r that does not divide b with probability at
least 1/(40n), in particular such r exist. Then

b ≠ 0 ⇐⇒ b mod r ≠ 0.

69

6.2. PRIMER ON PROBABILITY THEORY CHAPTER 6. RANDOMNESS

But b mod r can be computed by evaluating the circuit C on ā bottom-up doing all
operations modulo r. Each operation takes time polynomial in log r < 10n.

Hence, ACE ∈ NP. Here is the crucial observation: this algorithm is better than a
usual NP-algorithm in that it gives us the correct answer for a considerable fraction of its
guesses, namely at least 1/(40n) for large enough n. This may not look impressing at first
sight but it should be compared to the canonical nondeterministic algorithm for Sat, that
guesses on a formula with n variables an assignment – the fraction of accepting runs is 2−n

if the formula has exactly one satisfying assignment.
This is the first idea. The second idea is, that we may run the algorithm several times

to boost its success probability. It seems thus fair to consider ACE a ‘tractable’ problem
albeit we don’t know a polynomial time algorithm for it. At the very least, ACE seems to
be ‘easier’ than e.g. Sat which is generally believed not to admit such ‘probably correct’
polynomial time algorithms. Indeed, we can rule out the existence of such algorithms under
the hypothesis that PH does not collapse (Corollary 6.3.14).

6.2 Primer on probability theory

A probability space (Ω,A,Pr) consists of a nonempty set Ω, a σ-algebra A on Ω (i.e.,
a collection of events A ⊆ Ω that contains ∅ and is closed under complementation and
countable intersections) and a probability measure Pr on A. The probability of an event B
conditioned on an event A of positive probability is Pr[B ∣ A] ∶= Pr[A ∩B]/Pr[A].

A random variable is a function x from Ω into a set V such that

{x ∈ U} ∶= {ω ∈ Ω ∣ x(ω) ∈ U} ∈ A

for every U ⊆ V . Its distribution is the probability measure U ↦ Pr[x ∈ U] on P (V).
If, for finite V , this maps U to ∣U ∣/∣V ∣, then x is uniformly distributed in V . A Bernoulli
variable x is a random variable with values in {0,1}. Note x = χA for the event A ∶= {x = 1}.
The characteristic function χA of an event A is the indicator variable for A.

Events A1, . . . ,At ∈ A are independent if Pr[A1 ∩⋯∩At] = Pr[A1] ⋅ ⋯ ⋅Pr[At]. Random
variables x1, . . . ,xt are independent if so are the events {x1 ∈ U1}, . . . ,{xt ∈ Ut} for all
U1, . . . , Ut ⊆ V , and pairwise independent if any two of them are independent.

Assume V ⊆ R is countable. Then x has expectation E[x] ∶= ∑v∈V v ⋅ Pr[x = v], and
variance Var[x] ∶= E[(x −E[x])2] = E[x2] −E[x]2.

Note E[x ⋅ y] = E[x] ⋅E[y] for independent x,y if these expectations exist.

Lemma 6.2.1 (Bienaymé) Var[x1 + ⋯ + xt] = Var[x1] + ⋯ + Var[xt] for pairwise inde-
pendent random variables x1, . . . ,xt, provided these variances exist.

This can be verified by a simple calculation.

Lemma 6.2.2 Let c ∈ R>0 and x be a nonnegative random variable whose expectation and
variance exist.

70

6.3. RANDOMIZED COMPUTATIONS CHAPTER 6. RANDOMNESS

1. (Markov) If E[x] > 0, then Pr[x ⩾ c ⋅E[x]] ⩽ 1/c.
2. (Chebychev) Pr[∣x −E[x]∣ ⩾ c] ⩽ Var[x]/c2.

Proof: Let f ∶ R⩾0 → R⩾0 be nondecreasing and f(c) > 0. Letting v range over V , we have

Pr[x ⩾ c] ⩽ ∑v⩾cPr[x = v] ⋅ f(v)/f(c) ⩽ E[f ○ x]/f(c).

Markov’s inequality follows plugging c ⋅ E[x] for c and the identity for f . Chebychev’s
inequality follows plugging ∣x −E[x]∣ for x and x2 for f(x). ◻

Lemma 6.2.3 (Chernoff bound) Let ℓ ∈ N and assume x1, . . . ,xℓ are independent Ber-
noulli variables, each with expectation µ. Then for every real ϵ > 0

Pr [∣1ℓ ∑
ℓ
i=1 xi − µ∣ ⩾ ϵ] < 2e−2ϵ2⋅ℓ.

We omit the proof.

6.3 Randomized computations

We define randomized computations following the first idea sketched in Section 6.1. Prob-
abilistic Turing machines are just nondeterministic ones, different however is the definition
of what it means to accept an input: nondeterministic choices are interpreted to be done
randomly according to the outcome of a coin toss. The output of such a Turing machine
is then a random variable and we want it to take desired values with good probability.
We then proceed elaborating the second idea on how to efficiently amplify the success
probabilities of such algorithms.

Recall that χQ denotes the characteristic function of Q ⊆ {0,1}∗.

Definition 6.3.1 A probabilistic Turing machine is a nondeterministic Turing machine A.
Assume A is t-time bounded for some function t ∶ N → N and recall complete runs of A
on x ∈ {0,1}∗ are determined by strings y ∈ {0,1}t(∣x∣). Let y be uniformly distributed in
{0,1}t(∣x∣). The random variable A(x) is the output of A on x of the run determined by y.
The random variable tA(x) is the length of the run determined by y.

The set BPTIME(t) contains the problems Q such that there exist c ∈ N and a (c ⋅ t+c)-
time bounded nondeterministic Turing machine A such that for all x ∈ {0,1}∗

Pr[A(x) ≠ χQ(x)] ⩽ 1/4.

The set RTIME(t) is similarly defined but additionally one requires that the machine
A has one sided error, that is, Pr[A(x) = 1] = 0 for all x ∉ Q. We set

BPP ∶= ⋃c∈NBPTIME(nc),
RP ∶= ⋃c∈NRTIME(nc).

71

6.3. RANDOMIZED COMPUTATIONS CHAPTER 6. RANDOMNESS

Clearly, P ⊆ RP ⊆ NP. It is unknown whether BPP ⊆ NP or NP ⊆ BPP. It is easy to see
that BPP ⊆ EXP and we shall get much better upper bounds (Theorem 6.4.5).

Remark 6.3.2 The distribution of A(x) does not depend on the choice of the time bound.
More precisely, if A is both t- and t′-time bounded then the distribution of the random
variable A(x) is the same whether we define it using y uniformly distributed in {0,1}t(∣x∣)
or in {0,1}t′(∣x∣). We therefore suppress the choice of t from the notation A(x).

Remark 6.3.3 BPP-algorithms are sometimes said to have two-sided error. RTIME stands
for randomized time and BP stands for bounded probability: the error probability is ‘bounded
away’ from 1/2. Note that every problem can be decided in constant time with two-sided
error 1/2 by simply answering according to a coin toss.

Exercise 6.3.4 (Simulate a biased coin) Let r = ∑∞
i=1 bi ⋅ 2−i and assume 1n ↦ bn is

polynomial time computable. Show that there exists a probabilistic polynomial time algo-
rithm A such that r − 2−n ⩽ Pr[A(1n) = 1] ⩽ r + 2−n for all n ∈ N

6.3.1 Probability amplification

The bound 1/4 on the error probability is a somewhat arbitrary choice. Our definitions
are justified by showing that BPP or RP are not very sensible to this choice.

Proposition 6.3.5 Let Q be a problem. The following are equivalent.

1. Q ∈ RP.
2. There are a polynomial time probabilistic machine A with one-sided error and a

positive polynomial p such that Pr[A(x) ≠ χQ(x)] ⩽ 1 − 1/p(∣x∣) for all x ∈ {0,1}∗.
3. For every polynomial q there is a polynomial time probabilistic machine B with one-

sided error such that Pr[B(x) ≠ χQ(x)] ⩽ 2−q(∣x∣) for all x ∈ {0,1}∗.

Proof: It suffices to show that (2) implies (3). Let A, p accord (2) and let q be given. We
can assume that p is increasing. Define B on x to run A for q(∣x∣) ⋅ p(∣x∣) many times; B
accepts if at least one of the simulated runs is accepting and rejects otherwise.

