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Abstract

We describe a method of forcing against weak theories of arithmetic and its appli-
cations in propositional proof complexity.

1 Introduction

We are interested in the following problem. Given a nonstandard model M of arithmetic we
want to expand it by interpreting a binary relation symbol R such that RM does something
prohibitive, e.g. violates the pigeonhole principle in the sense that RM is a bijection from
n+ 1 onto n for some (nonstandard) n ∈M . The goal is to do so while preserving as much
as possible from ordinary arithmetic. More precisely, we want the expansion (M,RM) to
model the least number principle for a class of formulas as large as possible.

Progress concerning this general problem has been very slow. Concerning the pigeonhole
principle, the central results are the following. Paris and Wilkie [30] succeeded in getting the
least number principle for existential formulas, and Riis [38] pushed their line of argument to
handle formulas that may additionally have universal quantifiers bounded by some b0 < no(1),
i.e. n raised to some infinitesimal power. The most important result in the area is due to
Ajtai [1], who could do it for formulas with quantifiers (of both types) bounded by some
b0 that is bigger than any standard power of n. Subsequent work [31, 27] improved Ajtai’s

bound to b0 < 2n
o(1)

, which is essentially optimal.
The purpose of this article is to give a common framework for constructing such expan-

sions by forcing.

∗Universitat Politècnica de Catalunya (UPC), Departament de Llenguatges i Sistemes Informàtics (LSI),
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Independence and proof complexity The main motivation for our question is a better
understanding of independence from (weak) theories of arithmetic. Pudlák argues that the
current understanding is unsatisfactory in that “except for Gödel’s theorem which gives only
special formulas, no general method is known to prove independence of [arithmetical] Π1

sentences” [33, section 3]. The question is linked to central open questions in computational
complexity theory in general and propositional proof complexity in particular.

In fact, already weak arithmetical theories like those in Buss’ hierarchy correspond in a
certain precise sense to the complexity classes in the polynomial hierarchy. In this respect,
Riis’ result implies independence of the pigeonhole principle from Buss’ theory T 1

2 (R), Ajtai’s
result implies independence from the theory I∆0(R), and the mentioned improvements imply
independence from Buss’ T2(R).1

Independence from weak arithmetics is closely related to lower bounds on the size of
propositional proofs. The usual textbook systems, i.e. Hilbert style calculi given by finitely
many inference rules, are usually called Frege systems [14]. For these systems no superpoly-
nomial lower bounds on proof size are known2 (see [11] for a survey), in particular, there are
short (polynomial size) Frege proofs of a sequence of tautologies expressing the pigeonhole
principle [9]. Ajtai’s result implies a superpolynomial lower bound nω(1) for bounded depth
Frege proofs, i.e. Frege proofs using only formulas of some fixed ∧/∨-alternation rank. The

mentioned improvements of Ajtai’s result imply an exponential lower bound 2n
Ω(1)

. Riis’
result implies an nΩ(1) lower bound on a general notion of width, namely Poizat width, of
refutations of arbitrary infinity axioms in arbitrary proof systems. We refer to section 5 for
details.

Paris and Wilkie, Riis, and Ajtai all explicitly refer to their argument as being of the
forcing type. Ajtai says his construction of RM is “done according to the general ideas of
Cohen’s method of forcing ” [1, p.348]. However, the argument is “mostly combinatorial and
probabilistic” [1, p.347], relying on specialized and difficult versions of so-called switching
lemmas in circuit complexity. As Ben-Sasson and Harsha put it, it is “extremely difficult
to understand and explain” [7, p.19:2]. Lots of efforts have been made to simplify and
reinterpret Ajtai’s argument (e.g. [6, 34, 23, 24, 25, 7]). Conceptually, later improvements [6,
31, 27] of Ajtai’s result “eliminate the non-standard model theory” [6, p.367] and the forcing
mode of speech. And technically, the mentioned switching lemmas have been improved and
simplified (see [4, 48] for surveys).

Still, not much is known on how to apply Ajtai’s argument to stronger systems or other
principles (cf. [23, Chapter 12]). Perhaps one can say that the abovementioned efforts did
not lead to an understanding of Ajtai’s argument as instantiating some general method as
Pudlák asks for.

1[23, 13] are monographs, [12, 10] surveys on the subject. The present article does not suppose any
familiarity with these theories.

2For weaker systems strong lower bounds are known; [36, 34, 49, 5, 41] are surveys with distinct emphases.
The present article does not suppose any familiarity with proof complexity.
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Comparison with Cohen forcing This sorry state of affairs clearly contrasts with Cohen
forcing in set theory. We recall briefly and informally its set-up. With a model M of ZF and
a ‘generic’ set G external to M one associates a model M [G] containing G. Intuitively, G
being ‘generic’ means being ‘random’ with respect to possible partial information about it.
Forcing is a way to reason about M [G] using partial information about G. A piece of partial
information p forces ϕ if any generic G ‘satisfying’ p leads to a model M [G] satisfying ϕ.
Such pieces can be extended in various, possibly incompatible ways, so we think of them as
being partially ordered (the forcing frame).

Following Shoenfield [43], reasoning about forcing rests on three central lemmas: the
Extension Lemma states that extension preserves forcing, the Truth Lemma asserts that
every sentence true in M [G] is already forced by some partial information p about G, and
the Definability Lemma states that the forcing relation is in a certain sense definable in
M . In turn, these lemmas rest on the Forcing Completeness Theorem, a characterization of
the ‘semantic’ forcing notion above by a handier ‘syntactic’ notion defined via recursion on
logical syntax. This understanding of forcing underlies the “Principal Theorem” [43] stating
that M [G] models ZF. This way an independence question is reduced to a combinatorial
task of designing an appropriate forcing frame.

In contrast, the mentioned forcing type arguments in bounded arithmetic are not based
on some more general background theory of forcing. Ajtai writes “Our terminology will be
similar to the terminology of forcing but we actually do not use any result from it” [1, p.348].
Consequently it is not completely clear why one should refer to these arguments as forcing
arguments. Technically, the crucial difference is that the Definability Lemma fails. Forcing
Completeness is proved neither in the original arguments nor in later presentations [51], [23,
section 12.7] that emphasize the forcing mode of speech. In [30, 1] no ‘syntactic’ notion is
defined; in [38] it is, but one for which Forcing Completeness fails.

This work We propose a general background theory of forcing as a unifying way to address
the problem mentioned in the beginning and to understand the arguments of Paris and
Wilkie, Riis, and Ajtai [30, 38, 1]. We first sketch the argument of Paris and Wilkie and
discuss what such a theory should look like. Section 2 then develops forcing accordingly.
The framework naturally accommodates the mentioned forcing arguments [30, 38, 1] as well
as Cohen forcing and others.

In our context, a Principal Theorem would state that generic expansions satisfy the least
number principle for a certain fragment of formulas. In section 3 we show that this holds true
when using a forcing that is in an appropriate sense ‘definable’ for the fragment in question.
A more combinatorial formulation of this property is gained by what we call the antichain
method. Thereby again, independence questions reduce to a combinatorial task of designing
forcing frames.

Section 4 gives the constructions of Paris and Wilkie, Riis and Ajtai within this frame-
work. As a byproduct we obtain the above mentioned ‘width’ lower bound in section 5.

The framework proposed allows to understand Ajtai’s result as instantiating some general
method closely following Cohen forcing. In [26] Kraj́ıček also developes such a framework
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which is technically and conceptually quite different, and follows Scott and Solovay’s forcing
with random variables. This and other related work is discussed in Notes at the end of
sections 2, 4 and 5. All results are stated and proved in a generally accessible language. In
particular, no familiarity with bounded arithmetic or forcing is assumed. This way we hope
to bring some open questions in the field to the attention of a wider audience. In particular,
techniques from set theoretic forcing may be applicable to these questions.

2 Forcing in general

2.1 Motivation

To start, we sketch the argument of Paris and Wilkie [30], “the first forcing argument in the
context of weak arithmetic” [23, p.278], and give some informal discussion.

Theorem 2.1 (Paris, Wilkie 1985). Let M be a countable model of true arithmetic and
n ∈ M nonstandard. Then M has an expansion (M,RM) such that RM is a bijection from
[n+1] onto [n] and (M,RM) satisfies the least number principle for existential formulas with
parameters.

Being a model of true arithmetic means being elementarily equivalent to the standard
model N interpreting, say, the language L := {+, · , 0, 1, <}. We write [n] for {m ∈ M |
m <M n}. That (M,RM) satisfies the least number principle for a formula ϕ(x) means that
the set ϕ(M) defined by ϕ(x) in (M,RM) is empty or has a minimal element (with respect
to the linear order <M). That ϕ(x) is a formula with parameters means that its language is
L ∪ {R} together with the elements of M as constant symbols which are understood to be
interpreted by themselves.

Sketch. That n is nonstandard means that [n] is infinite. Consider the set P of finite partial
bijections from [n + 1] to [n]. We construct an interpretation RM of R as the union of a
chain ∅ = p0 ⊆ p1 ⊆ · · · in P . Having constructed p2i we choose p2i+1 such that it contains
the ith element a of [n + 1] in its domain and the ith element b of [n] in its image; here,
we are refering to fixed, external enumerations of [n + 1] and [n]. These choices ensure
that RM =

⋃
i∈N pi will be a bijection from [n + 1] onto [n]. In fact, p2i+1 ‘forces’ that the

expansion under construction will satisfy ∃!yRay and ∃!xRxb.
Fix an enumeration of all existential (L∪ {R})-formulas with parameters. The choice of

p2i+2 ‘forces’ that the ith such formula ϕ(x) will not violate the least number principle. This
is done as follows: write ϕ(x) = ∃ȳψ(x, ȳ) and let a ∈ M . Assume p2i+1 is such that ¬ϕ(a)
is not ‘forced’, i.e. some continuation of the chain leads to an RM with (M,RM) |= ϕ(a).
Choose b̄ such that (M,RM) |= ψ(b̄, a). Since ψ(b̄, a) is quantifier free it is propositionally
satisfied by the truth values of the atoms Rcd occuring in it – say these are ` ∈ N many.
Then there is q ∈ P containing ` pairs such that p2i+1 ∪ q is in P and ‘forces’ ψ(b̄, a) and
thereby ϕ(a). Now, it is not hard to see that there is an L-formula χ(x) with parameters
that expresses this as a property of a in M . If there is no a satisfying χ(x) in M , then take
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p2i+2 = p2i+1. Otherwise there is a minimal such a, because M is a model of true arithmetic,
and then take p2i+2 = p2i+1 ∪ q for the corresponding q.

What is the general line of this argument, that justifies calling it “a simple forcing
argument”? [30, p.333] Intuitively, P figures as ‘forcing frame’ and p ∈ P ‘forces’ a sentence ϕ
if ϕ is true in all those expansions (M,RM) that result from continuing the construction of
the chain from p. The construction is done as it is in order to ‘force’ certain properties of
RM . For the right notion of genericity, this should be automatic. This way one can define
a ‘semantic’ notion of forcing by stipulating that p ‘forces’ ϕ if ϕ is true in all ‘generic’
expansions (M,RM).

Note P can be viewed as a subset of M when identifying the finite partial bijections with
their codes in M , but this set is not definable in M . We thus ask for some general framework
for forcing with undefinable forcing frames P . In fact, we let P be just a second structure.
We start with syntactically defined forcing relations in section 2.3. It is a subtle point to
come up with the right notion of genericity, a point discussed in section 2.4. Section 2.5 then
defines generic associates M [G] of M . Generic expansions are obtained using a simple type
of forcing that we call conservative (section 2.6).

The resulting framework includes the Extension Lemma, the Truth Lemma and Forcing
Completeness but of course no Definability Lemma. It is sufficiently general to naturally
accomodate various forcing type arguments from the literature (cf. section 2.7), including
Cohen forcing and, as we shall see in section 4, the mentioned forcing type arguments in
bounded arithmetic.

2.2 Basic forcing terminology

A forcing frame is a structure (P,≤, D0, D1, . . .) such that≤ partially orders P andD0, D1, . . .
are subsets of P . We use p, q, r, . . . to range over elements of P , called conditions. If p ≤ q
we say p extends q and call p an extension of q. If p, q have a common extension, they are
compatible (p‖q) and otherwise incompatible (p⊥q).

