
A

The Fine Classification of Conjunctive Queries and Parameterized
Logarithmic Space

HUBIE CHEN, Universidad del Paı́s Vasco, San Sebastián, Spain, and IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
MORITZ MÜLLER, Kurt Gödel Research Center, Universität Wien

We perform a fundamental investigation of the complexity of conjunctive query evaluation from the perspec-

tive of parameterized complexity. We classify sets of boolean conjunctive queries according to the complexity

of this problem. Previous work showed that a set of conjunctive queries is fixed-parameter tractable precisely
when the set is equivalent to a set of queries having bounded treewidth. We present a fine classification

of query sets up to parameterized logarithmic space reduction. We show that, in the bounded treewidth

regime, there are three complexity degrees and that the properties that determine the degree of a query
set are bounded pathwidth and bounded tree depth. We also engage in a study of the two higher degrees

via logarithmic space machine characterizations and complete problems. Our work yields a significantly

richer perspective on the complexity of conjunctive queries and, at the same time, suggests new avenues of
research in parameterized complexity.

Categories and Subject Descriptors: F.4.1 [Mathematical logic and formal languages]: Mathematical
logic—Computational logic; H.2.3 [Database management]: Languages—Query languages

General Terms: Theory

Additional Key Words and Phrases: Conjunctive queries, Graph decompositions, Homomorphism problems,
Parameterized logarithmic space

ACM Reference Format:
Hubie Chen and Moritz Müller. 2014. The Fine Classification of Conjunctive Queries and Parameterized
Logarithmic Space ACM Trans. Comput. Theory V, N, Article A (January YYYY), 27 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Conjunctive queries are the most basic and most heavily studied database queries, and
can be formalized logically as formulas consisting of a sequence of existentially quan-
tified variables, followed by a conjunction of atomic formulas. Ever since the land-
mark 1977 article of Chandra and Merlin [Chandra and Merlin 1977], complexity-
theoretic aspects of conjunctive queries have been a research subject of persistent and
enduring interest which continues to the present day (as a sampling, we point to the
works [Abiteboul et al. 1995; Kolaitis and Vardi pers; Papadimitriou and Yannakakis

Authors addresses: H. Chen, Departamento LSI, Facultad de Informática Universidad del Paı́s Vasco, E-
20018 San Sebastián, Spain; and IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain.
Email: hubie.chen@ehu.es; M. Müller, Kurt Gödel Research Center for Mathematical Logic, Währinger
Strasse 25, 1090 Wien, Austria. Email: moritz.mueller@univie.ac.at.
Acknowledgements: H. Chen was supported by the Spanish Project FORMALISM (TIN2007-66523), by
the Basque Government Project S-PE12UN050(SAI12/219), and by the University of the Basque Coun-
try under grant UFI11/45. M. Müller was supported by the FWF (Austrian Science Fund) through Project
P 24654 N25.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1942-3454/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

1999; Gottlob et al. 2001; 2002; Grohe 2007; Creignou et al. 2008; Schweikardt et al.
2009; Marx 2010b]). The problem of evaluating a conjunctive query on a relational
database is equivalent to a number of well-known problems, including conjunctive
query containment, the homomorphism problem on relational structures, and the con-
straint satisfaction problem [Chandra and Merlin 1977; Kolaitis and Vardi pers]. That
this evaluation problem appears in many equivalent guises attests to the fundamen-
tal and primal nature of this problem, and it has correspondingly been approached
and studied from a wide variety of perspectives and motivations. The resulting liter-
ature has not only been fruitful in terms of continually providing insights into and
notions for understanding conjunctive queries themselves, but has also meaningfully
fed back into a richer understanding of computational complexity theory at large, and
of common complexity classes in particular. This is witnessed by the observation that
various flavors of conjunctive query evaluation are used as prototypical complete prob-
lems for complexity classes such as NP and W[1] (refer, for example, to the books by
Creignou, Khanna, and Sudan [Creignou et al. 2001] and by Flum and Grohe [Flum
and Grohe 2006b], respectively). Another example of this phenomenon is the work
showing LOGCFL-completeness of evaluating acyclic conjunctive queries (as well as of
many related problems) due to Gottlob, Leone, and Scarcello [Gottlob et al. 2001].

As has been eloquently articulated in the literature [Papadimitriou and Yan-
nakakis 1999], the employment of classical complexity notions such as polynomial-
time tractability to grade the complexity of conjunctive query evaluation is not totally
satisfactory. For in the context of databases, the typical scenario is the evaluation of
a relatively short query on a relatively large database; this suggests a notion of time
complexity wherein a non-polynomial dependence on the query may be tolerated, so
long as the dependence on the database is polynomial. Computational complexity the-
ory has developed and studied precisely such a relaxation of polynomial-time tractabil-
ity, called fixed-parameter tractability, in which arbitrary dependence in a parameter
is permitted; in our query evaluation setting, the query size is normally taken as the
parameter. The class of such tractable problems is denoted by FPT. Fixed-parameter
tractability is the base tractability notion of parameterized complexity theory, a com-
prehensive theory for studying problems where each instance has an associated pa-
rameter. As a parameterized problem, conjunctive query evaluation is complete for the
parameterized complexity class W[1] [Papadimitriou and Yannakakis 1999; Flum and
Grohe 2006b]; the property of W[1]-hardness plays, in the parameterized setting, a
role similar to that played by NP-hardness in the classical setting.

Due to the general intractability of conjunctive query evaluation, a recurring theme
in the study of conjunctive queries is the identification of structural properties that
provide tractability; such properties include acyclicity and bounded treewidth [Gottlob
et al. 2001; Kolaitis and Vardi pers]. A natural research issue is to obtain a systematic
understanding of what properties ensure tractability, by classifying all sets of queries
according to the complexity of the evaluation problem. We focus on boolean conjunctive
queries, which, in logical parlance, are queries without free variables. Formally, let
Φ be a set of boolean conjunctive queries, and define EVAL(Φ) to be the problem of
deciding, given a query φ ∈ Φ and a relational structure B, whether or not φ evaluates
to true on B. One can then inquire for which sets Φ the problem EVAL(Φ) is tractable.
For mathematical convenience, we use an equivalent formulation of this problem. It
is known that each boolean conjunctive query φ can be bijectively represented as a
relational structure A in such a way that, for any relational structure B, it holds that
φ is true on B if and only if there exists a homomorphism from A to B [Chandra and
Merlin 1977]. Hence, the following family of problems is equivalent to the family of
problems EVAL(Φ). Let A be a class of structures, and denote by HOM(A) the problem
of deciding, given a structure A ∈ A and a second structure B, whether or not there is

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

a homomorphism from A to B. Use p-HOM(A) to denote the parameterized version of
this problem, where the size of A is taken as the parameter.

Under the assumption that the structures in A have bounded arity, Grohe [Grohe
2007] presented a classification of the tractable problems of this form: if the cores of
A have bounded treewidth, then the problem p-HOM(A) is fixed-parameter tractable;
otherwise, the problem p-HOM(A) is W[1]-hard. The core of a structure can be intu-
itively thought of as a smallest equivalent structure. Grohe’s classification thus shows
that, in the studied setting, the condition of bounded treewidth is the only property
guaranteeing tractability (assuming FPT 6= W[1]). Recall that treewidth is a graph
measure which, intuitively speaking, measures the similitude of a graph to a tree, with
a lower measure indicating a higher degree of similarity. The assumption of bounded
arity provides robustness in that translating between two reasonable representations
of structures can be done efficiently; this is in contrast to the case of unbounded ar-
ity, where the choice of representation can dramatically affect complexity [Chen and
Grohe 2010].

The present article was motivated by the following fundamental research question:
What algorithmic/complexity behaviors of conjunctive queries are possible, within the
regime of fixed-parameter tractability? That is, we endeavored to obtain a finer per-
spective on the parameterized complexity of conjunctive queries, and in particular, on
the possible sources of tractability thereof, by presenting a classification result akin
to Grohe’s, but for queries that are fixed-parameter tractable. As is usual in compu-
tational complexity, we make use of a weak notion of reduction in order to be able to
make fine distinctions within the tractable zone. Logarithmic space computation is a
common machine-based mode of computation that is often used to make distinctions
within polynomial time; correspondingly, we adopt parameterized logarithmic space
computation, which is obtained by relaxing logarithmic space computation much in
the way that fixed-parameter tractability is obtained by relaxing polynomial time, as
the base complexity class and as the reduction notion used in our investigation.

We present a classification theorem that comprehensively describes, for each set A
of structures having bounded arity and bounded treewidth, the complexity of the prob-
lem p-HOM(A), up to parameterized logarithmic space reducibility (Section 3). Let T
denote the class of all graphs that are trees, P denote the class of all graphs that are
paths, and, for a class of structures A, let A∗ denote the class of structures obtainable
by taking a structure A ∈ A and giving each element an own colour. Our theorem
shows that precisely three degrees of behavior are possible: such a problem p-HOM(A)
is either equivalent to p-HOM(T ∗), equivalent to p-HOM(P∗), or is solvable in param-
eterized logarithmic space (Theorem 3.1). Essentially speaking, bounded pathwidth
and bounded tree depth are the properties that determine which of the three cases
hold; as with treewidth, both pathwidth and tree depth are graph measures that as-
sociate a natural number with each graph. A key component of our classification the-
orem’s proof is a reduction that, in effect, allows us to prove hardness results on a
problem p-HOM(A) based on the hardness of p-HOM(M∗) whereM consists of certain
graph minors derived from A (Lemma 3.5). The proof of our classification theorem uti-
lizes this reduction in conjunction with excluded minor characterizations of graphs of
bounded pathwidth and of bounded tree depth. We remark that, in combination with
the excluded grid theorem from graph minor theory, the discussed reduction can be
employed to readily derive Grohe’s classification from the hardness of the colored grid
homomorphism problem; this hardness result was presented by Grohe, Schwentick,
and Segoufin [Grohe et al. 2001]. A fascinating aspect of our classification theorem,
which is shared with that of Grohe, is that natural graph-theoretic conditions–in our
case, those of bounded pathwidth and bounded tree depth–arise naturally as the rele-
vant properties that are needed to present our classification. This theorem also widens

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

the interface among conjunctive queries, graph minor theory, and parameterized com-
plexity that is present in the discussed work [Grohe et al. 2001; Grohe 2007].

Given that the problems p-HOM(P∗) and p-HOM(T ∗) are the only problems (up to
equivalence) above parameterized logarithmic space that emerge from our classifica-
tion, we then seek a richer understanding of these problems. In particular, we en-
gage in a study of the complexity classes that these problems define: we study the
class of problems that reduce to p-HOM(P∗), and likewise for p-HOM(T ∗) (Sections 4
and 5). Following a time-honored tradition in complexity theory, we present machine-
based definitions of these classes, which we call PATH and TREE, respectively. The
machine definition of PATH comes from recent work of Elberfeld, Stockhusen, and
Tantau [Elberfeld et al. 2012] and is based on nondeterministic Turing machines satis-
fying two simultaneous restrictions: first, that only parameterized logarithmic space is
consumed; second, that the number of nondeterministic bits used is bounded, namely,
by the product of the logarithm of the input size and a constant depending on the
parameter. The machine characterization of TREE is similar, but it is based on alter-
nating Turing machines where, in addition to the nondeterministic bits permitted pre-
viously, a parameter-dependent number of conondeterministic bits may also be used.
In addition to proving that the problems p-HOM(P∗) and p-HOM(T ∗) are complete for
the machine-defined classes, we also prove that for any class of structures A having
bounded pathwidth, the parameterized embedding problem p-EMB(A) is in PATH, and
prove an analogous result for structures of bounded treewidth and the class TREE.