If x ∉ Q, then B rejects for sure. If x ∈ Q, then it errs only if A errs on all q(∣x∣) ⋅ p(∣x∣)
many runs. This happens with probability at most (1−1/p(∣x∣))p(∣x∣)⋅q(∣x∣) ⩽ (1/2)q(∣x∣), for x
sufficiently long because (1 − 1/p(n))p(n) →n 1/e < 1/2. ◻

Probability amplification for two-sided error rests on the Chernoff bound (Lemma 6.2.3):

Proposition 6.3.6 Let Q be a problem. The following are equivalent.

1. Q ∈ BPP.
2. There is a polynomial time probabilistic machine A and a positive polynomial p such

that Pr[A(x) ≠ χQ(x)] ⩽ 1/2 − 1/p(∣x∣) for all x ∈ {0,1}∗.

72

6.3. RANDOMIZED COMPUTATIONS CHAPTER 6. RANDOMNESS

3. For every polynomial q there is a polynomial time probabilistic machine B such that
Pr[B(x) ≠ χQ(x)] ⩽ 2−q(∣x∣) for all x ∈ {0,1}∗.

Proof: It suffices to show that (2) implies (3). Let A, p accord (2) and let q be given. We
can assume p is increasing A always outputs 0 or 1, so A(x) is Bernoulli. For a certain ℓ,
define B on x to simulate ℓ runs of A on x and answer according to the majority of the
answers obtained; more precisely, if b1, . . . , bℓ ∈ {0,1} are the outputs of the ℓ runs of A,
then B accepts if µ̂ ∶= 1

ℓ ∑
ℓ
i=1 bi ⩾ 1/2 and rejects otherwise.

Intuitively, B computes an estimation µ̂ of the acceptance probability µ ∶= Pr[A(x) =
1] = E[A(x)] of A on x. Now, µ ⩾ 1/2 + 1/p(∣x∣) if x ∈ Q, and µ ⩽ 1/2 − 1/p(∣x∣) if
x ∉ Q. Thus, B errs only if ∣µ̂ − µ∣ ⩾ 1/p(∣x∣). By the Chernoff bound this has probability
⩽ 2e−ℓ⋅2/p(∣x∣)2 . This is ⩽ 2−q(∣x∣) for suitable ℓ polynomial in ∣x∣. ◻

Exercise 6.3.7 Define BPPBPP and show that it equals BPP. Using self-reducibility, show
that NP ⊆ BPP implies NP = RP.

Remark 6.3.8 It is known that certain circuit lower bounds imply that BPP = P, so
against the probably first intuition, many researchers believe that randomization does
not add computational power. But this is only a conjecture, and randomness should be
considered a computational resource like time or space. It is usually measured by the
number of random bits, i.e. the number of nondeterministic (random) choices made by
a randomized algorithm. A field of interest is to prove probability amplification lemmas
where the new algorithms do something more clever than just repeating a given algorithm
for a lot of times, more clever in the sense that they do not use much more random bits.
The combinatorics needed here is provided by expander graphs. A second field of interest
is whether randomized algorithms really need fair coins or if biased coins or otherwise
corrupted random sources are good enough. This line of research led to the theory of
extractors: roughly, these are functions that recover k truly random bits from n >> k
corrupted random bits that “contain” the randomness of k truly random bits.

6.3.2 Polynomial identity testing

The most famous problem in RP not known to be in P is polynomial identity testing, namely
to decide whether two arithmetical circuits compute the same polynomial. Clearly, this
tantamount to decide whether a given circuit computes a nonzero polynomial:

PIT
Input: an arithmetical circuit C.

Problem: does C compute a nonzero polynomial?

We need the following algebraic lemma:

Lemma 6.3.9 (Schwarz-Zippel) Let N, ℓ, d ∈ N and p ∈ Z[X1, . . . ,Xℓ] be nonzero of
degree at most d. If r1, . . . , rℓ are independent and uniformly distributed in {0, . . . ,N − 1},
then

Pr[p(r1, . . . , rℓ) = 0] ⩽ d/N.

73

6.3. RANDOMIZED COMPUTATIONS CHAPTER 6. RANDOMNESS

Proof: By induction on ℓ. For ℓ = 1, p has ⩽ d roots. For ℓ > 1 write X̄ = X1⋯Xℓ−1, r̄ =
r1⋯rℓ−1 and p = ∑i⩽d qi(X̄) ⋅X i

ℓ. Let i be maximal such that qi(X̄) is non-zero. Clearly,

Pr[p(r̄, rℓ) = 0] ⩽ Pr[p(r̄, rℓ) = 0 ∣ qi(r̄) ≠ 0] +Pr[qi(r̄) = 0].

Since qi has degree ⩽ d − i, by induction qi(r̄) = 0 has probability ⩽ (d − i)/N . But the
other probability above is at most i/N : for every realization r̄ ∈ Zℓ−1 of r̄ with qi(r̄) ≠ 0,
p(r̄,Xℓ) has degree i, so ⩽ i roots. ◻

Example 6.3.10 PIT ∈ RP.

Proof: Given C(X1, . . . ,Xℓ) of size n and depth d, and guess ℓ+1 strings in {0,1}10n; these
encode numbers a1, . . . , aℓ, r < 210n. Compute C(a1, . . . , aℓ)mod r in time polynomial in
log r ⩽ 10n. Accept if the outcome is ≠ 0 and reject otherwise.

Clearly, if C computes the zero polynomial, then the algorithm rejects for sure. Oth-
erwise, let the random variables ai, r denote its guesses. Then C(a1, . . . ,aℓ) ≠ 0 with
probability ⩾ 1 − 2d/210n > 1/2 by Lemma 6.3.9 and Exercise 6.1.1. For each realization
a1⋯aℓ of a1⋯aℓ such that that C(a1, . . . , aℓ) ≠ 0 we have C(a1, . . . , aℓ)mod r ≠ 0 with prob-
ability ⩾ 1/(40n) as seen in Section 6.1. In total, the algorithm accepts with probability
> 1/(80n). Hence PIT ∈ RP by Proposition 6.3.5. ◻

6.3.3 Zero error

Definition 6.3.11 Zero error polynomial time is the class ZPP ∶= RP ∩ coRP.

Recall, honest acceptance means always outputting either a correct answer bit or ◻,
meaning ‘I don’t know’ (Definition 4.1.5). Paralleling Proposition 4.1.6, ZPP is character-
ized requiring a bound on the probability of output ◻. Additionally, ZPP is characterized
as ‘expected polynomial time’ – recall the random variable tA(x) from Definition 6.3.1.

Proposition 6.3.12 Let Q be a problem. The following are equivalent.

1. Q ∈ ZPP.
2. There is a positive polynomial p and a probabilistic polynomial time machine A that

honestly accepts Q such that Pr[A(x) = ◻] ⩽ 1 − 1/p(∣x∣) for all x ∈ {0,1}∗.
3. For all polynomials q there is a probabilistic polynomial time machine A that honestly

accepts Q such that Pr[A(x) = ◻] ⩽ 2−q(∣x∣) for all x ∈ {0,1}∗.
4. There are a polynomial p and a time bounded probabilistic machine B such that

Pr[B(x) = χQ(x)] = 1 and E[tB(x)] ⩽ p(∣x∣) for all x ∈ {0,1}∗.

Proof: (3) trivially implies (2) and that (2) implies (1) follows as in Proposition 6.3.5.
(1) implies (3): let q be a polynomial and apply Proposition 6.3.5 to get A0 and A1

that decide {0,1}∖Q and Q with one-sided error 2−q(∣x∣). A machine as in (3) runs A0 and

74

6.4. HASHING CHAPTER 6. RANDOMNESS

A1 and rejects if A0 accepts, accepts if A1 accepts and answers ‘I don’t know’ otherwise.
On every input x ∈ {0,1}∗, exactly one of A0 and A1 can possibly accept and does so with
probability ⩾ 1 − 2−q(∣x∣). Hence, the output ‘I don’t know’ has probability ⩽ 2−q(∣x∣).

(3) implies (4): let A witness (3) for q(n) ∶= 1. Given x run A repeatedly until it outputs
≠ ◻, i.e., χQ(x); in parallel run a machine deciding Q. This is gives a time bounded machine
B deciding Q, so the random variable tB(x) is defined. The expected number of repetitions
is ⩽ ∑∞

t=1 ⋅t ⋅ 2−t. This converges by the ratio test: (t + 1)2−(t+1)/(t2−t) →t 1/2 < 1.
(4) implies (2): let p,B witness (4). On x ∈ {0,1}∗ run B for at most 2p(∣x∣) steps. If

it halts, answer accordingly, otherwise answer ‘I don’t know’. By Markov’s inequality the
latter happens with probability ⩽ 1/2. This witnesses (2) with p(n) ∶= 2. ◻

6.3.4 Adleman’s trick

Theorem 6.3.13 (Adleman 1978) BPP ⊆ P/poly.

