The Infinity Project

On optimal probabilistic algorithms for SAT*
Yijia Chen', J6rg Flum!, Moritz Miiller®

fShanghai Jiaotong University, China.
yijia.chen@cs.sjtu.edu.cn

Albert-Ludwigs-Universitit Freiburg, Germany.
joerg.flum@math.uni-freiburg.de

$Kurt Godel Research Center, University of Vienna, Austria.
moritz.mueller@univie.ac.at

Abstract. Assuming the existence of one-way functions we show that SAT does not have in certain sense
optimal probabilistic algorithms.

Introduction

A major aim in the development of algorithms for hard problems is to decrease the
running time. In particular one asks for algorithms that are optimal: A deterministic
algorithm A deciding a language L C ¥* is optimal (or (polynomially) optimal or p-
optimal) if for any other algorithm B deciding L there is a polynomial p such that

(1) ta(x) < ptp(x) + [z))

for all x € ¥*. Here tp(x) denotes the running time of A on input x. If (1) is only
required for all € L, then A is said to be an almost optimal algorithm for L (or to be
optimal on positive instances of L).

Various recent papers address the question whether such optimal algorithms exist for
NP-complete or coNP-complete problems (cf. [1]), even though the problem has already
been considered in the seventies when Levin [4] observed that there exists an optimal
algorithm that finds a witness for every satisfiable propositional formula. Furthermore
the relationship between the existence of almost optimal algorithms for a language L and
the existence of “optimal” proof systems for L has been studied [3, 5].

Here we present a result (see Theorem 1.1) that can be interpreted as stating that
(under the assumption of the existence of one-way functions) there is no optimal proba-
bilistic algorithm for SAT.

1 Probabilistic speed-up

For a propositional formula « we denote by ||| the number of literals in it, counting
repetitions. Hence, the actual length of any reasonable encoding of « is polynomially
related to ||a|.

The main result of this short note reads as follows:

* presented at the conference Logical Approaches to Barriers in Computing and Complexity, Greif-
swald. Preprint of the Department of Mathematics and Computer Science at the University Greifswald
No. 6, 2010. The authors thank the John Templeton Foundation for its support under Grant #13152,
The Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matematica, Bellaterra (Barcelona), 2012

2 On optimal probabilistic algorithms for SAT

Theorem 1.1 Assume one-way functions exist. Then for every probabilistic algorithm
A deciding SAT there exists a probabilistic algorithm B deciding SAT such that for all
d € N and sufficiently large n € N

Pr [there is a satisfiable a with |||l = n such that

A does not accept o in at most (tg(e) + Ha”)d steps| >

| —

Note that tp(a) and tg(a) are random variables, and the probability is taken over the coin
tosses of A and B on a.

Here we say that a probabilistic algorithm A decides SAT if it decides SAT as a
nondeterministic algorithm, that is
a € SAT = Pr[A accepts a] > 0,
a ¢ SAT = Pr[A accepts a] =0.
In particular, A can only err on ‘yes’-instances.

Note that in the first condition the error probability is not demanded to be bounded
away from 0, say by a constant ¢ > 0. As a more usual notion of probabilistic decision,
say A decides SAT with one-sided error ¢ if

a € SAT = Pr[A accepts a] > 1 — ¢,
a ¢ SAT = Pr[A accepts a] =0.

For this concept we get

Corollary 1.2 Assume one-way functions exist and let € > 0. Then for every probabilis-
tic algorithm A deciding SAT with one-sided error e there exists a probabilistic algorithm
B deciding SAT with one-sided error € such that for all d € N and sufficiently largen € N

Pr [there is a satisfiable o with |||l = n such that

1
A does not accept o in at most (tg(e) + ||oz||)d steps| > 3

This follows from the fact that in the proof of Theorem 2.1.1 we choose the algorithm
B in such way that on any input « the error probability of B on « is not worse than the
error probability of A on «.

2 Witnessing failure

The proof of Theorem 2.1.1 is based on the following result.

