
A
Hard instances of algorithms and proof systems

YIJIA CHEN, Shanghai Jiaotong University, China
JÖRG FLUM, Universität Freiburg, Germany
MORITZ MÜLLER, Kurt Gödel Research Center, Universität Wien, Austria

If the class Taut of tautologies of propositional logic has no almost optimal algorithm, then every algo-
rithm A deciding Taut has a hard sequence, i.e., a polynomial time computable sequence witnessing that A
is not almost optimal. We show that this result extends to every Πp

t -complete problem with t ≥ 1; however,
assuming the Measure Hypothesis, there is a problem which has no almost optimal algorithm but is decided

by an algorithm without hard sequences. For problems Q with an almost optimal algorithm, we analyze
whether every algorithm deciding Q, which is not almost optimal, has a hard sequence.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and Classes—Com-
plexity hierarchies; Relations among complexity classes; F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—Alternation and nondeterminism

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Hard Sequences, Optimal Algorithms, Optimal Proof Systems, Measure Hypothesis

ACM Reference Format:
ACM V, N, Article A (January YYYY), 22 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. Introduction

A SAT-solver is an algorithm that on satisfiable propositional formulas α as input yields a satisfying
assignment and that does not stop on unsatisfiable formulas. By a result due to Levin [1973] (and
presented as Theorem 6.4 in this paper) we know that there is an optimal SAT-solver, that is, a SAT-
solver whose running time on satisfiable formulas is polynomially bounded in the running time of
any SAT-solver.

In computational complexity, we are more often interested in decision algorithms which always
halt and give yes or no answers. Let A be such an algorithm deciding SAT. Then, for every SAT-
solver S, we obtain an algorithm Sdec deciding SAT essentially by running A and S in parallel. On
satisfiable formulas α the running time tSdec (α) of Sdec on input α is O(tS(α)) (for an algorithm B
and a string x we denote by tB(x) the number of steps the algorithm B takes on input x). For
an optimal SAT-solver O, what kind of optimality does Odec inherit from O? Schnorr [1976] and
Verbitzky [1979] showed that Odec is length-optimal, that is, for every algorithm B deciding SAT
and all α ∈ SAT,

tOdec (α) ≤
(
max{tB(α′) | α′ ∈ SAT and |α′| ≤ |α|} + |α|

)O(1)
.

However, the algorithm Odec is not an almost optimal algorithm for SAT unless NP ∩ coNP = P(
see [Chen and Flum 2014]

)
. By definition an algorithm A is almost optimal for a problem Q if for

Yijia Chen, Department of Computer Science, Shanghai Jiaotong University, Dongchuan Road 800, 200240 Shanghai, China;
Jörg Flum, Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany; Moritz
Müller, Kurt Gödel Research Center for Mathematical Logic, Währinger Straße 25, 1090 Wien, Austria.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0000-0000/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

any other algorithm B deciding Q and all x ∈ Q (note that nothing is required for strings not in Q),

tA(x) ≤
(
tB(x) + |x|

)O(1)
.

The concept of optimality just defined was first considered in [Krajı́ček and Pudlák 1989] for algo-
rithms deciding the set TAUT of tautologies of propositional logic. It is not known whether TAUT
has an almost optimal algorithm. Every problem Q in P (polynomial time) has an almost opti-
mal algorithm. Indeed every polynomial-time bounded algorithm deciding Q is almost optimal.
As shown in [Messner 2000] there are problems in E \ P with almost optimal algorithms

(
where

E := DTIME(2O(n))
)
.1 To the best of our knowledge it is still not known whether there is a problem

in NP \ P having an almost optimal algorithm (even assuming P ̸= NP). In particular, this question
is open for SAT.

Let A be an algorithm deciding a problem Q. Assume that A is not almost optimal and that B is
an algorithm deciding Q that witnesses this nonoptimality of A. Then, for every s ∈ N there is a
string xs ∈ Q with tA(xs) > (|xs| + tB(xs))s. Can we generate such a sequence (xs)s∈N efficiently,
that is, in time polynomially bounded in s? If so, then the algorithm A can be speeded up on those
instances. We define the notion of a hard sequence for A without reference to a further algorithm
deciding Q (as the algorithm B above): The sequence (xs)s∈N of strings in Q is hard for A if it is
computable in time polynomially bounded in s but the sequence

(
tA(xs)

)
s∈N is not polynomially

bounded in s.2
Clearly, if A is a polynomial-time bounded algorithm, then A has no hard sequences. Furthermore,

an almost optimal algorithm for Q has no hard sequences either. In fact, if (xs)s∈N is a hard sequence
for an algorithm, then one can superpolynomially speed it up on {xs | s ∈ N}, so it cannot be
almost optimal (cf. Lemma 4.1). We say that the problem Q has hard sequences for algorithms if
every algorithm deciding Q has a hard sequence.

Central to this paper is the question: To what extent can we show that algorithms which are not
almost optimal have hard sequences? Our starting point is the following result (more or less explicit
in [Krajı́ček and Pudlák 1989; Krajı́ček 1995; Monroe 2011; Chen and Flum 2010]):

TAUT has no almost optimal algorithm if and only if TAUT has hard sequences for
algorithms.

First, we generalize this result from the Πp
1 -complete problem TAUT to all problems which are

Πp
t -complete for some t ≥ 1

(
cf. Theorem 4.3 (a)

)
:

(i) A Πp
t -complete problem Q has no almost optimal algorithm if and only if Q has hard sequences

for algorithms.

Apparently there are some limitations when trying to show the result for all problems Q as we prove
(cf. Theorem 7.10):

(ii) If the Measure Hypothesis holds, then there is a problem which has no almost optimal algorithm
but is decided by an algorithm without hard sequences.

Perhaps one would expect to be able to strengthen (i) by showing that even if a Πp
t -complete prob-

lem Q has an almost optimal algorithm, then every algorithm, which is not almost optimal and
decides Q, has a hard sequence. However (cf. Theorem 7.5):

1Here, as usual, given a class F of total functions from N to N we denote by DTIME(F) the class of problems decidable by
an algorithm A with

tA(|x|) ≤ O(f (|x|))
for some f ∈ F .
2Let us mention that for SAT-solvers a different, weaker notion of hard sequence has been considered (e.g., in [Gutfreund
et al. 2007; Krajı́ček 2012]).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

If the Measure Hypothesis holds, then every problem with padding and with an almost
optimal algorithm is decided by an algorithm which is not almost optimal but has no
hard sequences.

In particular, if the Measure Hypothesis holds and TAUT has an almost optimal algorithm, then it is
decided by an algorithm which is not almost optimal but has no hard sequences.

As an algorithm deciding a problem Q which is not almost optimal can be superpolynomially
speeded up on an infinite subset of Q, by (ii) we see that, assuming the Measure Hypothesis, this
notion of speeding up (e.g. considered in [Stockmeyer 1974]) is weaker than our notion of the
existence of a hard sequence.

Assume that Q := TAUT (or any Πp
t -complete Q) has no almost optimal algorithm; thus, by (i),

every algorithm deciding Q has a hard sequence. Can we even effectively assign to every algorithm
deciding Q a hard sequence? We believe that under reasonable complexity-theoretic assumptions
one should be able to show that such an effective procedure or at least a polynomial time procedure
does not exist, but we were not able to show it.3

By results of Stockmeyer [1974] and Berman [1976] and rediscovered by Messner [1999] we
know:

For every EXP-hard (or, equivalently, E-hard) problem Q there is a polynomial-time
bounded effective procedure assigning to every algorithm solving Q a hard sequence.

Hence, if EXP = Πp
t , then for every Πp

t -hard problem Q there is a polynomial-time bounded effec-
tive procedure assigning a hard sequence to every algorithm deciding Q.

Our proof of (i) generalizes to nondeterministic algorithms
(
cf. Theorem 4.3 (b)

)
. This “nonde-

terministic statement” yields a version for Πp
t -complete problems of a result that Krajı́ček [1995,

Theorem 14.2.2] derived for propositional proof systems: TAUT has no optimal proof system if
and only if for every propositional proof system P there is a polynomial time computable sequence
(αs)s∈N of propositional tautologies αs which only have superpolynomial P-proofs; moreover, he
showed that the αs can be chosen with s ≤ |αs|. While it is well-known that for any problem Q
nondeterministic algorithms deciding Q and proof systems for Q are more or less the same, the re-
lationship between deterministic algorithms and proof systems is more subtle. Nevertheless, we are
able to use (i) to derive a statement on hard sequences for proof systems of Πp

t -complete problems Q
without a polynomially optimal proof system (cf. Theorem 6.7).

As a byproduct of results mentioned so far, we obtain results in “classical terms” (that is, not refer-
ring to hard sequences). For example, we get for t ≥ 1 the following statements (cf. Corollary 4.9
and Theorem 5.5) previously only known for t = 1:

(iii) If some Πp
t -complete problem has no almost optimal algorithm, then every Πp

t -hard problem
has no almost optimal algorithm.

