SS23 Mathematical Logic

University of Passau

Moritz Müller

Very short history of logic:
Aristoteles, Frege, Cantor, Russel, Hilbert, Gödel, Turing

1 Propositional logic

1.1 Syntax and semantics
Propositional formulas
Lemma on unique readability
Semantics
Coincidence lemma
Validity, satisfiablilty, logical consequence, logical equivalence

1.2 Compactness theorem

Topological proof based on Tychonoff's theorem
Combinatorial proof with maximal finitely satisfiable sets

1.3 Sequent calculus

Formal propositional LK-proofs
Soundness and inversion principle
Completeness of propositional $L K$

2 First-order logic

2.1 Structures

Languages, structures, examples

2.2 Syntax

Part I: terms and unique readability
Part II: formulas and unique readability

2.3 Semantics

Part I: values of terms
Coincidence lemma for terms
Part II: truth values of formulas
First coincidence lemma
Second coincidence lemma
Elementary equivalence
Isomorphism lemma

2.4 Validity

validity and tautologyhood, satisfiability, logical consequence, logical equivalence
Equality axioms, Modus ponens, \exists-introduction

2.5 Substitutions

Substitution lemma
ヨ-axioms

2.6 Hilbert calculus

Formal proofs in the Hilbert calculus
Propositional reasoning, \forall-axioms, \forall-introduction.

2.7 Gödel's completeness theorem

Statement weak and strong form
Proofs in theories, deductive closure
Proof of the completeness theorem
Henkin closure
Henkin term structure

2.8 Sequent calculus

Formal (first-order) LK-proofs
Second proof of the completeness theorem:
Completeness for equality free case: sets with Henkin properties
Completeness general case: congruence relations and factor structures
2.9 Corollaries
Deductive completeness
Compactness theorem
Löwenheim-Skolem: downwards
Löwenheim-Skolem: upwards

3 Computability

3.1 Register machines
 Machines and computations
 Flow-diagrams

3.2 Recursive functions
 Recursive and primitive recursive functions
 Recursive functions are computable
 (Primitive) recursive relations, closure properties

3.3 Kleene normal form
Sequence coding
Gödel numbers of machines
Kleene normal form: computable functions are recursive
Universal computable partial function
s-m-n theorem and Kleene's fixed point theorem

3.4 Church Turing thesis and squeezing arguments
 Church-Turing thesis on computability
 Kreisel's squeezing argument for provability
 3.5 The Ackermann-Péter function
 Péter's definition
 Knuth arrows
 Ackerman-Péter function is recursive and not primitive recursive

```
3.6 Elimination of recursion
Cantor pairing
Gödel's \(\beta\)-function
Chracterization of recursive functions without primitive recursion
```


3.7 Recursively enumerable sets

Definition and closure properties
Universal r.e. set

4 Arithmetic

4.1 Definability

Δ_{0} - and Σ_{1}-formulas
Characterization of recursive functions and r.e. relations by Σ_{1} definability

4.2 Gödelization
 Gödel numbers of formulas
 Recursivity of various syntactical operations

4.3 Tarski's undefinability of truth
 Tarski's undefinability of truth
 Axiomatizable theories, deductively complete theories, independent sentences
 Gödel's first incompleteness theorem for true theories

4.4 Gödel's first incompleteness theorem
 Representations of functions and relations in theories
 Theories that admit representations
 Fixed-point lemma of Gödel and Carnap
 Gödel's first incompleteness theorem: general form

4.5 Gödel's second incompleteness theorem
 Löb conditions
 Löb's theorem
 Gödel's second incompleteness theorem: general form

4.6 Robinson's Q

Definition as Shoenfield's version
Σ_{1}-completeness of Q

4.7 End-extensions

Models of Q are end-extensions of the standard model
Second proof of Σ_{1}-completeness of Q

4.8 Incompleteness: concrete form

Q admits representations
Gödel's first incompleteness theorem: concrete form
Church-Turing undecidability of Hilbert's Entscheidungsproblem

4.9 Gödel- and Rosser-sentences

Independence of Gödel-sentences for ω-consistent theories Independence of Rosser-sentences for consistent theories