A set of conditions X ⊆ P is downward-closed if it contains all extensions of its elements;
being upward-closed is similarly explained. The set X is consistent if it contains a common
extension of any two of its elements. If X is both upward-closed and consistent, then it is a
filter. Further, X is dense below p if for every q ≤ p there is r ≤ q such that r ∈ X. Finally,
X is dense if it is dense below all conditions, i.e. if every condition has an extension in X.

For the rest of the section we fix

– a countable forcing frame (P,≤, D0, D1, . . .),

– a countable structure M interpreting a countable language L,

– a countable language L∗ ⊇ L.

The forcing language is L∗(M), that is, the language L∗ together with the elements of M as
new constants. We let ϕ, ψ, . . . range over L∗(M)-sentences.
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2.3 Forcing relations

In principle, countless ‘syntactic’ forcing relations 
 may be defined, depending on how 

interacts with the logical symbols. Throughout this paper we assume (first-order) formulas
to be written in the logical symbols {∀, ∃,∧,∨,¬} and we shall restrict attention to two
kinds of forcings, namely, universal and existential forcings.3 Roughly, the choice depends
on whether {∀,∧,¬} or {∃,∨,¬} is taken as primitive while the other logical symbols are
defined using the usual classical dualities. Existential forcing is widely used, but we shall
see it has some disadvantages over universal forcing (cf. Remark 2.22).

Definition 2.2. A pre-forcing is a binary relation 
 between conditions and L∗(M)-sentences.
If p 
 ϕ, we say p forces ϕ. We write

[ϕ] := {p | p 
 ϕ}.

Definition 2.3. A pre-forcing 
 is universal or existential if it satisfies the conditions of
universal or existential forcing recurrence respectively:

universal existential

p 
 ¬ϕ iff ∀q ≤ p : q 6
 ϕ iff ∀q ≤ p : q 6
 ϕ
p 
 (ϕ ∧ ψ) iff p 
 ϕ and p 
 ψ iff p 
 ¬(¬ϕ ∨ ¬ψ)
p 
 (ϕ ∨ ψ) iff p 
 ¬(¬ϕ ∧ ¬ψ) iff p 
 ϕ or p 
 ψ
p 
 ∀xχ(x) iff ∀a ∈M : p 
 χ(a) iff p 
 ¬∃x¬χ(x)
p 
 ∃xχ(x) iff p 
 ¬∀x¬χ(x) iff ∃a ∈M : p 
 χ(a)

Observe that a universal or existential pre-forcing is uniquely determined by its restriction
to the atomic sentences of the forcing language. Solving the recurrence one sees, for universal
pre-forcings, that p 
 ∃xχ(x) if and only if

⋃
a∈M [χ(a)] is dense below p. For existential

pre-forcings, p 
 ∀xχ(x) if and only if [χ(a)] is dense below p for all a ∈ M . Here are some
further direct consequences:

Lemma 2.4. If 
 is a universal or an existential pre-forcing, then

1. p 
 ¬¬ϕ if and only if [ϕ] is dense below p.

2. (Consistency) [ϕ] ∩ [¬ϕ] = ∅.
3. [ϕ] ∪ [¬ϕ] is dense.

Definition 2.5. Let 
 be a pre-forcing and Φ be a set of L∗(M)-formulas.

(a) 
 satisfies Extension for Φ if for every ϕ ∈ Φ, the set [ϕ] is downward-closed.

(b) 
 satisfies Stability for Φ if for every ϕ ∈ Φ and p ∈ P , p forces ϕ whenever [ϕ] is
dense below p.

For Φ = L∗(M) we omit the reference to it.

3See [19, 3] for examples of forcings that are neither universal nor existential.
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(c) 
 is a forcing if it satisfies Extension and Stability for L∗(M)-atoms.

Lemma 2.6.

1. (Extension) Universal and existential forcings satisfy Extension.

2. (Stability) Universal forcings satisfy Stability.

3. For a universal forcing 
, p 
 ϕ if and only if [ϕ] is dense below p.

4. For a universal forcing 
, p 6
 ϕ if and only if q 
 ¬ϕ for some q ≤ p.

Proof. Extension can be shown by a straightforward induction using forcing recurrence. We
prove Stability by induction on (the number of logical symbols in) ϕ. We can assume that
ϕ is written in the logical base {∧,¬,∀}.

– For atomic ϕ, Stability is part of the definition of being a forcing.

– For the ¬-step, argue indirectly: if p 6
 ¬ϕ, then by forcing recurrence some q ≤ p
forces ϕ, so by Extension and Consistency no extension of q forces ¬ϕ. Hence [¬ϕ] is
not dense below p.

– For the ∧-step, note [(ϕ ∧ ψ)] = [ϕ] ∩ [ψ] by universal recurrence. If this set is dense
below p then so are both [ϕ] and [ψ]. By induction p forces both ϕ and ψ, and hence
p 
 (ϕ ∧ ψ) by universal recurrence.

– The ∀-step is similar.

Statement (3) is immediate by (1) and (2), and statement (4) follows from (3): p 6
 ϕ if
and only if there is q ≤ p such that for all r ≤ q, r 6
 ϕ (by (3)), if and only if there is q ≤ p
such that q 
 ¬ϕ (by forcing recurrence).

Example 2.7. Let 
 be a universal forcing. A pre-forcing of obvious interest (cf. section 2.1)
is:

p‖ϕ if and only if p 6
 ¬ϕ, that is, q 
 ϕ for some q ≤ p.

To explain the notation, observe that p‖ϕ if and only if p‖q for some q ∈ [ϕ] (by Extension).
We have 
 ⊆ ‖ by Consistency. By Stability, p‖¬¬ϕ if and only if p‖ϕ. Further,

p‖¬ϕ iff ∃q ≤ p : q 6 ‖ϕ
p‖(ϕ ∨ ψ) iff p‖ϕ or p‖ψ (as existential pre-forcing)
p‖∃xχ(x) iff ∃a ∈M : p‖χ(a) (as existential pre-forcing)

Remark 2.8 (Boolean valued models). The last lemma has a natural topological reading.
Namely, (P,≤) carries the topology whose open sets are the downward-closed sets. Then
Extension means that the sets [ϕ] are open and Stability means that they are regularly open
(equal to the interior of their closure). The regularly open sets form a complete Boolean
algebra in such a way that, for universal forcings, the map ϕ 7→ [ϕ] is a Boolean valuation.
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2.4 Genericity

Let 
 be an existential or universal forcing. Ideally, one would like to call a set generic
if it intersects every dense set. As in general such sets do not exist, one has to restrict
attention to those dense sets coming from a certain ‘sufficiently rich’ but countable Boolean
algebra B(
).

In Cohen forcing the forcing frame is a set in M and one simply takes the algebra of
its M -definable subsets (cf. Example 2.27). As M models ZF it is not surprising that this
algebra is sufficiently rich. For some purposes (cf. Examples 2.29, 2.30, 2.23) already the
algebra generated by the [ϕ]s is sufficiently rich, but not so in forcing against bounded
arithmetic. There, one needs the algebra to contain sets as e.g.

⋃
a∈M

⋂
b∈M [ϕ(a, b)]. In

[30, 1, 38] algebras are defined ad hoc suitable for their respective situations and there seems
to be no canonical choice. That is why we padded the forcing frame by the sets D0, D1, . . .:
these sets will determine an algebra B(
) defined below (Definition 2.11).

Definition 2.9. A set G ⊆ P is generic if it is a filter and intersects every dense (in P ) set
in B(
).

Our definition of B(
) follows Stern [45]: consider the two-sorted first-order structure
(P,M). The first sort carries the forcing frame (P,≤, D0, D1, . . .) and a second carries the
structure M . We let individual variables µ, ν, ξ, . . . range over the first sort and x, y, z, . . .
range over the second sort.

For each L∗-atom ϕ = ϕ(x1, . . . , xr) let Rϕ be an (r + 1)-ary relation symbol of sort
P × M r. The structure (P,M)
 expands (P,M) by interpreting such a symbol Rϕ by
{pā ∈ P ×M r | p 
 ϕ(ā)}.

We call the two-sorted first-order language of (P,M)
 the Stern formalism. Using forcing
recurrence it is straightforward to show:

Lemma 2.10. For every L∗(M)-formula ϕ(x̄) there is a formula ξ ` ϕ(x̄) of the Stern
formalism with free variables ξ and x̄ and parameters from M that defines {pā | p 
 ϕ(ā)}
in (P,M)
.

Definition 2.11. The forcing algebra B(
) is the set of subsets of P that are definable in
(P,M)
.

Here and in the following, definable (in a certain structure) always means definable with
parameters (from the structure).

Clearly, B(
) is countable. Hence, by a well-known argument,

Lemma 2.12. Every condition is contained in some generic set.

Sketch. Given p ∈ P , let p0 := p, then choose p1 ≤ p0 in the first dense set, then p2 ≤ p1

in the second dense set and so on. The filter generated by the sequence p0, p1, p2, . . . is
generic.

Lemma 2.13. If G is generic and D ∈ B(
) is dense below p ∈ G, then there is q ∈ G∩D
with q ≤ p.
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Proof. If D, p are as stated, then D(p) := (D∩{q | q ≤ p})∪{q | p⊥q} is dense, and a member
of B(
): if D ∈ B(
) is defined by ϕD(ξ), then D(p) is defined by (ϕD(ξ)∧ξ ≤ p)∨¬∃ν(ν ≤
ξ ∧ ν ≤ p), a formula (with parameters) of the Stern formalism. By genericity there exists
an r ∈ G ∩D(p). As p ∈ G and G is consistent, r /∈ {q | p⊥q}, so r ∈ D ∩ {q | q ≤ p}.

2.5 Generic associates

Let 
 be a universal or existential forcing. The aim is to define for suitable G ⊆ P (and
our fixed structure M) an L∗(M)-structure M [G] in such a way, that it models the following
theory in the forcing language L∗(M):

Th(G) := {ϕ ∈ L∗(M) | ∃p ∈ G : p 
 ϕ}.

Obviously this cannot work in general, e.g. Th(G) may contradict usual first-order equality
axioms. But we shall see that this is the only obstacle provided we stick to the idea that
the constants from M “name” all the elements of M [G]. We first observe that for generic
G, the theory Th(G) is complete and formally consistent in the following sense:

Lemma 2.14. Let G be generic. For every L∗(M)-sentence ϕ either ϕ ∈ Th(G) or ¬ϕ ∈
Th(G), but not both.

Proof. By Lemmas 2.4 (3) and 2.10, G intersects [ϕ] ∪ [¬ϕ] ∈ B(
). Hence ϕ ∈ Th(G)
or ¬ϕ ∈ Th(G) – but not both: assume there would exist p, q ∈ G forcing ϕ and ¬ϕ
respectively; since G is a filter and filters are consistent, there would exist r extending both
p and q; by Extension, then r would force both ϕ and ¬ϕ, contradicting Consistency (of
forcing).

To define M [G] we rely on some elementary facts about factorizations: for a theory T in
a language L containing some constant symbol, the Herbrand term structure T(T ) for T has
as universe all closed L-terms, interprets a function symbol f ∈ L by t̄ 7→ f(t̄) and interprets
a relation symbol R ∈ L by {t̄ | Rt̄ ∈ T}. Note that in T(T ) every closed term denotes itself.
A congruence ∼ on T(T ) is an equivalence relation on T(T ) such that functions in T(T ) (i.e.
interpretations of function symbols of L) map equivalent arguments (i.e. componentwise
equivalent argument tuples) to equivalent values and every relation of T(T ) is a union of
equivalence classes of tuples. In this case, let T(T )/∼ denote the L-structure induced by
T(T ) on the ∼-classes in the natural way. In T(T )/∼ every closed term t denotes its ∼-class
t/∼.

Fact 2.15. If ∼T := {(s, t) | s = t ∈ T} is a congruence on T(T ), then the atomic sentences
true in T(T )/∼T are precisely those contained in T .

Definition 2.16. Let G ⊆ P . If ∼Th(G) is a congruence on T(Th(G)) and every closed
term of the forcing language is ∼Th(G)-congruent to a constant a ∈M , then we say M [G] is
defined and set

M [G] := T(Th(G))/∼Th(G) .
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If G is generic and M [G] defined, then M [G] is a generic associate of M .
A generic associate M [G] of M is a generic extension of M , if L = L∗ and there is an

embedding of M into M [G]. It is a generic expansion of M , if

a 7→ a/∼Th(G): M ∼= M [G] � L,

that is, if the map that sends each a ∈ M to its ∼Th(G)-congruence class a/∼Th(G) is an
isomorphism of M onto the restriction of M [G] to L.