(iv) Let Q be Πp
t -complete. Then, Q has a polynomially optimal proof system if and only if Q has

an almost optimal algorithm.

It is still open whether there exist problems outside of NP with optimal proof systems. Krajı́ček and
Pudlák [1989] proved that E = NE implies that TAUT has an optimal proof system (see [Ben-David
and Gringauze 1998; Köbler and Messner 1998; Köbler et al. 2003] for subsequent improvements of
this result). We show their existence (in NE) assuming the Measure Hypothesis (cf. Theorem 7.4).

We discuss the relationship between our notions and results with previously known ones. Our
focus is on hard sequences while related previous work concentrates on hard sets and on strongly
hard sequences. For an algorithm A deciding a problem Q a set X of strings is hard for A if X ⊆ Q,
X ∈ P, and A is not polynomial-time bounded on X .

3As pointed out by one of the reviewers of our paper, in the meantime Krajı́ček [2014] obtained some conditional negative
results concerning a related question for proof systems.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

A hard sequence (xs)s∈N for A is strongly hard if s ≤ |xs|. Clearly, a strongly hard sequence
(xs)s∈N yields the hard set {xs | s ∈ N}. Furthermore, one can show (Proposition 3.2):

(v) Assume Q has padding. If Q has hard sequences for algorithms, then Q has strongly hard
sequences (and hence, hard sets) for algorithms.

We present a problem Q such that every algorithm that decides Q and is not almost optimal has a
hard sequence and a hard set but none has a strongly hard sequence (see Example 4.2).

On the other hand, we prove (Theorem 7.10):

If the Measure Hypothesis holds, there is a problem which has hard sets for algorithms
but has algorithms without hard sequences

For Q with padding, by (v) we can replace the conclusion in (i), namely “Q has hard sequences
for algorithms”, by “Q has hard sets for algorithms.” This version of (i) has been proven by Mess-
ner [2000, Theorem 3.4] for all paddable problems:

(vi) If Q has padding, then Q has no almost optimal algorithm if and only if Q has hard sets for
algorithms.

(Messner assumes a property even weaker than padding.) Together with (i) and (v) this yields
(Corollary 5.6):

Assume Q is Πp
t -complete and has padding. Then Q has hard sequences for algorithms

if and only if Q has hard sets for algorithms.

The property “Q has hard sequences for algorithms” is preserved under polynomial time reductions,
that is, if Q ≤p Q′ and Q has hard sequences for algorithms, then so does Q′. It is this property of
hard sequences we use to derive the results (iii) and (iv), the results in “classical terms.” In the proofs
we cannot replace hard sequences by hard sets. In fact, we only know that the property “Q has hard
sets for algorithms” is preserved under polynomial time reductions among paddable problems.

We prove (cf. Theorem 3.5) for arbitrary Q that the existence of hard sets for all algorithms is
equivalent to the existence of an effective enumeration of all polynomial time decidable subsets
of Q, a property which has turned out to be useful in various contexts (cf. [Sadowski 2002; 2007;
Chen and Flum 2010; 2011; Beyersdorff and Sadowski 2011]).

By (vi), the satisfiability problem SAT for propositional logic has hard sets for algorithms unless it
has an almost optimal algorithm. We do not know whether a similar result holds for hard sequences.

The rest of the paper is organized as follows. In Section 2 we recall some concepts. We introduce
and compare the notions of hard sequence, strongly hard sequence, and hard set in Section 3. We
obtain our results concerning the existence of hard sequences for algorithms in Section 4 and for
proof systems in Section 6. We derive some consequences of our results concerning hard sequences
of algorithms in Section 5. Section 7 contains the results and the examples of problems with special
properties obtained assuming that the Measure Hypothesis holds. Finally Section 8 gives an effective
procedure yielding hard sequences for nondeterministic algorithms for coNEXP-hard problems.

2. Preliminaries

By nO(1) we denote the class of polynomially bounded functions on the natural numbers. We let Σ
be the alphabet {0, 1} and |x| the length of a string x ∈ Σ∗. We identify problems with subsets
of Σ∗. In this paper we always assume that Q denotes a decidable and nonempty problem.

If A is a deterministic or nondeterministic algorithm and A accepts the string x, then we denote
by tA(x) the minimum number of steps of an accepting run of A on x; if A does not accept x,
then tA(x) is not defined. By L(A) we denote the language accepted by A. We use deterministic
and nondeterministic Turing machines as our basic computational model for algorithms (and we
often use the notions “algorithm” and “Turing machine” synonymously). Unless necessary, we will
not distinguish between a Turing machine and its code, a string in Σ∗. By default, algorithms are
deterministic. If an algorithm A on input x eventually halts and outputs a value, we denote it by A(x).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

We assume familiarity with the classes P (polynomial time), NP (nondeterministic polynomial
time), and the classes Πp

t for t ≥ 1 (the “universal” class of the tth level of the polynomial hierar-
chy). In particular, Πp

1 = coNP. For a function t : N→ N we denote by DTIME(t) the class of prob-
lems decidable by an algorithm A with tA(x) ≤ c·t(|x|) for all x ∈ Σ∗ and some constant c ∈ N. The
nondeterministic class NTIME(t) is defined accordingly. Recall the classes E :=

∪
d∈N DTIME(2d·n)

(exponential time with linear exponent) and NE =
∪

d∈N NTIME(2d·n) (nondeterministic exponen-
tial time with linear exponent).

The Measure Hypothesis [Lutz 1997b] is the assumption

NP does not have measure 0 in E.

For the corresponding notion of measure we refer to [Mayordomo 1994]. The Measure Hypothesis
has been used extensively in complexity theory [Lutz 1997a; Buhrman et al. 1997].

A problem Q ⊆ Σ∗ has padding (or, is paddable) if there is a function pad : Σ∗ × Σ∗ → Σ∗

computable in polynomial time having the following properties:

– For any x, y ∈ Σ∗, |pad(x, y)| > |x| + |y| and
(
pad(x, y) ∈ Q ⇐⇒ x ∈ Q

)
.

– There is a polynomial time algorithm which, given pad(x, y) recovers y.

By ⟨. . . , . . .⟩ we denote some standard polynomial time computable tupling function with polyno-
mial time computable inverses.

If Q and Q′ are problems, we write Q ≤p Q′ if there is polynomial time (many-one) reduction
from Q to Q′.

3. Hard sequences and hard sets for algorithms

In this section we introduce or recall the notions of hard sequence, of strongly hard sequence, and
of hard set for algorithms. Furthermore, we derive some simple results comparing these notions.

Definition 3.1. Let Q ⊆ Σ∗.

(a) Let A be a deterministic (nondeterministic) algorithm deciding (accepting) Q.
– A sequence (xs)s∈N is hard for A if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is computable

in polynomial time, and tA(xs) is not polynomially bounded in s.
– If in addition s ≤ |xs| holds for all s, then (xs)s∈N is strongly hard for A
– A subset X of Q is hard for A if X ∈ P (X ∈ NP if A is nondeterministic) and A is not

polynomial-time bounded on X .
(b) The problem Q has hard sequences for algorithms if every algorithm deciding Q has a hard

sequence.
(c) The problem Q has hard sequences for nondeterministic algorithms if every nondeterministic

algorithm accepting Q has a hard sequence.
(d) Similarly we define the notions of Q has strongly hard sequences for algorithms, Q has hard

sets for algorithms,

Clearly, a strongly hard sequence (xs)s∈N yields the hard set {xs | s ∈ N}. In Example 4.2 we
show that there are algorithms with hard sequences but without strongly hard sequences. On the
other hand, we observe:

PROPOSITION 3.2. Assume Q has padding. If Q has hard sequences for (nondeterministic)
algorithms, then Q has strongly hard sequences and hence, hard sets for (nondeterministic) algo-
rithms.

PROOF. Let pad be a padding function for Q and let A be any algorithm deciding Q. We show
that A has a strongly hard sequence. The algorithm B decides Q as follows: on input x the algo-
rithm B on its ith step performs the ith step of the computation of A on pad(x, 10), the (i− 1)th step
of the computation of A on pad(x, 11),. . . , the first step of of the computation A on pad(x, 1i−1).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

If any of these computations of A stops, then B answers accordingly. There is a polynomial p(u, v)
such that for all strings x and s ∈ N we have

tB(x) ≤ p(s, tA(pad(x, 1s))).

Hence if (xs)s∈N is a hard sequence for B, then
(
pad(xs, 1s)

)
s∈N is a strongly hard sequence

for A.

As already mentioned in Section 1, we will show (see Theorem 7.10) that, assuming the Measure
Hypothesis, there are problems having hard sets for algorithms but which have algorithms without
hard sequences. We do not know whether there are problems Q with hard sequences which do not
have hard sets (by the previous proposition such Q’s can not be paddable). However, the following
example shows that there are problems Q that have algorithms with hard sequences but without hard
sets.