In the final section of the paper, we present a fine classification for the problem of
counting homomorphisms which is analogous to our classification for the homomor-
phism problem (Section 6).

Our work shows that the complexity classes PATH and TREE are heavily popu-
lated with complete problems, and, along with the recent work [Elberfeld et al. 2012],
suggests the further development of the study of space-bounded parameterized com-
plexity [Flum and Grohe 2003; Chen et al. 2003] and, speaking more broadly, the study
of complexity classes within FPT, which may include classes based on circuit or paral-
lel models of computation. We can mention the following natural structural questions.
Are either of the classes PATH or TREE closed under complement? Can any evidence
be given either in favor of or against such closure? Even if the classes PATH and TREE
are not closed under complement, could it be that co-PATH ⊆ TREE? Another avenue
for future research is to develop the theory of the degrees of counting problems iden-
tified by our counting classification. We shall mention some further open questions in
the final section.

2. PRELIMINARIES
For n ∈ N we define [n] := {1, . . . , n} if n > 0 and [0] := ∅. We write {0, 1}≤n for the set
of binary strings x ∈ {0, 1}∗ of length |x| ≤ n; we have {0, 1}≤0 = {λ} where λ is the
empty string. When h : A → B is a mapping and X ⊆ A, we use h � X to denote the
restriction of h to X.

2.1. Structures, homomorphisms and cores
Structures. A vocabulary τ is a finite set of relation symbols, where each R ∈ τ has

an associated arity ar(R) ∈ N. A τ -structure A consists of a nonempty finite set A, its
universe, together with an interpretation RA ⊆ Aar(R) of every R ∈ τ . Let us emphasize
that, in this article, we consider only finite structures. A substructure (weak substruc-
ture) of A is a structure induced by a nonempty subset X of A, i.e. the structure 〈X〉A
with universe X that interprets every R ∈ τ by (respectively, a subset of) Xar(R) ∩ RA.
A restriction of a structure is obtained by forgetting the interpretations of some sym-

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

bols, and an expansion of a structure is obtained by adding interpretations of some
symbols. We view directed graphs as {E}-structures G := (G,EG) for binary E; G is a
graph if EG is irreflexive and symmetric. Note that a weak substructure of a graph is a
subgraph. The graph underlying a directed graph G without loops (i.e. with irreflexive
EG) is obtained by replacing EG with its symmetric closure. We shall be concerned
with the following classes of structures.

– For k ≥ 2, a directed path of length (k−1) is a structure isomorphic to the structure
−→
Pk with universe [k] and edge relation {(i, i+1) | i ∈ [k−1]}. The class of all directed
paths is denoted

−→
P .

A path of length (k − 1) is a structure isomorphic to the graph Pk underlying
−→
Pk.

The class of all paths is denoted P.
– For k ≥ 2, a directed cycle of length k is a structure isomorphic to the structure

−→
Ck

with universe [k] and edge relation {(i, i+ 1) | i ∈ [k − 1]} ∪ {(k, 1)}. The class of all
directed cycles is denoted

−→
C .

A cycle of length k is a structure isomprhic to the graph Ck underlying
−→
Ck. The

class of all directed cycles is denoted C.
– For k ≥ 0, the structure

−→
Bk has universe {0, 1}≤k and binary relations S

−→
Bk
i =

{(x, xi) | x ∈ {0, 1}≤k−1} for i ∈ {0, 1}. The class
−→
B consists of the structures that

are isomorphic to a structure of this form.
Let Tk be the graph underlying the directed graph ({0, 1}≤k, S

−→
Bk
0 ∪ S

−→
Bk
1).

Let Bk be the structure with universe {0, 1}≤k and binary relations SBk
0 , SBk

1 de-
fined to be the symmetric closures of the relations S

−→
Bk
0 , S

−→
Bk
1 , respectively. The class

B consists of the structures that are isomorphic to a structure of this form.
– Finally, T is the class of trees, that is, the class of connected, acyclic graphs.

A class of structures A has bounded arity if there exists a r ∈ N such that any relation
symbol interpreted in any structure A ∈ A has arity at most r.

Homomorphisms. Let A, B be structures. A homomorphism from A to B is a function
h : A → B such that for all R ∈ τ and for all ā = (a1, . . . , aar(R)) ∈ RA it holds
that h(ā) ∈ RB where we write h(ā) = (h(a1), . . . , h(aar(R))). A partial homomorphism
from A to B is the empty set or a homomorphism from a substructure of A to B;
equivalently, this is a partial function h from A to B that is a homomorphism from
〈dom(h)〉A to B if the domain dom(h) of h is not empty. As has become usual in our
context, by an embedding we mean an injective homomorphism.

A structure A is a core if all homomorphisms from A to A are embeddings. Every
structure A maps homomorphically to a weak substructure of itself which is a core.
This weak substructure is unique up to isomorphism and called the core of A (cf. [Feder
and Vardi 1999]). For a set of structures A we let core(A) denote the set of cores of
structures in A. It is not hard to see that two structures A,B are homomorphically
equivalent (that is, there are homomorphisms in both directions) if and only if they
have the same core.

When A is a structure, we use A∗ to denote its expansion that interprets for every
a ∈ A a fresh unary relation symbol Ca by CA∗

a = {a}. For a class of structures A we
let

A∗ := {A∗ | A ∈ A}.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Example 2.1. The following facts are straightforward to verify. Trees with at least
two vertices and cycles of even length have a single edge as core. Cycles of odd length
are cores, and so are directed paths. Structures of the form A∗ are cores.

2.2. Notions of width
We rely on Bodlaender’s survey [Bodlaender 1998] as a general reference for the
notions of treewidth and pathwidth. Tree depth was introduced in [Nešetřil and
de Mendez 2006].

A tree-decomposition of a graph G = (G,EG) is a pair of a tree T and a family of bags
Xt ⊆ G for t ∈ T such that G =

⋃
t∈T Xt, E

G ⊆
⋃
t∈T X

2
t and Xt ∩Xt′ ⊆ Xt′′ whenever

t′′ lies on the simple path from t to t′; it is called a path-decomposition if T is a path;
its width is maxt∈T |Xt| − 1.

The treewidth tw(G) of G is the minimum width of a tree-decomposition of G. The
pathwidth pw(G) of G is the minimum width of a path-decomposition of G.

By a rooted tree T we mean an expansion (T,ET, rootT) of a tree (T,ET) by a unary
relation symbol root interpreted by a singleton containing the root. The tree depth
td(G) of G is the minimum h ∈ N such that every connected component of G is a
subgraph of the closure of some rooted tree of height h. Here, the closure of a rooted
tree is obtained by adding an edge from t to t′ whenever t lies on the simple path from
the root to t′.

The tree depth td(A) of an arbitrary structure A is the tree depth of its Gaifman
graph: it has vertices A and an edge between a and a′ if and only if a and a′ are
different and occur together in some tuple in some relation in A. The notions pw(A)
and tw(A) are similarly defined.

A class A of structures has bounded tree depth if there is w ∈ N such that td(A) ≤ w
for all A ∈ A. Having bounded pathwidth or treewidth is similarly explained. It is not
hard to see that bounded pathwidth is implied by bounded tree depth, and, trivially,
bounded treewidth is implied by bounded pathwidth. The converse statements fail:

Example 2.2. The class P has unbounded tree depth and bounded pathwidth
(cf. [Nešetřil and de Mendez 2006, Lemma 2.2]). The class B has unbounded pathwidth
and bounded treewidth (see. e.g. [Bodlaender 1998, Theorem 67]).

Such classes are characterized as those excluding certain minors as follows. The
first two statements are well-known from Robertson and Seymour’s graph minor se-
ries (cf. [Bodlaender 1998, Theorems 12,13]) and the third is from [Blumensath and
Courcelle 2010, Theorem 4.8].

THEOREM 2.3. Let C be a class of graphs.

(1) (Excluded Grid Theorem) C has bounded treewidth if and only if C excludes some
grid as a minor.

(2) (Excluded Tree Theorem) C has bounded pathwidth if and only if C excludes some
tree as a minor.

(3) (Excluded Path Theorem) C has bounded tree depth if and only if C excludes some
path as a minor.

A class of graphs C excludes a graph M as a minor if M is not a minor of any graph
in C. Recall, M is a minor of a graph G if there exists a minor map µ from M to G, that
is, a family (µ(m))m∈M of pairwise disjoint, non-empty, connected subsets of G such
that for all (m,m′) ∈ EM there are v ∈ µ(m) and v′ ∈ µ(m′) with (v, v′) ∈ EG.

It is easy to verify that td, pw, tw are monotone with respect to the minor pre-order,
that is, e.g. td(G) ≥ td(M) for every minor M of G. Example 2.2 thus gives the (easy)
directions from left to right in the above theorem.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

2.3. Parameterized complexity
Turing machines. We identify (classical) problems with sets Q ⊆ {0, 1}∗ of finite binary

strings. We use (multi-tape) Turing machines with a (read-only) input tape and several
worktapes as our basic model of computation. We will consider nondeterministic and
alternating Turing machines with binary nondeterminism and co-nondeterminism.
For concreteness, let us agree that a nondeterministic machine has a special (exis-
tential) guess state; a configuration with the guess state has two successor configu-
rations obtained by changing the guess state to one out of two further distinguished
states s0, s1. An alternating machine may additionally have a universal guess state
that follows a similar convention. By a run of an (alternating) machine A on an input
x ∈ {0, 1}∗ we mean a sequence of configurations each being a successor configuration
of its predecessor, and the first being the start configuration of A on x.

For a function f : {0, 1}∗ → N we say that A uses f (co-)nondeterministic bits if for
every input x ∈ {0, 1}∗ every run of A on x contains at most f(x) many configurations
with the existential (respectively, universal) guess state.

Fixed-parameter (in)tractability. A parameterized problem (Q, κ) is a pair of a classical
problemQ ⊆ {0, 1}∗ and a logarithmic space computable parameterization κ : {0, 1}∗ →
N associating with any instance x ∈ {0, 1}∗ its parameter κ(x) ∈ N.1 A Turing ma-
chine is fpt-time bounded (with respect to κ) if on input x ∈ {0, 1}∗ it runs in time
f(κ(x)) · |x|O(1) where f : N → N is a computable function. The class FPT (para-NP)
contains the parameterized problems (Q, κ) such thatQ is decided (accepted) by an fpt-
time bounded deterministic (nondeterministic) Turing machine. An fpt-reduction from
(Q, κ) to (Q′, κ′) is a reduction R : {0, 1}∗ → {0, 1}∗ from Q to Q′ that is computable by
a fpt-time bounded (with respect to κ) Turing machine and such that κ′ ◦R ≤ f ◦ κ for
some computable f .