Remark 2.17. Sometimes we assume that M [G] is defined for every generic G. Because
this assumption is trivially satisfied in all applications we are aware of, we consider it a mere
technicality and make no efforts to avoid it.

Lemma 2.18. Let G be generic.

1. M [G] is defined if for all closed L∗(M)-terms t, t′, all L∗(M)-atoms ϕ(x) and all p ∈ P

(a) if p 
 t = t′, then q 
 t′ = t for some q ≤ p,

(b) if p 
 ϕ(t) and p 
 t = t′, then q 
 ϕ(t′) for some q ≤ p,

(c) q 
 t = a for some q ≤ p and a ∈M .

2. If M [G] is defined, then it has universe {a/∼Th(G)| a ∈M}.

We omit the proof.

Theorem 2.19 (Truth Lemma). Let G be generic. If M [G] is defined, then Th(M [G]) =
Th(G).

Proof. We have to show: M [G] |= ϕ if and only if p 
 ϕ for some p ∈ G. We have two cases
depending of whether 
 is universal or existential. In both cases we proceed by induction
on ϕ.

The case where 
 is existential is easy. The base case follows by construction (Fact 2.15).
Both the ∨-step and the ∃-step are trivial. Finally, ¬ϕ ∈ Th(M [G]), i.e. ϕ /∈ Th(M [G]), is
equivalent to ϕ /∈ Th(G) by induction and thus to ¬ϕ ∈ Th(G) by Lemma 2.14.

The case where 
 is universal is more complicated. The base case and the ¬-step are
as in the existential case, and the ∧-step is straightforward using the consistency of G. For
the ∀-step, first assume that some p ∈ G forces ∀xϕ(x). Then p 
 ϕ(a) for every a ∈ M by
universal recurrence, so M [G] |= ϕ(a) for every a ∈M by induction. Hence, M [G] |= ∀xϕ(x)
by Lemma 2.18 (2). Conversely, assume ∀xϕ(x) /∈ Th(G). We aim to show ϕ(a) /∈ Th(M [G])
for some a ∈ M . By Lemma 2.14, ¬∀xϕ(x) ∈ Th(G), i.e. some p ∈ G forces ¬∀xϕ(x). By
universal recurrence this means that for every q ≤ p there is a ∈ M such that q 6
 ϕ(a).
By Lemma 2.6 (4) this means: for every q ≤ p there is a ∈ M and there is r ≤ q such
that r 
 ¬ϕ(a). In other words, D :=

⋃
a∈M [¬ϕ(a)] is dense below p. Clearly, D ∈ B(
):

it is defined by ∃x(ξ ` ¬ϕ(x)), a formula (with parameters) of the Stern formalism (cf.
Lemma 2.10). As p ∈ G, G intersects D by Lemma 2.13, i.e. there is some a ∈M such that
¬ϕ(a) ∈ Th(G). Then ϕ(a) /∈ Th(G) by Lemma 2.14, so ϕ(a) /∈ Th(M [G]) by induction.
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Corollary 2.20. Assume M [G] is defined for every generic G and let p ∈ P .

1. If 
 is existential, then p 
 ϕ implies M [G] |= ϕ for every generic G containing p.

2. (Forcing Completeness) If 
 is universal, then p 
 ϕ if and only if M [G] |= ϕ for
every generic G containing p.

3. If 
 is universal, then {ϕ | p 
 ϕ} is closed under logical consequence.

Proof. By the Truth Lemma p 
 ϕ implies M [G] |= ϕ for every generic G containing p.
This shows (1) and the forward direction of (2). The backward direction of (2) relies on
Lemma 2.6 (4) for universal forcings: if p 6
 ϕ, there is q ≤ p such that q 
 ¬ϕ. By Lemma
2.12 there is a generic G containing q. By the Truth Lemma M [G] |= ¬ϕ, i.e. M [G] 6|= ϕ.
Being a filter, G contains p.

To see (3) just note that the set of ϕ satisfying the right hand side of (2) are closed under
logical consequence.

Remark 2.21. Let 
 be a universal forcing and recall Example 2.7 and the discussion in
section 2.1. Assume M [G] is defined for every generic G. Then p‖ϕ if and only if M [G] |= ϕ
for some generic G containing p. Further, {ϕ | p‖ϕ} is closed under logical consequence.

Remark 2.22 (Weak forcing). Corollary 2.20 (3) fails for existential pre-forcings 
 that are
nontrivial in the sense that there exist p0, ϕ0 such that p0 6
 ϕ0 and p0 6
 ¬ϕ0. Then p0 does
not force (ϕ0∨¬ϕ0). Since this is valid {ϕ | p0 
 ϕ} is not closed under logical consequence.
Assuming 
 satisfies Extension for atoms and M [G] is defined for every generic G, one can
show that the associated weak forcing 
∗ is a universal forcing. Here, p 
∗ ϕ if and only
if p 
 ¬¬ϕ. So, in contrast to universal forcing, existential forcing is syntax sensible (if
nontrivial) and Forcing Completeness fails. These defects may be repaired when moving to
the weak forcing.

Example 2.23 (Keisler forcing). Keisler [21] studies generally existential pre-forcings that
satisfy Extension for atoms and the conditions in Lemma 2.18 (1), and proves Forcing Com-
pleteness for the associated weak forcing.

We have the following preservation result.

Theorem 2.24. Let T be a universal L∗-theory. If both

(i) for every condition p, the theory T is consistent with

Lit(p) := {ϕ | p 
 ϕ, ϕ is an L∗(M)-literal},

(ii) and for every closed L∗(M)-term t, the set
⋃
a∈M [t = a] is dense,

then M [G] is defined for every generic G and satisfies T .

11



Proof. Let G be generic. To show M [G] is defined we verify the three conditions (a), (b),
(c) in Lemma 2.18 (1). For (a), if p 
 t = t′ but q 6
 t′ = t for every q ≤ p, then p 
 ¬t′ = t
by forcing recurrence. But then Lit(p) and hence Lit(p) ∪ T is inconsistent, contradicting
(i). Condition (b) is similarly verified and (c) is the same as (ii).

To show M [G] |= T is suffices to show that M [G] embeds into a model of T (since T is
universal). For this it suffices to show that T ∪Diag(M [G]) is consistent. So let ∆ be a finite
subset of Diag(M [G]). Then ∆ ⊆ Th(G) by the Truth Lemma, that is, every literal λ ∈ ∆
is forced by some pλ ∈ G. Since G is consistent it contains a common extension p of all the
pλ’s. Then ∆ ⊆ Lit(p) by Extension and T ∪∆ is consistent by (i).

2.6 Conservative forcing

Let 
 be an existential or universal forcing. Which forcings produce generic expansions? We
characterize these as follows.

Definition 2.25. The forcing 
 is conservative if for every condition p and every atomic
L(M)-sentence ϕ (i.e. without a symbol from L∗ \ L):

p 
 ϕ if and only if M |= ϕ.

Proposition 2.26. If 
 is conservative, then every generic associate is a generic expansion.
The converse holds true in case 
 is universal and M [G] is defined for every generic G.

Proof. Let M [G] be a generic associate of M . The map a 7→ a/∼Th(G) is a surjection from
M onto M [G] � L (Lemma 2.18). If it is not an isomorphism, then Th(M) and Th(M [G])
disagree on some atomic L(M)-sentence. As Th(M [G]) = Th(G) by the Truth Lemma, this
contradicts conservativity.

For the second statement, assume 
 is not conservative. Using Lemma 2.6 (4) one finds
a condition p and an L(M)-literal ϕ such that p 
 ϕ and M 6|= ϕ. For a generic G containing
p (Lemma 2.12) then M [G] |= ϕ by the Truth Lemma. Then ϕ ∈ Th(M [G] � L) \ Th(M),
so M [G] cannot be an expansion of M .

2.7 Some examples

Cohen forcing can be viewed as a natural special case:

Example 2.27 (Cohen forcing). Cohen (set-) forcing starts with a countable transitive
standard model M of, say, ZF+GCH and wants M [G] to be an extension of M . In particular
L∗ = L = {∈}. Different forcing extensions are obtained by different choices of (P,≤), a set
in M , while the forcing 
Co is kept fixed. Following e.g. [28] one can define this forcing by
universal forcing recurrence stipulating for atoms:

p 
Co a ∈ b iff {q | ∃r∃c ((c, r) ∈ b ∧ q ≤ r ∧ q 
Co a = c)} is dense below p,

p 
Co a = b iff ∀c ∈ dom(a ∪ b) ∀q ≤ p (q 
Co c ∈ a↔ q 
Co c ∈ b).

12



It is not hard to show that this uniquely determines a universal pre-forcing. The techni-
cality of the definition is to ensure that it is a forcing. Genericity is defined to mean: intersect
every dense set that is definable in M . This coincides with our notion for ∅ = D0 = D1 = . . ..

In set theory one defines M [G] as follows: ∈ is interpreted by itself and the constants
a ∈ M are interpreted by aG := {bG | ∃p ∈ G : (b, p) ∈ a}. Then M [G] is an extension of
M . For this definition of M [G] one can show the Truth Lemma for atoms: aG = bG if and
only if a ∼Th(G) b and aG ∈ bG if and only if Th(G) contains the atom a ∈ b. It follows that
M [G] in our sense is defined for every generic G. Second, M [G] in our sense is isomorphic
to M [G] in the sense of set theory. Indeed, {(a/∼Th(G), aG) | a ∈M} is an isomorphism.

Feferman has been the first to explicitly use forcing outside set theory, namely to adress
questions in computability theory. But already Cantor’s back and forth method can be seen
as a forcing argument. Both are conservative forcings:

Example 2.28 (Cantor’s Theorem). We give this simple example in some detail, because
it reappears in similar form in section 4.

Let M = (A,A′) be a countable two-sorted structure where the two sorts A and A′

carry dense linear orders without endpoints � and �′ respectively (i.e. L = {�,�′}). Set
L∗ := L ∪ {R} for a new binary relation symbol R.

The forcing frame (P,≤, D0, D1, . . .) is defined as follows: P is the set of all finite partial
isomorphisms between A and A′; take p ≤ q to mean p ⊇ q; finally the sets D0, D1, . . .
enumerate the sets {p | a ∈ dom(p)}, {p | a′ ∈ im(p)} for a ∈ A, a′ ∈ A′. Each of these sets
is dense.

To define a conservative universal pre-forcing 
Ca it suffices to define p 
Ca ϕ for ϕ an
atom of the form Rab. Take this to mean (a, b) ∈ p. Then 
Ca is a forcing: that 
Ca satisfies
Extension for atoms is obvious. Since 
Ca is conservative we only have to verify Stability
for atoms Raa′ with a ∈ A, a′ ∈ A′: if p 6
Ca Raa

′, then (a, a′) /∈ p; choose b′ 6= a′ such that
q := p ∪ {(a, b′)} is a condition (im(p) is finite); then q ≤ p and no extension of q contains
(a, a′), so no extension of q forces Raa′; hence [Raa′] is not dense below p.

It is easy to see that M [G] is defined for every generic G (e.g. by Lemma 2.18 (1)).
By Proposition 2.26 every generic associate M [G] is a generic expansion of M , that is,
a 7→ a/∼: M ∼= M [G] � L; here we write ∼ for ∼Th(G). By definition, M [G] interprets R by

{(a/∼, b/∼) | ∃p ∈ G : p 
Ca Rab} = {(a/∼, b/∼) | (a, b) ∈
⋃
G}.

Thus a 7→ a/∼: (M,
⋃
G) ∼= M [G]. This and the fact thatG intersects all the setsD0, D1, . . .,

implies
⋃
G : (A,�) ∼= (A′,�′).

Example 2.29 (Feferman forcing). In [17] Feferman considers M = N interpreting the
language L that has relation symbols for the graphs of successor, addition and multiplication.
L∗ expands L by at most countably many unary predicate symbols. A condition p is a finite
consistent set of literals in the new predicates L∗ \ L and constants from N. A condition p
extends another q if p ⊇ q. For the sets D0, D1, . . . choose, say, always ∅. Feferman defines a
conservative existential pre-forcing 
Fe by letting p force an atom involving a new predicate
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if and only if the atom belongs to p. It is not hard to see that 
Fe is a forcing and that M [G]
is defined for every generic G. Applications of Feferman forcing in computability theory are
surveyed in [29].