Example 3.3. Let Q be P-immune,4 that is, Q is infinite yet has no infinite P-subsets. In particu-
lar, no algorithm deciding Q has a hard set. But Q (as every infinite problem) has an algorithm with
a hard sequence: Let E be an algorithm that enumerates all elements in Q,

e0, e1, . . . ,

such that |es| ≤ |es+1| for every s ∈ N. Moreover let t0 be the number of steps which E needs to
output the first element e0. Let S be a polynomial time algorithm which on input 1s outputs the last
element enumerated by E in s + t0 steps. We denote this element by xs.

We consider the algorithm A which on input x simulates S on inputs 10, 11, 12,. . . outputting
x0, x1, x2,. . . until we get the first xs with |x| < |xs|. Then A checks whether x is among
{x0, . . . , xs−1}. If so, the algorithm A makes 2m additional dummy steps and accepts, where m
is the number of steps done so far by A. Note that m ≥ s. Otherwise, A rejects. Then (xs)s∈N is a
hard sequence for A. ⊣

Our main tool will be hard sequences. In comparison with hard sets, they have the advantage
(besides the fact that they can be generated in polynomial time) that they are “preserved upward”
under polynomial time reductions, while this is known for hard sets only among paddable problems:

LEMMA 3.4.

(a) Assume that S is a polynomial time reduction from Q to Q′ and let B be a (nondeterministic)
algorithm deciding (accepting) Q′. If (xs)s∈N is a hard sequence for B ◦ S, then

(
S(xs)

)
s∈N is

a hard sequence for B.
Therefore, if Q ≤p Q′ and Q has hard sequences for (nondeterministic) algorithms, then so
does Q′.

(b) If Q ≤p Q′, Q′ is paddable, and Q has hard sets for (nondeterministic) algorithms, then so
does Q′.

We leave the straightforward proof of this lemma to the reader. We close this section showing that
for an arbitrary problem Q the existence of hard sets is equivalent to a (non-)listing property. We
introduce this property.

Let C be the complexity class P or NP. A set X is a C-subset of Q if X ⊆ Q and X ∈ C. We
write List(C, Q) and say that there is a listing of the C-subsets of Q by C-machines if there is an
algorithm that, once having been started, lists Turing machines M1,M2, . . . of type C such that

{L(Mi) | i ≥ 1} = {X ⊆ Q | X ∈ C}.

4As observed in [Ko and Moore 1981], Berman and Hartmanis [1977] show that E contains a P-immune (even a P-bi-
immune) set.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

A weaker notion of listing is considered in [Beyersdorff and Sadowski 2011] and called there “recur-
sive P-presentation (resp. NP-presentation).” For Q with padding the equivalences in the following
proposition were known [Sadowski 2002].

THEOREM 3.5.

(a) Q has hard sets for algorithms if and only if List(P, Q) does not hold.
(b) Q has hard sets for nondeterministic algorithms if and only if List(NP, Q) does not hold.

PROOF. We only prove the first claim as the second one can be obtained along the same lines.
First we show the implication from right to left. For a contradiction assume that A is an algorithm
deciding Q without hard sets. For d ∈ N, by A(d) we denote the algorithm that on input x simu-
lates A on input x but rejects if the simulation exceeds time |x|d. We fix an effective enumeration
D1,D2, . . . of all polynomial time Turing machines. Then

(
Di(A(j)

)
i,j≥1 is a listing of the P-subsets

of Q, where Di(A(j)) on input x, first simulates A(j) on x and if this algorithm accepts, then it sim-
ulates Di on input x and answers accordingly. As A(j) has to accept x, we have L(Di(A(j))) ⊆ Q.
Let X be any P-subset of Q accepted, say, by Di. As A has no hard set, there is a d ∈ N such that
X ⊆ L(A(d)). Then L(Di(A(d))) = X .

Conversely, assume that Q has hard sets for algorithms. By contradiction assume that L is a listing
witnessing List(P, Q). Let Q be an algorithm deciding Q. Consider the algorithm A that on input x
simulates Q on x and in parallel for i = 1, 2, . . . does the following:

– performs the ith step of L;
– if M1, . . . ,Ms are the machines listed by L so far, it performs an additional step of each of the
Mjs on x; if one of these accepts, it accepts.

If Q halts first, it answers accordingly.
It should be clear that A accepts Q. By assumption, there is a set X hard for A. Let Mi0 accept X .

By definition of A it should be clear that A is polynomial on X , a contradiction.

4. Almost optimal algorithms and hard sequences

First, we recall the notion of almost optimal algorithm. Then we derive results concerning the exis-
tence of hard sequences for Πp

t -complete problems and draw some consequences.
Let Q ⊆ Σ∗. A deterministic (nondeterministic) algorithm A deciding (accepting) Q is almost

optimal if for every deterministic (nondeterministic) algorithm B deciding (accepting) Q we have

tA(x) ≤
(
tB(x) + |x|

)O(1)

for all x ∈ Q. Note that nothing is required for x /∈ Q.
Clearly, for a problem Q in P (in NP) every polynomial time (nondeterministic polynomial time)

algorithm deciding (accepting) Q is an almost optimal algorithm (an almost optimal nondeterminis-
tic algorithm). There are problems outside P with an almost optimal algorithm (see Messner [2000,
Corollary 3.33]; we slightly improve his result in Theorem 7.1 of Section 7). However, it is not
known whether there are problems outside NP having an almost optimal nondeterministic algo-
rithm and it is not known whether there are problems with padding outside P having an almost
optimal algorithm. We show in Theorem 7.4 of Section 7 that the former is true if the Measure
Hypothesis holds.

The following lemma is well-known and its proof straightforward. It shows that if (xs)s∈N is hard
for an algorithm A, then A can be superpolynomially speeded up on {xs | s ∈ N}; thus A can’t be
almost optimal.

LEMMA 4.1. Let A be a deterministic (nondeterministic) algorithm deciding (accepting) Q.
If A has a hard sequence or a hard set, then A is not almost optimal.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

PROOF. We prove the deterministic case for hard sequences, the other cases are obtained by the
obvious modifications. So assume that the algorithm A decides Q and has a hard sequence (xs)s∈N;
in particular,

tA(xs) is not polynomially bounded in s. (1)

Let G be a polynomial time algorithm computing the function 1s 7→ xs. The following algorithm G∗

accepts the set {xs | s ∈ N} and for x = xs runs in time polynomial in s.

G∗ // x ∈ Σ∗

1. ℓ← 0
2. for s = 0 to ℓ
3. simulate the (ℓ− s)th step of G on 1s

4. if this simulation outputs y and y = x then accept and halt
5. ℓ← ℓ + 1
6. goto 2.

We consider the algorithm A∥G∗ that on input x runs A and G∗ in parallel, both on input x, and halts,
when the first of these algorithms halts, then answering in the same way. Hence, A∥G∗ accepts Q
and tA∥G∗(xs) is polynomially bounded in s. As |xs| ≤ sO(1), by (1) we see that tA(xs) is not
polynomially bounded in tA∥G∗ (xs) + |xs|; thus A∥G∗ witnesses that A is not an almost optimal
algorithm.

If an algorithm is not almost optimal, does it have hard sequences? We show that it may not have
strongly hard sequences.

Example 4.2. We set r0 := 0 and ri+1 := 2ri for i ≥ 1 and define Q by

Q := {1ri | i ∈ N}.

So Q ∈ P and thus Q itself is a hard set of every algorithm deciding Q which is not almost optimal.
We show:

(a) There is no sequence (xs)s∈N of elements of Q with s ≤ |xs| such that the function 1s 7→ xs is
computable in polynomial time and s ≤ |xs| for all s ≥ 0. In particular, no algorithm deciding Q
has a strongly hard sequence.

(b) The sequence (xs)s∈N defined by

xs := 1ri , if ri ≤ s < ri+1 (2)

is hard for every algorithm which decides Q and is not almost optimal.

To show (a), assume for a contradiction that the sequence (xs)s∈N is “strongly hard.” Then, ri + 1 ≤
|xri+1| and thus, 2ri ≤ |xri+1| since xri+1 ∈ Q. This shows that the function 1s 7→ xs is not
computable in polynomial time.

To show (b) let A be an algorithm that decides Q and is not almost optimal. Then, for every i ∈ N
there is yi ∈ Q such that

tA(yi) > |yi|i.

As yi ∈ Q, we know that for some ji ∈ N we have yi = 1rji = xrji

(
the last equality holding

by (2)
)
. Thus, for all i ∈ N,

tA(xrji
) = tA(yi) > |yi|i = (rji)

i.

Thus, tA(xs) is not polynomially bounded in s. ⊣

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

By Lemma 4.1, if a problem Q has hard sequences (or hard sets), then it has no almost optimal
algorithm. Does the converse hold? For sequences we show the converse for problems Q that are Πp

t -
complete for some t. As partly mentioned in the Introduction (cf. (vi) on page 4), Messner [Messner
2000, Theorem 3.4 and Theorem 3.19] proved the corresponding result for hard sets. He doesn’t
need the assumption of Πp

t -completeness of Q but must assume that Q satisfies a property which
holds for all paddable Q.