We are concerned with homomorphism and embedding problems associated with
classes of structures A.

p-HOM(A)
Instance: A pair of structures (A,B) where A ∈ A.

Parameter: |A|.
Problem: Is there a homomorphism from A into B?

p-EMB(A)
Instance: A pair of structures (A,B) where A ∈ A.

Parameter: |A|.
Problem: Is there an embedding from A into B?

These problem definitions exemplify how we present parameterized problems. More
formally, the parameterization indicated is the function that maps a string encoding a
pair of structures (A,B) to |A|, and any other string to, say, 0. Here, |A| := |τ |+ |A|+∑
R∈τ |RA| · ar(R) is the size of A; note that the length of a reasonable binary encoding

of A is O(|A| · log |A|) (cf. [Flum et al. 2002]).
The theory of parameterized intractability is centered around the W-hierarchy,

which consists of the classes W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. The class W[P] contains the
parameterized problems (Q, κ) that are accepted by nondeterministic Turing machines
that are fpt-time bounded with respect to κ and use f(κ(x)) · log |x|many nondetermin-
istic bits. We refer to the monographs [Flum and Grohe 2006b; Downey and Fellows

1Usually polynomial time is allowed to compute κ but as we are interested in parameterized logarithmic
space we adopt a more restrictive notion as [Elberfeld et al. 2012]. Natural parameterizations are often
simply projections.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

1999] for more information about the W-hierarchy. It is well-known that, when A is a
decidable class of structures, the problems p-HOM(A) and p-EMB(A) are contained in
W[1]; when A is the class of cliques, these problems are W[1]-hard and hence W[1]-
complete under fpt-reductions.

Parameterized logarithmic space. A Turing machine is parameterized logarithmic space
bounded (with respect to κ), in short, pl-space bounded (with respect to κ) if on input
x ∈ {0, 1}∗ it runs in space O(f(κ(x)) + log |x|), where f : N → N is some computable
function. The class para-L (para-NL) contains the parameterized problems (Q, κ) such
that Q is decided (accepted) by a (non)deterministic Turing machine that is pl-space
bounded with respect to κ. The classes para-L and para-NL are parameterized ana-
logues of the classical classes L and NL in a similar way as FPT is an analogue of P
(cf. [Flum and Grohe 2003]). Obviously,

para-L ⊆ para-NL ⊆ FPT ⊆W[P] ⊆ para-NP.

Remark 2.4. Allowing in the above definition space f(κ(x)) · log |x| gives strictly
larger classes known as (the stronlgy uniform versions of) XL and XNL. These classes
are likely to be incomparable with FPT: they do not contain FPT unless P = NL and
contain problems that are even AW[SAT]-hard under fpt-reductions. We shall not be
concerned with these classes here and refer the interested reader to [Chen et al. 2003;
Elberfeld et al. 2012] for proofs of the mentioned facts and further information. [Flum
and Grohe 2003] gives some general account of the para- and X-operators.

Let κ be a parameterization. A function F : {0, 1}∗ → {0, 1}∗ is implicitly pl-
computable (with respect to κ) if the parameterized problem

BITGRAPH(F)
Instance: A triple (x, i, b) where x ∈ {0, 1}∗, i ≥ 1, and b ∈ {0, 1}.

Parameter: κ(x).
Problem: Does F (x) have length |F (x)| ≥ i and ith bit equal to b?

is in para-L. The following is straightforwardly verified as in the classical setting of
logarithmic space computability.

LEMMA 2.5. Let κ, κ′ be parameterizations and let F, F ′ : {0, 1}∗ → {0, 1}∗ be im-
plicitly pl-computable with respect to κ and κ′ respectively. Further assume that F is
fpt-bounded with respect to κ, that is, |F (x)| ≤ g(κ(x)) · |x|O(1) for some computable
g : N→ N. Then F ′ ◦ F is implicitly pl-computable with respect to κ.

Let (Q, κ), (Q′, κ′) be parameterized problems. A pl-reduction from (Q, κ) to (Q′, κ′)
is a reduction R : {0, 1}∗ → {0, 1}∗ from Q to Q′ that is fpt-bounded and implicitly pl-
computable2 with respect to κ and such that there exists a computable function f : N→
N such that κ′ ◦R ≤ f ◦ κ. We write (Q, κ) ≤pl (Q′, κ′) to indicate that such a reduction
exists. We write (Q, κ) ≡pl (Q′, κ′) if both (Q, κ) ≤pl (Q′, κ′) and (Q′, κ′) ≤pl (Q, κ).

3. CLASSIFICATION
THEOREM 3.1 (CLASSIFICATION THEOREM). Let A be a decidable class of struc-

tures of bounded arity such that core(A) has bounded treewidth.

(1) If core(A) has unbounded pathwidth, then
p-HOM(A) ≡pl p-HOM(T ∗).

2It is routine to verify that an fpt-bounded F is implicitly pl-computable if and only if it is computable by
a pl-space bounded Turing machine with a write-only output tape. Our definition is equivalent to the ones
in [Flum and Grohe 2003; Chen et al. 2003; Elberfeld et al. 2012].

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

(2) If core(A) has bounded pathwidth and unbounded tree depth, then
p-HOM(A) ≡pl p-HOM(P∗).

(3) If core(A) has bounded tree depth, then
p-HOM(A) ∈ para-L.

Remark 3.2. If A is assumed to be only computably enumerable instead of decid-
able, then the theorem stays true understanding all mentioned problems in a suitable
way as promise problems (cf. [Grohe 2007, Remark 2.1]). If no computability assump-
tion is placed on A, then the theorem stays true in the non-uniform setting of param-
eterized complexity theory (cf. [Downey and Fellows 1999]).

We break the proof into several lemmas.

To prove statement (3) of Theorem 3.1 we show that a structure of tree depth w can be
characterized, in a sense made precise, by an existential first-order sentence of quanti-
fier rank w+ 1, and that model-checking such sentences can be done in parameterized
logarithmic space. A proof can be found in Section 3.2.

To prove statements (1) and (2) of Theorem 3.1 we need to deal with homomorphism
problems for classes A that are not necessarily decidable. Slightly abusing notation,
we say p-HOM(A) ≤pl p-HOM(A′) for arbitrary classes of structures A,A′ if there is a
implicitly pl-computable partial function F that is defined on those instances (A,B) of
p-HOM(A) with A ∈ A and maps them to equivalent instances (A′,B′) of p-HOM(A′)
with A′ ∈ A′ such that |A′| is effectively bounded in |A| (i.e. |A′| ≤ g(|A|) for some
computable function g : N → N). By saying that a partial function F is implicitly pl-
computable with respect to a parameterization κ we mean that there are a computable
f : N → N and a Turing machine that on those instances (x, i, b) of BITGRAPH(F)

such that F is defined on x, runs in space O(f(κ(x)) + log |x|) and answers (x, i, b)
?
∈

BITGRAPH(F); on other instances the machine may do whatever it wants.
The following lemma takes care of the reductions from left to right in statements (1)

and (2) of Theorem 3.1.

LEMMA 3.3. Let A be a class of structures and R ⊆ T be a computably enumer-
able class of trees. Assume there is w ∈ N such that every structure in A has a tree
decomposition of width at most w whose tree is contained in R. Then,

p-HOM(A) ≤pl p-HOM(R∗).
PROOF. Let (A,B) with A ∈ A be an instance of p-HOM(A). Enumerating R,

test successively for T ∈ R whether there exists a width ≤ w tree-decomposition
(T, (Xt)t∈T) of A. Since A ∈ A this test eventually succeeds, and the space needed is
effectively bounded in the parameter |A|. With such a tree-decomposition at hand pro-
duce the instance (T∗,B′) of the problem p-HOM(R∗) where the structure B′ is defined
as follows. Write dom(f) for the domain of a partial function f ; two partial functions f
and g are compatible if they agree on arguments where they are both defined.

B′ :=
{
f | f is a partial homomorphism from A to B and |dom(f)| ≤ w

}
;

EB′ :=
{

(f, g) ∈ B′ ×B′ | f and g are compatible
}

;

CB′

t :=
{
f ∈ B′ | dom(f) = Xt

}
, for every t ∈ T .

In case B′ = ∅, the reduction outputs a fixed “no”-instance.
Suppose that h is a homomorphism from A to B. Then the mapping h′ : T → B′

defined by h′(t) = h � Xt (the restriction of h to Xt) is straightforwardly verified to be a
homomorphism from T∗ to B′.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Conversely, let h′ be a homomorphism from T∗ to B′. Then, h′(t) is a partial homo-
morphism from A to B with domain Xt. Since (T, (Xt)t∈T) is a tree-decomposition,
the values of h′ are pairwise compatible. Hence h :=

⋃
t∈T h

′(t) is a function from⋃
t∈T Xt = A to B. To see h is a homomorphism, consider a tuple (a1, . . . , ar) ∈ RA for

some r-ary relation R in the vocabulary of A. Then {a1, . . . , ar} is contained in some
bag Xt since it is a clique in the Gaifman graph of A (cf. [Bodlaender 1998, Lemma 4]).
But h′(t) maps this tuple to a tuple in RB, so the mapping h does as well.

For later use we make the following remark concerning the above proof.

Remark 3.4. The previous proof associates with a homomorphism h from A to B
the homomorphism h′ from T∗ to B′ that maps t to h � Xt. This association h 7→
h′ is injective because every a ∈ A appears in some bag Xt. It is also surjective: a
homomorphism h′ from T∗ to B′, is associated with h :=

⋃
t∈T h

′(t); the previous proof
argued that h is a homomorphism from A to B. Hence, there is a bijection between the
set of homomorphisms from A to B and the set of homomorphisms from T∗ to B′.

At the heart of the proof of Theorem 3.1 is the following sequence of reductions,
proved in the following subsection. The appropriately informed reader will recognize
elements from Grohe’s proof [Grohe 2007] as well as from Marx [Marx 2010a, Lemma
5.2].

LEMMA 3.5 (REDUCTION LEMMA). Let A be a computably enumerable class of
structures of bounded arity, let G be the class of Gaifman graphs of core(A), and let
M be the class of minors of graphs in G. Then

p-HOM(M∗) ≤pl p-HOM(G∗)
≤pl p-HOM(core(A)∗)

≤pl p-HOM(core(A))

≤pl p-HOM(A).

With the Reduction Lemma, we can give the proof of the Classification Theorem.

PROOF PROOF OF THEOREM 3.1. The reduction from left to right in statements
(1) and (2) follow from Lemma 3.3. The reductions from right to left follow from the
Reduction Lemma 3.5 via the Excluded Tree Theorem 2.3 (2) and the Excluded Path
Theorem 2.3 (3). Statement (3) is proved as Lemma 3.11.