Fenner et al. [18] generalize Feferman forcing for the case where L∗ = L ∪ {R} for one
new unary predicate R. View a Feferman condition p as the set of functions in {0, 1}N that
map n ∈ N to 0 or 1 whenever Rn ∈ p or ¬Rn ∈ p respectively. Now, instead of using these
basic clopen sets as conditions, [18] use perfect sets in {0, 1}N. Forcing frames considered in
[18] are certain subframes of this forcing frame (cf. [18, Definition 3.3]). Straightforwardly,
Fenner et al. let a perfect set p force an atom Rn if and only if every function in p maps
n to 1. This determines a conservative existential pre-forcing, that is actually a forcing on
the frames considered. For various frames, [18] studies complexity classes relativized by R
in generic expansions.

Finally, we mention Robinson forcing in model theory:

Example 2.30 (Finite Robinson forcing). We degrade M to a countably infinite set of
constants, i.e. we let L = ∅. Further, let L∗ be a countable language and T be a consistent
L∗-theory; T∀ is the set of universal consequences of T .

The forcing frame (P,≤, D0, D1, . . .) is defined as follows. A condition p is a finite set of
L∗(M)-literals that is consistent with T∀, and again, p ≤ q means p ⊇ q. The sets D0, D1, . . .
enumerate the sets

⋃
a∈M [t = a] for closed L∗(M)-terms t. It is easy to see that these sets

are dense.
For atomic ϕ we let p 
Ro ϕ if and only if T∀ ∪ p ` ϕ (slighty deviating from [19]). This

determines an existential pre-forcing 
Ro that is easily seen to be a forcing. By Theorem 2.24,
M [G] is defined for every generic G and satisfies T∀. Note

⋃
G is roughly the same as

Diag(M [G]). Hence the Truth Lemma essentially says, that generic associates are finitely
generic for T , so in particular such structures exist ([19, Theorem 5.11]). Their theory can
be seen as a generalized model-companion for T . We refer to [19, 21] for more information
and applications.

2.8 Notes

Forcing has been developed in many different settings ([20, 3] survey some), and the develop-
ment here follows these known lines. We refer to the examples in section 2.7 for a comparison
with some of them.

Forcing against bounded arithmetic has been developed by Takeuti and Yasumoto [46, 47]
following not Cohen’s original method but its reformulation by Scott and Solovay [40] as a
method to construct Boolean valued models (cf. Remark 2.8). Scott [40] describes such a
model for a 3rd order theory of the reals by interpreting the language over real valued random
variables.

Kraj́ıček [26] develops such forcing with random variables in full detail as a method to
study bounded arithmetics by using algorithmically restricted random variables.
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3 Principal theorems

In set theory (Example 2.27) independence results are based on the “Principal Theorem”
[43] stating that every generic extension M [G] of a countable model M of ZF again models
ZF. In bounded arithmetic one is often interested in constructing generic expansions of a
countable nonstandard model M of true arithmetic. One then needs the generic expansions
to model some bounded arithmetic, i.e. certain least number principles.

In this section we fix

– a countable forcing frame (P,≤, D0, D1, . . .)

– a conservative universal forcing 
,

– an ordered countable L-structure M satisfying the least number principle (defined
below).

– a countable language L∗ ⊃ L.

A model is ordered if it interprets the symbol < by some linear order on its universe.
Given an ordered model N and b0 ∈ N , the quantifiers ∀x < b0 and ∃x < b0 are called
b0-bounded.

Remark 3.1. Due to conservativity, forcing recurrence works for bounded quantifiers as it
does for unbounded quantifiers:

p 
 ∀x < b0χ(x) iff ∀a <M b0 : p 
 χ(a),
p 
 ∃x < b0χ(x) iff p 
 ¬∀x < b0¬χ(x).

Note, p 
 ∃x < b0χ(x) if and only if
⋃
a<M b0

[χ(a)] is dense below p.

Definition 3.2. Let N be an ordered model, b0 ∈ N and Φ be a set of formulas in the
language of N with parameters from N .

(a) N satisfies the least number principle for Φ if every nonempty subset of its universe
that is definable by a formula in Φ has a <N -least element.

(b) N satisfies the least number principle for Φ up to b0 if it satisfies the least number
principle for {(ϕ(x) ∧ x < b0) | ϕ(x) ∈ Φ}.

We omit reference to Φ, if it is the set of all formulas in the language of N with parameters
from N .

3.1 Partial definability

Recall the notation p‖ϕ from Example 2.7 and Remark 2.21.

Definition 3.3. Let b0 ∈M and ϕ = ϕ(x̄) be an L∗(M)-formula.

(a) 
 is definable for ϕ if for every p ∈ P the set {ā | p‖ϕ(ā)} is definable in M .
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(b) 
 is densely definable for ϕ up to b0 if for every p ∈ P there is q ≤ p such that
{c̄ <M b0 | q‖ϕ(c̄)} is definable in M .

We say 
 is (densely) definable (up to b0) for a set Φ of L∗(M)-formulas if 
 is (densely)
definable (up to b0) for every ϕ ∈ Φ.

Here, for c̄ = c1 · · · ck by c̄ <M b0 we mean ci <
M b0 for every 1 ≤ i ≤ k.

Although we are not going to use it, we include the following simple observation to
illustrate the definition.

Proposition 3.4. Let b0 ∈ M and Φ be a set of L∗(M)-formulas that is closed under
negations. Then

1. 
 is definable for Φ if and only if for every ϕ(x) ∈ Φ and p ∈ P the set {c̄ | p 
 ϕ(c̄)}
is definable in M .

2. 
 is densely definable for Φ up to b0 if and only if for every ϕ(x) ∈ Φ and p ∈ P there
is q ≤ p such that {c̄ <M b0 | q 
 ϕ(c̄)} is definable in M .

Proof. Forward: note p 
 ϕ if and only if p 
 ¬¬ϕ (by Stability), if and only if p 6 ‖¬ϕ.
Backward: note p‖ϕ if and only if p 6
 ¬ϕ.

Recall that generic associates are expansions (Proposition 2.26).

Theorem 3.5 (Principal). Let b0 ∈ M and Φ be a set of L∗(M)-formulas. If 
 is densely
definable for Φ up to b0, then every generic expansion of M satisfies the least number principle
for Φ up to b0.

In particular, if 
 is definable for Φ, then every generic expansion of M satisfies the least
number principle for Φ.

Proof. The second statement follows from the first noting that definability implies dense
definability up to any b0 ∈M . To prove the first, let M [G] be a generic expansion of M and
ϕ(x) ∈ Φ be such that M [G] |= ∃x < b0ϕ(x). We look for a least element in the set defined
by ϕ(x) in M [G]. It suffices to find a <M b0 such that M [G] |= ϕ(a) and M [G] 6|= ϕ(b) for
every b <M a. Define

Dϕ :=
⋃
a<M b0

⋂
b<Ma[(ϕ(a) ∧ ¬ϕ(b))].

Claim Dϕ is dense below every condition forcing ∃x < b0ϕ(x).

Proof of Claim Given p forcing ∃x < b0ϕ(x) we are looking for some q ≤ p inDϕ. By universal
recurrence

⋃
a∈M [a < b0 ∧ ϕ(a)] is dense below p. By conservativity each set [a < b0 ∧ ϕ(a)]

equals [ϕ(a)] or ∅ depending on whether a <M b0 or not. Hence
⋃
a<M b0

[ϕ(a)] is dense below
p, so for some b <M b0 there is an extension qb ≤ p forcing ϕ(b).

Dense definability applied to ϕ ∈ Φ and qb ∈ P gives some q̃ ≤ qb such that

C := {c <M b0 | q̃ 6
 ¬ϕ(c)}
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is definable in M . By Extension q̃ 
 ϕ(b), so q̃ 6
 ¬ϕ(b) by Consistency. Hence b ∈ C, so
C 6= ∅. Because M satisfies the least number principle, C has a least element a ≤M b <M b0.
As a ∈ C we have q̃ 6
 ¬ϕ(a), so by forcing recurrence we find qa ≤ q̃ forcing ϕ(a). Then
qa ≤ q̃ ≤ qb ≤ p. To show qa ∈ Dϕ, it suffices to show qa 
 ¬ϕ(b′) for every b′ <M a. But
any b′ <M a ≤M b <M b0 is not in C by minimality of a, so q̃ 
 ¬ϕ(b′) and hence also
qa 
 ¬ϕ(b′) by Extension. a

Choose p0 ∈ G forcing ∃x < b0ϕ(x) by the Truth Lemma. First note Dϕ ∈ B(
) as it is
defined by the following formula (with parameters) of the Stern formalism (cf. Lemma 2.10):

∃x(x < b0 ∧ ∀y(y < x→ (ξ ` (ϕ(x) ∧ ¬ϕ(y))))).

The claim and Lemma 2.13 imply that there is a condition p ∈ G ∩ Dϕ. Hence there
is a <M b0 such that for every b <M a we have p 
 (ϕ(a) ∧ ¬ϕ(b)). By the Truth Lemma
M [G] |= ϕ(a) and M [G] |= ¬ϕ(b) for every b <M a. Thus a is a least element as we are
looking for.

Here is a dual formulation of the Principal Theorem:

Corollary 3.6. Let b0 ∈ M and Φ be a set of L∗(M)-formulas. If for every ϕ(x̄) ∈ Φ and
p ∈ P there is q ≤ p such that

{c̄ <M b0 | q 
 ϕ(c̄)}

is definable in M , then every generic expansion of M satisfies transfinite induction for Φ up
to b0, that is, for every ϕ(x) ∈ Φ the sentence

∀y < b0(∀z < yϕ(z)→ ϕ(y))→ ∀x < b0ϕ(x).

Proof. The assumption implies that 
 is densely definable for ¬Φ up to b0 (see the proof of
Proposition 3.4). Now observe that the least number principle for ¬Φ up to b0 is equivalent
to transfinite induction for Φ up to b0.

Remark 3.7. Assume P is definable in the sense that there is a first-order interpretation
of (P,≤) in M . If 
 is definable for L∗(M)-atoms, then an easy induction shows that 
 is
definable for all L∗(M)-formulas; by the Principal Theorem then every generic expansion of
M satisfies the least number principle.

Example 3.8. In set theory Cohen forcing (Example 2.27) or Easton forcing use definable
forcing frames. In arithmetic, Feferman forcing (Example 2.29) uses definable forcing frames.
This is due to the fact that it starts with the standard model. Simpson [44] gives an example
of a definable forcing frame starting with a nonstandard model of arithmetic. In [22] Knight
pads M with some additional sorts such that (P,≤) becomes definable.

Lemma 3.9.

1. Let Ψ be the set of L∗(M)-formulas ϕ such that 
 is definable for ϕ. Then Ψ is closed
under disjunctions and existential quantification.
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2. Let b0 ∈M and Ψ be the set of L∗(M)-formulas ϕ such that 
 is densely definable for ϕ
up to b0. Then Ψ is closed under disjunctions and b0-bounded existential quantification.

Proof. (1) and closure under disjunction in (2) follow easily from the recurrence in Example
2.7. We show closure under b0-bounded existential quantification in (2): let ϕ(yx̄) ∈ Ψ and
p ∈ P . We are looking for q ≤ p such that {ā <M b0 | q‖∃y < b0ϕ(yā)} is definable in M .
Because ϕ ∈ Ψ we find q ≤ p such that {aā <M b0 | q‖ϕ(aā)} is definable in M . Then also

{ā <M b0 | ∃a <M b0 : q‖ϕ(aā)}

is definable in M . By conservativity a <M b0 is equivalent with s 
 a < b0 for any condition
s. Hence the above set equals

{ā <M b0 | ∃a ∈M : q‖(a < b0 ∧ ϕ(aā))},

and this is the set we want (see the recurrence in Example 2.7).