THEOREM 4.3. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

(a) Q has no almost optimal algorithm if and only if Q has hard sequences for algorithms.
(b) Q has no almost optimal nondeterministic algorithm if and only if Q has hard sequences for

nondeterministic algorithms.

Remark 4.4. For Q = TAUT (or for a halting problem polynomially isomorphic to TAUT) the
previous result is implicit in [Krajı́ček and Pudlák 1989; Krajı́ček 1995; Monroe 2011; Chen and
Flum 2010]. In Remark 5.4 we show how this can directly be extended to every coNP-complete
problem using known results relating almost optimal algorithms and proof systems. ⊣

Lemma 4.1 yields the implications from right to left in Theorem 4.3. The following considerations
will yield a proof of the converse direction. For a nondeterministic algorithm A and s ∈ N let As

be the algorithm that rejects all x ∈ Σ∗ with |x| > s. If |x| ≤ s, then it simulates s steps of A on
input x; if this simulation halts and accepts, then As accepts; otherwise it rejects.

Recall that by L(A) we denote the language accepted by A. For Q ⊆ Σ∗ we consider the de-
terministic algorithm subset problem DAS(Q) and the nondeterministic algorithm subset problem
NAS(Q).

DAS(Q)
Instance: A deterministic algorithm A and 1s with s ∈ N.
Question: L(As) ⊆ Q?

NAS(Q)
Instance: A nondeterministic algorithm A and 1s with s ∈ N.
Question: L(As) ⊆ Q?

The following two lemmas relate the equivalent statements in Theorem 4.3 (a)
(
in Theorem 4.3 (b)

)
to a statement concerning the complexity of DAS(Q)

(
of NAS(Q)

)
.

LEMMA 4.5.

(a) If ⟨A, 1s⟩ ∈ DAS(Q) is solvable in time sf (A) for some function f , then Q has an almost optimal
algorithm.

(b) If there is a nondeterministic algorithm V accepting NAS(Q) such that for all ⟨A, 1s⟩ ∈ NAS(Q)
we have tV(⟨A, 1s⟩) ≤ sf (A) for some function f , then Q has an almost optimal nondeterministic
algorithm.

PROOF. Again we only prove (a). Let V be an algorithm deciding ⟨A, 1s⟩ ∈ DAS(Q) in
time sf (A) for some function f . Further let Q be an algorithm deciding Q and let A0,A1, . . . be
an effective enumeration of all algorithms. Consider the following algorithm A deciding Q.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

A // x ∈ Σ∗

1. simulate Q on x and in parallel do the following
2. for i = 0 to |x| do in parallel
3. simulate Ai on x
4. if Ai accepts then
5. s← max{|x|, tAi(x)} 5

6. if V accepts ⟨Ai, 1s⟩ then accept and halt
7. else never halt
8. else never halt
9. if Q stops first then answer accordingly and halt.

It is easy to see that A decides Q. We show it is almost optimal. Let B be any algorithm deciding Q.
We choose iB ∈ N such that B = AiB . Note that V accepts ⟨B, 1s⟩ for all s. Hence for inputs x ∈ Q
with |x| ≥ iB the algorithm A, for i = iB, accepts x in Line 6 if it was not already accepted earlier.
Thus, tA(x) is polynomially bounded in

|x| + tB(x) + tV

(
⟨B, 1max{|x|,tB(x)}⟩

)
.

Hence, by the assumption on DAS(Q), it is polynomially bounded in max{|x|, tB(x)}f (B). Alto-
gether, tA(x) ≤

(
|x| + tB(x)

)O(1)
.

If Q is in Πp
t , then the problem NAS(Q) and hence the problem DAS(Q) are in Πp

t , too (this is the
reason why 1s and not just s is part of the input of NAS(Q) and of DAS(Q)). Thus, together with
Lemma 4.5 the following lemma yields the remaining claims of Theorem 4.3.

LEMMA 4.6.

(a) Assume that DAS(Q) ≤p Q, that is, that DAS(Q) is polynomial time reducible to Q. If for every
function f , ⟨A, 1s⟩ ∈ DAS(Q) is not solvable in time sf (A), then Q has hard sequences for
algorithms.

(b) Assume that NAS(Q) ≤p Q. If there is no nondeterministic algorithm V accepting NAS(Q)
such that for all ⟨A, 1s⟩ ∈ NAS(Q) we have tV(⟨A, 1s⟩) ≤ sf (A) for some function f , then Q
has hard sequences for nondeterministic algorithms.

PROOF. Again we only prove part (a).

Claim. Assume that ⟨A, 1s⟩ ∈ DAS(Q) is not solvable in time sf (A) for some function f . Then, for
every algorithm W deciding DAS(Q), there exists an algorithm A with L(A) ⊆ Q and tW

(
⟨A, 1s⟩

)
is not polynomially-bounded in s.

Proof of the Claim. By contradiction, assume that W decides DAS(Q) and that for all algorithms A
with L(A) ⊆ Q there is a cA ∈ N such that for all s ∈ N we have tW

(
⟨A, 1s⟩

)
≤ scA .

Let V be the algorithm that, on an arbitrary input ⟨A, 1s⟩, in parallel runs W on ⟨A, 1s⟩ and
computes

rA := the least r such that L(Ar) ̸⊆ Q

by systematically checking for r = 0, 1, . . . whether L(Ar) ̸⊆ Q (this is done by running for all x
with |x| ≤ r the algorithm A at most r steps on input x and a decision procedure for Q on x). Note
that rA is not defined if L(A) ⊆ Q. If W stops first, V answers accordingly; if rA is obtained first,
then V accepts if s < rA and otherwise it rejects. It should be clear that the algorithm V decides
⟨A, 1s⟩ ∈ DAS(Q) in ≤ sf (A) steps for some function f . ⊣

5In the nondeterministic case, we replace Line 3 by “simulate Ai on x and count the number nAi
(x) of steps” and Line 5 by

“s← max{|x|, nAi
(x)}.”

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

By assumption, there is a polynomial time reduction S from DAS(Q) to Q. Let B be an arbitrary
algorithm deciding Q. Then the algorithm B ◦ S, which on input x first simulates S on x and then B
on S(x), decides DAS(Q). Hence, by the Claim, there exists an algorithm A with L(A) ⊆ Q such
that tB◦S

(
⟨A, 1s⟩

)
is not polynomially bounded in s. For s ∈ N we set xs := S(⟨A, 1s⟩). Then

xs ∈ Q for all s and the function 1s 7→ xs is polynomial time computable. Furthermore

tB◦S(⟨A, 1s⟩) ≤ O
(
tS(⟨A, 1s⟩) + tB(S(⟨A, 1s⟩))

)
≤ sO(1) + O

(
tB(xs)

)
.

As the left-hand side is not polynomially bounded in s, neither is tB(xs). Hence (xs)s∈N is hard
for B.

Remark 4.7. In the proof of Theorem 4.3 we used the assumption that Q is Πp
t -complete only

to ensure that NAS(Q) ≤p Q (cf. Lemma 4.6). This condition is also fulfilled for every Q complete,
say, for one of the classes E or PSPACE. Thus the statements of Theorem 4.3 hold for such a Q.

We also get NAS(Q) ≤p Q if Q is ∀-closed, a property considered by Messner [2000]. He shows
in [Messner 2000, Theorem 3.48 and Theorem 3.49] the following (we only state the result for the
deterministic case):

Let Q be ∀-closed problem, which has padding (again, a weaker notion than padding
suffices). Then Q has no almost optimal algorithm if and only if Q has supersparse hard
sets for algorithms.

Recall that a set X of strings is supersparse if for some constant c and all n ∈ N it contains at most
c + log log n strings of length ≤ n. Note that even a supersparse set X which is hard for a given
algorithm A does not seem to yield a hard sequence for A; it may be that tA(xs) is polynomially
bounded in s for every polynomial time enumeration (xs)s∈N of X . ⊣

Remark 4.8. Assume that Q is Πp
t -complete and has padding (for t = 1, the set TAUT is an

example of such a Q). If Q has no almost optimal algorithm, then every algorithm B deciding Q has
a strongly hard sequence (as already mentioned, for Q = TAUT this was proven in [Krajı́ček 1995,
Theorem 14.2.3]). In fact, it is well-known that for Q with padding we can replace any polynomial
time reduction to Q by a length-increasing one. Hence, then in the proof of Lemma 4.6 we may
assume that S is length-increasing and therefore s ≤ |xs|. ⊣

We derive a consequence of Theorem 4.3 which does not mention hard sequences.

COROLLARY 4.9. Let t ≥ 1 and assume that some Πp
t -complete problem has no almost optimal

algorithm. Then every Πp
t -hard problem has no almost optimal algorithm.

PROOF. Assume that the Πp
t -complete problem Q has no almost optimal algorithm. Then, by

Theorem 4.3, the problem Q has hard sequences for algorithms and so does every Πp
t -hard problem

by Lemma 3.4. Now the claim follows from Lemma 4.1.

5. Proof systems

In this section we recall the notion of proof system and use some well-known results to obtain
further consequences of Theorem 4.3.