3.1. Proof of the Reduction Lemma
As a consequence of the assumption that A is computably enumerable, each of the
sets M∗, G∗, core(A)∗, and core(A) are computably enumerable. The statement of the
theorem claims the existence of four reductions. The last one from p-HOM(core(A)) to
p-HOM(A) is easy to see. We construct the first three in sequence.

LEMMA 3.6. Let G be a class of graphs which is computably enumerable, and letM
be the class of minors of graphs in G. Then

p-HOM(M∗) ≤pl p-HOM(G∗).

PROOF. Let (M∗,B) with M∗ ∈ M∗ be an instance of the problem p-HOM(M∗).
Enumerating G, test successively for G ∈ G whether M is a minor of G. Since M ∈ M
this test eventually succeeds, and then compute a minor map µ from M to G. The time
needed is effectively bounded in the parameter |M∗|. The reduction then produces the
instance (G∗,B′) of p-HOM(G∗), where B′ is defined as follows.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Set I :=
⋃
m∈M µ(m) and define:

B′ := (M ×B)∪̇{⊥};

EB′ :=
{

((m1, b1), (m2, b2)) | [m1 = m2 ⇒ b1 = b2] and

[(m1,m2) ∈ EM ⇒ (b1, b2) ∈ EB]
}

∪
{

(⊥, b′) | b′ ∈ B′} ∪ {(b′,⊥) | b′ ∈ B′
}

;

CB′

v := {(m, b) | b ∈ CB
m}, if m ∈M and v ∈ µ(m);

CB′

v := {⊥}, if v /∈ I.
Suppose that h is a homomorphism from M∗ to B. Let h′ : G → B′ be the map that

sends, for each m ∈ M , the elements in µ(m) to (m,h(m)) and that sends all elements
v /∈ I to ⊥. Then h′ is a homomorphism from G∗ to B′.

Suppose that g is a homomorphism from G∗ to B′. We show that g is of the form h′ for
a homomorphism h from M∗ to B. First, by definition of the CB′

v , it holds that g(v) = ⊥
for all v /∈ I. Next, let v, w be elements of a set µ(m), with m ∈ M . The definition of
the CB′

v ensures that g(v) and g(w) have the form (m, ·). Since µ(m) is connected, the
definition of EB′ ensures that g(v) = g(w). Finally, suppose that (m1,m2) ∈ EM, let
(m1, b1) be the image of µ(m1) under g, and let (m2, b2) be the image of µ(m2) under g.
We claim that (b1, b2) ∈ EB. But there exist v1 ∈ µ(m1) and v2 ∈ µ(m2) such that
(v1, v2) ∈ EG. We then have (g(v1), g(v2)) ∈ EB′ and the definition of EB′ ensures that
(b1, b2) ∈ EB.

LEMMA 3.7. LetA be a computably enumerable class of structures of bounded arity,
and let G be the class of Gaifman graphs of A. Then

p-HOM(G∗) ≤pl p-HOM(A∗).
PROOF. Let (G∗,B) with G ∈ G be an instance of p-HOM(G∗). Similarly as seen in

the previous proof, one can compute from G a structure A ∈ A whose Gaifman graph
is G; in particular, A = G and we write G = (A,EG). The reduction outputs (A∗,B′)
where B′ is the structure defined as follows.

B′ := A×B,
CB′

a := {a} × CB
a ,

RB′ :=
{

((a1, b1), . . . (aar(R), bar(R))) ∈ (A×B)ar(R) |

ā ∈ RA and for all i, j ∈ [ar(R)] : if ai 6= aj , then (bi, bj) ∈ EB
}
,

for R ∈ τ where τ denotes the vocabulary of A. We have to show

(G∗,B) ∈ p-HOM(G∗)⇐⇒ (A∗,B′) ∈ p-HOM(A∗).
To see this, assume first that h is a homomorphism from G∗ to B. We claim that

h′(a) := (a, h(a)) defines a homomorphism from A∗ to B′. If a′ ∈ CA∗

a , then a′ = a and
h(a′) ∈ CB

a since h is a homomorphism; by definition then h′(a′) = (a, h(a)) ∈ CB′

a .
Hence h′ preserves the symbols Ca. To show it preserves R ∈ τ , let (a1, . . . , aar(R)) ∈
RA. We have to show ((a1, h(a1)), . . . , (aar(R), h(aar(R)))) ∈ RB′ , or equivalently, for all
i, j ∈ [ar(R)] with ai 6= aj that (h(ai), h(aj)) ∈ EB. But if ai 6= aj , then (ai, aj) ∈ EG

by definition of the Gaifman graph and (h(ai), h(aj)) ∈ EB follows from h being a
homomorphism.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Conversely, assume that h′ is a homomorphism from A∗ to B′. By definition of CB′

a
is follows that h′(a) = (a, h(a)) for some function h : A → B such that h(a) ∈ CB

a . We
claim that h is a homomorphism from G∗ to B. It suffices to show (h(a), h(a′)) ∈ EB

whenever (a, a′) ∈ EG. But if (a, a′) ∈ EG, then a 6= a′ and there exist R ∈ σ
and (a1, . . . , aar(R)) ∈ RA and i, j ∈ [ar(R)] such that a = ai and a′ = aj . Then
((a1, h(a1)), . . . , (aar(R), h(aar(R)))) ∈ RB′ because h′ is a homomorphism. Since ai 6= aj
the definition of EB′ implies (h(ai), h(aj)) = (h(a), h(a′)) ∈ EB as desired.

Recall that the direct product A×B of two τ -structures A and B has universe A×B
and interprets R ∈ τ by {((a1, b1), . . . , (aar(R), bar(R))) | ā ∈ RA, b̄ ∈ RB}..

LEMMA 3.8. Let A be a class of structures. Then

p-HOM(core(A)∗) ≤pl p-HOM(core(A)).

PROOF. Let (D∗,B) with D ∈ core(A) be an instance of p-HOM(core(A)∗). Let B∗ be
the restriction of B to the vocabulary of D. If some CB

d , d ∈ D, is empty, the reduction
outputs a fixed “no”-instance. Otherwise, the reduction produces the instance (D,B′)
of the problem p-HOM(core(A))), where

B′ :=
〈{

(d, b) ∈ D ×B | b ∈ CB
d

}〉D×B∗
.

Suppose that h is a homomorphism from D∗ to B. Then, the mapping h′ : D → B′

defined by h′(d) = (d, h(d)) is straightforwardly verified to be a homomorphism from D
to B′.

Suppose that g is a homomorphism from D to B′. Write π1 and π2 for the projections
that map a pair to its first and second component respectively. The composition (π1 ◦ g)
is a homomorphism from D to itself; since D is a core, (π1 ◦ g) is bijective. Hence, there
exists a natural m ≥ 1 such that (π1◦g)m is the identity on D. Define h as g◦(π1◦g)m−1.
Clearly, h is a homomorphism from D to B′, so π2 ◦h is a homomorphism from D to B∗.
We claim that π2 ◦ h is also a homomorphism from D∗ to B. Observe that π1 ◦ h is the
identity on D. In other words, for every d ∈ D there is bd ∈ B such that h(d) = (d, bd).
By definition of B′ we get bd ∈ CB

d , establishing the claim.

Observe that the map h′ constructed in the above proof is an embedding. Hence we
have the following corollary that we note explicitly for later use.

COROLLARY 3.9. Let A be a class of structures. Then

p-HOM(core(A)∗) ≤pl p-EMB(core(A)).

3.2. Bounded tree depth and para-L
Let τ be a vocabulary. First-order τ -formulas are built from atoms Rx̄, x = y by Boolean
combinations and existential and universal quantification. Here, x̄ is a tuple of vari-
ables of length matching the arity of R. We write ϕ(x̄) for a (first-order) τ -formula ϕ
to indicate that the free variables in ϕ are among the components of x̄. The quantifier
rank qr(ϕ) of a formula ϕ is defined as follows:

qr(ϕ) = 0 for atoms ϕ;
qr(¬ϕ) = qr(ϕ);
qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max{qr(ϕ), qr(ψ)};
qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ).

The following is standard, but we could not find a reference, so include the simple
proof for completeness.

LEMMA 3.10. The parameterized problem

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

p-MC(FO)
Instance: A structure A, a first-order sentence ϕ.

Parameter: |ϕ|.
Problem: A |= ϕ ?

can be decided in spaceO(|ϕ|·log |ϕ|+(qr(ϕ)+ar(ϕ))·log |A|), where qr(ϕ) is the quantifier
rank of ϕ and ar(ϕ) is the maximal arity over all relation symbols in ϕ.

PROOF. We give an algorithm expecting inputs (A, ϕ, α) where ϕ is a formula and α
is an assignment for ϕ in A, that is, a map from a superset of the free variables of ϕ
into A. The algorithm determines whether α satisfies ϕ in A. It executes a depth-first
recursion as follows.

If ϕ is an atom Rȳ the algorithm writes the tuple α(ȳ) ∈ Aar(R) on the worktape and
checks whether it is contained in RA by scanning the input; it then erases the tuple
and returns the bit corresponding to the answer obtained.

If ϕ = (ψ ∧ χ), the algorithm recurses on ψ (with the same assignment); upon com-
pleting the recursion it erases all space used in it, stores a bit for the answer obtained,
and then recurses on χ; upon completion it erases the space used in it and returns the
minimum of the bit obtained and the stored bit. The cases ϕ = (ψ ∨ χ) and ϕ = ¬ψ are
similar.

If ϕ(x̄) = ∃yψ(x̄, y) the algorithm loops through b ∈ A and recurses on ψ with as-
signment α extended by mapping y to b; it maintains a bit z which is initially 0 and
updates z after each loop to the maximum of z and the bit obtained in the loop; after
each loop it erases the space used in it. Upon completing the loop it returns this bit, and
restricts the assignment back to its old domain without y. The case ϕ(x̄) = ∀yψ(x̄, y) is
similar.

When started on a sentence ϕ and the empty assignment, all assignments α occuring
in the recursion have cardinality ≤ qr(ϕ), so can be stored in space O(qr(ϕ) · (log |ϕ| +
log |A|)). Each recursive step adds space O(log |ϕ|) to remember the (position of the)
current subformula plus one bit plus O(log |A|) for the loop on b ∈ A in the quantifier
case and plusO(ar(ϕ)·log |A|) in the atomic case. From these considerations it is routine
to verify the claimed upper bound on space.

The canonical conjunction of a structure A is a quantifier-free conjunction in
the variables xa for a ∈ A; namely, for every relation symbol R of A and every
(a1, . . . , aar(R)) ∈ RA it contains the conjunct Rxa1 · · ·xaar(R)

. It is easy to see that the
canonical conjunction of A is satisfiable in a structure B if and only if there is a homo-
morphism from A to B.

LEMMA 3.11. Assume A is a decidable class of structures of bounded arity such
that core(A) has bounded tree depth. Then p-HOM(A) ∈ para-L.

PROOF. Choose w ∈ N such that td(core(A)) ≤ w for all A ∈ A. Given a structure A
we compute a sentence ϕA of quantifier rank at most w+ 1 such that for all structures
B, the sentence ϕA is true in B if and only if there is a homomorphism from A to B.
This is enough by Lemma 3.10.