3.2 Definable antichains

We sketch a method to establish dense definability. We are going to apply it in the next sec-
tion. The method is intended for the typical situation where P is an (in general undefinable)
subset of M and there are L(M)-formulas ϕ(x, y), ψ(x, y) such that for all p, q ∈ P

(p ≤ q ⇐⇒M |= ϕ(p, q)) and (p‖q ⇐⇒M |= ψ(p, q)).

In this case, the following two lemmas reduce dense definability of forcing to the definability
of predense antichains refining given definable antichains.

We recall some standard forcing terminology: an antichain is a set of pairwise incom-
patible conditions. An antichain A is maximal in X ⊆ P if A ⊆ X and every p ∈ X is
compatible with some element of A. A set X ⊆ P is predense (below p) if every condition
(extending p) is compatible with some condition in X. E.g. an antichain is predense if and
only if it is maximal in P . We write

X ↓ q := {p ∈ X | p ≤ q} and X ↓ Y :=
⋃
q∈Y X ↓ q.

The method is based on the simple observation that in order to define the forcing for
some ϕ it suffices to define a maximal antichain in [ϕ]:

Lemma 3.10. If p ≤ q and X is a maximal antichain in [ϕ] ↓ q, then p‖ϕ if and only if p
is compatible with some condition in X.

Proof. If p‖ϕ, then there is r ∈ [ϕ] extending p. Then r ∈ [ϕ] ↓ q since r ≤ p ≤ q. By
maximality of X, r is compatible with some condition in X, and hence, as r ≤ p, so is p.
The converse is immediate by Extension.
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To find maximal antichains we intend to proceed by induction on ϕ. How to get, say, a
maximal antichain in [¬ϕ] from a maximal antichain X in [ϕ]? This is easy if one finds a
predense antichain A extending X – simply take A \X. More generally,

Lemma 3.11. Let A be a predense antichain and let ΦA be the set of L∗(M)-sentences ϕ
such that A ⊆ [ϕ] ∪ [¬ϕ].

1. If ϕ ∈ ΦA, then A ∩ [ϕ] is a maximal antichain in [ϕ].

2. If ϕ, ψ ∈ ΦA, then ¬ϕ, (ϕ ∧ ψ) ∈ ΦA. In this case A ∩ [¬ϕ] = A \ (A ∩ [ϕ]) and
A ∩ [ϕ ∧ ψ] = (A ∩ [ϕ]) ∩ (A ∩ [ψ]).

3. If b0 ∈ M and χ(a) ∈ ΦA for all a <M b0, then ∀x < b0χ(x) ∈ ΦA. In this case
A ∩ [∀x < b0χ(x)] =

⋂
a<M b0

(A ∩ [χ(a)]).

Proof. We only show (1). Obviously A ∩ [ϕ] is an antichain in [ϕ]. To see maximality, note
that any p ∈ [ϕ] is compatible with some condition in A by predensity, and since such a
condition cannot be in [¬ϕ] (by Extension and Consistency), it must be in [ϕ].

Given some fixed antichain A, the previous lemma describes how to define the forcing
for ϕ ∈ ΦA by induction on ϕ. The following, more versatile lemma describes how one can
do when constructing suitable antichains on the way. What one needs in every step is a
predense antichain that refines the current antichain in the following sense:

Definition 3.12. For X, Y ⊆ P we say X refines Y if every condition in X that is compatible
with some condition in Y already extends some condition in Y .

Lemma 3.13. Let ϕ, ψ be L∗(M)-sentences, χ(x) an L∗(M)-formula, b0 ∈M and p ∈ P .

1. If X is a maximal antichain in [ϕ] ↓ p, and A ⊆ P ↓ p is an antichain that is predense
below p and refines X, then A \ (A ↓ X) is a maximal antichain in [¬ϕ] ↓ p.

2. If X and Y are maximal antichains in [¬ϕ] ↓ p and [¬ψ] ↓ p respectively, and A ⊆ P ↓ p
is an antichain that is predense below p and refines X ∪ Y , then A \ (A ↓ (X ∪ Y )) is
a maximal antichain in [ϕ ∧ ψ] ↓ p.

3. If for every a <M b0, the set Xa is a maximal antichain in [¬χ(a)] ↓ p, and A ⊆ P ↓ p is
an antichain that is predense below p and refines

⋃
a<M b0

Xa, then A\ (A ↓
⋃
a<M b0

Xa)
is a maximal antichain in [∀x < b0χ(x)] ↓ p.

Proof. We only show (3). Obviously, A′ := A \ (A ↓
⋃
a<M b0

Xa) is an antichain in P ↓ p.
To show A′ ⊆ [∀x < b0χ(x)], we assume q ∈ A \ [∀x < b0χ(x)] and show q ∈ A ↓

⋃
a<M b0

Xa.
Since q 6
 ∀x < b0χ(x) there are a0 <

M b0 and r ≤ q such that r 
 ¬χ(a0) (Remark 3.1
and Lemma 2.6 (4)). By maximality of Xa0 , the condition r, and hence also q, is compatible
with some condition in Xa0 ⊆

⋃
a<M b0

Xa. Since q ∈ A and A refines
⋃
a<M b0

Xa, we get
q ∈ A ↓

⋃
a<M b0

Xa.
To see that A′ is maximal, let q ≤ p force ∀x < b0χ(x). Then q is compatible with some

r ∈ A since A is predense below p. We claim r ∈ A′, i.e. r /∈ A ↓
⋃
a<M b0

Xa. But otherwise
r 
 ¬χ(a0) for some a0 <

M b0 (by Extension) while q 
 χ(a0) (by Remark 3.1), so r and q
would not be compatible (by Extension and Consistency).
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4 Forcing against bounded arithmetic

In this section we fix

– a countable language L containing {+, · , 0, 1, <}.
– a countable L-structure M that is a proper elementary extension of an L-expansion of

(N,+, · , 0, 1, <).

– L∗ := L ∪ {R} for a new binary relation symbol R /∈ L.

We shall use the following notation. For n ∈M we write

[n] := {a ∈M | a <M n}.

A relation R over M is bounded (in M) if there is b ∈ M such that any component of
any tuple in R is <M b. As N codes every bounded (in N) relation by an element, M codes
every definable bounded (in M) relation by an element. If m ∈ N is such a code we let
‖m‖ denote the cardinality of the coded relation. This is not to be confused with |m| where
|m| = dlog(m + 1)e for m > 0 and |0| = 0. Using the definitions of these functions in the
standard model (N,+, · , 0, 1, <), we get corresponding functions ‖ · ‖M and | · |M in M and
we shall omit the superscripts.

For arbitrary n,m ∈M
n <M mo(1)

means that n` <M m for every ` ∈ N.

4.1 Paris-Wilkie forcing

Let n ∈ M be nonstandard, i.e. such that [n] is infinite. We define a forcing frame (P,≤
, D0, D1, . . .) as follows. Note that every (standard-)finite bijection from a subset of [n + 1]
onto a subset of [n] is coded by an element in M . We let P be the set of all these codes.
Note that P is not definable in M . As partial order we use p ≤ q if and only if p ⊇ q. Here,
and below, we blur the distinction between p and the bijection coded. The family D0, D1, . . .
enumerates the sets {p | b ∈ dom(p)}, {p | c ∈ im(p)} for b ∈ [n+ 1], c ∈ [n]. It is easy to see
that these sets are dense.

To determine a universal pre-forcing 
PW it suffices to define p 
PW ϕ for atoms ϕ. We
want a conservative forcing, so it suffices to define p 
PW ϕ for ϕ an L∗(M)-atom that is
not an L(M)-atom. Such an atom has the form Rst for closed L(M)-terms s, t. We set

p 
PW Rst ⇐⇒ (sM , tM) ∈ p.

It is straightforward to check that 
PW is a forcing and that M [G] is defined for every
generic G (cf. Example 2.28).

Lemma 4.1. 
PW is definable for quantifier free L∗(M)-formulas.
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We prove this exemplifying the antichain method from section 3.2. However, a direct
proof would be equally easy. We are in the “typical situation” that we have L(M)-formulas
ϕ(x, y), ψ(x, y) such that for all p, q ∈ P

(p ≤ q ⇐⇒M |= ϕ(p, q)) and (p‖q ⇐⇒M |= ψ(p, q)).

E.g. ψ(x, y) is a formula expressing that both x and y code partial bijections that agree on
arguments on which they are both defined.

Lemma 4.1. Let ϕ = ϕ(x̄) be a quantifier free L∗(M)-formula. For c̄ from M let T (c̄) be
the set of those a ∈M that are denoted by some closed term in ϕ(c̄). Further, let Ac̄ be the
set of all minimal partial bijections p such that dom(p) contains T (c̄) ∩ [n + 1] and im(p)
contains T (c̄)∩ [n]. As T (c̄) is finite, Ac̄ ⊆ P , and it is easily seen to be a predense antichain.
We use Lemma 3.11: observe the set ΦAc̄ defined there contains all atomic subsentences of
ϕ(c̄) and is closed under Boolean combinations.

First write an L(M)-formula α(z, x̄) such that α(z, c̄) defines Ac̄ (in M). Then, for every
atomic subformula ψ(x̄) of ϕ(x̄), write a formula ψ̃(z, x̄) such that ψ̃(z, c̄) defines Ac̄∩ [ψ(c̄)].
This is a maximal antichain in [ψ(c̄)] by Lemma 3.11. Using the recurrence of this lemma,
one can find such a formula for every Boolean combination of such ψ(x̄)s, and in particular
for ϕ(x̄). Lemma 3.10 (for q = ∅) then implies that 
PW is definable for ϕ(x̄).

Theorem 4.2 (Paris, Wilkie 1985). Let n ∈ M be nonstandard. Then M has an L∗-
expansion (M,RM) such that RM is a bijection from [n+ 1] onto [n] and (M,RM) satisfies
the least number principle for existential L∗(M)-formulas.

Proof. Choose a generic G (Lemma 2.12). Up to isomorphism, then M [G] expands M
by a bijection RM from [n + 1] onto [n] (cf. Example 2.28). By Lemmas 4.1 and 3.9,

PW is definable for existential L∗(M)-formulas. Now the result follows from the Principal
Theorem.

4.2 Riis forcing

In this section, we assume that L also contains a function symbol − for subtraction (cut
off at 0) and some function symbols lh(x) and (x)y for sequence coding such that in the
“standard” model every finite sequence is of the form ((n)0, . . . , (n)lh(n)−1) for some n ∈ N.

Let ∆b0
0 (R) denote the closure of the set of quantifier-free L∗(M)-formulas by b0-bounded

quantification, i.e. ∃x < b0 and ∀x < b0 (cf. page 15). If we additionally allow (unrestricted)
existential quantification we get the set Σb0

1 (R).

Theorem 4.3 (Riis 1993). Let b0, n ∈ M be such that 1 <M b0 <
M no(1). Then M has an

L∗-expansion (M,RM) such that RM is a bijection from M onto [n] and (M,RM) satisfies
the least number principle for Σb0

1 (R).

Remark 4.4. The reader familiar with bounded arithmetic will notice the following. Use
Buss’ language for L and choose n and b0 such that both b0 <

M no(1) and |n| <M b
o(1)
0 . By
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the second inequality M |= |t(n)| < b0 for every (parameter free) L-term t(x) and hence
Σb0

1 (R) includes all Σb
1(R) formulas with parameters bounded by some L-term in n. Thus

the corresponding cut in the expansion above carries a model of T 1
2 (R).

We refer to section 5 for an application of Theorem 4.3 in proof complexity.

Let n, b0 satisfy the assumption of the theorem.

Definition 4.5. A relation X over M is small if it is empty or there are ` ∈ N and an
L(M)-definable surjection from [b0]` onto X.

We define the forcing. Note that every small relation is bounded in M because this holds
in the standard model for any choice of standard b0. In particular, every small bijection from
a subset of M onto a subset of [n] is L(M)-definable and bounded in M , and hence coded by
an element of M . Let P ⊆M be the set of all these codes. Again we set p ≤ q if p ⊇ q, and
let D0, D1, . . . enumerate the sets {p | a ∈ dom(p)}, {p | c ∈ im(p)} for a ∈M, c ∈ [n]. These
sets are dense: note that both the domain and range of p ∈ P are small; but neither M nor
[n] are small (by the assumption that b0 <

M no(1)), so both (M \ dom(p)) and ([n] \ im(p))
are infinite.