A proof system for Q is a polynomial time algorithm P computing a function from Σ∗ onto Q. If
P(w) = x, we say that w is a P-proof of x. Often we introduce proof systems implicitly by defining
the corresponding function; then the definition of this function will suggest an algorithm.

Definition 5.1. Let P and P′ be proof systems for Q. An algorithm T is a translation from P′

into P if P(T(w′)) = P′(w′) for every w′ ∈ Σ∗. Note that translations always exist. A translation is
polynomial if it runs in polynomial time.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

A proof system P for Q is p-optimal or polynomially optimal if for every proof system P′ for Q
there is a polynomial translation from P′ into P. A proof system P for Q is optimal if for every proof
system P′ for Q and every w′ ∈ Σ∗ there is a w ∈ Σ∗ such that P(w) = P′(w′) and |w| ≤ |w′|O(1).
Clearly, every p-optimal proof system is optimal.

We often will make use of the following relationship between the optimality notions for algo-
rithms and that for proof systems (see [Krajı́ček and Pudlák 1989; Messner 2000]).

THEOREM 5.2.

(a) For every Q we have (i)⇒ (ii) and (ii)⇒ (iii); moreover (i), (ii), and (iii) are all equivalent if
Q has padding. Here
(i) Q has a p-optimal proof system.

(ii) Q has an almost optimal algorithm.
(iii) There is an algorithm that decides Q and has no hard sets.

(b) For every Q we have (i) ⇐⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (iv); moreover (i)–(iv) are all
equivalent if Q has padding. Here
(i) Q has an optimal proof system.

(ii) Q has an almost optimal nondeterministic algorithm.
(iii) There is a nondeterministic algorithm that accepts Q and has no hard sets.
(iv) There is a nondeterministic algorithm that accepts Q and runs in polynomial time on every

subset X of Q with X ∈ P.

In the following Remark 5.4, we combine the “upward preservation” of hard sequences
(
cf.

Lemma 3.4 (a)
)

with the “downward preservation” of optimal proof systems, that is, with the fol-
lowing statement:

LEMMA 5.3. ([Köbler et al. 2003, Lemma 2.1]) If Q ≤p Q′ and Q′ has a p-optimal (optimal)
proof system, so does Q.

Remark 5.4. Using the previous theorem, we get a simple direct proof of

if Q is coNP-complete and has no almost optimal (nondeterministic) algorithm, then Q
has hard sequences for (nondeterministic) algorithms

using the result for Q = TAUT (that was already known). In fact, assume that Q has no almost
optimal algorithm (the proof for the nondeterministic case follows analogously). Then TAUT has no
almost optimal algorithm; otherwise, TAUT would have a p-optimal proof system by the equivalence
of (i) and (ii) in part (a) of the previous theorem (TAUT has padding!). As Q ≤p TAUT, then Q would
have a p-optimal proof system, too (by Lemma 5.3). Hence, again by the previous theorem, Q would
have an almost optimal algorithm, a contradiction. So, TAUT has no almost optimal algorithm and
thus, TAUT has hard sequences for algorithms. As TAUT ≤p Q, the problem Q has hard sequences
for algorithms, too (by Lemma 3.4). ⊣

We use the results of Section 3 to get further consequences of the equivalence of Theorem 5.2.
First, we derive the equivalence of (i) and (ii) in Theorem 5.2 (a) for every Πp

t -complete problem.

THEOREM 5.5. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

Q has a p-optimal proof system if and only if Q has an almost optimal algorithm.

PROOF. By Theorem 5.2 (a) the left-hand side implies the right hand side. Now assume that Q is
Πp

t -complete and has an almost optimal algorithm. As Q×Σ∗ is Πp
t -complete too, it has an almost

optimal algorithm (by Corollary 4.9). As Q×Σ∗ has padding, it has a p-optimal proof system P (cf.
Theorem 5.2 (a)). Now it is routine to show that the algorithm P′ that on input w computes P(w)
and outputs its first component is a p-optimal proof system for Q.

Furthermore, we get:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

COROLLARY 5.6. Assume Q has padding and is Πp
t -complete. Then,

Q has hard sequences for (nondeterministic) algorithms
if and only if Q has hard sets for (nondeterministic) algorithms.

PROOF. The direction from left to right was already shown in Proposition 3.2. If Q has hard sets
for algorithms, then, by the equivalence of (ii) and (iii) in Theorem 5.2 (Q has padding!), Q has no
almost optimal algorithm. Thus, by Theorem 4.3, Q has hard sequences for algorithms.

6. Hard sequences for proof systems

We already mentioned in the Introduction that for every Q ⊆ Σ∗ there is a well-known and straight-
forward correspondence between proof systems and nondeterministic algorithms preserving the op-
timality notions, so that the proof of the equivalence between (i) and (ii) in Theorem 5.2 (b) is im-
mediate. In fact, if P is a proof system for Q, then the nondeterministic algorithm A(P) accepts Q,
where A(P) on input x ∈ Σ∗ guesses a string w and accepts if P(w) = x.

Conversely, we assign to every nondeterministic algorithm a proof system in a canonical way.
This assignment works for nondeterministic as well as for deterministic algorithms. So let A be a
deterministic (nondeterministic) algorithm deciding (accepting) Q. Then for every fixed x0 ∈ Q the
algorithm A induces a proof system PA for Q defined by

PA(w) :=
{
x, if w is a computation of A accepting x

x0, otherwise.

We introduce the notions of hard sequences, strongly hard sequences, and hard sets for proof systems
such that for proof systems of the form PA they correspond with the notions for the algorithm A
(see Lemma 6.2). Note that, by definition, a proof system is always a deterministic algorithm.

Definition 6.1. Let P be a proof system for Q.

(a) A sequence (xs)s∈N is hard for P if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is computable in
polynomial time, and there is no polynomial time algorithm W with P(W(1s)) = xs.

(b) The sequence (xs)s∈N is length-hard for P if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is
computable in polynomial time, and there is no sequence (ws)s∈N such that P(ws) = xs and the
length of ws is polynomially-bounded in s (i.e., |ws| ≤ |s|O(1)).

(c) A subset X of Q is hard for P if X ∈ P and there is no polynomial time algorithm W such that
P(W(x)) = x for all x ∈ X .

(d) A subset X of Q is length-hard for P if X ∈ NP and there is no family (wx)x∈X with |wx| ≤
|x|O(1) such that P(wx) = x for all x ∈ X .

It should be clear how we define strongly hard sequences for P and strongly length-hard sequences
for P. Furthermore, it should be clear how we define for a problem Q the notions Q has hard
sequences for proof systems, Q has length-hard sequences for proof systems,

The verification of the following lemma is straightforward.

LEMMA 6.2. Let A be a deterministic (nondeterministic) algorithm deciding (accepting) Q and
PA be the induced proof system.

(a) If A is deterministic, then a sequence (xs)s∈N (a set X) is hard for A if and only if it is hard
for PA.

(b) If A is nondeterministic, then a sequence (xs)s∈N (a set X) is hard for A if and only if it is
length-hard for PA.

For a problem Q every hardness property for algorithms is equivalent to this property for proof
systems:

LEMMA 6.3.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

(a) Q has hard sequences, strongly hard sequences, or hard sets for algorithms if and only Q it has
hard sequences, strongly hard sequences, or hard sets for proof systems, respectively.

(b) Q has hard sequences, strongly hard sequences, or hard sets for nondeterministic algorithms if
and only if Q has length-hard sequences, strongly length-hard sequences, or length-hard sets
for proof systems, respectively.

Due to the relationship between proof systems and nondeterministic algorithms the verification
of (b) is immediate. As a deterministic algorithm A induces the proof system PA, also the implication
from right to left in (a) is easy. Our proof of the reverse implication is based on a theorem due to
Levin on inverters. We recall it.

Let F be an algorithm computing a function from Σ∗ to Σ∗. An inverter of F is an algorithm I
that given y in the range of F halts with some output I(y) such that F(I(y)) = y. On inputs not in the
range of F, the algorithm I may do whatever it wants. Levin [1973] proved the following result.

THEOREM 6.4. Let F be an algorithm computing a function from Σ∗ into Σ∗. Then there is an
optimal inverter that is, an inverter OF of F such that for every inverter I of F and all y in the range
of F we have

tOF (y) ≤
(
tI(y) + tF(I(y)) + |y|

)O(1)
.

Furthermore, OF does not halt on inputs y not in the range of F.

PROOF OF THE IMPLICATION FROM LEFT TO RIGHT OF LEMMA 6.3. Assume, say, that Q has
hard sequences for algorithms. Let P be any proof system for Q. By Theorem 6.4, we have an
inverter OP of P which is optimal, that is, for every inverter I of P and x ∈ Q we have

tOP (x) ≤
(
tI(x) + tP(I(x)) + |x|

)O(1) ≤ (tI(x) + |x|)O(1), (3)

where the second inequality holds as tP(w) ≤ |w|O(1) and hence tP(I(x)) ≤ |I(x))|O(1) ≤ tI(x)O(1).
Moreover, for x /∈ Q the algorithm OP will not halt on input x.

