
The Infinity Project

On optimal probabilistic algorithms for Sat∗

Yijia Chen†, Jörg Flum‡, Moritz Müller§

†Shanghai Jiaotong University, China.
yijia.chen@cs.sjtu.edu.cn

‡Albert-Ludwigs-Universität Freiburg, Germany.
joerg.flum@math.uni-freiburg.de

§Kurt Gödel Research Center, University of Vienna, Austria.
moritz.mueller@univie.ac.at

Abstract. Assuming the existence of one-way functions we show that Sat does not have in certain sense
optimal probabilistic algorithms.

Introduction

A major aim in the development of algorithms for hard problems is to decrease the
running time. In particular one asks for algorithms that are optimal: A deterministic
algorithm A deciding a language L ⊆ Σ∗ is optimal (or (polynomially) optimal or p-
optimal) if for any other algorithm B deciding L there is a polynomial p such that

(1) tA(x) ≤ p(tB(x) + |x|)
for all x ∈ Σ∗. Here tA(x) denotes the running time of A on input x. If (1) is only
required for all x ∈ L, then A is said to be an almost optimal algorithm for L (or to be
optimal on positive instances of L).

Various recent papers address the question whether such optimal algorithms exist for
NP-complete or coNP-complete problems (cf. [1]), even though the problem has already
been considered in the seventies when Levin [4] observed that there exists an optimal
algorithm that finds a witness for every satisfiable propositional formula. Furthermore
the relationship between the existence of almost optimal algorithms for a language L and
the existence of “optimal” proof systems for L has been studied [3, 5].

Here we present a result (see Theorem 1.1) that can be interpreted as stating that
(under the assumption of the existence of one-way functions) there is no optimal proba-
bilistic algorithm for Sat.

1 Probabilistic speed-up

For a propositional formula α we denote by ‖α‖ the number of literals in it, counting
repetitions. Hence, the actual length of any reasonable encoding of α is polynomially
related to ‖α‖.

The main result of this short note reads as follows:

∗ presented at the conference Logical Approaches to Barriers in Computing and Complexity, Greif-
swald. Preprint of the Department of Mathematics and Computer Science at the University Greifswald
No. 6, 2010. The authors thank the John Templeton Foundation for its support under Grant #13152,
The Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

1

2 On optimal probabilistic algorithms for Sat

Theorem 1.1 Assume one-way functions exist. Then for every probabilistic algorithm
A deciding Sat there exists a probabilistic algorithm B deciding Sat such that for all
d ∈ N and sufficiently large n ∈ N

Pr
[
there is a satisfiable α with ‖α‖ = n such that

A does not accept α in at most (tB(α) + ‖α‖)d steps
]
≥ 1

5
.

Note that tA(α) and tB(α) are random variables, and the probability is taken over the coin
tosses of A and B on α.

Here we say that a probabilistic algorithm A decides Sat if it decides Sat as a
nondeterministic algorithm, that is

α ∈ Sat =⇒ Pr[A accepts α] > 0,
α /∈ Sat =⇒ Pr[A accepts α] = 0.

In particular, A can only err on ‘yes’-instances.
Note that in the first condition the error probability is not demanded to be bounded

away from 0, say by a constant ε > 0. As a more usual notion of probabilistic decision,
say A decides Sat with one-sided error ε if

α ∈ Sat =⇒ Pr[A accepts α] > 1− ε,
α /∈ Sat =⇒ Pr[A accepts α] = 0.

For this concept we get

Corollary 1.2 Assume one-way functions exist and let ε > 0. Then for every probabilis-
tic algorithm A deciding Sat with one-sided error ε there exists a probabilistic algorithm
B deciding Sat with one-sided error ε such that for all d ∈ N and sufficiently large n ∈ N

Pr
[
there is a satisfiable α with ‖α‖ = n such that

A does not accept α in at most (tB(α) + ‖α‖)d steps
]
≥ 1

5
.

This follows from the fact that in the proof of Theorem 2.1.1 we choose the algorithm
B in such way that on any input α the error probability of B on α is not worse than the
error probability of A on α.

2 Witnessing failure

The proof of Theorem 2.1.1 is based on the following result.