Theorem 2.1 Assume that one-way functions exist. Then there is a probabilistic poly-
nomaal time algorithm C satisfying the following conditions.

(1) On input n € N in unary the algorithm C outputs with probability one a satisfi-
able formula 8 with ||B]| = n.
(2) For every d € N and every probabilistic algorithm A deciding SAT and suffi-
ciently large n € N
Pr [A does not accept C(n) in n® steps] >

W —

The Infinity Project 3

In the terminology of fixed-parameter tractability this theorem tells us that the pa-
rameterized construction problem associated with the following parameterized decision
problem p-COUNTEREXAMPLE-SAT is in a suitably defined class of randomized nonuni-
form fixed-parameter tractable problems.

Instance: An algorithm A deciding SAT and d,n € N in unary.
Parameter: ||A| +d.
Problem: Does there exist a satisfiable CNF-formula o with

||| = n such that A does not accept a in n? many
steps?
Note that this problem is a promise problem. We can show:
Theorem 2.2 Assume that one-way functions exist. Then the problem

p-COUNTEREXAMPLE-SAT is nonuniformly fized-parameter tractable.!
This result is an immediate consequence of the following

Theorem 2.3 Assume that one-way functions exist. For every infinite set I C N the
problem

SAT[
Instance: A CNF-formula o with ||laf| € I.
Problem: Is « satisfiable?

is not in PTIME.

The decision problem p-COUNTEREXAMPLE-SAT has the following associated con-
struction problem:

Instance: An algorithm A deciding SAT and d,n € N in unary.
Parameter: ||A| + d.
Problem: Construct a satisfiable CNF-formula a with |af = n
such that A does not accept o in n¢ many steps, if one
exists.

We do not know anything on its (deterministic) complexity; its nonuniform fixed-parameter
tractability would rule out the existence of strongly almost optimal algorithms for SAT.
By definition, an algorithm A deciding SAT is a strongly almost optimal algorithm for
SAT if there is a polynomial p such that for any other algorithm B deciding SAT

tale) < p(tp(e) +|af)
for all & € SAT. Then the precise statement of the result just mentioned reads as follows:

Proposition 2.4 Assume that P # NP. If the construction problem associated with
p-COUNTEREXAMPLE-SAT is nonuniformly fized-parameter tractable, then there is no
strongly almost optimal algorithms for SAT.

IThis means, there is a ¢ € N such that for every algorithm A deciding SAT and every d € N there is an
algorithm that decides for every n € N whether (A, d, n) is a positive instance of p-COUNTEREXAMPLE-SAT
in time O(n®); here the constant hidden in O() may depend on A and d.

4 On optimal probabilistic algorithms for SAT

3 Some Proofs

We now show how to use an algorithm C as in Theorem 3.2.1 to prove Theorem 2.1.1.

Proof of Theorem 2.1.1 from Theorem 3.2.1: Let A be an algorithm deciding SAT. We
choose a € N such that for every n > 2 the running time of the algorithm C (provided
by Theorem 3.2.1) on input n is bounded by n®. We define the algorithm B as follows:

B(a) // a € CNF
1. B« C(flalD.
2. if a = then accept and halt.
3. else Simulate A on a.

Let d € N be arbitrary. Set e :=d - (a+2)+ 1 and fix a sufficiently large n € N. Let S,
denote the range of C(n). Furthermore, let T;, g . denote the set of all strings r € {0, 1}"e
that do not determine a (complete) accepting run of A on that consists in at most n®
many steps. Observe that a (random) run of A does not accept 8 in at most n® steps if
and only if A on 8 uses T}, g, that is, its first at most n® many coin tosses on input 3
are described by some r € T}, 5.. Hence by (2) of Theorem 3.2.1 we conclude