We choose an arbitrary algorithm Q that decides Q and consider the algorithm S that on input
x in parallel simulates Q and OP, both on input x. If Q halts first, then it answers accordingly and
if OP halts first, then it accepts. Obviously S decides Q and for every x ∈ Q we have

tS(x) ≤ O
(
tOP (x)

)
. (4)

As Q has hard sequences for algorithms, there is a polynomial time computable algorithm G gen-
erating a hard sequence (xs)s∈N for S; that is, G on input 1s computes xs ∈ Q in polynomial time
such that

tS(xs) is not polynomially bounded in s. (5)

We show that (xs)s∈N is a hard sequence for P. For this purpose let G+ be the variant of the algo-
rithm G∗ in the proof of Lemma 4.1 obtained by replacing Line 4 by

if this simulation outputs y and y = x then output 1s and halt.

Of course, on input x = xs the algorithm G+ runs in time polynomial in s. Assume for a contradic-
tion that (xs)s∈N is not a hard sequence for P. Then there is a polynomial time algorithm W with
P(W(1s)) = xs for all s ∈ N. We consider the inverter I of P that on input x in parallel simulates OP
and G+, both on input x. If OP halts, then it outputs the output of OP and halts; if G+ halts, then it
simulates W on G+(x), outputs W(G+(x)), and halts.

By definition of G+ the algorithm I runs, on input xs, in time polynomial in s, hence so does OP
by (3) as |xs| ≤ sO(1). But then by (4), the same holds for the algorithm S contradicting (5).

Clearly, if (xs)s∈N was a strongly hard sequence for S, then it is a strongly hard sequence for P.
The verification for hard sets (instead of hard sequences) is similar, even easier.

Now we can show for proof systems the result corresponding to Proposition 3.2.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

COROLLARY 6.5. Assume Q has padding. If Q has hard (length-hard) sequences for proof
systems, then Q has strongly hard (strongly length-hard) sequences for proof systems. In particular,
then Q has hard sets (length-hard) sets.

PROOF. Assume Q has hard sequences for proof systems. By Lemma 6.3, Q has hard sequences
for algorithms and thus, by Proposition 3.2, strongly hard sequences for algorithms. Again applying
Lemma 6.3 we see that Q has strongly hard sequences for proof systems.

Similarly one can prove the analogue of Corollary 5.6 for proof systems:

COROLLARY 6.6. Assume Q has padding and is Πp
t -complete. Then,

Q has hard (length-hard) sequences for proof systems
if and only if Q has hard (length-hard) sets for proof systems.

As already remarked in the Introduction, for Q = TAUT the following result is known and goes
back to Krajı́ček and Pudlák [1989] (see [Krajı́ček 1995, Theorem 14.2.2]).

THEOREM 6.7. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

(a) Q has no p-optimal proof system if and only if Q has hard sequences for proof systems.
(b) Q has no optimal proof system if and only if Q has length-hard sequences for proof systems.

The implications from right to left hold for all problems Q.

PROOF. First, we present a proof of the directions from right to left, say, for (b). Let P be any
proof system for Q. We show that P is not optimal. By our assumption on Q there is a length-hard
sequence (xs)s∈N for P. We consider the proof system P′ for Q given by

P′(w′) := P(w), if w′ = 0w; P′(w′) := xs, if w′ = 1s;

and P′(w′) := z0 for some fixed element z0 of Q, otherwise. Let T be any translation from P′ into P.
In particular,

P(T(1s)) = P′(1s) = xs

for all s ∈ N. As (xs)s∈N is a length-hard sequence for P, the length of T(1s) is not polynomially
bounded in s. Hence, T is not a polynomial translation; therefore, P is not optimal.

Now we present a proof of the direction from left to right, say, for (a). So, assume that Q has no
p-optimal proof system. By Theorem 5.5, Q has no almost optimal algorithm and hence has hard
sequences for algorithms by Theorem 4.3. Now the claim follows from Lemma 6.3.

Remark 6.8. If in the previous theorem we assume that Q, in addition, has padding, then (by
Corollary 6.6) we can replace the right hand sides in (a) and (b) by “Q has hard sets for proof
systems” and by “Q has length-hard sets for proof systems,” respectively.

For hard sets Messner [2000, Theorem 3.4 and Theorem 3.19] proved the results corresponding
to Theorem 6.7 . He doesn’t need the assumption of Πp

t -completeness of Q but must assume that Q
satisfies a property which is weaker than padding. Again with the hypothesis that Q is ∀-closed (cf.
Remark 4.7), Messner [2000, Theorem 3.4 and Theorem 3.49] shows that one can require the hard
sets to be supersparse. ⊣

7. Assuming the Measure Hypothesis

In this section we present some examples of problems with special properties, some yield limitations
to possible extensions of results mentioned in this paper. Most are proven assuming the Measure Hy-
pothesis, that is, the statement “NP does not have measure 0 in E,” where E :=

∪
d∈N DTIME(2d·n).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Recall that an algorithm A deciding Q is optimal if for every algorithm B deciding Q we have

tA(x) ≤ (tB(x) + |x|)O(1)

for all x ∈ Σ∗. Clearly, every problem in P has an optimal algorithm.

THEOREM 7.1.

(a) There exist problems in E \ P with optimal algorithms.
(b) If the Measure Hypothesis holds, then there exist problems in NP \ P with optimal algorithms.

Messner [2000, Theorem 3.32] showed the existence of problems in E \ P with almost optimal
algorithms.

The following considerations will finally lead to a proof of Theorem 7.1. Let C be a class of
problems. Recall that a problem Q is C-immune if no infinite subset of Q is in C; and it is C-bi-
immune if Q and its complement Σ∗ \Q are C-immune.

LEMMA 7.2.

(a) If Q ∈ E is a DTIME(2ℓ·n)-bi-immune problem for some ℓ ≥ 1, then every algorithm witnessing
that Q ∈ E is optimal.

(b) If Q ∈ NE is an NTIME(2ℓ·n)-immune problem for some ℓ ≥ 1, then every nondeterministic
algorithm witnessing that Q ∈ NE is optimal.

PROOF. We prove (a); part (b) is obtained by the obvious modifications. Assume that the Turing
machine M decides the DTIME(2ℓ·n)-bi-immune problem Q in time c · 2d·n for some c, d ∈ N. We
claim that M is optimal.

Assume otherwise, then there is a machine M′ deciding Q and witnessing that M is not optimal.
Then for every i ∈ N there exists an xi such that

tM(xi) >
(
tM′(xi) + |xi|

)i
.

It follows that, for every i ∈ N,

c · 2d·|xi| ≥ tM(xi) > tM′(xi)i.

Thus, tM′(xi) ≤ 2ℓ·|xi|/2 for all sufficiently large i ∈ N. Of course, infinitely many of these xi’s are
in Q or they are in Σ∗ \Q. In the first case consider the following machine:

M′′ // x ∈ Σ∗

1. simulate M′ on x for at most 2ℓ·|x|/2 steps
2. if the simulation halts and accepts then accept else reject.

It accepts an infinite subset of Q in time 2ℓ·n. This contradicts our immunity assumption. The second
case is handled similarly.

Part (a) of the previous lemma and the following result due to Mayordomo [1994] immediately
yields the statements of Theorem 7.1.

THEOREM 7.3. Let ℓ ≥ 1.

(a) The class of DTIME(2ℓ·n)-bi-immune problems has measure 1 in E. In particular, the class E
contains DTIME(2ℓ·n)-bi-immune problems.

(b) If the Measure Hypothesis holds, then NP ∩ E contains DTIME(2ℓ·n)-bi-immune problems.

The question whether there are sets outside of NP with optimal proof systems was stated by
Krajı́ček and Pudlák [1989] and is still open. As already mentioned, they proved that TAUT has an
optimal proof system if E = NE. We are able to show:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

THEOREM 7.4. If the Measure Hypothesis holds, then there exist problems in NE \ NP with
optimal proof systems (or, equivalently, with almost optimal nondeterministic algorithms).

PROOF. It suffices to show that there is a Q ∈ NE which is NTIME(2n)-immune. Then, by
Lemma 7.2 (b), such a Q has an almost optimal nondeterministic algorithm and hence, an optimal
proof system by Theorem 5.2.

By Theorem 7.3 (b) there is a Q0 ∈ NP which is DTIME(2n)-bi-immune problem. We choose
d ≥ 1 such that Q0 ∈ NTIME(nd). We set

Q :=
{

1m | m ∈ N and 122m
∈ Q0

}
.

Then Q ∈ NE. Furthermore, Q is infinite as otherwise the set {12m | m ∈ N and 122m
/∈ Q0} would

be an infinite subset of Σ∗ \Q0 in P contradicting the bi-immunity property of Q0. Finally we show
that Q is NTIME(2n)-immune. By contradiction assume that there is an infinite S ⊆ Q accepted by
a nondeterministic algorithm S in time 22n. Then the set

S∗ := {1n | n = 22m for some m ∈ N and 1m ∈ S}

is an infinite subset of Q0. The algorithm S∗ that first computes m from 1n and then deterministically
simulates all possible runs of S on 1m decides S∗ and runs in time

nO(1) + O
(

222m
)

= nO(1) + O(2n) = O(2n).