Given A we check A ∈ A running some decision procedure for A. If A /∈ A we let
ϕA := ∃x ¬x = x. If A ∈ A, compute the core A0 of A and compute for every connected
component C of the Gaifman graph of A0 some rooted tree T with vertices T = C and
height at most w such that every edge of the Gaifman graph of 〈C〉A0 is in the closure
of T.

Consider a component C and let T be the rooted tree computed for C. For c ∈ C = T
we compute the following first-order formula ϕc. We use variables xc for c ∈ C = T . If
c is a leaf of T, let ϕc be the canonical conjunction of 〈Pc〉A0 where Pc is the path in T

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

leading from the root r of T to c. For an inner vertex c define

ϕc :=
∧
d ∃xd ϕd,

where d ranges over the successors of c. The following claims are straightforwardly
verified by induction along the recursive definition of the ϕcs.

Claims. For every c ∈ C:

(1) the quantifier rank of ϕc equals the height of the subtree of T rooted at c;
(2) the free variables of ϕc are {xd | d ∈ Pc};
(3) ϕc is satisfiable in B if and only if so is the canonical conjunction of 〈C(c)〉A0 where

C(c) contains Pc and the vertices in the subtree rooted at c.

Letting r range over the roots of the trees T chosen for the connected components C
of A0, we set

ϕA :=
∧
r ∃xrϕr.

By Claim 2 this is a sentence and by Claim 1 it has quantifier rank at most w+ 1. It is
true in B if and only if every ∃xrϕr is true in B, and by Claim 3 this holds if and only if
the canonical conjunction of 〈C(r)〉A0 is satisfiable in B for every connected component
C. Noting C(r) = C, this means that every 〈C〉A0 maps homomorphically to B, and
this means that A0 maps homomorphically to B. Recalling that A0 is the core of A, we
see that this is equivalent to A mapping homomorphically to B.

Define a {∧,∃}-sentence to be a first-order sentence built from atoms, conjunction,
and existential quantification. The previous proof revealed that, given a structure A
with td(core(A)) ≤ w, there exists a {∧,∃}-sentence φ of quantifier rank at most w + 1
that corresponds to A in that, for all structures B, the sentence φ is true on B if and
only if there is a homomorphism from A to B. We show that the existence of such a
sentence in fact characterizes tree depth, in the following precise sense.

THEOREM 3.12. Let w ≥ 0, and let A be a structure. It holds that td(core(A)) ≤ w if
and only if there exists a {∧,∃}-sentence φ that corresponds to A with qr(φ) ≤ w + 1.

PROOF. The forward direction follows from the previous proof. For the backward
direction, let φ be a sentence of the described type. We may assume that no variable
is quantified twice in φ and that no equality of variables appears in φ, by renaming
variables and replacing equalities of the form v = v with the empty conjunction. Let
φp be the prenex sentence where all variables that are existentially quantified in φ
are existentially quantified in φp, and the quantifier-free part of φp is the conjunction
of all atoms appearing in φ. Let C be a structure whose canonical conjunction is the
quantifier-free part of φp. Clearly, φp and the original φ are logically equivalent; it
easily follows that C and A are homomorphically equivalent [Chandra and Merlin
1977]. It thus suffices to show that td(C) ≤ w.

View the sentence φ as a rooted tree, where the root occurs at the top, so that a node
of the form ∃v existentially quantifies v from the (subformula given by the) node im-
mediately below it. Define an acyclic directed graph D on the variables of φ where the
directed edge (v, v′) is present if and only if the node for ∃v is the first node with quan-
tification occurring above the node for ∃v′. Let α be an arbitrary atom from φp (equiva-
lently, from φ). Since φ is a sentence, if one traverses φ starting from the root and mov-
ing to α, one will pass a node ∃v for each variable v of α. Let v1, . . . , vk be the variables of
α in the order encountered by such a traversal. The edges (v1, v2), (v2, v3), . . . , (vk−1, vk)
are in the transitive closure of D, and hence in the closure of the graph underlying D
(where a node is a root in the graph iff it is parentless in D). Since qr(φ) ≤ w + 1, each

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

directed path in D has length less than or equal to w, and so the graph underlying D
witnesses that td(C) ≤ w.

We now show the following result on the embedding problem.

THEOREM 3.13. Assume A is a decidable class of structures of bounded arity and
bounded tree depth. Then p-EMB(A) ∈ para-L.

The proof of this result uses color coding methods, more precisely, it relies on the
following lemma (see [Flum and Grohe 2006b, p.349]).

LEMMA 3.14. For every sufficiently large n, it holds that for all k ∈ N and for every
k-element subset X of [n], there exists a prime p < k2 log n and q < p such that the
function hp,q : [n]→ {0, . . . , k2 − 1} given by

hp,q(m) := (q ·m mod p) mod k2

is injective on X.

For later use we give the main step in the proof of Theorem 3.13 as a separate lemma.
Call a structure connected if its Gaifman graph is connected.

LEMMA 3.15. For every decidable class A of connected structures we have

p-EMB(A) ≤pl p-HOM(A∗).
PROOF. Map an instance (A,B) to (A∗,B∗) where B∗ is defined as follows. We can

assume that B = [n] and A = [k] for n, k ∈ N, and that n is sufficiently large in the
sense of Lemma 3.14. Using the notation of this lemma we set

F :=
{
g ◦ hp,q | g : {0, . . . , k2 − 1} → [k] and q < p < k2 log n

}
.

For f ∈ F , let Bf be the expansion of B that interprets every Ca, a ∈ A, by f−1(a) ⊆
[n] and define B∗ as the disjoint union of the structures Bf . More precisely, B∗ has
universe F × [n] and interprets a relation symbol R by {((f, b1), . . . , (f, bar(R))) | f ∈
F, (b1, . . . , bar(R)) ∈ RBf }; then 〈{f} × [n]〉B∗ is a copy of Bf , and in the Gaifman graph
of B∗ there are no edges between {f} × [n] and {f ′} × [n] for distinct f, f ′ ∈ F .

We verify

(A,B) ∈ p-EMB(A)⇐⇒ (A∗,B∗) ∈ p-HOM(A∗).
Note that the sets CB∗

a , a ∈ [k], are pairwise disjoint, so every homomorphism h from
A∗ to B∗ is an embedding. Since A∗ is connected, h is an embedding into the copy of
some Bf , that is, has image in {f}× [n] for some f ∈ F . If π2 maps pairs to their second
component, then π2 ◦ h is an embedding of A into B.

Conversely, assume e is an embedding of A into B. By Lemma 3.14 there are p, q
with q < p < k2 log n such that hp,q is injective on the image of e. Then there exists
g : {0, . . . , k2−1} → [k] such that g◦hp,q◦e is the identity on [k]. Then f := g◦hp,q ∈ F and
e is an embedding of A∗ into Bf . Then a 7→ (f, e(a)) is an embedding of A∗ into B∗.

This lemma together with Corollary 3.9 implies:

COROLLARY 3.16. Let A be a decidable class of connected cores. Then

p-HOM(A∗) ≡pl p-EMB(A).

PROOF OF THEOREM 3.13. LetA be a decidable class of structures of bounded arity
and bounded tree depth.

Claim. There exists a decidable class A′ of connected structures of bounded tree depth
such that p-EMB(A) ≤pl p-EMB(A′).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Note p-EMB(A′) ≤pl p-HOM((A′)∗) by the previous lemma and p-HOM((A′)∗) ∈
para-L by Lemma 3.11. We are thus left to prove the claim.

AssumeA has tree depth at most d and letE be a binary relation symbol not occuring
in the vocabulary of any A ∈ A. Fix a computable function that maps every A ∈ A to
a family of height ≤ d rooted trees (TC)C with TC = (C,ETC , rootTC) where C ranges
over the connected components of the Gaifman graph G(A) of A, and such that 〈C〉G(A)

is a subgraph of the closure of TC . Define A′ to be the expansion of A interpreting E
by
⋃
C E

TC ∪ E′ where E′ is defined as follows. It contains edges between the root of
TC0

and the roots of the other TC where C0 is the lexicographically minimal component
(according to the encoding of A). Then A′ is connected and has tree depth at most d+1.
Clearly, A′ := {A′ | A ∈ A} is decidable. The map (A,B) 7→ (A′,B′), where B′ is the
expansion of B interpretingE byB2, is a pl-reduction from p-EMB(A) to p-EMB(A′).

4. THE CLASS PATH
We present the complexity class PATH to capture the complexity of p-HOM(P∗). This
class was discovered very recently in [Elberfeld et al. 2012] with a different angle of
motivation; they refer to this class as para-NL[f log]. Among other results, they show
that the following problem is complete for this class: check if a digraph contains a path
from a distinguished vertex s to another distinguished vertex t of length at most k;
here, k is the parameter. We use p-st-PATH to denote the corresponding problem for
undirected graphs.

p-st-PATH
Instance: A graph G, s, t ∈ G and k ∈ N.

Parameter: k.
Problem: Is there a path in G from s to t of length at most k ?

Definition 4.1. The class PATH contains a parameterized problem (Q, κ) if there
are a computable function f : N → N and a nondeterministic Turing machine that
accepts Q, is pl-space bounded with respect to κ, and uses f(κ(x)) · log |x| many nonde-
terministic bits.

The following is straightforward to verify.

PROPOSITION 4.2. The complexity class PATH is closed under pl-reductions.

Recall that, using the notation in [Flum and Grohe 2003], one has

FPT = para-P ⊆W[P] ⊆ para-NP.

It follows immediately from the definitions that

para-L ⊆ PATH ⊆ para-NL.

The class PATH is natural in that it has a natural machine characterization that is
analogous to the one of W[P]. We shall see that it captures the complexity of many
natural problems.

THEOREM 4.3. p-HOM(P∗) is complete for PATH under pl-reductions.

That p-HOM(P∗) is contained in PATH can be seen by the guess-and-check para-
digm. We find it informative to present such algorithms in a computational model
tailored specifically for this kind of nondeterminism.

Definition 4.4. A jump machine is a (multi-tape) Turing machine with an input
tape and a special jump state. Its nondeterminism is embodied in the jump state as
follows. When the machine enters the jump state the head on the input tape is set

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

nondeterministically on one of the cells carrying an input bit; we say that the machine
jumps to the cell. When this occurs, no other head moves or writes and the state is
changed to the starting state. Acceptance is defined as usual, that is, such a machine
accepts an input if there exists a sequence of nondeterministic jump choices under
which the machine accepts. An injective jump machine is defined similarly to a jump
machine, but never jumps to a cell that has already been jumped to.

For a function j : {0, 1}∗ → N, we say that a jump machine (an injective jump ma-
chine) uses j many (injective) jumps if for every input x and every run on x, it enters
the jump state at most j(x) many times.

The idea is that a jump corresponds to a guess of a number in [n] where n is the
length of the input, and thus to a guess of log n bits. Observe that one can compute in
logarithmic space the number m ∈ [n] of the cell it jumps to by moving the head to the
left and stepwise increasing a counter.