Proof: Let Q ∈ BPP. By Proposition 6.3.6 there exists a polynomial p and a p-time
bounded probabilistic Turing machine A such that for all x ∈ {0,1}n we have Pr[A(x) ≠
χQ(x)] ⩽ 2−(n+1). This means that at most a 2−(n+1) fraction of y ∈ {0,1}p(n) are bad for x
in the sense that they determine a run of A on x with a wrong answer. There are at most
2n ⋅ 2−(n+1) ⋅ 2p(n) many ys that are bad for some x. Hence there exists a y that is not bad
for any x ∈ {0,1}n. Given such a y as advice a(n) on instances of length n allows to decide
Q in polynomial time. Then Q ∈ P/poly by Proposition 5.1.4. ◻

Recalling the Karp-Lipton Theorem 5.1.8, this yields:

Corollary 6.3.14 If NP ⊆ BPP, then PH = ΣP
2 .

6.4 Hashing

We view {0,1}n as the n-dimensional vector space Fn
2 over the 2 element field F2 = {0,1}.

Note 0n is the zero vector and vector addition x + y equals vector subtraction x − y. The
dot product is ⟨x1⋯xn, y1⋯yn⟩ ∶= ∑i∈[n] xiyimod2. Note e.g. ⟨110,110⟩ = 0 in F3

2.
For m,n > 0 the set of m × n matrices over F2 is denoted Fm×n

2 .

Definition 6.4.1 For positive n,m ∈ N let Hm,n be the set of affine maps from Fn
2 to Fm

2 ,
i.e., maps of the form x↦ Ax + b where A ∈ Fm×n and b ∈ Fm

2 .

In this section we progressively prove three lemmas about the hash family Hm,n, each
one triggering an algorithmic application.

Remark 6.4.2 In the terminology of algorithmics, a hash family is a set of hash functions
from a large set of keys (above {0,1}n) to small set of hashes (above {0,1}m for m < n).
Clearly, every hash functions has collisions: distinct keys with the same hash. Choosing a
random hash function, any pair of distinct keys has collision probability 2−m. A 2-universal
hash family achieves the same collision probability but is typically much smaller and can
be efficiently sampled and evaluated. We avoid all this general terminology.

75

6.4. HASHING CHAPTER 6. RANDOMNESS

Exercise 6.4.3 Let F be a finite field. Let H be the set of functions x ↦ a ⋅ x + b for
a, b ∈ F. Let h be uniformly distributed in H. Let x,x′, y, y′ ∈ F with x ≠ x′. Show

Pr[h(x) = y,h(x′) = y′] = ∣F∣−2.

Conclude that the random variables h(x), x ∈ F, are pairwise independent, uniformly dis-
tributed in F, and have collision probability Pr[h(x) = h(x′)] = ∣F∣−1.

6.4.1 Trading randomness for alternation

Our first insight about Hm,n is that it is 2-universal:

Lemma 6.4.4 Let n,m ∈ N be positive and let h be uniformly distributed in Hm,n. Then
h(x) is uniformly distributed in Fm

2 for every x ∈ Fn
2 . Further, for all distinct y, z ∈ Fn

2

Pr[h(y) = h(z)] = 2−m.

Proof: If x ∈ Fn
2 ∖ {0n} and a is uniformly distributed in Fn

2 , then Pr[⟨a, x⟩ = 0] = 1/2.
Indeed, the set of a ∈ Fn

2 with ⟨a, x⟩ = 0 has the same size as the set of a ∈ Fn
2 with ⟨a, x⟩ = 1:

if, say, the i-th bit of x is 1, then flipping the i-th bit of a defines a bijection between the
sets. A uniformly distributed A in Fm×n

2 has independent uniformly distributed rows, so
Pr[Ax = z] = (1/2)m for every z ∈ Fm

2 and Ax is uniformly distributed in Fm
2 .

Note h(x) = Ax + b for A as above and uniformly distributed b in Fm
2 . For x = 0m,

h(x) = b is clearly uniformly distributed. For x ≠ 0m and y ∈ Fm
2 we have

Pr[h(x) = y] = ∑z∈Fm
2
Pr[Ax = (y − z)] ⋅Pr[b = z] = ∑z∈Fm

2
2−2m = 2−m,

where the first equality follows from the independence of A,b. The second statement
follows because h(y) = h(z) if and only if h(x) = 0m for x ∶= y − z ≠ 0n. ◻

Theorem 6.4.5 (Sipser-Gács 1983) BPP ⊆ ΣP
2 ∩ΠP

2 .

Proof: Let Q ∈ BPP. By Proposition 6.3.6 there is a polynomial p and a p-time bounded
probabilistic machine A such that Pr[A(x) /= χQ(x)] ⩽ 2−n for all x ∈ {0,1}n. Let Accx be
the set of y ∈ {0,1}p(n) that determine an accepting run of A on x. Deciding whether x ∈ Q
or not means distinguishing the cases that Accx is huge of size ⩾ 2p(n)(1 − 2−n) or tiny of
size ⩽ 2p(n)−n. Set m ∶= p(n) − n + 1.

Assume Accx is tiny and let y ∈ Accx. By the previous lemma, h(y) ≠ h(z) for all
z ∈ Accx ∖ {y} with probability ⩾ 1 − 2p(n)−n2−m = 1/2; we say h separates y. The expected
number of y ∈ Accx that h separates is ⩾ ∣Accx∣/2. Hence there exists a realization h1 ∈Hm,n

of h that separates at least half of the y ∈ Accx. For the rest of Accx we similarly find h2

separating half of its members. Continuing form > log ∣Accx∣ steps we find h1, . . . , hm ∈Hm,n

that isolates Accx: every y ∈ Accx is separated by some hj.
The existence of isolating h1, . . . , hm implies that Acc(x) is not huge: every hj is injective

on the ys it separates, so there is an injection from Acc(x) into m copies of Fm
2 , a set of

size m2m < 2p(n)(1 − 2−n) for large enough n.

76

6.4. HASHING CHAPTER 6. RANDOMNESS

Thus, x ∉ Q if and only if there exist isolating h1, . . . , hm. This existence is straight-
forwardly checked by a 2-alternating polynomial time machine. By Proposition 4.3.10,
{0,1}∗ ∖Q ∈ ΣP

2 , so Q ∈ ΠP
2 . Thus, BPP ⊆ ΠP

2 . But then also BPP = coBPP ⊆ coΠP
2 = ΣP

2 . ◻

Remark 6.4.6 In this proof we could have worked with A ∈ Fm×n
2 instead h ∈Hm,n.

Second proof (Lautemann): Let Q ∈ BPP. Similarly as before is suffices to show BPP ⊆ Σ2P.
By Proposition 6.3.6 there is a polynomial p and a p-time bounded probabilistic machine A
such that Pr[A(x) /= χQ(x)] ⩽ 2−n for all x ∈ {0,1}n. View {0,1}p(n) as Fp(n)

2 and let Gx be

the set of those y ∈ Fp(n)
2 that determine a run of A on x with output χQ(x).

For some ℓ ∈ N to be determined later, let y1, . . . ,yℓ be independent and uniformly
distributed in Fp(n)

2 . For X ⊆ Fp(n)
2 and y ∈ Fp(n)

2 write X + y ∶= {y′ + y ∣ y′ ∈ X}. Since the
map y′ ↦ y′ + y is a bijection, the random variables y1 + y, . . . ,yℓ + y are also independent
and uniformly distributed in Fp(n)

2 . Thus, letting y range over Fp(n)
2 , (and recall + is −)

Pr[⋃ℓ
i=1Gx + yi = Fp(n)

2] ⩾ 1 −∑y Pr[y ∉ ⋃ℓ
i=1Gx + yi]

= 1 −∑y∏ℓ
i=1Pr[yi + y ∉ Gx]

⩾ 1 − 2p(n) ⋅ (2−n)ℓ.

This is positive for ℓ ∶= p(n). Thus there exist y1, . . . , yℓ ∈ Fp(n)
2 such that

⋃ℓ
i=1Gx + yi = Fp(n)

2 .

This is the core of the argument – roughly said: a few random shifts of the set of good
runs cover all runs.