This contradicts the DTIME(2n)-immunity of Q0.

Concerning algorithms which are not almost optimal but do not have hard sequences, we derive
the following results.

THEOREM 7.5. Let Q be a problem with padding and with an almost optimal algorithm. If the
Measure Hypothesis holds, then there is an algorithm deciding Q, which is not almost optimal and
has hard sets but does not have hard sequences.

The proof of this theorem (and that of Theorem 7.10) are based on the following proposition.

PROPOSITION 7.6. If the Measure Hypothesis holds, then there is a problem Q0 ∈ P such that

(a) there is an algorithm B deciding Q0 which is not almost optimal (or, equivalently, is not poly-
nomial time) but has no hard sequences;

(b) every algorithm A deciding Q0 with

tA(x) ≤ 2e·(log |x|)2

for every x ∈ Σ∗ and some constant e ≥ 1 has no hard sequences;
(c) there is a proof system for Q0 which is not optimal but has no hard sequences.

To get the statements of this proposition we first show:

LEMMA 7.7. Let A be an algorithm deciding a problem with

tA(x) ≤ 2e·(log |x|)2
(6)

for all x ∈ Σ∗ and some e ≥ 1. Assume that (xs)s∈N is a hard sequence for A. Then there is a
sequence s0 < s1 < s2 < . . . such that

lim
i→∞

log si
(log |xsi |)2 = 0 i.e., si = 2o((log |xsi

|)2).

In particular, the set {xsi | i ∈ N} is infinite.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

PROOF. Assume otherwise that for some ε > 0 and some n ∈ N and all s ≥ n

log s

(log |xs|)2 ≥ ε,

or equivalently, s ≥ 2ε·(log |xs|)2
; then s ≥ tA(xs)ε/e by assumption (6). This contradicts the hard-

ness of (xs)s∈N.

PROOF OF PROPOSITION 7.6. (a) and (b): Assume the Measure Hypothesis. Then, by Theo-
rem 7.3 (b), there is a DTIME(2n)-bi-immune Q1 ∈ NP. In particular, there exists a nondetermin-
istic Turing machine M with binary nondeterminism and a d ∈ N such that for all y ∈ Σ∗ (with
|y| ≥ 2) the machine M decides whether y ∈ Q1 in ≤ |y|d steps. Thus for y ∈ Σ∗ every string
x ∈ {0, 1}|y|d determines a unique run of M on y. We set

Q0 :=
{
x ∈ {0, 1}∗

∣∣∣ for some n ∈ N we have |x| = nd

and x determines an accepting run of M on input 1n
}
.

Then Q0 is infinite, as otherwise the set {1n ∈ Q1 | n ∈ N} would be finite contradicting the
DTIME(2n)-bi-immunity of Q1. Clearly Q0 ∈ P. Let A0 be an algorithm deciding Q0 in polynomial
time and let B be the algorithm deciding Q0 by first simulating A0, and then making an appropriate
number of dummy steps such that for some e ≥ 1 and all y ∈ Σ∗

tB(y) = 2e·(log |y|)2
. (7)

Then A0 witnesses that B is not almost optimal.
We finish our proof by showing that for every algorithm A deciding Q0 such that for some e ≥ 1

and all y ∈ Σ∗

tA(y) ≤ 2e·(log |y|)2

has no hard sequences. Towards a contradiction assume A has a hard sequence (xs)s∈N. We set

L0 := {1n | for some s ∈ N, |xs| = nd and xs determines an accepting run of M on 1n}.
Clearly, L0 ⊆ Q1. We choose a polynomial time algorithm G computing the function 1s 7→ xs. The
following algorithm C accepts L0.

C // y ∈ Σ∗

1. n← |y|
2. if y ̸= 1n then reject
3. ℓ← 0
4. for s = 0 to ℓ
5. simulate the (ℓ− s)th step of G on 1s

6. if the simulation outputs x with |x| = nd then accept
7. ℓ← ℓ + 1
8. goto 3.

By (7) we can apply Lemma 7.7 to A and get a sequence s0 < s1 < s2 < For i ∈ N we let

ni := d
√
|xsi |. (8)

Hence, xsi is an accepting run of M on input 1ni . We show that

tC(1ni) = 2o((log ni)2). (9)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

In fact, as G runs in polynomial time, we have |xsi | ≤ sO(1)
i , and by (8) therefore, ni ≤ sO(1)

i . Now
one easily sees that C accepts 1ni in time polynomial in si, too. By Lemma 7.7

si = 2o((log |xsi
|)2).

Thus (8) implies that

si = 2o((log ni)2).

Hence, we get (9).
Finally, we consider the algorithm C∗ that on input y simulates C for 2|y| steps and accepts if the

simulation accepts. By (9), C∗ accepts an infinite subset of L0. As L0 ⊆ Q1, this contradicts the
DTIME(2n)-bi-immunity of Q1.

(c) Let Q0 and B be as in part (a). We leave it to the reader to show that the following proof system P
for Q0 is not optimal but has no hard sequence. For w ∈ Σ∗ let

P(w) := x, if w is a computation of B accepting x

and P(w) := z0 for some fixed z0 ∈ Q0 otherwise.

PROOF OF THEOREM 7.5. Let Q be a problem with a padding function pad and with an almost
optimal algorithm O. With Proposition 7.6 (a) choose a Q0 ∈ P and an algorithm B deciding Q0
which is not almost optimal but has no hard sequences. Fix z0 ∈ Q and let A be the algorithm
deciding Q that on input x first checks in polynomial time whether x ∈ {pad(z0, y) | y ∈ Q0}
(using the properties of the padding function and a polynomial time algorithm deciding Q0); if
x = pad(z0, y) with y ∈ Q0, it simulates B on y and accepts; otherwise it simulates O on x and
answers accordingly.

Clearly, A is not almost optimal as it can be speeded up on the set {pad(z0, y) | y ∈ Q0}, a hard
set of A. By contradiction, assume (xs)s∈N is a hard sequence for A and let y0 ∈ Q0. For s ≥ 1 we
set

ys :=
{
y, if y ∈ Q0 and xs = pad(z0, y)
ys−1, otherwise

and

zs :=
{
xs, if xs /∈ {pad(z0, y) | y ∈ Q0}
zs−1, otherwise.

Then either (ys)s∈N is a hard sequence for B or (zs)s∈N is a hard sequence for O, in both cases a
contradiction.

The following example shows that the padding hypothesis in Theorem 7.5 cannot be dropped.

Example 7.8. Let Q := {1n | n ∈ N}. As Q ∈ P, it has an almost optimal algorithm. However,
the set Q itself is a hard set and (1s)s∈N a hard sequence for every non-optimal (that is, for every
superpolynomial) algorithm deciding Q. ⊣

COROLLARY 7.9. If the Measure Hypothesis holds, then the following are equivalent for t ≥ 1:

(i) No Πp
t -complete problem has an almost optimal algorithm.

(ii) Every non-almost optimal algorithm deciding a Πp
t -complete problem has hard sequences.

PROOF. We already know that (i) implies (ii) by Theorem 4.3 (a). Assume (ii) and by contradic-
tion, suppose that Q is a Πp

t -complete problem with an almost optimal algorithm. By Corollary 4.9,
we may assume that Q has padding. Then, by the previous theorem, there is a non-almost optimal
algorithm deciding Q without hard sequences, contradicting (ii).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

THEOREM 7.10. If the Measure Hypothesis holds, there is a problem which has hard sets for
algorithms (and hence has no almost optimal algorithm) but has algorithms without hard sequences.

PROOF. Let Q0 ∈ P be a problem with the properties stated in Proposition 7.6. We fix an effec-
tive enumeration

A0,A1, . . . , (10)

of all algorithms such that there is a universal algorithm U which on every input ⟨1i, x⟩ simulates
the algorithm Ai on input ⟨1i, x⟩ in such a way that

tU
(
⟨1i, x⟩

)
≤ (i + 1) · tAi(⟨i, x⟩)2. (11)

For every i ∈ N we let

Si :=
{
⟨1i, x⟩

∣∣∣ x ∈ Q0 and Ai does not accept ⟨1i, x⟩ in ≤ 2(log |x|)2
steps

}
. (12)

Finally, we set

Q :=
∪
i∈N

Si.

and show that Q is a problem with the properties mentioned in the theorem.

Claim 1. Let k ∈ N. If Ak

(
see (10)

)
decides Q, then Sk = {⟨1k, x⟩ | x ∈ Q0}.

Proof of Claim 1. Otherwise, there exists an x0 ∈ Q0 with ⟨1k, x0⟩ /∈ Sk. It follows that

x0 ∈ Q0 with ⟨1k, x0⟩ /∈ Sk =⇒ Ak accepts ⟨1k, x0⟩ in ≤ 2(log |x|)2
steps (by (12))

=⇒ Ak accepts ⟨1k, x0⟩
=⇒ ⟨1k, x0⟩ ∈ Q (as Ak decides Q)
=⇒ ⟨1k, x0⟩ ∈ Sk (since all Si’s are disjoint).