LEMMA 4.5. Let (Q, κ) be a parameterized problem. The following are equivalent.

(1) (Q, κ) ∈ PATH.
(2) There exists a computable f : N→ N and a jump machine using (f ◦κ) many jumps

that accepts Q and is pl-space bounded with respect to κ.
(3) There exists a computable f : N → N and an injective jump machine using (f ◦ κ)

many injective jumps that accepts Q and is pl-space bounded with respect to κ.

PROOF. (1) implies (2): assume (1) and choose f and a Turing machine A according
Definition 4.1. Given an input x we simulate A by a jump machine B using an extra
worktape holding bits derived from jumps for the simulation of the guesses of A. More
precisely, when A enters its guess state, B moves its head on the extra worktape right
and continues the simulation of A in state sb where b ∈ {0, 1} is the bit scanned by this
head (see the Preliminaries on Turing machines). In case the head scans a blank cell,
B stores the number j of the cell its input head is scanning and then performs a jump,
say to cell m ∈ [|x|]. It computes the length blog(|x| + 1)c binary code of m and deletes
the leading bit 1. It overwrites the content of the extra worktape by this code and sets
its head on the first bit b of the code, moves the input head back to cell j and continues
the simulation of A in state sb. Then B makes at most f(κ(x)) many jumps.

(2) implies (3): choose f and a jump machine A according (2). We intend to simulate
A on an injective jump machine. This works provided A does not have accepting runs
with two jumps to the same cell. To ensure this condition we replace A by the following
machine A′. Intutively, if A jumps k times then A′ jumps 2k times and accepts only if
these 2k jumps encode pairs (1,m1), . . . , (2k,m2k); the simulation of the ith jump of A
is done by jumping to the (m2i,m2i+1)th cell. Details follow.

The machine A′ on x first computes k := f(κ(x)): note κ(x) can be computed in space
O(log |x|) by our convention on parameterizations; then k can be computed from κ(x)
running some machine computing f on κ(x) – this needs additional space which is
effectively bounded in the parameter κ(x).

Then A′ checks that 2k·d
√
ne ≤ nwhere n := |x|. If this check fails, A′ simulates some

fixed decision procedure for Q (note that (2) implies that Q is decidable). Observe that
in this case k ≥ Ω(

√
n), so the decision procedure runs in space effectively bounded in

k and hence in the parameter. Otherwise 2k · d
√
ne ≤ n and A′ simulates A as follows.

Throughout the simulation it maintains a counter for jumps that initially is set to 0.
It will be clear that this counter always stores a number ≤ 2k.

When A jumps, then A′ jumps twice and computes the two numbers a, b ∈ [n]
of the cells it jumped to. As indicated above, the idea is that A′ interprets a, b as
encoding pairs (ia,ma), (ib,mb) ∈ [2k] × [d

√
ne]. Using the jump counter A′ ensures

that the first components of all guessed pairs are increasing; the second components

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

ma,mb ∈ [d
√
ne] are used to encode the cell where A jumps to. More precisely, A′ com-

putes ia := da/d
√
nee, that is, the least i such that i·d

√
ne ≥ a, andma := 1+amod d

√
ne;

similarly for (ib,mb). If (ia,ma) or (ib,mb) is not in [2k] × [d
√
ne], then A′ halts and re-

jects. For i the value of the jump counter, A′ checks that i + 1 = ia and that i + 2 = ib.
Then it computes m(a,b) := (ma − 1) · d

√
ne + mb and checks that m(a,b) ∈ [n]. Then A′

increases the jump counter by two, moves the input head to cell m(a,b), changes to the
starting state and resumes the simulation of A.

Note that, if A jumps to, say, m ∈ [n], then there exist (a, b) ∈ [n]2 such that m(a,b) =
m, so A simulates this jump of A. Obviously, A′ is an injective jump machine.

(3) implies (1): choose f and an injective jump machine A according (2). We define a
machine B which simulates A maintaining a set X which contains at most k := f(κ(x))
natural numbers all smaller than k2. Intuitively, this set contains fingerprints of the
jumps so far. Initially, X = ∅.

On input x the machine B computes k = f(κ(x)) (within allowed space as seen above)
and n := |x|. To begin, B guesses a pair (p, q) with q < p < k2 log n and stores it. Note
this requires only O(log k + log log n) nondeterministic bits and space. Then B starts
simulating A. When A jumps, B guesses blog(n + 1)c many bits encoding a number
m ∈ [n]. It computes “the fingerprint” f := hp,q(m) and checks that f /∈ X. Here, hp,q
denotes the function from Lemma 3.14. Then it adds f to X, moves the input head to
the mth input bit, changes to the starting state and continues the simulation of A.

Obviously, if A jumps at most ` times, then B uses at most O(log k+ log log n+ ` log n)
nondeterministic bits. To see that B runs in allowed space, note that “the fingerprint” f
can trivially be computed in space linear in the binary length of (p, q,m, k), and hence
in space O(log k + log n).

We show that B accepts x if and only if x ∈ Q. In an accepting run, B guesses a
sequence of cell numbersm1, . . . ,m` ∈ [n] for some ` ≤ k such that A as a jump machine
reaches an accepting state when it jumps in sequence to these cells. The accepting
run of B computes pairwise distinct fingerprints of these numbers, so they have to be
pairwise distinct. Thus these jumps determine an accepting run of A as an injective
jump machine. This implies x ∈ Q. Conversely, if x ∈ Q, then there is an accepting run
of A on x with ` ≤ k jumps to pairwise distinct cells m1, . . . ,m`. By Lemma 3.14 there
exist q < p < k2 log n such that hp,q is injective on {m1, . . . ,m`}. Then B accepts when
first guessing some such pair (p, q) and then strings encoding m1, . . . ,m`.

THEOREM 4.6. Let A be a decidable class of structures of bounded arity and of
bounded pathwidth. Then p-EMB(A) ∈ PATH.

PROOF. Choose a constant w ∈ N bounding the pathwidth of A. We use a machine
A with injective jumps to solve p-EMB(A). The result will then follow from Lemma 4.5.

Given an instance (A,B) of p-EMB(A) the machine first computes a width ≤ w path-
decomposition (Pk, (Xi)i∈[k]) of A such that Xi (Xi+1 or Xi+1 (Xi for all i ∈ [k − 1];
we further assume that no Xi is empty. This is done in space effectively bounded in the
parameter |A| and, in particular, k is effectively bounded in |A|.

It then computes inductively for each i ∈ [k] a map hi from Xi into B that is a partial
homomorphism from A into B. To start, the machine A jumps |X1| times to guess
elements b1, . . . , b|X1| ∈ B. It checks that the function h1 : X1 → B that maps the ith
element of X1 to bi defines a partial homomorphism from A into B. Having computed
hi the machine computes hi+1 as follows. If Xi+1 (Xi, then hi+1 := hi � Xi+1 is the
restriction of hi to Xi+1. Otherwise Xi+1) Xi, say Xi+1 = Xi ∪ {a1, . . . , ad}; then A
jumps d times to guess b1, . . . bd ∈ B and checks that hi+1 := hi ∪ {(aj , bj) | j ∈ [d]} is a
partial homomorphism from A into B. In the end, if no check fails, A halts accepting.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

This procedure can be implemented in pl-space: the space to store the path de-
composition is bounded in the parameter, and storing one hi needs space roughly
w · (log |A|+ log |B|).

It is routine to check that A makes exactly |A| many jumps, and that it accepts only
if
⋃
i hi is a homomorphism from A to B. Since the machine has injective jumps it

accepts in fact only if this homomorphism is an embedding. Conversely, it is obvious
that the machine accepts if an embedding from A into B exists.

PROOF OF THEOREM 4.3. To see p-HOM(P∗) ∈ PATH, just consider the machine A
described in the proof of Theorem 4.6 as a machine with jumps instead of as a machine
with injective jumps.

To see that p-HOM(P∗) is hard for PATH under pl-reductions, let (Q, κ) ∈ PATH and
choose a Turing machine A with jumps according Lemma 4.5 (2) that accepts Q. We
can assume that there are computable f, g : N → N such that A on x ∈ {0, 1}∗ runs in
space O(g(κ(x)) + log |x|) and makes on every run exactly f(κ(x)) many jumps.

Fix x ∈ {0, 1}∗ and set k := κ(x) and n := |x|. Let Adet be the deterministic Turing
machine defined as A but with the jump state interpreted as a rejecting halting state.
Observe that Adet (and A) has at most m := 2c·g(k) · nc configurations where c ∈ N is
a suitable constant. Let c1, . . . , cm be a list (possibly with repetitions) of all configu-
rations of Adet on x whose state is the starting state. Assume that c1 is the starting
configuration of Adet. For i, j ∈ [m], say i reaches j if the computation of Adet started
on ci (with x on the input tape) reaches in at most m steps a configuration c with the
jump state, and cj is obtained from c by changing the jump state to the starting state
and changing the position of the input head to some arbitrary cell storing an input bit.
Further, call i ∈ [m] accepting if Adet started on ci accepts within at most m steps.

Consider the structure Bx given by

Bx := [f(k) + 1]× [m],

EBx := the symmetric closure of
{((i, j), (i+ 1, j′)) | i ∈ [f(k)], j reaches j′},

CBx
1 := {(1, 1)},

CBx
i := {i} × [m] for 2 ≤ i ≤ f(k),

CBx
f(k)+1 := {(f(k) + 1, j) | j is accepting}.

It is clear that there exists a homomorphism from P∗f(k)+1 to Bx if and only if A ac-
cepts x, that is, the map x 7→ (P∗f(κ(x))+1,Bx) is a reduction from (Q, κ) to p-HOM(P∗).
The new parameter |P∗f(κ(x))+1| depends only on κ(x). The reduction is implicitly pl-
computable: first observe that the numbers f(k) and m can be computed from x in
pl-space. A counter for numbers up to m needs only space O(g(k) + log n). Hence one
can tell whether or not i reaches j in pl-space simply by simulating Adet for at most m
many steps. Similarly, this space is sufficient to tell whether or not a given j ∈ [m] is
accepting.

The following result gives information about fundamental problems: the problems
p-EMB(

−→
P), p-EMB(C), and p-EMB(

−→
C) are the parameterized problems of determining

if an input graph contains a simple directed k-path, a simple undirected k-cycle, and
a simple directed k-cycle, respectively; these problems are denoted respectively by p-
DIRPATH, p-CYCLE, and p-DIRCYCLE by Flum and Grohe [Flum and Grohe 2006a].

THEOREM 4.7. The following parameterized problems are complete for PATH under
pl-reductions:

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

p-st-PATH,

p-HOM(
−→
P), p-EMB(

−→
P)

p-HOM(C), p-EMB(C)
p-HOM(

−→
C), p-EMB(

−→
C)

PROOF. Since the classes
−→
P , C,

−→
C have bounded pathwidth, Theorem 4.6 implies

that all embedding problems are contained in PATH. For the homomorphism problems
and p-st-PATH the same argument works (see the proof of Theorem 4.3). We are thus
left to prove hardness.