Write Accx for the ys that determine accepting runs of A on x. We claim that

x ∈ Q ⇐⇒ ∃y1, . . . , yℓ ∈ Fp(n)
2 ∀y ∈ Fp(n)

2 ∶ {y + y1, . . . , y + yℓ} ∩Accx ≠ ∅,

for all x ∈ {0,1}n provided n is large enough. Then Q ∈ Σ2P and we are done.
If x ∈ Q, then Gx = Accx. As seen above, there exist y1, . . . , yℓ such that ⋃ℓ

i=1Accx + yi =
Fp(n). In other words, for all y there is i such that y + yi ∈ Accx.

If x ∉ Q, then ∣Accx∣ ⩽ 2−n ⋅ 2p(n). Let y1, . . . , yℓ ∈ Fp(n)
2 be arbitrary. Note ⋃ℓ

i=1Accx + yi
has size ⩽ ℓ ⋅ 2−n ⋅ 2p(n) < 2p(n) for n large enough (recall ℓ = p(n)). Hence, there exists
y ∈ {0,1}p(n) ∖⋃ℓ

i=1Accx + yi, in other words, {y + y1, . . . , y + yℓ} ∩Accx = ∅. ◻

6.4.2 Witness isolation

Our second insight about Hm,n strengthens 2-universality:

Lemma 6.4.7 Let m,n ∈ N be positive. For h uniformly distributed in Hm,n, the variables
h(x), x ∈ Fn

2 , are pairwise independent.

77

6.4. HASHING CHAPTER 6. RANDOMNESS

Proof: Let A and b be uniformly distributed in Fm×n
2 and Fm

2 and let x,x′ ∈ Fn
2 be distinct.

Further, let y, y′ ∈ Fm
2 and let E and E′ denote the events that Ax+b = y and Ax′+b = y′.

We have to show that E,E′ are independent or, equivalently, Pr[E′ ∣ E] = Pr[E′].
By Lemma 6.4.4, Pr[E] = Pr[E′] = 2−m. Now,

Pr[E′ ∣ E] = Pr[Ax′ + (y −Ax) = y′ ∣ E] = Pr[A(x − x′) = y′ − y ∣ E].
If we can omit the condition on E, this equals 2−m = Pr[E′] since x−x′ ≠ 0n (see the proof
of Lemma 6.4.4) and we are done. And indeed for every F ⊆ Fm×n

2

Pr[A ∈ F ∣ E] = ∑A∈F Pr[A = A ∣ E] = ∑A∈F Pr[E ∣A = A] ⋅ Pr[A=A]Pr[E] = Pr[A ∈ F]

because Pr[E ∣A = A] = Pr[b = y −Ax] = 2−m = Pr[E]. ◻
For a circuit C = C(X1, . . . ,Xn) we write C−1(1) ∶= {x ∈ {0,1}n ∣ C(x) = 1}.

Theorem 6.4.8 (Valiant-Vazirani 1985) There is a probabilistic polynomial time algo-
rithm that given a positive n ∈ N in unary outputs a circuit C with n input variables such
that for every nonempty S ⊆ {0,1}n with probability ⩾ 1/(8n)

∣S ∩C−1(1)∣ = 1.
Proof: A on 1n chooses uniformly at random some 2 ⩽m ⩽ n+1 and h ∈Hm,n, and outputs
a circuit with n input variables that accepts x ∈ {0,1}n if and only if h(x) = 0m.

Let ∅ ≠ S ⊆ {0,1}n and s ∶= ∣S∣. With probability ⩾ 1/n the algorithm chooses some
m with 2m−2 ⩽ s ⩽ 2m−1. We are left to show that in this case its random choice h ∈ Hm,n

maps exactly one x ∈ S to 0m with probability ⩾ 1/8.
By inclusion-exclusion and the previous lemma, h maps at least one x ∈ S to 0m with

probability at least

∑x∈S Pr[h(x) = 0m] − ∑y,z∈S
y≠z

Pr[h(y) = h(z) = 0m] ⩾ s ⋅ 2−m − s2/2 ⋅ 2−2m.

Note s2/2⋅2−2m upper bounds the probability that hmaps at least 2 elements of S to 0m.
It follows that h maps exactly one element of S to 0m with probability ⩾ s ⋅2−m−s2 ⋅2−2m =
s2−m(1 − s2−m). This is ⩾ 1/8 because 1/4 ⩽ s2−m ⩽ 1/2. ◻

An interesting corollary is that it is apparently hard to decide 3Sat on CNFs ‘promised’
to have at most one satisfying assignment. As for notation, given circuits C,C ′ of sizes
s, s′, we let C ∧C ′ be the straightforwardly defined circuit of size s + s′ + 1 that computes
the conjunction, i.e., the minimum of the output bits of C,C ′.

Corollary 6.4.9 Assume NP /⊆ RP. Then there is no polynomial time algorithm that
rejects unsatisfiable 3CNFs and accepts 3CNFs with exactly one satisfying assignment.

Proof: Assume there is such an algorithm B and let r be the polynomial time reduction
from Circuit Sat to 3Sat from Lemma 2.3.10. Given a circuit C with n input variables,
run B on r(C ∧ A(1n)) where A is from the previous theorem. If C is unsatisfiable,
then, with probability 1, so is r(C ∧ A(1n)) and B rejects. If C is satisfiable, then, with
probability 1/(8n), C∧A(1n) has exactly one satisfying assignment. Inspecting the proof of
Lemma 2.3.10, then also r(C ∧A(C)) has exactly one satisfying assignment, so B accepts.

By Proposition 6.3.5, Circuit Sat is in RP. ◻

78

6.4. HASHING CHAPTER 6. RANDOMNESS

6.4.3 Approximate counting

We analyzed the probability that the random variable ∣S ∩ h−1(0m)∣ has value 1. The
following is a tail inequality for this random variable - our third insight about Hm,n:

Lemma 6.4.10 (Hashing Lemma) Let n,m > 0 be natural, ϵ > 0 real, h uniformly
distributed in Hm,n and S ⊆ Fn

2 . Set µ ∶= ∣S∣/2m. Then

Pr [∣∣S ∩ h−1(0m)∣ − µ∣ ⩾ ϵµ] < 1/(ϵ2µ).

Proof: By Lemma 6.4.7, the indicator variable Ix of the event h(x) = 0m has expecta-
tion 2−m. The variable ∣S ∩ h−1(0m)∣ equals ∑x∈S Ix, so has expectation µ.

Its variance is the sum of Var[Ix] by Bienaymé because the Ix are pairwise independent
by Lemma 6.4.7. Since I2x = Ix, we have Var[Ix] = E[I2x] −E[Ix]2 = 2−m − 2−2m < 2−m. Hence
∣S ∩ h−1(0m)∣ has variance < µ. Now apply Chebychev’s inequality. ◻

Theorem 6.4.11 (Stockmeyer 1985) There is a probabilistic polynomial time algorithm
with an NP oracle that given a circuit C a natural a > 0 in unary and a natural e > 1 in
binary with probability > 1 − 1/e ouputs a rational ŝ such that

s ⋅ (1 − 1/a) ⩽ ŝ ⩽ s ⋅ (1 + 1/a),

where s is the number of satisfying assignments of C.

Proof: The proof proceeds in 3 steps: first we give a weak approximation, then we boost
the approximation, and then the success probability.

Weak approximation: assume C has n input variables, and set S ∶= C−1(1) ⊆ {0,1}n. Note
s = ∣S∣ and set ℓ ∶= ⌊log s⌋. The algorithm uses an NP-oracle to check whether ℓ < 4 and in
case computes ŝ ∶= s . Otherwise, the algorithm proceeds in rounds for m = 1, . . . , n. In
round m it chooses uniformly at random some hm ∈Hm,n and queries an NP-oracle whether
S ∩ h−1m (0m) = ∅. If the oracle answers “yes”, it halts with output ŝ ∶= 2m.

The crucial insight is that with high probability this algorithm halts in a round close
to m = ℓ. More precisely, with probability > 3/4 the algorithm halts in a round m between
ℓ−3 and ℓ+4. Indeed, let hm ∈ Hm,n be the random choice in round m and let µm ∶= s/2m.

– For m ⩽ ℓ − 4, the event S ∩ h−1m (0m) = ∅ implies ∣S ∩ h−1m (0m) − µm∣ = µm and hence
has probability < 1/µm = 2m/s ⩽ 2m−ℓ by the Hashing Lemma (with ϵ ∶= 1); hence, the
probability that the algorithm halts in any such round m is at most ∑ℓ−4

m=0 2
m−ℓ < 1/8.