The forcing relation is defined as in the previous section: p 
Ri Rst if and only if
(sM , tM) ∈ p. This determines a conservative universal pre-forcing, and in fact a forcing
(cf. Example 2.28).

Lemma 4.6. 
Ri is definable for ∆b0
0 (R)-formulas.

Proof. This follows by a slight modification of the proof of Lemma 4.1: define T (c̄) to be
the set of a ∈ M denoted by some closed term t(d̄) obtained from a term t(ȳ) in ϕ(c̄) by
substituting some values d̄ <M b0 for its free variables ȳ. Observe that T (c̄) is small. One
can then proceed as in Lemma 4.1.

In fact, Lemma 4.6 holds for Σb0
1 (R)-formulas, but the version stated is sufficient to derive

the theorem:

Theorem 4.3. Clearly, M [G] is defined for every generic G, and up to isomorphism expands
M by a bijection RM from M onto [n] (cf. Example 2.28). By Lemmas 4.6 and 3.9 (1), 
Ri

is definable for ∃∆b0
0 (R)-formulas, i.e. formulas otained from ∆b0

0 (R)-formulas by existential
quantification. By the Principal Theorem, M [G] satisfies the least number principle for
∃∆b0

0 (R)-formulas. So it suffices to show that every Σb0
1 (R)-formula is equivalent in M [G] to

such a formula. This in turn follows from M [G] satisfying ∆b0
0 (R)-collection, i.e. for every

∆b0
0 (R)-formula ϕ(x, y)

M [G] |= (∀x < b0∃y ϕ(x, y)→ ∃z∀x < b0 ϕ(x, (z)x)).

To see this, assume M [G] |= ∀x < b0∃y ϕ(x, y) and consider the formula

ψ(u) := ∃z(lh(z) = b0 − u ∧ ∀x < b0(x < lh(z)→ ϕ(x, (z)x)).

Trivially, M [G] |= ψ(b0), so ψ(u) defines a nonempty set in M [G]. As ψ(u) is ∃∆b0
0 (R), this

set contains a least element b ≤M b0. It is easy to verify M [G] |= ∀u(ψ(u) → ψ(u − 1)), so
b = 0 follows.
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4.3 Ajtai forcing

We prove Ajtai’s result [1] including its improvements from [27, 31]. Compared to Theo-
rem 4.3 it embodies an exponential improvement concerning the bound b0, namely, it assumes
only |b0| <M no(1) instead of b0 <

M no(1). On the other hand, it only concerns b0-bounded
formulas, i.e ∆b0

0 (R) (cf. section 4.2).

Theorem 4.7 (Ajtai 1988). Assume b0, n ∈ M are such that |b0| <M no(1). Then M has
an L∗-expansion (M,RM) such that RM is a bijection from [n + 1] onto [n] and (M,RM)
satisfies the least number principle for ∆b0

0 (R) up to b0.

Remark 4.8. The reader familiar with bounded arithmetic will notice the following. Use
Buss’ language for L and choose b0, n ∈M such that both |b0| < no(1) and |n| < |b0|o(1). By
the second inequality b0 bounds tM(n) for every L-term t(x). Thus the corresponding cut
carries a model of T2(R).

We refer to section 5 for an application of Theorem 4.7 in proof complexity.

For m ∈ N consider the following finite forcing frame (P (m),≤) (without a family
D0, D1, . . .): the conditions are the partial bijections from [m + 1] to [m] and p ≤ q means
p ⊇ q. Again, we blur the distinction of the bijection and its code in N. The size ‖p‖ of a
condition p is its cardinality, i.e. the number of pigeons mapped. The rank of a set X ⊆ P (m)
is the maximal size of a condition in X (and, say, 0 if X is empty).

Now fix M and n, b0 ∈M satisfying the assumptions of Theorem 4.7. Observe that there
are uniform definitions of P (m) in (N,+, · , 0, 1, <) in the sense that there is a {+, · , 0, 1, <}-
formula ϕ(x, y) such that P (m) = {p ∈ N | N |= ϕ(m, p)} for every m ∈ N. Applied in M ,
these definitions give forcing frames (P (m),≤) with size function ‖ ·‖ also for (nonstandard)
m ∈M . Further note that M defines the function m 7→ mε (rounded up) for any (standard)
rational 0 < ε < 1.

We now define the forcing frame P . It is going to be an undefinable subframe of the
definable frame P (n). The set {p ∈ P (n) | ‖p‖ <M n − nε} is definable in M for every
standard rational 0 < ε < 1. We let P be the union of all these sets. As usual p ≤ q
means p ⊇ q, and the family D0, D1, . . . enumerates the sets {p ∈ P | b ∈ dom(p)} and
{p ∈ P | c ∈ im(p)} for b ∈ [n+ 1], c ∈ [n]. It is easy to see that these sets are dense (in P ).

We define the forcing as in the previous two sections: we let p ∈ P force an atom Rst if
(sM , tM) ∈ p and denote by 
Aj the resulting conservative universal pre-forcing. It is easy
to see that 
Aj is a forcing and that M [G] is defined for every generic G (cf. Example 2.28).

Lemma 4.9. 
Aj is densely definable for ∆b0
0 (R) up to b0.

Proof. We use the antichain method from section 3.2. Let p ∈ P and ϕ(x̄) ∈ ∆b0
0 (R). We

have to find r ≤ p such that the set {ā <M b0 | r‖ϕ(ā)} is definable in M . By Lemma 3.10
this set equals {ā <M b0 | ∃q ∈ Xā : r‖q} if for every ā <M b0, Xā is a maximal antichain in
[ϕ(ā)] ↓ r. Definabiliy of this set follows from Lemma 4.10 below.

Theorem 4.7. Use the above lemma and argue as in the proofs of Theorems 4.2 and 4.3.
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Lemma 4.10. Let p ∈ P . For every ϕ(x̄) ∈ ∆b0
0 (R) there is r ∈ P, r ≤ p and a sequence

of sets (Xā)ā<M b0 in M such that for every ā <M b0, the set Xā is a maximal antichain in
[ϕ(ā)] ↓ r.

Here, by saying that a sequence (Xā)ā<M b0 of subsets of M is in M we mean that the set
{(ā, c) | ā <M b0, c ∈ Xā} is coded in M .

To prove this we intend to use Lemma 3.13. Therefore we need to define predense an-
tichains refining given sets and it is here where the finite combinatorics enter the argument
(cf. Introduction). The idea is to show that suitable antichains exist in P (m) for m ∈ N
sufficiently large. Then M codes these antichains for the infinite P (n). As a first problem,
predensity does not make much sense in finite frames nor in P (n). Therefore we shall cali-
brate the notion in the definition below. Second, suitable antichains need not to exist, but
they do exist after restricting attention to conditions that extend a suitably chosen condi-
tion r. This choice is done according to the Switching Lemma 4.13 below, the combinatorial
core of the argument. Details follow.

Definition 4.11. Let m, k ∈ N, q ∈ P (m) and X ⊆ P (m). Then X is k-predense (in P (m))
if every condition of size at most m− k is compatible with a condition in X.

Clearly, if k ≤ k′, then k-predensity implies k′-predensity. For m ∈ M , p ∈ P (m) and
X ⊆ P (m) write

Xp := {q \ p | q ∈ X, p‖q} and X ∪ p := {q ∪ p | q ∈ X, p‖q}.

Note that P (m)p ∼= P (m − ‖p‖) via a size preserving isomorphism. Of course, being a
bounded set, such an isomorphism is coded in M for every m ∈ M and p ∈ P . By saying
that an antichain is k-predense in P (m)p we mean that its image under this isomorphism is
k-predense in P (m− ‖p‖). In the same way k-predensity is explained in P (n)p.

Lemma 4.12. Let X ⊆ P , p, q ∈ P, q ≤ p and let ϕ be an L∗(M)-sentence and b̃ ≤M |b0|. If
X is a maximal antichain in [ϕ] ↓ p and has rank at most ‖p‖+ b̃, then X ∪ q is a maximal
antichain in [ϕ] ↓ q of rank at most ‖q‖+ b̃.

Proof. As X ⊆ P ↓ p, Xp has rank at most b̃. Then X ∪ q = Xp ∪ q has rank at most
‖q‖ + b̃ ≤M ‖q‖ + |b0| and, in particular, X ∪ q ⊆ P . Clearly, X ∪ q is an antichain. To
show containment in [ϕ] ↓ q, let r ∈ X ∪ q and choose s ∈ X, q‖s such that r = s ∪ q. Since
X ⊆ [ϕ], we have s ∪ q ∈ [ϕ] ↓ q by Extension. To show maximality, let r ∈ [ϕ] ↓ q. By
maximality of X, r is compatible with some s ∈ X. As r ≤ q, q is compatible with s. Then
s ∪ q ∈ X ∪ q is compatible with r.

Lemma 4.13 (Switching). Let X0, . . . , XN−1 be subsets of P (m) of rank at most k. Let
` ∈ N and assume that

(m− `)k

(`+ 1)4k · k3k
> N.

Then there is q ∈ P (m) of size at most m− ` such that for every i < N there is an antichain
Ai ⊆ P (m)q refining Xq

i that is 2k-predense in P (m)q and has rank at most 2k.
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This lemma can be proved by the probabilistic method or a direct (involved) counting
argument. Details can be found in [23, Lemma 12.3.10].

Lemma 4.14. Let p ∈ P and X, Y ⊆ P (n)p have rank at most |b0|.

1. If X is an antichain in P (n)p, then X ∪ p is an antichain in P .

2. If X is |b0|-predense in P (n)p, then X ∪ p is predense in P below p.

3. If X refines Y in P (n)p, then X ∪ p refines Y ∪ p in P .

Proof. We only show (2). Note X ∪ p ⊆ P because it has rank at most ‖p‖ + |b0|. Let
q ∈ P, q ≤ p and choose 0 < ε < 1 such that ‖q‖ <M n− nε. Then ‖q \ p‖ = ‖q‖ − ‖p‖ <M

n−nε−‖p‖ <M (n−‖p‖)−|b0|. Since (q \p) ∈ P (n)p and X is |b0|-predense in P (n)p, there
is r ∈ X such that q \ p is compatible with r in P (n)p. Then q∪ r = q∪ (r∪ p) extends both
q and r ∪ p ∈ X ∪ p. As q ∪ r has size <M ‖q‖+ |b0| it is in P , so q and r ∪ p are compatible
in P .

The rest of the argument is straightforward. We give the details:

Lemma 4.10. Let p ∈ P . Call an L∗(M)-formula ϕ(x̄) good if for every positive c ∈ N and
every p ∈ P there are r ∈ P, r ≤ p, and (Xā)ā<M b0 in M such that every Xā is a maximal
antichain in [ϕ(ā)] ↓ r and additionally has rank at most ‖r‖ + |b0|/c; here and in the
following, |b0|/c stands for b|b0|/cc computed in M . Clearly, the set of good formulas is
closed under logical equivalence. It thus suffices to show that it contains all atomic formulas
and is closed under conjunctions, negations and b0-bounded universal quantification.

We show that atomic formulas are good. Let c ∈ N be positive, p ∈ P and ϕ(x̄)
have the form Rst for L(M)-terms s = s(x̄), t = t(x̄); take r := p and define Xā :=
{r ∪ {(sM(ā), tM(ā))}} or Xā := ∅ depending on whether r ∪ {(sM(ā), tM(ā))} is a partial
bijection from [n + 1] to [n] or not. Then Xā has rank at most ‖r‖ + 1 ≤M ‖r‖ + |b0|/c.
Similarly, for an L(M)-atom ϕ(x̄) set r := p and Xā := {r} or Xā := ∅ depending on whether
M |= ϕ(ā) or not.

We show that negations of good formulas are good. Let ϕ(x̄) be good, c ∈ N positive
and p ∈ P . Choose r ∈ P, r ≤ p, and (Xā)ā<M b0 in M such that for every ā <M b0, Xā is a
maximal antichain in [ϕ(ā)] ↓ r of rank at most ‖r‖+ |b0|/(2c). Choose 0 < ε < 1 such that
‖r‖ <M n− nε. Then nε <M n−‖r‖ =: m. Recall that as partial orders P (n)r ∼= P (m), via
an isomorphism that is coded in M and preserves the size ‖ · ‖.