Theorem 2.1 Assume that one-way functions exist. Then there is a probabilistic poly-
nomial time algorithm C satisfying the following conditions.

(1) On input n ∈ N in unary the algorithm C outputs with probability one a satisfi-
able formula β with ‖β‖ = n.

(2) For every d ∈ N and every probabilistic algorithm A deciding Sat and suffi-
ciently large n ∈ N

Pr
[
A does not accept C(n) in nd steps

]
≥ 1

3
.

The Infinity Project 3

In the terminology of fixed-parameter tractability this theorem tells us that the pa-
rameterized construction problem associated with the following parameterized decision
problem p-CounterExample-Sat is in a suitably defined class of randomized nonuni-
form fixed-parameter tractable problems.

Instance: An algorithm A deciding Sat and d, n ∈ N in unary.
Parameter: ‖A‖ + d.

Problem: Does there exist a satisfiable CNF-formula α with
‖α‖ = n such that A does not accept α in nd many
steps?

Note that this problem is a promise problem. We can show:

Theorem 2.2 Assume that one-way functions exist. Then the problem
p-CounterExample-Sat is nonuniformly fixed-parameter tractable.1

This result is an immediate consequence of the following

Theorem 2.3 Assume that one-way functions exist. For every infinite set I ⊆ N the
problem

SatI
Instance: A CNF-formula α with ‖α‖ ∈ I.
Problem: Is α satisfiable?

is not in PTIME.

The decision problem p-CounterExample-Sat has the following associated con-
struction problem:

Instance: An algorithm A deciding Sat and d, n ∈ N in unary.
Parameter: ‖A‖ + d.

Problem: Construct a satisfiable CNF-formula α with ‖α‖ = n
such that A does not accept α in nd many steps, if one
exists.

We do not know anything on its (deterministic) complexity; its nonuniform fixed-parameter
tractability would rule out the existence of strongly almost optimal algorithms for Sat.
By definition, an algorithm A deciding Sat is a strongly almost optimal algorithm for
Sat if there is a polynomial p such that for any other algorithm B deciding Sat

tA(α) ≤ p(tB(α) + |α|)

for all α ∈ Sat. Then the precise statement of the result just mentioned reads as follows:

Proposition 2.4 Assume that P 6= NP. If the construction problem associated with
p-CounterExample-Sat is nonuniformly fixed-parameter tractable, then there is no
strongly almost optimal algorithms for Sat.

1This means, there is a c ∈ N such that for every algorithm A deciding Sat and every d ∈ N there is an
algorithm that decides for every n ∈ N whether (A, d, n) is a positive instance of p-CounterExample-Sat
in time O(nc); here the constant hidden in O() may depend on A and d.

4 On optimal probabilistic algorithms for Sat

3 Some Proofs

We now show how to use an algorithm C as in Theorem 3.2.1 to prove Theorem 2.1.1.

Proof of Theorem 2.1.1 from Theorem 3.2.1: Let A be an algorithm deciding Sat. We
choose a ∈ N such that for every n ≥ 2 the running time of the algorithm C (provided
by Theorem 3.2.1) on input n is bounded by na. We define the algorithm B as follows:

B(α) // α ∈ CNF

1. β ← C(‖α‖).
2. if α = β then accept and halt.
3. else Simulate A on α.

Let d ∈ N be arbitrary. Set e := d · (a + 2) + 1 and fix a sufficiently large n ∈ N. Let Sn
denote the range of C(n). Furthermore, let Tn,β,e denote the set of all strings r ∈ {0, 1}ne

that do not determine a (complete) accepting run of A on β that consists in at most ne

many steps. Observe that a (random) run of A does not accept β in at most ne steps if
and only if A on β uses Tn,β,e, that is, its first at most ne many coin tosses on input β
are described by some r ∈ Tn,β,e. Hence by (2) of Theorem 3.2.1 we conclude

(2)
∑
β∈Sn

(
Pr[β = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,β,e]

)
≥ 1

3
.