– The probability that the algorithm does not halt in round m ∶= ℓ+4 is the probability
of S ∩ h−1m (0m) ≠ ∅ and this is ⩽ E[∣S ∩ h−1m (0m)∣] = s/2m < 2ℓ+1/2m = 1/8.

Thus, with probability > 3/4 the output ŝ = 2m satisfies s/16 ⩽ 2ℓ−3 ⩽ ŝ ⩽ 2ℓ+4 ⩽ 16s.
Boosting approximation: for c ∈ N define Cc as the conjunction of c copies of C with
disjoint input variables. Then Cc has sc many satisfying assignments. On Cc, the weak

79

6.4. HASHING CHAPTER 6. RANDOMNESS

approximation returns sc/16 ⩽ ŝ ⩽ 16sc with probability > 3/4. Then s/161/c ⩽ ŝ1/c ⩽ 161/cs.
For a given a choose c ⩽ O(a) so that 1/161/c ⩾ 1 − 1/(2a) and 161/c ⩽ 1 + 1/a. Output a
rational below ŝ1/c and above ŝ1/c − 1/(2a).
Boosting success: repeat this algorithm r times and output a median of the outputs. If
this fails to produce an approximation as desired, then ⩾ r/2 repetitions failed while we
expect < r/4 to fail. By Chernoff, this has probability < 1/e for suitable r ⩽ O(log e). ◻

6.4.4 Approximate sampling

Self-reducibility shows that an NP-oracle allows to compute a satisfying assignment for a
given satisfiable circuit (Theorem 2.6.2) in polynomial time. We now show that, adding
randomness, we can produce an almost uniformly distributed satisfying assignment.

Definition 6.4.12 The total variation distance of two random variables x,y with values
in a finite set Z is

d(x,y) ∶= 1

2
∑
z∈Z

∣Pr[x = z] −Pr[y = z]∣.

For ϵ > 0, x is ϵ-uniform in Z if d(x,y) < ϵ for y uniformly distributed in Z.

Exercise 6.4.13 Show that

d(x,y) =max
U⊆Z
(Pr[x ∈ U] −Pr[y ∈ U]).

Let A be an event with positive probability, and A its complement. Let x,y be random
variables such that Pr[x = z ∣ A] = Pr[y = z] for all z ∈ Z. Show that d(x,y) ⩽ Pr[A].

Theorem 6.4.14 (Jerrum, Valiant, Vazirani 1986) There is a probabilistic polyno-
mial time algorithm A with an NP oracle that given a satisfiable circuit C and a natural
e > 0 in binary, has output 1/e-uniform in C−1(1).

Proof: Assume C has n > 0 input variables and C−1(1) = {x ∈ {0,1}n ∣ C(x) = 1} ≠ ∅. For
y ∈ {0,1}⩽n let Cy be C with the bits of y substituted for the first ∣y∣ variables of C; note
Cy(z) = C(yz) for all z ∈ {0,1}n−∣y∣ and Cλ = C for the empty string λ.

Our sampler computes a sample y1⋯yn bit by bit for i = 1, . . . , n. Having computed y ∶=
y1⋯yi−1, it computes an approximation a(y0) of C−1

y0 (1), and similarly a(y1). It sets yi = 0
with probability p(y0) ∶= a(y0)/a(y) and yi = 1 with probability p(y1) ∶= a(y1)/a(y)
and stops with output none with probability 1 − p(y0) − p(y1) – if any of these so-called
probabilities is < 0 or > 1, the sampler outputs fail. Here, a(y) is positive and has been
computed earlier; for i = 1 we compute a(λ) and output fail if it is not positive.

Suitable approximations a(y) for y of length n are 1 or 0 depending on whether C(y) = 1.
This ensures that the sampler outputs only strings in C−1(1) or none or fail.

For shorter y we compute a(y) as follows. Choose b ⩽ O(2ne) and a ⩽ O(n) such that

(∣bin(e)∣ + 1) ⋅ 2n/b < 1/(4e) and 1 − (1 + 1/a)−(3n+1) < 1/2.

80

6.5. LEARNING AND ANTICHECKERS CHAPTER 6. RANDOMNESS

Let t, polynomial in ∣C ∣, bound the running time of the algorithm A of Theorem 6.4.11 on
(Cy,1a, bin(b)) for all y ∈ {0,1}<n. The sampler guesses z ∈ {0,1}t uniformly at random in
the beginning and computes all required a(y) as the product of (1 + 1/a)3(n−∣y∣) with the
output of the run of A on (Cy,1a, bin(b)) determined by z.

If z is good in the sense that all these runs of A produce approximations as desired,
then the sampler does not output fail. Indeed, then a(y0) + a(y1) ⩽ a(y) because:

a(y0) + a(y1) ⩽ (1 + 1/a)3(n−∣y∣−1) ⋅ (1 + 1/a) ⋅ (∣C−1
y0 (1)∣ + ∣C−1

y1 (1)∣),
a(y) ⩾ (1 + 1/a)3(n−∣y∣) ⋅ (1 − 1/a) ⋅ ∣C−1

y (1)∣.

Further, for good z, the sampler outputs every y1⋯yn ∈ C−1(1) with probability

a(y1)
a(λ)

⋅ a(y1y2)
a(y1)

⋅ ⋯ ⋅ 1

a(y1⋯yn−1)
= 1

a(λ)
.

As it does not output fail, it outputs none with probability (recall the choice of a)

1 − ∣C
−1(1)∣
a(λ)

⩽ 1 − 1

(1 + 1/a)3n+1
< 1/2.

A random z ∈ {0,1}t is good with probability ⩾ 1 − 2n/b. Conditioned on this, the
sampler outputs all y ∈ C−1(1) with the same probability and none with probability < 1/2.

Now, run this sampler ∣bin(e)∣ + 1 times and output none if all runs output none;
otherwise output the first output distinct from none. The event A that all the ∣bin(e)∣ + 1
many z’s chosen in these runs are good has probability ⩾ 1 − (∣bin(e)∣ + 1)2n/b. By choice
of b this is > 1−1/(4e). Conditioned on A, output none now has probability < 1/2∣bin(e)∣+1 <
1/(2e) while all y ∈ C−1(1) are still output with the same probability.

Change output none to an element of C−1(1), found with the help of the NP-oracle.
This element of C−1(1) is then oversampled by an additive factor < 1/(2e), so we sample
1/(4e)-close to uniform conditioned on A. Thus, without the condition, we sample 1/(2e)-
close to uniform by Exercise 6.4.13.

We chose the numbers to end up with 1/(2e) instead 1/e in order to address a final
subtle point: our sampler tosses loaded coins that tail with some probability q ≠ 1/2, e.g.,
q = p(y1). This can be simulated with k fair coins if q is of the form k′/2k for k, k′ ∈ N.
Otherwise compute such a number c with q ⩽ c ⩽ (1 + 2−ℓ)q for suitable ℓ ∈ N; then also
1 − c ⩽ (1 + 2−ℓ)(1 − q). This way, the simulation of a run with ⩽ O(n) loaded coins has
probability larger by a multiplicative factor ⩽ (1+2−ℓ)O(n). For suitable ℓ ⩽ O(logn+ log e)
this is ⩽ 1 + 1/(2e). Thus the sampler with fair coins is 1/e-uniform. ◻

6.5 Learning and anticheckers

The following implies the existence of anticheckers for a function requiring large circuits:
a small number of input-output pairs of f that cannot be computed by any circuit of
somewhat smaller size. Recall a size ⩽ s circuit can be coded by 10s⌈log s⌉ bits.

81

6.5. LEARNING AND ANTICHECKERS CHAPTER 6. RANDOMNESS

Proposition 6.5.1 For every f ∶ {0,1}n → {0,1} and n, s ∈ N one of the following is true:

(a) f can be computed by a circuit of size O(sn);
(b) there are m ⩽ O(s log s) many x1, . . . , xm such that for every circuit C of size ⩽ s

there is i ∈ [m] such that C(xi) ≠ f(xi).

Proof: We construct finite sequences x1, . . . , xm of length n binary strings and C0, . . . ,Cm
of sets of circuits of size ⩽ s with n input variables. C0 is the set of all such circuits. Given
Ci we either construct Ci+1, xi+1 or stop (with m ∶= i). The former happens in case Ci ≠ ∅
and there exists xi+1 ∈ {0,1}n such that Ci+1 ∶= {C ∈ Ci ∣ C(x) = f(x)} has size ⩽ 3/4∣Ci∣.