We intend to apply the Switching Lemma in M to get refining antichains for the sequence
(Xr

ā)ā<M b0 . We check its assumptions: every Xr
ā has rank at most k := |b0|/(2c); the sequence

has length N := b`00 for `0 ∈ N the length of x̄; there is a (standard) rational 0 < ε′ < 1 (e.g.
ε′ := 1/5) such that the inequality of the Switching Lemma is satisfied for ` := mε′ . Thus
the lemma applies, that is, we find r′ ∈ P (n)r of size at most m − mε′ such that, writing
s := (r ∪ r′), the following holds: for every ā <M b0 there is Aā ⊆ (P (n)r)r

′
= P (n)s coded

in M such that in P (n)s

(a) Aā is an antichain that is |b0|/c-predense (hence |b0|-predense),
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(b) Aā refines (Xr
ā)r
′
= Xs

ā ⊆ P (n)s,

(c) Aā has rank at most |b0|/c.

Note the sequence (Aā)ā<M b0 is in M . Further, s has size ‖r‖+‖r′‖ ≤M n−m+m−mε′ <M

n− nεε′ , so s ∈ P . Then, in P

(d) (Aā ∪ s) ⊆ P ↓ s is an antichain, predense below s (Lemma 4.14 (1),(2)),

(e) (Aā ∪ s) refines Xs
ā ∪ s = Xā ∪ s (Lemma 4.14 (3)),

(f) (Aā ∪ s) has rank at most ‖s‖+ |b0|/c.

By Lemma 4.12, (Xā∪s) is a maximal antichain in [ϕ(ā)] ↓ s. By (d) and (e) the assumptions
of Lemma 3.13 (1) are satisfied. We thus get a maximal antichain in [¬ϕ(ā)] ↓ s setting

Bā := (Aā ∪ s) \ ((Aā ∪ s) ↓ (Xā ∪ s)).

Then (Bā)ā<M b0 is in M and has rank at most ‖s‖+ |b0|/c by (f).
We show that conjunctions of good formulas are good. Let ϕ(x̄) and ψ(ȳ) be good, c ∈ N

positive and p ∈ P . We can assume that x̄ equals ȳ. As seen, ¬ϕ(x̄) is good, so there are
r̃ ∈ P, r̃ ≤ p, and maximal antichains X̃ā in [¬ϕ(ā)] ↓ r̃ of rank at most ‖r̃‖+ |b0|/(2c). Since
also ¬ψ(x̄) is good, there are r ∈ P, r ≤ r̃, and maximal antichains Yā in [¬ψ(ā)] ↓ r of rank
at most ‖r‖+ |b0|/(2c). By Lemma 4.12, Xā := X̃ā ∪ r is a maximal antichain in [¬ϕ(ā)] ↓ r
of rank at most ‖r‖+ |b0|/(2c). Now, we are looking for refining antichains for the sequence
(Xr

ā ∪ Y r
ā )ā<M b0 . This sequence is in M and each set in it has rank at most |b0|/(2c). As

above, the Switching Lemma gives s ≤ r and Aā ⊆ P (n)s such that (d), (f) and

(e′) (Aā ∪ s) refines (Xā ∪ s) ∪ (Yā ∪ s).

By Lemma 4.12, (Xā ∪ s) and (Yā ∪ s) are maximal antichains in [¬ϕ(ā)] ↓ s and [¬ψ(ā)] ↓ s
respectively. By Lemma 3.13 (2)

Bā := (Aā ∪ s) \ ((Aā ∪ s) ↓ ((Xā ∪ s) ∪ (Yā ∪ s)))

is a maximal antichain in [(ϕ ∧ ψ)(ā)] ↓ s; it has rank ≤M ‖s‖+ |b0|/c by (f).
Finally, we show that the set of good formulas is closed under b0-bounded universal

quantification. Let ϕ(xx̄) be good, c ∈ N positive and p ∈ P . Then ¬ϕ(xx̄) is good,
so there are r ∈ P, r ≤ p, and maximal antichains Xaā in [¬ϕ(aā)] ↓ r of rank at most
‖r‖ + |b0|/(2c). Applying the Switching Lemma on the sequence (

⋃
a<M b0

Xr
aā)ā<M b0 gives

s ≤ r and Aā ⊆ P (n)s such that (d), (f) and

(e′′) (Aā ∪ s) refines
⋃
a<M b0

(Xaā ∪ s).

Similarly as before, (f) and Lemmas 4.12 and 3.13 (3) imply that

Bā := (Aā ∪ s) \ ((Aā ∪ s) ↓
⋃
a<M b0

(Xaā ∪ s))

is a rank ≤M ‖s‖+ |b0|/c maximal antichain in [∀x < b0ϕ(xā)] ↓ s.
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4.4 Notes

Compared to Riis’ original argument [38] our proof of Theorem 4.3 relies on properties of
universal forcing while Riis uses an existential forcing (recall Remark 2.22). Our argument
is simpler in that it sidesteps the technically more involved proof in [38] of a definability
lemma for Σb0

1 (R).
Compared with other proofs of Theorem 4.7, roughly, the predense antichains in our

argument correspond to the complete systems in [27] and [51], to branches in shallow decision
trees in [50, 26] or to the small covers in [1]. Our exposition is close to [23, Section 12.3].

Forcing type arguments for Ajtai’s result have been given in [1, 51] and [23, section 12.7]
and more recently in [26]. In [23, section 12.7] Kraj́ıček presents the method of k-evaluations
of propositional formulas [27] as a forcing type argument. Our proof constructs for certain
ϕ a predense antichain together with its maximal part in [ϕ]. These pairs of sets give a
modified notion of |b0|-evaluation. As in Zambella [51], our argument sidesteps a detour
through propositional logic like in [1, 27, 50, 23]. It is simpler than Zambella’s in that it
avoids the restriction to “internal” generics [51].

All known arguments for Ajtai’s result, including Kraj́ıček’s more recent proof in [26],
use the Switching Lemma in one or another form. The main obstacle to generalize Ajtai’s
argument to other principles is the difficulty to find analogues of this lemma. According
to the proof presented here, its role in the argument is to provide the existence of refining
antichains, a combinatorial property of the forcing frame. The rest of the argument is taken
over by the general machinery, i.e. the Principal Theorem and the antichain method.

5 Forcing and propositional logic

The spectrum of a sentence ϕ0 is the set of naturals m ≥ 1 such that ϕ0 has a model of size m.
Given m ≥ 1, there is a propositional formula 〈ϕ0〉m whose satisfying assignments describe
size m models of ϕ0. If ϕ0 has empty spectrum, all of these formulas are unsatisfiable, and
one may ask for short or otherwise simple propositional refutations. If such a sentence also
does not have infinite models, short refutations exist even in treelike resolution [39], but in
the presence of an infinite model things are hard to understand [39, 25, 15]. We refer to [16]
for a survey on the complexity of first-order spectra.

5.1 Propositional translation

Let L0 be a finite language and ϕ0 be an L0-sentence of the form

∀x̄
∧
j∈J Cj(x̄),

where J is a finite nonempty set, x̄ = x0, . . . , xk−1 and the Cj’s are clauses. We assume
further that ϕ0 is unnested, that is, its atoms have the form y = z or Eȳ or fȳ = z for
E, f ∈ L0.
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Remark 5.1. Skolemization allows to compute from a given sentence one of the specified
form with the same spectrum. Moreover, the computed sentence has an infinite model if and
only if the given sentence has one.

We write propositional formulas in de Morgan language {∧,∨,¬} using propositional
constants > and ⊥ for “true” and “false” respectively and propositional atoms of the form
Eb̄, f b̄c where b̄ ∈ [m]r, c ∈ [m] and E and f are r-ary relation and function symbols from
L0 respectively. The translation 〈ϕ0〉m for m ≥ 1 is the following set of clauses. For every
ā ∈ [m]k and j ∈ J consider the first-order clause Cj(ā); replace first-order atoms Eb̄, f b̄ = c
in Cj(ā) by the propositional atoms Eb̄, f b̄c, and replace b = c by the propositional constant
> or ⊥ according to the truth value of b = c. Further, 〈ϕ0〉m contains the functionality
clauses

∨
c∈[m] f b̄c and (¬f b̄c ∨ ¬f b̄d) where f ∈ L0 is an r-ary function symbol, b̄ ∈ [m]r

and c, d ∈ [m], c 6= d.
Every functional assignment, i.e. one that satisfies the functionality clauses, describes an

L0-model on [m] in the obvious way, and it satisfies 〈ϕ0〉m if and only if the described model
satisfies ϕ0.

Example 5.2. Let L0 := {f, g} for a unary function symbol f and a constant (0-ary func-
tion) symbol g and consider:

ϕ0 := ∀xyz ((¬fx = z ∨ ¬fy = z ∨ x = y) ∧ (¬fx = y ∨ ¬g = y)).

For m ≥ 1 the translation PHPm := 〈ϕ0〉m contains the functionality clauses plus (¬fac ∨
¬fbc), (¬fac ∨ ¬gc) for a, b, c ∈ [m], a 6= b; here, we omit ⊥ from clauses and clauses
containing >. This is a version of the functional, injective, m to m− 1 pigeonhole principle
(cf. [37] for a survey).

5.2 An application of Riis’ Theorem

Fix an unnested L0-sentence ϕ0 = ∀x̄
∧
j∈J Cj(x̄) with empty spectrum and an infinite model.

We aim to show that every semantic refutation of 〈ϕ0〉m contains a “complex” formula.
A semantic refutation of 〈ϕ0〉m is a sequence of propositional formulas in the atoms of

〈ϕ0〉m that ends in ⊥ and every formula is either a clause in 〈ϕ0〉m or logically implied by
two previous formulas.

Our complexity measure for propositional formulas is the height of a Poizat tree comput-
ing the formula. This is a full m-branching ordered tree whose inner nodes are labeled with
queries (E, b̄) or (f, b̄) for b̄ ∈ [m]r, where E and f are r-ary relation and function symbols
from L0 respectively; its leafs are labeled with truth values 0, 1. Moreover, no label occurs
twice on some path.

Every path in such a tree corresponds in a natural way to a partial functional assignment:
if it contains a node labeled (E, ā) and its (i + 1)th successor, the propositional atom Eā
evaluates to 0 or 1 depending on whether i = 0 or not; if it contains a node labeled (f, ā)
and its (i+ 1)th successor, every propositional atom fāb is evaluated to 1 or 0 depending on
whether b = i or not. Two paths (in possibly different trees) are compatible if there exists
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a functional assignment containing the two partial assignments corresponding to the paths;
two leafs (in possibly different trees) are compatible if so are the paths leading to them.

Conversely, every functional assignment determines a branch of a given Poizat tree. The
tree computes a given propositional formula if for every functional assignment A the truth
value of the formula under A coincides with the label of the leaf on the branch determined
by A.

Definition 5.3. The Poizat width of a formula is the minimal height of a Poizat tree com-
puting it.

The Poizat width of a formula is well-defined: a formula with ` atoms has Poizat width at
most `, since it can be computed by the trivial tree that queries all appearing atoms one after
another. In particular, the clauses in 〈ϕ0〉m have constant Poizat width (i.e. independent of
m). Note that a functionality clause is computed by the one-node tree with label 1, so has
Poizat width 0.

Theorem 5.4. There is ε > 0 such that for every sufficiently large m every semantic refu-
tation of 〈ϕ0〉m contains a formula of Poizat width at least mε.

Proof. Choose for every m ≥ 1 a semantic refutation of 〈ϕ0〉m of minimal Poizat width h(m)
(the Poizat width of a sequence of formulas is understood as the maximal Poizat width of
a formula in the sequence). To extend this sequence of refutations to the pseudo-finite we
need to code it in arithmetic. We can keep this technically simple using a suitably rich
language L.

View the nodes of an m-branching tree as a set of (codes of) sequences over [m] that is
closed under initial segments. To talk about them we use function symbols lh(x), (x)z and
(x)<z for the length, the (z+1)th component and the length z initial segment of the sequence
x; we further use a symbol x− y for subtraction (cf. section 4.2). Using a symbol (x, y) for
pairing and identifying E, f, . . . ∈ L0 with numbers Ė, ḟ , . . . ∈ N queries (Ė, ā), (ḟ , ā) become
naturals; we assume these to be bigger than 2. To code the refutations we use a ternary
function symbol π such that the function π(m, i, ·) coincides with the labeling of the Poizat
tree of the (i + 1)th formula in the refutation of 〈ϕ0〉m; on arguments not coding nodes of
the tree, the function has value 2. Note that the formula π(m, i, x) < 2 defines the set of
leaves in the tree for the (i+ 1)th formula of the mth refutation. Additionally, we add unary
function symbols lines and h such that lines(m) and h(m) are the length and the Poizat
width of the mth refutation.