Recall Example 2.1. Corollary 3.9 implies that p-HOM(
−→
P ∗) ≤pl p-EMB(

−→
P) and also

that p-HOM(
−→
C ∗) ≤pl p-EMB(

−→
C). Since we trivially have p-HOM(A) ≤pl p-HOM(A∗) for

all classes A, we conclude that p-HOM(
−→
P) ≤pl p-EMB(

−→
P) and also that p-HOM(

−→
C) ≤pl

p-EMB(
−→
C). For C we similarly get p-HOM(Codd) ≤pl p-EMB(Codd) where Codd is the class

of odd length cycles. By
−→
C odd we denote the class of odd length directed cycles.

It thus suffices to show that the problems

p-HOM(
−→
P), p-HOM(

−→
C), p-HOM(Codd), p-st-PATH

are PATH-hard. By Theorem 4.3, we know that p-HOM(P∗) is hard for PATH. We give
the sequence of reductions

p-HOM(P∗) ≤pl p-HOM(
−→
P) ≤pl p-st-PATH ≤pl p-HOM(

−→
C odd)

and then show the hardness of p-HOM(Codd).

p-HOM(P∗) ≤pl p-HOM(
−→
P). Let (P∗k,B) be an instance of p-HOM(P∗). The reduction

produces the instance (
−→
Pk,B

′) where B′ is the directed graph with verticesB′ := [k]×B
and edges

EB′ := {((i, b), (i+ 1, b′)) | i ∈ [k − 1], b ∈ CB
i , b

′ ∈ CB
i+1, (b, b

′) ∈ EB}.

p-HOM(
−→
P) ≤pl p-st-PATH. Let (

−→
Pk,G) be an instance of p-HOM(

−→
P). The reduction

produces the instance (G′, s, t, k + 1) where G′ has vertices G′ := {s, t} ∪ ([k]×G) and
as edges the symmetric closure of{

((i, u), (i+ 1, v)) | i ∈ [k − 1], (u, v) ∈ EG
}
∪
(
{s} × ([1]×G)

)
∪
(
{t} × ([k]×G)

)
.

p-st-PATH ≤pl p-HOM(
−→
C odd). Let (G, s, t, k) be an instance of the former problem; by

the previous reduction, we may assume that it is a yes instance if and only if there is
an s-t path of length exactly k. We can assume that k is even (otherwise we take a new
neighbor of the given s as our new s). Define the graph G′ with vertices ([k+1]×G) and
edges as follows. When i ∈ [k] and (u, v) ∈ EG, there is an edge from (i, u) to (i + 1, v);
also, there is an edge from (k+1, t) to (1, s). Then (G, s, t, k) 7→ (

−−−→
Ck+1,G

′) is a reduction
as desired.

Finally, we show the hardness of p-HOM(Codd). By appeal to Lemma 3.8, it suffices to
demonstrate a reduction p-st-PATH ≤pl p-HOM(C∗odd). Given an instance (G, s, t, k) of
the former problem of the above form, we define G′ as in the previous reduction. The
produced instance is (C∗k,G

′′), where G′′ is the expansion of the symmetric closure of
G′ with CG′′

i = {i} ×G.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

5. THE CLASS TREE
We give a machine characterization of the class of parameterized problems that are
pl-reducible to p-HOM(T ∗).

Definition 5.1. The class TREE contains a parameterized problem (Q, κ) if there
are a computable function f : N → N and an alternating Turing machine that accepts
Q, is pl-space bounded with respect to κ, and uses f(κ(x)) · log |x| nondeterministic bits
and f(κ(x)) co-nondeterministic bits.

The following proposition is straightforward to verify.

PROPOSITION 5.2. The complexity class TREE is closed under pl-reductions.

Definition 5.3. An alternating Turing machine with jumps is a Turing machine A
using nondeterministic jumps and a universal guess state (see Section 2.3). It accepts
an input x ∈ {0, 1}∗ if its starting configuration on x is accepting: it is already explained
what an accepting halting configuration is, and a non-halting configuration which is
not in the universal guess state (resp. is in the universal guess state) is accepting if at
least one (resp. both) of its successor configurations are accepting.

LEMMA 5.4. Let (Q, κ) be a parameterized problem. The following are equivalent.

(1) (Q, κ) ∈ TREE
(2) There exists a computable f : N → N and an alternating Turing machine A with

f ◦ κ many jumps and f ◦ κ many co-nondeterministic bits that accepts Q and is
pl-space bounded with respect to κ.

PROOF. The implication from (1) to (2) can be seen analoguously to the correspond-
ing implication in Lemma 4.5.

Conversely, let A and f accord (2). A machine B according (1) can be obtained by
simulating a jump of A by existentially guessing a binary string encoding a number
m ∈ [n] and moving the input head to cell m.

THEOREM 5.5. p-HOM(T ∗) is complete for TREE under pl-reductions.

PROOF. (Theorem 5.5) We show that p-HOM(T ∗) ∈ TREE. Consider the following
alternating Turing machine. Given an instance (T,B) of p-HOM(T ∗), the machine
chooses some t ∈ T as a “root” and computes the directed “tree” T′ with edges directed
away from t. It existentially guesses (O(log |B|) bits encoding) a b ∈ CBt and writes (t, b)
on some tape. While the pair (t, b) written on the tape is such that t has children in T′

the machine does the following: universally guess (O(log |T |) bits encoding) a child t′ of
t; existentially guess b′ ∈ B; check that (b, b′) ∈ EB and b′ ∈ CBt′ ; update (t, b) to (t′, b′).
The while loop is left rejecting if this check fails. If the machine leaves the while loop
otherwise, it accepts.

The number of universal guesses is bounded by O(|T | · log |T |). The number of exis-
tential guesses is bounded by |T | · log |B|. The machine uses space to store T′ and at
most two pairs in T ×B, so it is pl-space bounded.

To show p-HOM(T ∗) is TREE-hard under pl-reductions, let the parameterized prob-
lem (Q, κ) be in TREE. Choose an alternating machine A with jumps according to
Lemma 5.4 for (Q, κ).

The idea of the proof is simple: a witness for the alternating machine A accepting
an instance x is a certain tree of configurations; contracting deterministic transitions
between configurations, such a witnessing tree can be chosen of some size determined
by the number of nondeterministic steps of A; in our case this number is effectively
bounded in κ(x) and we get a parameterized reduction to p-HOM(T ∗).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

By adding some dummy jumps and dummy universal guesses we can assume that
A on every x and every run on x first makes one universal guess, then one jump, then
one universal guess and so on. We can further assume that A on x on every run on x
makes exactly f(κ(x)) many jumps and exactly f(κ(x)) many universal guesses. Let
A0 (A1) be the machine obtained from A by fixing the transition from a configuration
with universal guess state to the first (second) successor configuration. Note A0 and A1

are Turing machines with jumps.
Let x ∈ {0, 1}∗, k := κ(x), n := |x|. Recall the proof of Theorem 4.3. As there, let

c1, . . . , cm enumerate all configurations of A on x with the starting state; assume c1 is
the starting configuration. Let A0

det and A1
det be the deterministic machines obtained

from A0 and A1 by interpreting the jump state as a rejecting halting state. For i, j ∈
[m], b ∈ {0, 1} we define what it means that i b-reaches j as in the proof of Theorem 4.3
with Abdet in place of Adet there; call i accepting if A0

det (equivalently A1
det) started on ci

accepts in at most m steps without entering the universal guess state.
Recall the notation Tk from the preliminaries. The reduction outputs (T∗f(k)+1,B)

where B is defined as follows.

B := {0, 1}≤f(k)+1 × [m],

EB := the symmetric closure of{
((σ, j), (σb, j′)) | b ∈ {0, 1}, σ ∈ {0, 1}≤f(k), j b-reaches j′

}
,

CB
λ := {(λ, 1)}, where λ is the empty string,

CB
σ := {σ} × [m], for 1 ≤ |σ| ≤ f(k),

CB
σ := {(σ, j) | j is accepting}, for |σ| = f(k) + 1.

It is not hard to see that (T∗f(k)+1,B) can be computed in pl-space (cf. Proof of The-
orem 4.3). To see this indeed defines a reduction, first assume h is a homomorphism
from T∗f(k)+1 to B. As h preserves the unary relations Cσ, for every σ there is an iσ ∈ [m]

such that h(σ) = (σ, iσ). It follows by induction on ` that for every σ ∈ {0, 1}f(k)+1−`

the configuration ciσ is accepting (Definition 5.3). But iλ = 1, so ciλ = c1 is the starting
configuration and A accepts x.

Conversely, assume A accepts x. We define an accepting configuration cσ for every
σ ∈ {0, 1}≤f(k)+1: cλ is the starting configuration c1. All other cσs are going to be the
result of a jump (are a successor of a configuration in the jump state). Assume cσ is
already defined. Then cσ is the starting configuration or results from a jump. In both
cases the machine A reaches from cσ deterministically a universal guess state with
two accepting successors c′0, c′1. For every b ∈ {0, 1}, A reaches deterministically from
c′b either an accepting halting configuration or a configuration in the jump state. In the
first case let cσb be this accepting halting configuration and in the second let it be some
accepting successor of the jump. For every σ choose iσ ∈ [m] such that cσ = ciσ . Then
σ 7→ (σ, iσ) defines a homomorphism from T∗f(k)+1 to B.

THEOREM 5.6. Let A be a decidable class of structures of bounded arity and
bounded treewidth. Then p-EMB(A) ∈ TREE.

PROOF. Let A accord the assumption. We proceed as in the proof of Theorem 3.13.

Claim. There exists a decidable class of connected structures A′ of bounded treewidth
such that p-EMB(A) ≤pl p-EMB(A′).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Note p-EMB(A′) ≤pl p-HOM((A′)∗) by Lemma 3.15, the latter problem pl-reduces to
p-HOM(T ∗) by the Classification Theorem, and p-HOM(T ∗) ∈ TREE by Theorem 5.5.
We are thus left to prove the claim.

Assume A has treewidth at most w. Fix a computable function that maps every
A ∈ A to a width ≤ w + 1 tree decomposition (T, (Xt)t∈T) of A such that |Xt| ≥ 2
for all t ∈ T , and Xs ∩ Xt 6= ∅ for all (s, t) ∈ ET. Let A′ be the expansion of A by
interpreting a new binary relation symbol R by

⋃
t∈T X

2
t . Then (T, (Xt)t∈T) is also a

tree decomposition of A′ and A′ is connected. Clearly, A′ := {A′ | A ∈ A} is decidable.
The map (A,B) 7→ (A′,B′), where B′ is the expansion of B interpreting R by B2, is a
pl-reduction from p-EMB(A) to p-EMB(A′).

THEOREM 5.7. The parameterized problems p-HOM(B), p-HOM(
−→
B), p-EMB(B),

and p-EMB(
−→
B) are complete for TREE under pl-reductions.