Then ∣Ci∣ ⩽ (3/4)i ⋅ ∣C0∣ ⩽ (3/4)i ⋅ 210s⌈log s⌉. Thus, m ⩽ O(s log s). The construction stops
either because Cm = ∅ or because no xm+1 as required exists.

In the former case, x1, . . . , xm witness (b). In the latter case, we verify (a) as follows.
Choose ℓ circuits independently and uniformly at random from Cm. We determine ℓ below.
For i ∈ [ℓ] and x ∈ {0,1}n, let Ixi be the indicator variable for the event that the ith chosen
circuit computes f(x) on x. Then Ixi has expectation µ ⩾ 3/4. Let C compute the majority
output of the ℓ random circuits. The event C(x) ≠ f(x) implies µ − 1

ℓ ∑
ℓ
i=1 I

x
i ⩾ 1/4, so has

probability < 2 ⋅e−ℓ/8 by Chernoff. For suitable ℓ ⩽ O(n) this is < 2−n. Then the probability
that C(x) ≠ f(x) for at least one x ∈ {0,1}n is < 1. Thus, there exists a realization of C
that computes f . It has a circuit of size O(s ⋅ ℓ) by the next lemma. ◻

For n ∈ N the majority function majn maps x1⋯xn ∈ {0,1}n to 1 if ∑n
i=1 xi ⩾ n/2, and

otherwise to 0.

Lemma 6.5.2 There is a polynomial time algorithm that maps every 1n for n ∈ N to a
size O(n) circuit computing majn.

Proof: It suffices to consider the case n = 2k for some k. There is a constant size circuit
that maps 3 bits x, y, z to two bits u, v such that x + y + z = 2u + v. Compute bits u1, v1
and u2, v2 and . . . and u2k−1 , v2k−1 such that 0+ x1 + x2 = 2u1 + v1, and v1 + x3 + x4 = 2u2 + v2
and . . . and v2k−1−1 + x2k−1 + x2k = 2u2k−1 + v2k−1 . This can be done in size O(2k). Then

∑2k

i=1 xi = 2∑2k−1
j=1 uj + v2k .

Then maj2k(x1⋯x2k) = maj2k−1(u1⋯u2k−1). Thus, if sk denotes the size of a circuit for maj2k ,
then sk ⩽ sk−1 +O(2k). Hence sk ⩽ O(2k), as claimed.

The polynomial time computability of such a circuit is easy to check. ◻
Proposition 6.5.1 is proved by the probabilistic method, so is non-constructive. We now

prove a constructive variant. Applied to a problem Q with small circuits, it implies that
somewhat larger circuits can be learned in probabilistic polynomial time with the help of a
teacher: the teacher can answer queries to Sat, and answer whether a candidate circuit has
false positives or false negatives. More formally, the latter two are oracles for the problems:

FpQ

Input: a circuit C with n input variables.
Problem: is there a false positive, i.e., some x ∈ {0,1}n with C(x) > χQ(x)?

82

6.5. LEARNING AND ANTICHECKERS CHAPTER 6. RANDOMNESS

FnQ

Input: a circuit C with n input variables.
Problem: is there a false negative, i.e., some x ∈ {0,1}n with C(x) < χQ(x)?

Formally, an algorithm with three oracles X1,X2,X3 ⊆ {0,1}n is an algorithm with
oracle that contains the strings 00x for x ∈X1, 01x for x ∈X1 and 11x for x ∈X3.

Theorem 6.5.3 Let Q be a problem. There is a probabilistic polynomial time algorithm
with oracles Sat, FpQ, FnQ that given n, s ∈ N in unary and positive b ∈ N in binary
outputs fail with probability < 1/b and otherwise outputs

(a) a size O(sn) circuit with n input variables that computes χQ on {0,1}n; or,
(b) a set A ⊆ {0,1}n such that for every circuit C of size at most s with n input variables

there is x ∈ A such that C(x) ≠ χQ(x).

Proof: Code circuits of size at most s with n variables by strings of length exactly 10s⌈log s⌉.
For A ⊆ {0,1}n let CA ⊆ {0,1}10s⌈log s⌉ denote the set of codes of such circuits C such that
C(x) = χQ(x) for all x ∈ A.

A high level description of the algorithm looks as follows. We determine ℓ later.

1. A← ∅
2. if CA = ∅ then output A

3. sample C1, . . . ,Cℓ from CA
4. compute a circuit C computing the majority of C1, . . . ,Cℓ

5. if C computes χQ on {0,1}n then output C

6. compute x ∈ {0,1}n with C(x) ≠ χQ(x)
7. A← A ∪ {x}
8. goto 2

To implement line 3 the algorithm computes not only A but also the answer bits
χQ(x), x ∈ A. Then it is easy to check whether a given circuit is in CA. The Fundamental
Lemma allows to compute a circuit D with 10s⌈log s⌉ variables that accepts precisely
the strings in CA. This takes time polynomial in ∣A∣ ⋅ n ⋅ s. Then run the sampler from
Theorem 6.4.14 independently for ℓ times on (D, bin(8)).

Line 4 is implemented using Lemma 6.5.2 in time polynomial in ℓ ⋅s and the if-condition
in line 5 is checked with two oracle queries, one to FpQ and one to FnQ.

Line 6 is entered only if one of these two queries is answered ‘yes’, say FpQ. In this case
line 6 computes a false positive x with answer bit χQ(x) = 0. This is done by binary search
with O(logn) queries to FpQ. These queries determine for various z ∈ {0,1}n whether

83

6.5. LEARNING AND ANTICHECKERS CHAPTER 6. RANDOMNESS

there exists a false positive x ⩽lex z. Such a query is an easily constructed circuit that
accepts exactly those x ∈ {0,1}n with C(x) = 1 and x ⩽lex z.

Clearly, the outputs in lines 2 and 5 accord to (b) and (a). We show that the algorithm
can be stopped after polynomial time with output fail such that this output is unlikely.

Call a jump in line 8 good if CA shrinks at least by a factor of 3/4. We claim a jump is
good with probability > 1−1/(2b). After m ⩽ O(s log s) good jumps, the algorithm halts in
line 2. We stop the algorithm after 2m jumps with output fail. In expectation < 2m/(2b)
of them are not good, so m of them are not good with probability < 1/b by Markov.

We are left to prove the claim. Call x ∈ {0,1}n good (for A) if ∣CA∪{x}∣ ⩽ 3∣CA∣/4.
Let Ixi be the indicator variable of the event that the ith circuit sampled in line 3 maps x
to χQ(x). This circuit is 1/8-uniform in CA. If x is not good, then Ixi has expectation
µ ⩾ 3/4 − 1/8. Let C be the random circuit computed in line 4. Then C(x) ≠ f(x)
implies µ− 1/ℓ∑ℓ

i=1 I
x
i ⩾ 5/8− 1/2. By Chernoff, this has probability < 2−n/(2b) for suitable

ℓ ⩽ O(n ⋅ ∣bin(b)∣). Thus, with probability > 1 − 1/(2b) all x ∈ {0,1}n are good, and, in
particular, the x computed in line 6. ◻

Remark 6.5.4 The learner constructed in the previous proof needs only equivalence queries
instead FPQ,FNQ: a type of oracle that answers whether a given C computes χQ and pro-
vides a counterexample, if not. Learning theory considers still weaker oracles, prominently
membership queries (i.e., oracle Q) and might additionally require the learner to draw its
queries according to some distribution. Often the output circuit is desired to compute χQ

only on most inputs (according to some distribution). Such probably almost correct (PAC)
learning contrasts with the exact learning considered here.

For the following we assume that formulas are encoded in a way ensuring the following:
there is a polynomial time algorithm that maps a bit b ∈ {0,1} and formula α with at least
one variable to a formula αb of the same encoding length as α that is equisatisfiable to and
has the same variables as the formula α with its first variable substituted by b.

Theorem 6.5.5 For Q = Sat there exists an algorithm as in Theorem 6.5.3 but without
the oracles FpSat,FnSat.

Proof: We show how to implement line 5 and 6 in polynomial time using an NP oracle.
An NP oracle can decide whether C has a false negative. If so, it can construct such an x
with n queries to the NP oracle determining whether C has a false negative extending a
given string y of length < n.

Similarly, an NP oracle allows to decide and witness whether C is stupid: it accepts
some x ∈ {0,1}n that does not encode a formula or encodes a false Boolean sentence.