(2) Z (Pr[B=Cm)]- Pr [reT,g.l) > %

Fesn ref{0,1}n°

Let a € S, and apply B to a. If the execution of 5 < C(||c||) in Line 1 yields 8 = «, then
the overall running time of the algorithm B is bounded by O(n2+t<c(n)) = O(n%h) < pot+?
for n is sufficiently large. If in such a case a run of the algorithm A on input « uses
an r € Ty q., then it does not accept « in time n® = n@*2d+l 41d hence not in time
(tg(c) + ||a|)?. Therefore,
Pr [there is a satisfiable @ with ||cr|| = n such that
A does not accept a in at most (tg(a) + ||a|)? steps}

>1—-Pr [for every input « € S, the algorithm B does not generate «

in Line 3, or A does not use Tn,me]

=1- [(A =Prla=CmD+Prla=Cm)]- Pr [r¢Thacl)

aes, ref{0,1}n°
=1- 1 —Prla=C - P €Thoe
Og (1=Prla=Con)- _Pr [r€Tocl)

S
- <Zaesn (1 = Pric = C)] - Prcgo 1y 1 € Thael) | "
- Sl

=1 (1 Z:O‘ESn Prla = C(n)] - PrrE{O,l}"e [r e Tn,a,e] ||
I 50

>1 1 ! |S"|> !
= 3-15.) = 5

Theorem 3.2.1 immediately follows from the following lemma.

The Infinity Project 5

Lemma 3.1 Assume one-way functions exist. Then there is a randomized polynomial
time algorithm H satisfying the following conditions.

(H1) Givenn € N in unary the algorithm H computes with probability one a satisfiable
CNF « of size ||af| = n.

(H2) For every probabilistic algorithm A deciding SAT and every d,p € N there exists
an naqp € N such that for all n > np g,

Pr [A accepts H(n) in time nd] < 1 + i,
2 nP
where the probability is taken uniformly over all possible outcomes of the internal
coin tosses of the algorithms A and H.
(H3) The cardinality of the range of (the random wvariable) H(n) is superpolynomial

mn.

Sketch of proof: We present the construction of the algorithm H. By the assumption that
one-way functions exist, we know that there is a pseudorandom generator (e.g. see [2]),
that is, there is an algorithm G such that:
(G1) For every s € {0, 1}* the algorithm G computes a string G(s) with |G(s)| = |s|+1
in time polynomial in |s]|.
(G2) For every probabilistic polynomial time algorithm D, every p € N, and all
sufficiently large ¢ € N we have

1
se{l:(‘)fl}f PG =1] - re{g}}w [Py =1]) < ow

(In the above terms, the probability is also taken over the internal coin toss of
D.)
Let the language @ be the range of G,

Q :={G(s) | s € {0,1}*}.

@ is in NP by (G1). Hence, there is a polynomial time reduction S from @ to SAT, which
we can assume to be injective. We choose a constant ¢ € N such that ||S(r)|| < |r|¢ for
every r € {0,1}*. For every propositional formula 8 and every n € N with n > ||3]| let
B(n) be an equivalent propositional formula with ||S(n)|| = n. We may assume that S(n)
is computed in time polynomial in n.

One can check that the following algorithm H has the properties claimed in the
lemma.

H(n) // n €N
1. m <« L\C/n—lJ—l

2. Choose an s € {0, 1}" uniformly at random.
3. B« S(G(s)).
4. Output B(n)

References

[1] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete
sets for promise classes. Electronic Colloquium on Computational Complexity, Report TR09-081,
2009.

On optimal probabilistic algorithms for SAT

[2] O. Goldreich. Foundations of Cryptography, Volume 1 (Basic Tools). Cambridge University Press,
2001.

[3] J. Krajicek and P. Pudldk. Propositional proof systems, the consistency of first order theories and
the complexity of computations. Jour. Symb. Logic, 54(3):1063-1079, 1989.

[4] L. Levin. Universal search problems (in russian). Problemy Peredachi Informatsii 9(3):115-116, 1973.

[5] J. Messner. On optimal algorithms and optimal proof systems. STACS’99, LNCS 1563:541-550 1999.