Further, we let L contain the language L0 and interpret it over N such that it models ϕ0.
Let M be a countable L-model that is a proper elementary extension of the ‘standard’
L-model N. In particular, M |= ϕ0.

Assume the theorem fails. Then there is, for every `, an m ≥ ` such that h(m)+1 < m1/`.
Apply this to a nonstandard ` ∈ M , and find nonstandard n, b0 ∈ M such that hM(n) <M

b0 <
M no(1).

Theorem 4.3 gives a bijection RM from M onto [n] such that (M,RM) satisfies the least
number principle for Σb0

1 (R). Note that R copies M ’s interpretation of L0 onto [n], so
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(M,RM) defines a structure on [n] that satisfies ϕ0. But as M is a model of true arithmetic,
(M,RM) does not code the ‘fictitious’ assignment that describes this structure. We show,
however, that every tree πM(n, i, ·) contains a leaf corresponding to this ‘fictitious’ assign-
ment. Such a leaf is obtained from a sequence c of length hM(n) + 1 ≤M b0 that answers
all queries according to the ‘fictitious’ assignment and, say, stays constant upon reaching a
point with a Boolean label.

Formally, this means that ∀z < lh(c) ψ(n, i, c, z) holds in (M,RM) for a suitable formula
ψ. E.g. if L0 = {E, f} for a unary relation symbol E and a unary function symbol f , the
formula ψ(n, i, c, z) reads

∃yy′ ((π(n, i, (c)<z) = (Ė, y′) ∧Ryy′ ∧ ((c)z > 0↔ Ey))

∨(π(n, i, (c)<z) = (ḟ , y′) ∧Ryy′ ∧Rf(y)(c)z))

∨(π(n, i, (c)<z) < 3 ∧ (c)z = (c)z−1).

If c codes such a sequence of length at least hM(n) + 1, then (c)<` is a leaf for the minimal `
such that πM(n, i, (c)<`) <

M 2.

Claim For every i <M linesM(n), (M,RM) satisfies

∃x (π(n, i, x) < 2 ∧ ∀z < lh(x) ψ(n, i, x, z)).

Proof of Claim As argued above, it suffices to show the existence of a suitable sequence, i.e.
it suffices to show the claim with π(n, i, x) < 2 replaced by lh(x) = h(n) + 1. To this end
consider the formula χ(u) obtained replacing π(n, i, x) < 2 by lh(x) = h(n) + 1 − u. Since
hM(n) + 1 ≤M b0 the formula χ(u) is Σb0

1 (R) and holds on hM(n) + 1 in (M,RM). Hence the
set it defines has a minimum a0. But χ(u) implies χ(u− 1) in (M,RM), so a0 = 0. a

Consider the standard model N for a moment and let m ≥ 1. For a clause 〈Cj(ā)〉m of
〈ϕ0〉m (where j ∈ J ,ā ∈ [m]k) there is a trivial tree T āj querying all appearing atoms one
after another; if hj ∈ N denotes the number of these atoms, then any branch in T āj makes
hj many queries each having the form (E, ā′), (f, ā′) with the components of ā′ appearing
among those of ā.

We can assume that πN(m, i, ·) equals T āj when the (i+1)th formula is 〈Cj(ā)〉m, and that
πN(m, i, ·) equals the one-node tree with label 1 when the (i+ 1)th formula is a functionality
clause. Otherwise there are i′, i′′ < i such that the following soundness condition holds:

if ` is a leaf of πN(m, i, ·) labeled 0 and `′, `′′ are leafs of πN(m, i′, ·) and πN(m, i′′, ·)
such that `, `′, `′′ are pairwise compatible, then at least one of `′, `′′ is labeled 0.

Observe that compatibility can be expressed by an L-formula. By elementary equivalence
then, the soundness condition holds in M for the (nonstandard) trees πM(n, i, ·). Now
consider the formula “the line y is false”:

∃x (π(n, y, x) = 0 ∧ ∀z < lh(x) ψ(n, y, x, z)).
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We can assume that for every m ≥ 1 the tree πN(m, linesN(m) − 1, ·) is the one-node tree
with label 0. Then trivially linesM(n)−1 satisfies “line y is false” in (M,RM). The universal
quantifier in this formula can be bounded by b0, so it is Σb0

1 (R). Hence there exists a minimal
i0 <

M linesM(n) satisfying it.
Let `0 ∈ M be a leaf witnessing the quantifier ∃x in “line i0 is false”. Then πM(n, i0, ·)

cannot be one of the T āj for j ∈ J, ā ∈ [n]k. Otherwise the hj many queries below `0 are
answered in a way falsifying Cj(ā). Then the tuple b̄ that is mapped to ā by RM falsifies
Cj(x̄) in M and this contradicts M |= ϕ0. Of course, πM(n, i0, ·) also cannot be a one-node
tree labeled 1. Hence there are i′, i′′ <M i0 satisfying the soundness condition (in M). Choose
leafs `′ and `′′ in πM(n, i′, ·) and πM(n, i′′, ·) according the claim. These are such that `, `′, `′′

are pairwise compatible (in M). Then the soundness condition (in M) implies that `′ or `′′

is labeled 0. But then i′ or i′′ satisfies “line y is false” and this contradicts the minimality
of i0.

5.3 An application of Ajtai’s Theorem

Theorem 4.7 has the following well-known consequence mentioned in the Introduction. We
include a brief sketch for completeness.

Recall PHPm from Example 5.2. Fix a Frege system F , that is, a finite set of inference
rules. We only assume that F is sound in the sense that every inference rule α0,...,αr−1

αr
is

such that αr is logically implied by the αi, i < r. An F -refutation of PHPm is a finite
sequence of propositional formulas in the atoms of PHPm that ends in ⊥ and every formula
is either a clause in PHPm or derived by an inference rule α0,...,αr−1

αr
from F , that is, equal to

a substitution instance of αr with the corresponding substitution instances of the αi, i < r,
appearing earlier in the sequence. The size of an F -refutation is its length when it is coded
as a binary string; its depth is the maximal depth of a formula in it, where the depth of a
formula is the maximal number of times the connective ∧,∨,¬ changes along a branch in
the formula tree.

Theorem 5.5. For every d ∈ N there is ε > 0 such that for every sufficiently large m every
F -refutation of PHPm of depth at most d has size at least 2m

ε
.

Sketch. Assume the theorem fails at depth d ∈ N. As in the proof of Theorem 5.4, we find
a structure M and b0, n ∈ M satisfying the assumptions of Theorem 4.7 and a (code of
an) F -refutation π ∈ M of PHPn+1 of depth d and size <M b0. By Theorem 4.7 there is a
bijection RM from n + 1 onto n such that (M,RM) satisfies the least number principle for
∆b0

0 (R) up to b0.
Let True(x) be a ∆b0

0 (R)-“truth predicate” for (codes of) depth ≤ d propositional formu-
las of length <M b0: an atom fab (resp. gc) should satisfy True(x) if and only if (a, b) ∈ RM

(resp. c = n); moreover, True(x) should satisfy Tarski’s conditions – e.g. a conjunction
of two formulas α, β in the sense of M should satisfy True(x) if and only if so do both α
and β. Then True(x) is satisfied by every clause from PHPn+1. Further, if β ∈ M is a for-
mula obtained from a standard formula α ∈ N by substituting for atoms X certain formulas
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γX ∈ M , then β satisfies True(x) if and only if α is satisfied by the assignment mapping X
to the truth value of True(γX).

Thus, if α0,...,αr−1

αr
is a rule in F and βi ∈ M are obtained from αi via some substitution

and βr satisfies ¬True(x), then there is i < r such that βi satisfies ¬True(x) (in particular,
r 6= 0). Then ¬True((π)y) is a ∆b0

0 (R)-formula that defines a set containing lh(π)− 1 <M b0

but no minimum, a contradiction.

5.4 Notes

Width lower bounds on resolution refutations follow from certain ‘expansion’ properties
of sets of clauses [8], and are characterized by the existence of winning strategies for the
adversary in a prover-adversary game [35, 2]. For a different notion of width, Dantchev and
Riis [15] established a general width lower bound on treelike R(k) refutations of principles
of the form 〈ϕ0〉m. Segerlind et al. [42] transfered width lower bounds for resolution in the
sense of [8], to width lower bounds for daglike R(k) – this time in the sense of having small
height decision trees. This argument uses special properties of R(k). Poizat trees are called
as they are because queries correspond to basic operations of machines in the sense of [32].

Acknowledgements We thank the anonymous referee for her/his comments. These helped
much to improve this article. We thank Achim Blumensath, Sam Buss, Jörg Flum, Sy-David
Friedman and Juan-Carlos Mart́ınez for their comments and encouragement at earlier stages
of this work. The second author thanks the FWF (Austrian Science Fund) for its support
through Project P 24654 N25.

References

[1] M. Ajtai. The complexity of the pigeonhole principle. Proceedings of the 29th Annual
Symposion on the Foundations of Computer Science, pages 346–355, 1988.

[2] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. Jour-
nal of Computer and System Sciences, 74(3):323–334, 2008.

[3] J. Avigad. Forcing in proof theory. The Bulletin of Symbolic Logic, 10(3):305–333, 2004.

[4] P. Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01, University
of Washington, 1994.

[5] P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future.
Bulletin of the European Association for Theoretical Computer Science, The Computa-
tional Complexity Column (ed. E. Allender), 65:66–89, 1998.

[6] S. Bellantoni, T. Pitassi, and A. Urquhart. Approximation and small-depth Frege
proofs. Journal SIAM Journal on Computing, 21(6):1161–1179, 1992.

32



[7] E. Ben-Sasson and P. Harsha. Lower bounds for bounded depth Frege proofs via Buss-
Pudlák games. ACM Transactions on Computational Logic, 11(3):19:1–19:17, 2010.

[8] E. Ben-Sasson and A. Wigderson. Short proofs are narrow- resolution made simple.
Journal of the ACM, 48(2):149–169, 2001.

[9] S. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal of
Symbolic Logic, 52:916–927, 1987.

[10] S. R. Buss. Bounded arithmetic and propositional proof complexity. In H. Schwichten-
berg (ed.), Logic of Computation, Springer, pages 67–122, 1995.

[11] S. R. Buss. Some remarks on the lengths of propositional proofs. Archive for Mathe-
matical Logic, 34:377–394, 1995.

[12] S. R. Buss. First-order proof theory of arithmetic. Chapter II in S. R. Buss (ed.),
Handbook of Proof Theory, pages 79–147, 1998.

[13] S. A. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, 2010.

[14] S. A. Cook and A. R. Reckhow. The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic, 44(1):36–50, 1979.

[15] S. Dantchev and S. Riis. On relativization and complexity gap for resolution-based
proof systems. In M. Baaz, A. Makowsky (eds.), Proceedings of the 17th International
Workshop Computer Science Logic, Springer Lecture Notes in Computer Science 2803,
pages 142–154, 2003.

[16] A. Durand, N. D. Jones, J. A. Makowsky, and M. More. Fifty years of the spectrum
problem: survey and new results. The Bulletin of Symbolic Logic, 18(4):481–644, 2012.

[17] S. Feferman. Some applications of forcing and generic sets. Fundamentae Mathematicae,
56:325–345, 1965.

[18] S. Fenner, L. Fortnow, S. A. Kurtz, and L. Li. An oracle builder’s toolkit. Information
and Computation, 182:95–136, 2003.

[19] J. Hirschfeld and W. H. Wheeler. Forcing, Arithmetic, Division Rings, volume 454.
Lecture Notes in Mathematics, 1975.

[20] W. Hodges. Building Models by Games. Cambridge University Press, 1985.

[21] H. J. Keisler. Forcing and the omitting types theorem. in Morley (ed.) Studies in Model
Theory, Studies in Mathematics, The Mathematical Association of America, 8:96–133,
1973.

33



[22] J. F. Knight. Generic expansions of structures. The Journal of Symbolic Logic,
38(4):561–570, 1973.
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