SS23 Mathematical Logic

University of Passau Moritz Müller

Very short history of logic: Aristoteles, Frege, Cantor, Russel, Hilbert, Gödel, Turing

1 Propositional logic

1.1 Syntax and semantics

Propositional formulas Lemma on unique readability Semantics Coincidence lemma Validity, satisfiablilty, logical consequence, logical equivalence

1.2 Compactness theorem

Topological proof based on Tychonoff's theorem Combinatorial proof with maximal finitely satisfiable sets

1.3 Sequent calculus

Formal propositional *LK*-proofs Soundness and inversion principle Completeness of propositional *LK*

2 First-order logic

2.1 Structures

Languages, structures, examples

2.2 Syntax

Part I: terms and unique readability Part II: formulas and unique readability

2.3 Semantics

Part I: values of terms Coincidence lemma for terms Part II: truth values of formulas First coincidence lemma Second coincidence lemma Elementary equivalence Isomorphism lemma

2.4 Validity

validity and tautologyhood, satisfiability, logical consequence, logical equivalence Equality axioms, Modus ponens, ∃-introduction

2.5 Substitutions

Substitution lemma ∃-axioms

2.6 Hilbert calculus

Formal proofs in the Hilbert calculus Propositional reasoning, ∀-axioms, ∀-introduction.

2.7 Gödel's completeness theorem

Statement weak and strong form Proofs in theories, deductive closure Proof of the completeness theorem

> Henkin closure Henkin term structure

2.8 Sequent calculus

Formal (first-order) *LK*-proofs Second proof of the completeness theorem:

Completeness for equality free case: sets with Henkin properties

Completeness general case: congruence relations and factor structures

2.9 Corollaries

Deductive completeness Compactness theorem Löwenheim-Skolem: downwards Löwenheim-Skolem: upwards

3 Computability

3.1 Register machines

Machines and computations Flow-diagrams

3.2 Recursive functions

Recursive and primitive recursive functions Recursive functions are computable (Primitive) recursive relations, closure properties

3.3 Kleene normal form

Sequence coding Gödel numbers of machines Kleene normal form: computable functions are recursive Universal computable partial function s-m-n theorem and Kleene's fixed point theorem

3.4 Church Turing thesis and squeezing arguments

Church-Turing thesis on computability Kreisel's squeezing argument for provability

3.5 The Ackermann-Péter function

Péter's definition Knuth arrows Ackerman-Péter function is recursive and not primitive recursive

3.6 Elimination of recursion

Cantor pairing Gödel's β -function Chracterization of recursive functions without primitive recursion

3.7 Recursively enumerable sets

Definition and closure properties Universal r.e. set

4 Arithmetic

4.1 Definability

 $\Delta_0\text{-}$ and $\Sigma_1\text{-}\text{formulas}$ Characterization of recursive functions and r.e. relations by $\Sigma_1\text{-}$ definability

4.2 Gödelization

Gödel numbers of formulas Recursivity of various syntactical operations

4.3 Tarski's undefinability of truth

Tarski's undefinability of truth Axiomatizable theories, deductively complete theories, independent sentences Gödel's first incompleteness theorem for true theories

4.4 Gödel's first incompleteness theorem

Representations of functions and relations in theories Theories that admit representations Fixed-point lemma of Gödel and Carnap Gödel's first incompleteness theorem: general form

4.5 Gödel's second incompleteness theorem

Löb conditions Löb's theorem Gödel's second incompleteness theorem: general form

4.6 Robinson's Q

Definition as Shoenfield's version $\Sigma_1\text{-completeness of } \mathsf{Q}$

4.7 End-extensions

Models of ${\sf Q}$ are end-extensions of the standard model Second proof of $\Sigma_1\text{-}\mathrm{completeness}$ of ${\sf Q}$

4.8 Incompleteness: concrete form

Q admits representations Gödel's first incompleteness theorem: concrete form Church-Turing undecidability of Hilbert's Entscheidungsproblem

4.9 Gödel- and Rosser-sentences

Independence of Gödel-sentences for ω -consistent theories Independence of Rosser-sentences for consistent theories