Let α ∈ Sn and apply B to α. If the execution of β ← C(‖α‖) in Line 1 yields β = α, then
the overall running time of the algorithm B is bounded by O

(
n2 +tC(n)

)
= O(na+1) ≤ na+2

for n is sufficiently large. If in such a case a run of the algorithm A on input α uses
an r ∈ Tn,α,e, then it does not accept α in time ne = n(a+2)·d+1 and hence not in time

(tB(α) + ‖α‖)d. Therefore,

Pr
[
there is a satisfiable α with ‖α‖ = n such that

A does not accept α in at most (tB(α) + ‖α‖)d steps
]

≥ 1− Pr
[
for every input α ∈ Sn the algorithm B does not generate α

in Line 3, or A does not use Tn,α,e
]

= 1−
∏
α∈Sn

(
(1− Pr[α = C(n)]) + Pr[α = C(n)] · Pr

r∈{0,1}ne
[r /∈ Tn,α,e]

)
= 1−

∏
α∈Sn

(
1− Pr[α = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,α,e]

)
≥ 1−

(∑
α∈Sn

(
1− Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]

)
|Sn|

)|Sn|

= 1−
(

1−
∑

α∈Sn
Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]

|Sn|

)|Sn|

≥ 1−
(

1− 1
3 · |Sn|

)|Sn|
≥ 1

5
.

�
Theorem 3.2.1 immediately follows from the following lemma.

The Infinity Project 5

Lemma 3.1 Assume one-way functions exist. Then there is a randomized polynomial
time algorithm H satisfying the following conditions.

(H1) Given n ∈ N in unary the algorithm H computes with probability one a satisfiable
CNF α of size ‖α‖ = n.

(H2) For every probabilistic algorithm A deciding Sat and every d, p ∈ N there exists
an nA,d,p ∈ N such that for all n ≥ nA,d,p

Pr
[
A accepts H(n) in time nd

]
≤ 1

2
+

1
np
,

where the probability is taken uniformly over all possible outcomes of the internal
coin tosses of the algorithms A and H.

(H3) The cardinality of the range of (the random variable) H(n) is superpolynomial
in n.

Sketch of proof: We present the construction of the algorithm H. By the assumption that
one-way functions exist, we know that there is a pseudorandom generator (e.g. see [2]),
that is, there is an algorithm G such that:

(G1) For every s ∈ {0, 1}∗ the algorithm G computes a string G(s) with |G(s)| = |s|+1
in time polynomial in |s|.

(G2) For every probabilistic polynomial time algorithm D, every p ∈ N, and all
sufficiently large ` ∈ N we have∣∣∣∣ Pr

s∈{0,1}`

[
D(G(s)) = 1

]
− Pr
r∈{0,1}`+1

[
D(r) = 1

]∣∣∣∣ ≤ 1
`p

(In the above terms, the probability is also taken over the internal coin toss of
D.)

Let the language Q be the range of G,

Q := {G(s) | s ∈ {0, 1}∗}.
Q is in NP by (G1). Hence, there is a polynomial time reduction S from Q to Sat, which
we can assume to be injective. We choose a constant c ∈ N such that ‖S(r)‖ ≤ |r|c for
every r ∈ {0, 1}∗. For every propositional formula β and every n ∈ N with n ≥ ‖β‖ let
β(n) be an equivalent propositional formula with ‖β(n)‖ = n. We may assume that β(n)
is computed in time polynomial in n.

One can check that the following algorithm H has the properties claimed in the
lemma.

H(n) // n ∈ N
1. m←

⌊
c
√
n− 1

⌋
− 1

2. Choose an s ∈ {0, 1}m uniformly at random.
3. β ← S(G(s)).
4. Output β(n)

�

References

[1] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete
sets for promise classes. Electronic Colloquium on Computational Complexity, Report TR09-081,
2009.

6 On optimal probabilistic algorithms for Sat

[2] O. Goldreich. Foundations of Cryptography, Volume 1 (Basic Tools). Cambridge University Press,
2001.

[3] J. Krajicèk and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. Jour. Symb. Logic, 54(3):1063–1079, 1989.

[4] L. Levin. Universal search problems (in russian). Problemy Peredachi Informatsii 9(3):115-116, 1973.
[5] J. Messner. On optimal algorithms and optimal proof systems. STACS’99, LNCS 1563:541–550 1999.