So assume C does not have false negatives and is not stupid. We claim that C does
not compute Sat on {0,1}n if and only if there exists a length n formula with at least one
variable such that C accepts α but rejects both α0 and α1.

This suffices: with an NP oracle we can decide whether there exists such an α, and in
case construct one in polynomial time.

84

6.5. LEARNING AND ANTICHECKERS CHAPTER 6. RANDOMNESS

We are left to prove the claim. The direction from right to left is trivial. Conversely,
assume the l.h.s.. Since C does not have false negatives, there is an unsatisfiable length n
formula accepted by C. Choose such a formula α with a minimum number of variables.
Since C is not stupid, this number is positive. Then C rejects both α0 and α1. ◻

6.5.1 An improvement of the Karp-Lipton theorem

It is straightforward to relativize RP to an oracle X ⊆ {0,1}∗: the class RPX contains those
Q ⊆ {0,1}∗ such that there exists a probabilistic polynomial time machine A with oracle X
such that Pr[A(x) = 1] is ⩾ 3/4 if x ∈ Q, and = 0 if x ∉ Q. Then ZPPX is RPX ∩ coRPX ,
and it is easy to verify an analogue of Proposition 6.3.12.

The following improves Theorem 5.1.8.

Corollary 6.5.6 If NP ⊆ P/poly, then PH ⊆ ZPPSat.

Proof: By Theorem 4.3.7 it suffices to show that ΣtSat ∈ ZPPNP for every positive t ∈ N.
We give the proof for t = 3; the generalization to arbitrary t will be apparent.

Let a length n instance

∃X̄1∀X̄2∃X̄3 α(X̄1, X̄2, X̄3)

with quantifier free α be given. For notational simplicity assume all X̄i have length ℓ ∈ N.
Use an encoding of formulas such that for all x1, x2 ∈ {0,1}ℓ the formulas α(x1, x2, X̄3) are
coded by strings of the same length m1, polynomial in n.

Choose s1 polynomial in (m1, hence in) n, such that Sat has a size s1 circuit on input
length m1. Run the learner from Theorem 6.5.5 on (1m1 ,1s1 , bin(n)) (for t = 3, bin(4)
would work too). If it outputs fail, halt and output ‘I don’t know’. This happens with
probability < 1/n. Otherwise it outputs a circuit D1 of size polynomial in n that computes
χSat on {0,1}m1 . By the Fundamental Lemma, construct a circuit E1(X̄1, X̄2) of size
polynomial in n that computes the code of α(x1, x2, X̄3) from x1, x2 ∈ {0,1}ℓ. Let C1 be
the circuit that feeds the m1 outputs of E1 to the input variables of D1.

Then our instance is a ‘yes’ instance if and only if

∃x1 ∈ {0,1}ℓ¬∃x2 ∈ {0,1}ℓ ∶ C1(x1, x2) = 0.

By the Cook-Levin Theorem and the Fundamental Lemma, compute a circuit that
given x1 ∈ {0,1}ℓ computes a formula βx1 that is satisfiable if and only if ∃x2 ∈ {0,1}ℓ ∶
C1(x1, x2) = 0. We assume all these formulas have the same length m2, polynomial in n.
As before, the learner either outputs fail with probability < 1/n, and then answer ‘I don’t
know’, or a circuit D2 of size polynomial in n that computes χSat on {0,1}m2 . As before,
construct a circuit C2(X̄1) of size polynomial in n that on x1 ∈ {0,1}ℓ runs D2 on βx1 .

Then our instance is a ‘yes’ instance if and only if

∃x1 ∈ {0,1}ℓ ∶ C2(x1) = 0.

85

6.6. EXACT COUNTING CHAPTER 6. RANDOMNESS

This can be answered using the NP oracle. This algorithm either outputs the right answer
or ‘I don’t know’. The latter output has probability < 2/n. As in Proposition 6.3.12,
Σ3Sat ∈ ZPPNP follows. ◻

Exercise 6.5.7 If Sat ∈ BPP, then PH ⊆ BPP.

6.6 Exact counting

Roughly speaking, we saw in Section 6.4.3 that approximately counting the number of
satisfying assignments is at most as hard as NP. In this section we show that exact
counting is at least as hard as PH.

6.6.1 Counting problems

For a polynomially bounded relation R ⊆ ({0,1}∗)2 in P and x ∈ {0,1}∗ write

R(x) ∶= {y ∈ {0,1}∗ ∣ (x, y) ∈ R}.

We considered the decision problem to decide whether R(x) = ∅, and the search problem
to compute a member of R(x) if nonempty. We now consider the counting problem to
compute ∣R(x)∣; note the length of this number is polynomially bounded in ∣x∣. E.g.,

#Sat
Input: a Boolean formula α.

Problem: compute the number of satisfying assignments of α.

More precisely, #Sat ∶ {0,1}∗ → N maps x ∈ {0,1}∗ to 0 if x does not encode a Boolean
formula and otherwise to the number of satisfying assignments to its variables. We define
#CircSat and #3Sat similarly requiring that α is a circuit or, respectively, a 3CNF.

Definition 6.6.1 The class #P is the set of all functions x↦ ∣R(x)∣ for some polynomially
bounded R ⊆ ({0,1}∗)2 in P. A function f ∶ {0,1}∗ → N is #P-complete if it is in #P and
#P-hard: every function g ∈ #P is in Pf , i.e., g can be computed in polynomial time with
an oracle for (the bitgraph of) f .

Proposition 6.6.2 #CircSat, #Sat and #3Sat are #P-complete.

Proof: Let R be a polynomially bounded relation in P. We can assume p(∣x∣) = ∣y∣ for some
polynomial p and all (x, y) ∈ R. The proof of the Cook-Levin Theorem 2.3.9 constructed
from x a circuit Cx that accepts precisely the strings in R(x), so #CircSat is #P-complete.
Lemma 2.3.10 gives parsimonious reductions: these map a circuit to a Boolean formula
with the same number of satisfying assignments, and a Boolean formula to a 3CNF also
with the same number of satisfying assignments. This implies #CircSat ∈ P#3Sat. ◻

86

6.6. EXACT COUNTING CHAPTER 6. RANDOMNESS

We showed in Section 2.6.1 that for NP-complete problems search reduces to decision.
Counting is clearly at least as hard as decision, and can be apparently harder: let R contain
(α, y) for a 3DNF α and y a satisfying assignment to its variables. The decision problem
dom(R) is trivial but #3Sat easily reduces to the counting problem x↦ ∣R(x)∣.

Remark 6.6.3 A more impressing such example is to count the number of perfect match-
ings in a given bipartite graph, or equivalently, to compute the permanent of a given square
matrix over F2. In 1979 Valiant showed these problems are #P-complete. In 2004 Jerrum,
Sinclair and Vigoda found fully polynomial randomized approximation schemes for them,
i.e., algorithms as in Stockmeyer’s Theorem 6.4.11 but without oracle.

6.6.2 Toda’s theorem

It is unknown whether the success probability 1/(8n) in the Valiant-Vazirani-Lemma can
be improved to a constant. We shall now observe that the probability can be boosted
when asking for an odd number of solutions instead of a unique one. This then allows to
eliminate quantifiers by parity quantifiers – we need some notation:

Extend Boolean logic by a parity quantifier and define ⊕-formulas: declare ⊕Xα a
⊕-formula whenever α is one. An assignment A satisfies ⊕Xα if exactly one of A 0

X and
A 1

X satisfies α; here, A b
X is the assignment that maps X to b and agrees with A on other

variables. Clearly, that an ⊕-formula is equivalent to another ⊕-formula or a quantified
Boolean formulas or a circuit means that they are satisfied by the same assignments. For
a tuple X̄ = X1⋯Xℓ we write ⊕X̄α for ⊕X1⋯ ⊕ Xℓα. A formula of this form with α a
Boolean formula is a strict ⊕-formula. The following is straightforward:

Exercise 6.6.4 Let X̄ be a tuple of pairwise distinct variables. Show that an assignment
A satisfies ⊕X̄α if and only if there is an odd number of assignments that satisfy α and
agree with A on variables outside X̄.

Lemma 6.6.5 For every t ∈ N there is a probabilistic polynomial time algorithm that given
m ∈ N in unary and a Σt-formula outputs with probability ⩾ 1 − 2−m an equivalent strict
⊕-formula.