This is a contraction. ⊣
Claim 2. Q has hard sets for algorithms.

Proof of Claim 2. Assume that Ak decides Q. By Claim 1, Sk = {⟨1k, x⟩ | x ∈ Q0} and by (12) for
every x ∈ Q0,

tAk

(
⟨1k, x⟩

)
> 2(log |x|)2

.

As Q0 ∈ P, thus Sk is a hard set for Ak. ⊣
Claim 3. For all sufficiently large d ∈ N there is an algorithm Qd deciding Q such that

tQd

(
⟨1i, x⟩

)
= (i + 1) · 2d·(log |x|)2

for every i ∈ N and x ∈ Σ∗.

Proof of Claim 3. By (11) and (12) as Q0 ∈ P. ⊣
Now we choose a sufficiently large d ∈ N and consider the algorithm Qd of Claim 3. Assume

that Qd has a hard sequence (
⟨1is , xs⟩

)
s∈N.

By (12) every xs is in Q0 and by hardness,

tQd

(
⟨1is , xs⟩

)
= (is + 1) · 2d·(log |xs|)2

is superpolynomial in s. Since the mapping 1s 7→ ⟨1is , xs⟩ is computable in polynomial time, we
have |is| ≤ |s|O(1). Therefore,

2d·(log |xs|)2
is superpolynomial in s. (13)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

As Q0 is decidable in polynomial time and d is sufficiently large, we have by Claim 3 an algorithm A
deciding Q0 such that tA(x) = 2d·(log |x|)2

on every instance x ∈ Σ∗. Then (13) implies that (xs)s∈N
is a hard sequence for A, which contradicts Proposition 7.6 (b).

8. Getting hard sequences in an effective way

We have mentioned in the Introduction that Stockmeyer [1974] has shown that for every EXP-hard
problem Q there is a polynomial time procedure assigning to every algorithm deciding Q a hard
sequence. Based on his proof, we derive a “nondeterministic” version.

THEOREM 8.1. Let Q be a coNEXP-hard problem. Then there is a polynomial time computable
function g : Σ∗ × {1}∗ → Σ∗ such that for every nondeterministic algorithm A accepting Q the
sequence

(
g(A, 1s)

)
s∈N is hard for A.

PROOF. Consider the problem

Q0
Instance: A nondeterministic algorithm A.
Question: Is it true that A does not accept A in at most

2|A| steps?

Claim 1. If B is a nondeterministic algorithm accepting Q0, then B ∈ Q0 and therefore, tB(B) > 2|B|.

Proof of Claim 1. Assume that B /∈ Q0. Therefore, B does not accept B. Then, by the definition
of Q0, we have B ∈ Q0, a contradiction. ⊣

To every nondeterministic algorithm A and every s ∈ N we can assign in time polynomial in A
and s a nondeterministic algorithm As with

|As| ≥ s, L(As) = L(A), and tAs = tA (14)

(say, by adding s new “dummy” states).

Claim 2. If A is a nondeterministic algorithm accepting Q0, then (As)s∈N is a hard sequence for A.

Proof of Claim 2. It suffices to verify for all s ∈ N,

As ∈ Q0 (15)
tA(As) > 2s. (16)

By (14) we know that L(As) = L(A). Hence, (15) holds by Claim 1, which also shows the first
inequality in

tA(As) = tAs
(As) > 2|As| ≥ 2s,

the second one and the equality holding by (14). ⊣

Now let Q be coNEXP-hard. Since Q0 ∈ coNEXP there is a polynomial time reduction S from Q0
to Q. Again, for a nondeterministic algorithm A let A ◦ S be the nondeterministic algorithm that on
input x ∈ Σ∗ first runs S on x and then runs A on S(x).

For a nondeterministic algorithm A and s ∈ N we define

g(A, 1s) := S((A ◦ S)s).

Clearly, g is polynomial time computable. If A decides Q, then A ◦ S decides Q0; therefore, ((A ◦
S)s)s∈N is a hard sequence for A ◦ S by Claim 2. Hence,

(
g(A, 1s)

)
s∈N is a hard sequence for A by

Lemma 3.4.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

ACKNOWLEDGMENT

We thank the anonymous referees for their detailed comments.

REFERENCES
S. Ben-David and A. Gringauze. 1998. On the existence of propositional proof systems and oracle-relativized propositional

logic. Electronic Colloquium on Computational Complexity (ECCC), TR98-021 (1998).
L. Berman. 1976. On the structure of complete sets: almost everywhere complexity and infinitely often speedup. In Proceed-

ings of the 17th IEEE Symposium on Foundations of Computer Science (FOCS’76). 76–80.
L. Berman and J. Hartmanis. 1977. On isomorphisms and density of NP and other complete sets. SIAM J. Comput. 6, 2

(1977), 305–322.
O. Beyersdorff and Z. Sadowski. 2011. Do there exist complete sets for promise classes? Mathematical Logic Quarterly 57,

6 (2011), 535–550.
H. Buhrman, S. A. Fenner, and L. Fortnow. 1997. Results on resource-bounded measure. In Proceedings of the 24th Interna-

tional Colloquium on Automata, Languages and Programming, (ICALP’97) (Lecture Notes in Computer Science), Vol.
1256. Springer, 188–194.

Y. Chen and J. Flum. 2010. On p-optimal proof systems and logics for PTIME. In Proceedings of the 37th International
Colloquium on Automata, Languages and Programming (ICALP’10, Track B) (Lecture Notes in Computer Science
6199), Vol. 6199. Springer, 321–332.

Y. Chen and J. Flum. 2011. Listings and logics. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science (LICS’11). IEEE Computer Society, 165–174.

Y. Chen and J. Flum. 2014. On optimal inverters. Bulletin of Symbolic Logic (2014). To appear.
D. Gutfreund, R. Shaltiel, and A. Ta-Shma. 2007. If NP languages are hard on the worst-Case, then it is easy to find their

hard instances. Computational Complexity 16, 4 (2007), 412–441.
K-I Ko and D. J. Moore. 1981. Completeness, approximation and density. SIAM J. Comput. 10, 4 (1981), 787–796.
J. Köbler and J. Messner. 1998. Complete problems for promise classes by optimal proof systems for test sets. In Proceedings

of the 13th Annual IEEE Conference on Computational Complexity (CCC’98). Springer, 132–140.
J. Köbler, J. Messner, and J. Torán. 2003. Optimal proof systems imply complete sets for promise classes. Information and

Computation 184, 1 (2003), 71–92.
J. Krajı́ček. 1995. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University Press.
J. Krajı́ček. 2012. A note on SAT algorithms and proof complexity. Inf. Process. Lett. 112, 12 (2012), 490–493.
J. Krajı́ček. 2014. On the computational complexity of finding hard tautologies. Bulletin of the London Mathematical Society

46, 1 (2014), 111–125.
J. Krajı́ček and P. Pudlák. 1989. Propositional proof systems, the consistency of first order theories and the complexity of

computations. The Journal of Symbolic Logic 54, 3 (1989), 1063–1079.
L. Levin. 1973. Universal sequential search problems. Problems of Information Transmission 9, 3 (1973), 265–266.
J. H. Lutz. 1997a. Observations on measure and lowness for ∆p

2 . Theory Comput. Syst. 30, 4 (1997), 429–442.
J. H. Lutz. 1997b. The quantitative structure of exponential time. Complexity Theory Retrospective II (1997), 225–254.
E. Mayordomo. 1994. Almost every set in exponential time is P-bi-Immune. Theoretical Computer Science 136, 2 (1994),

487–506.
J. Messner. 1999. On optimal algorithms and optimal proof systems. In Proceedings of the 16th Annual Symposium on

Theoretical Aspects of Computer Science, (STACS’99) (Lecture Notes in Computer Science). Springer, 541–550.
J. Messner. 2000. On the Simulation Order of Proof Systems. Ph.D. Dissertation. University of Ulm.
H. Monroe. 2011. Speedup for natural problems and noncomputability. Theor. Comput. Sci. 412, 4-5 (2011), 478–481.
Z. Sadowski. 2002. On an optimal propositional proof system and the structure of easy subsets. Theoretical Computer Science

288, 1 (2002), 181–193.
Z. Sadowski. 2007. Optimal proof systems, optimal acceptors and recursive presentability. Fundamenta. Informaticae 79,

1-2 (2007), 169–185.
C. P. Schnorr. 1976. Optimal algorithms for self-reducible problems. In Proceedings of the 3rd International Colloquium on

Automata, Languages and Programming, (ICALP’76). Edinburgh University Press, 322–337.
L. Stockmeyer. 1974. The Complexity of Decision Problems in Automata Theory. Ph.D. Dissertation. MIT.
O. V. Verbitsky. 1979. Optimal algorithms for coNP-sets and the problem EXP=NEXP. Matematicheskie zametki 50, 2

(1979), 37–46.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