Proof: The claim is trivial for t = 0. For t > 0 we can write our input formula equivalently
as ∃Ȳ ¬α(X̄, Ȳ) for α a Σt−1-formula. Inductively, we have an algorithm as desired for
Σt−1-formulas. Run it on 1m+1 and α(X̄, Ȳ). With probability ⩾ 1 − 2−m/2 it outputs a
strict ⊕-formula ⊕Z̄β(X̄, Ȳ , Z̄) equivalent to α. Assuming this we produce a formula as
desired with probability ⩾ 1 − 2−m/2 as follows.

For ℓ to be determined, run Valiant and Vazirani’s algorithm (Theorem 6.4.8) on 1∣Ȳ ∣

for ℓ times and get circuits C1(Ȳ), . . . ,Cℓ(Ȳ). Convert each Ci(Ȳ) to a formula γi(Ȳ , Ȳ ′)
with the same number of satisfying assignments. For every x ∈ {0,1}∣X̄ ∣ we have with
probability ⩾ 1 − (1 − 1/(8∣Ȳ ∣))ℓ that the sentence ∃Ȳ ¬α(x, Ȳ) is equivalent to

⋁ℓ
i=1⊕Ȳ Ȳ ′ (γi(Ȳ , Ȳ ′) ∧ ¬⊕Z̄β(x, Ȳ , Z̄)).

87

6.6. EXACT COUNTING CHAPTER 6. RANDOMNESS

Choose ℓ ⩽ O(m ⋅ ∣X̄ ∣ ⋅ ∣Ȳ ∣) so that this probability is ⩾ 1 − 2−∣X̄ ∣ ⋅ 2−m/2. Then, with
probability ⩾ 1 − 2−m/2 the equivalence holds simultaneously for all x ∈ {0,1}∣X̄ ∣, so the
formula ∃Ȳ ¬α(X̄, Ȳ) is equivalent to the formula above with x replaced by X̄.

We are left to explain how to compute an equivalent strict ⊕-formula. For a formula
δ(X̄, Ȳ) let #Ȳ δ be the function that maps x ∈ {0,1}∣X̄ ∣ to the number of satisfying assign-
ments (for Ȳ) of δ(x, Ȳ). For δȲ +(X̄, Ȳ , U) ∶= (U∧δ)∨(¬U∧⋀i Yi) we have #Ȳ Uδ

Ȳ + = #Ȳ δ+1.
Then ¬⊕Ȳ δ is equivalent to ⊕Ȳ UδȲ +. Further note that δ∧⊕Ȳ δ′ is equivalent to ⊕Ȳ (δ∧δ′)
if the variables Ȳ do not appear in δ. Hence, ∃Ȳ ¬α(X̄, Ȳ) is equivalent to

⋁ℓ
i=1⊕Ȳ Ȳ ′Z̄U (γi(Ȳ , Ȳ ′) ∧ βZ̄+(X̄, Ȳ , Z̄, U)).

Since we know how to handle ¬, we are left to transform a conjunction ⋀ℓ
i=1⊕Ȳiδi(X̄, Ȳi)

into a strict ⊕-formula. But, assuming the tuples Ȳi are pairwise disjoint,

⊕Ȳ1⋯Ȳℓ⋀ℓ
i=1 δi(X̄, Ȳi)

is equivalent because
#Ȳ1⋯Ȳℓ

⋀ℓ
i=1 δi = ∏ℓ

i=1 #Ȳi
δi

and a product of natural numbers is odd if and only if all of them are odd. ◻
This lemma implies PH ⊆ BPP#Sat: the truth value of ⊕X̄α(X̄) is the least significant

bit of the value of #Sat on α. The following is a clever derandomization of this algorithm.

Theorem 6.6.6 (Toda 1991) PH ⊆ P#Sat.

Proof: The polynomial p(x) ∶= 3x4 + 4x3 is a modulus amplifier in the sense that

– if a = −1mod b, then p(a) = −1mod b2,

– if a = 0mod b, then p(a) = 0mod b2,

for all a, b ∈ N. Given a formula α = α(X̄), we want a formula p[α] such that

#p[α] = p(#α),

where #α is the number of satisfying assignments of α. Note the conjunction β of 3 copies
of α with disjoint copies of its variables satisfies #β = (#α)3. We are left to construct sums:
for α(X1, . . . ,Xℓ), β(Y1, . . . , Yk), say k ⩾ ℓ, the formula γ ∶= (Z0∧α(Z1, . . . Zℓ)∧⋀ℓ<j⩽k Zj)∨
(¬Z0 ∧ α′(Z1, . . . , Zk)) satisfies #γ = #α + #β.

Note ∣p[α]∣ ⩽ O(∣α∣). Consider the sequence

α1 ∶= p[α], α2 ∶= p[α1], α3 ∶= p[α2], . . .

Then αℓ has size polynomial in 2ℓ ⋅ ∣α∣ and satisfies:

– if #α = −1mod2, then #αℓ = −1mod22
ℓ
,

– if #α = 0mod2, then #αℓ = 0mod22
ℓ
.

88

6.6. EXACT COUNTING CHAPTER 6. RANDOMNESS

Let t ∈ N. We show ΣtSat ∈ P#Sat. Choose an algorithm A according to the previous
lemma. Let the polynomial p(n) bound its running time on inputs (12, α) for Σt-sentences α
of length n. On such (12, α), its output yields with probability ⩾ 3/4 a Boolean formula
whose number of satisfying assignments mod2 is the truth value of α. For y ∈ {0,1}p(n) let
αy denote this formula for the run determined by y. Consider the relation R that contains
(α, ⟨y, z⟩) if and only if α is a Σt-sentence, say of length n, and y ∈ {0,1}p(n) and z codes
a satisfying assignment of αy

ℓ where ℓ ∶= ⌈log(p(n) + 1)⌉.
Note αy

ℓ has length polynomial in 2ℓ ⋅∣αy ∣ ⩽ O(p(n)2). Hence, R is polynomially bounded
and in P. Further, for α of length n,

∣R(α)∣ = ∑
y∈{0,1}p(n)

#αy
ℓ .

Assume first that α is true. If y ∈ {0,1}p(n) causes A to output a formula αy as desired,
it has 1 = −1mod2 satisfying assignments. Otherwise it has 0mod2 satisfying assignments.
Hence, at least a 3/4 fraction of the terms #αy

ℓ equal −1mod22
ℓ
and the rest 0mod22

ℓ
.

Hence, −∣R(α)∣mod22
ℓ
is ⩾ 3/4 ⋅ 2p(n).

Now assume that α is false. Then at least a 3/4 fraction of the terms equal 0mod22
ℓ

and the rest equals −1mod22
ℓ
. Hence, −∣R(α)∣mod22

ℓ
is ⩽ 1/4 ⋅ 2p(n).

Knowing ∣R(α)∣ thus allows to decide whether α is true or false. By Proposition 6.6.2
the theorem follows. ◻

89

	Time
	Computation
	Some problems of Hilbert
	What is a problem?
	What is an algorithm?
	What does it mean to decide a problem?

	Time bounded computation
	Some problems of Gödel and von Neumann
	Polynomial time
	Time hierarchy

	Circuit families
	The fundamental lemma

	Nondeterminism
	NP
	Nondeterministic time
	Nondeterministic time hierarchy

	NP-completeness
	Polynomial time reductions
	The Cook-Levin theorem

	NP-completeness – examples
	NP-completeness – theory
	Schöningh's theorem
	Berman and Hartmanis' theorem
	Mahaney's theorem
	Ladner's theorem

	Sat solvers
	Self-reduciblity
	Levin-optimal Sat solvers

	History and significance of ¶ versus NP

	Space
	Space bounded computation
	Space hierarchy
	Savitch's theorem

	Polynomial space
	Nondeterministic logarithmic space
	Implicit logarithmic space computability
	Immerman and Szelepcsényi's theorem

	Alternation
	Co-nondeterminism
	Unambiguous nondeterminism
	The polynomial hierarchy
	Alternating time
	Oracles

	Time-space trade-offs

	Size
	Non-uniform polynomial time
	Karp and Lipton's theorem

	Shannon's theorem and size hierarchy
	Kannan's theorem

	Lower bounds for bounded depth circuits
	Decision trees
	Håstad's Switching Lemma
	The lower bound

	Randomness
	How to evaluate an arithmetical circuit
	Primer on probability theory
	Randomized computations
	Probability amplification
	Polynomial identity testing
	Zero error
	Adleman's trick

	Hashing
	Trading randomness for alternation
	Witness isolation
	Approximate counting
	Approximate sampling

	Learning and anticheckers
	An improvement of the Karp-Lipton theorem

	Exact counting
	Counting problems
	Toda's theorem