PROOF. It is straightforward to verify that the structures in B and in
−→
B are con-

nected cores. Hence, each of the first two problems is TREE-complete by the Classifi-
cation Theorem and Theorem 5.5.

The problems p-EMB(B) and p-EMB(
−→
B) are TREE-hard by Corollary 3.16 and the

hardness of p-HOM(B) and p-HOM(
−→
B), which immediately imply the hardness of

p-HOM(B∗) and p-HOM(
−→
B ∗).

The problems p-EMB(B) and p-EMB(
−→
B) are in TREE by Theorem 5.6.

6. COUNTING CLASSIFICATION
In this section we present a classification of the counting problems corresponding to
the problems p-HOM(A).

6.1. Preliminaries on parameterized counting complexity
A machine with oracle O ⊆ {0, 1}∗ has an extra write-only oracle tape; such a ma-
chine has a query state and the word y written on the oracle tape is the query of a
configuration with this state; the successor state is obtained by erasing the oracle tape
and moving to one of two distinguished states depending of whether the query is con-
tained in the oracle O or not. The oracle tape is not accounted for in space bounds (as
in [Ladner and Lynch 1976]).

A parameterized counting problem is a pair (F, κ) of a function F : {0, 1}∗ → N and
a parameterization κ. To say it is in para-L, means that F is implicitly pl-computable
with respect to κ. Equivalently one could say that there is a Turing machine with a
write-only output tape that computes F and is pl-space bounded with respect to κ.

A parsimonius fpt-reduction from (F, κ) to another parameterized counting problem
(F ′, κ′) is a function R : {0, 1}∗ → {0, 1}∗ that is computable by an fpt-time bounded
(with respect to κ) Turing machine such that F = F ′ ◦ R and κ′ ◦ R ≤ f ◦ κ for some
computable f : N → N. In the logspace setting we define a parsimonious pl-reduction
similarly demanding that the reduction is implicitly pl-computable instead of com-
putable by a fpt-time bounded machine. We again write (F, κ) ≤pl (F ′, κ′) if such a
reduction exists.

We say (F, κ) is pl-Turing reducible to (F ′, κ′) and write (F, κ) ≤Tpl (F ′, κ′) if there are
a pl-space bounded (with respect to κ) Turing machine A with oracle to BITGRAPH(F ′)
that decides BITGRAPH(F), and a computable f such that on every input x ∈ {0, 1}∗

all queries y
?
∈ BITGRAPH(F ′) of A on x have parameter κ′(y) ≤ f(κ(x)). Here, we

denote the parameterizations of BITGRAPH(F) and BITGRAPH(F ′) again by κ and κ′

respectively.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

6.2. Classification theorem
For a class of structures A consider the parameterized counting problem.

p-#HOM(A)
Instance: A pair of structures (A,B) where A ∈ A.

Parameter: |A|.
Problem: Compute the number of homomorphisms from A to B.

Dalmau and Jonsson [Dalmau and Jonsson 2004] gave a classification of counting prob-
lems of this form, showing that for a class of structuresA of bounded arity, the problem
p-#HOM(A) is in FPT if A has bounded treewidth, and is #W[1]-complete otherwise.
We give a fine classification of the case where A has bounded treewidth, analogous to
our fine classification for the problem p-HOM(A).

THEOREM 6.1 (COUNTING CLASSIFICATION). Let A be a decidable class of struc-
tures having bounded arity and bounded treewidth.

(1) If A has unbounded pathwidth, then
p-#HOM(A) ≤pl p-#HOM(T ∗) ≤Tpl p-#HOM(A).

(2) If A has bounded pathwidth and unbounded tree depth, then
p-#HOM(A) ≤pl p-#HOM(P∗) ≤Tpl p-#HOM(A).

(3) If A has bounded tree depth, then
p-#HOM(A) ∈ para-L.

The proof of this result partly involves an analysis of the proof of Theorem 3.1, and
builds on techniques of Dalmau and Jonsson [Dalmau and Jonsson 2004].

LEMMA 6.2. Let A be a decidable set of finite structures, let G be the set of Gaifman
graphs of A, and letM be the set of minors of graphs in G. Then

p-#HOM(M∗) ≤pl p-#HOM(G∗) ≤pl p-#HOM(A∗) ≤Tpl p-#HOM(A).

PROOF. The first two reductions are exactly as before, that is, they are the reduc-
tions from Lemmas 3.6 and 3.7. These reductions are readily verified to be parsimo-
nious. We thus prove that p-#HOM(A∗) ≤Tpl p-#HOM(A).

Let A be an element of A, and let (A∗,B) be an instance of p-#HOM(A∗). Let B0 be
the restriction of B to relation symbols of A. For each non-empty subset S ⊆ A, define
BS to be the induced substructure of A×B0 on universe {(a, b) ∈ S ×B | b ∈ CB

a }. For
a mapping g from A to a set of the form BS , let g1 denote the map (π1 ◦ g) where π1 is
the projection of a pair to its first component.

The number of homomorphisms g from A∗ to B is the same as the number Mg of
homomorphisms g′ from A to BA such that g′1 is the identity onA (consider the bijection
g 7→ g′ with g′(a) := (a, g(a))). To compute Mg, it suffices to compute the number Mh

of homomorphisms h from A to BA such that h1(A) = A. This is because of the fact
(proved in a moment) that a mapping h : A → BA is a homomorphism from A to BA

with h1(A) = A if and only if h has the form g◦σ where g is a homomorphism from A to
BA, g1 is the identity, and σ is a bijective homomorphism from A to A. From this fact,
it follows that Mg = Mh/t where t is the number of bijective homomorphisms from A
to A; note that S can be computed directly from A, and so this gives a way to determine
Mg (division is logspace computable [Chiu et al. 2001]). We prove the claimed fact as
follows. The backward direction is clear, so we prove the forward direction. Let h be
a homomorphism from A to BA with (π1 ◦ h)(A) = A. There exists an integer m ≥ 1
such that (π1 ◦ h)m is the identity mapping on A. Set g = h ◦ (π1 ◦ h)m−1; we then have
h = h ◦ (π1 ◦ h)m = g ◦ (π1 ◦ h), as desired.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

For each subset S ⊆ A, the Turing reduction will query the instance (A,BS) of
p-#HOM(A); denote the result by N⊆S . Observe that N⊆S is the number of homo-
morphisms h from A to BA with h1(A) ⊆ S. For a subset S ⊆ A, let N=S de-
note the number of homomorphisms h from A to BA with h1(A) = S. We have, for
each subset S ⊆ A, the identity N⊆S =

∑
T⊆S N=T . By inclusion-exclusion, we have

N=A =
∑
S⊆A(−1)|A|−|S|N⊆S which is the value Mh that we wanted to determine. We

can evaluate the sum expression in pl-space by combining two observations: first, with
oracle access to p-#HOM(A) the sequence of the numbers (−1)|A|−|S|N⊆S is implic-
itly pl-computable; second, summing a sequence of integers can be done in logspace
(cf. [Chiu et al. 2001, Theorem 1.3]).

PROOF OF THEOREM 6.1. Statements (1) and (2) each make two claims. The claims
made first concern parsimonious pl-reductions and follow from Lemma 3.3 and Re-
mark 3.4. The second claims concern Turing reductions and follow from the previous
lemma together with the Excluded Tree Theorem 2.3 (2) and the Excluded Path Theo-
rem 2.3 (3) respectively.

We are left to prove Statement (3). It is not hard to see that a structure of tree depth
at most w′ has a tree decomposition of width at most w′ + 1 such that the underlying
tree has height at most w′ with respect to some root. By Lemma 3.3 and Remark 3.4,
it suffices to show p-#HOM(T (w)) ∈ para-L for every w ∈ N. Here, we let T (w) be the
class of structures T∗ such that T is a tree that can be rooted in such a way that its
height is at most w.

For w = 0, this is easy to see. So let w > 0 and assume by induction that
p-#HOM(T (w − 1)) ∈ para-L. Given an instance (T∗,B) of p-#HOM(T (w)), we con-
ceive of T∗ as a rooted tree with root r and of height at most w. For elements t ∈ T and
b ∈ B, we define Nt→b to be the number of partial homomorphisms h that are defined
on the subtree rooted at t and such that h(t) = b. Let t1, . . . , tm denote the children of
r in T. The number that we desire to determine is

∑
b∈CB

r
Nr→b. For a particular value

b ∈ B, it is straightforward to verify that

Nr→b =
∏m
i=1

∑
b′ Nti→b′

where the sum is over all b′ ∈ CB
ti such that (b, b′) ∈ EB. Thus, the number we desire to

compute equals a certain sum-product-sum expression. But this expression is implic-
itly pl-computable: to determine bits of the numbers Nti→b′ one can run an algorithm
witnessing p-#HOM(T (w−1)) ∈ para-L. Using the facts that iterated sum and iterated
product are computable in logarithmic space [Chiu et al. 2001, Theorems 1.1-1.3], it
follows that our sum-product-sum expression can be evaluated in logarithmic space.
This yields the result.

7. DISCUSSION
In this article, we provided complexity upper bounds on problems of the form
p-EMB(A). Let us recap these results as follows.

THEOREM 7.1. Let A be a decidable class of structures of bounded arity.

— If A has bounded tree depth, then p-EMB(A) ∈ para-L.
— If A has bounded pathwidth, then p-EMB(A) ∈ PATH.
— If A has bounded treewidth, then p-EMB(A) ∈ TREE.

This theorem follows immediately from Theorems 3.13, 4.6, and 5.6.
A classification of the parameterized complexity of embedding problems is famously

open [Flum and Grohe 2006b, p.355], in particular, it is not known whether the em-
bedding problem for complete bipartite cliques is W[1]-hard (under fpt-reductions).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

A fundamental problem whose complexity we failed to settle within our framework is
p-EMB(P). By Theorem 4.6, we know p-EMB(P) ∈ PATH, but we do not know whether
it is PATH-hard (under pl-reductions).3 We note that its restriction to regular graphs
is in para-L.

p-EMB(P)reg
Instance: A regular graph G and k ∈ N.

Parameter: k.
Problem: Does G contain a path of length k?

PROPOSITION 7.2. p-EMB(P)reg ∈ para-L.

The proof uses a result of Flum and Grohe [Flum and Grohe 2003, Example 6] stating
that model checking first-order logic on bounded degree graphs is in para-L. Their
proof actually shows

THEOREM 7.3 ([FLUM AND GROHE 2003]). The following parameterized problem
is in para-L.

Instance: A graph G of degree at most d and a first-order sentence ϕ.
Parameter: d+ |ϕ|.

Problem: G |= ϕ ?

PROOF OF PROPOSITION 7.2. Given a regular graph G of degree d and a natural
k ∈ N, distinguish two cases: if d > k then accept; otherwise check, using the algorithm
of Theorem 7.3, whether G satisfies ∃x0 · · ·xk

(∧
i<j≤k ¬xi = xj ∧

∧
i<k Exixi+1

)
.

On the more structural side, as mentioned in the introduction, we believe that
it could be worthwhile to investigate whether or not the classes PATH and TREE
are closed under complement. Relatedly, one can ask whether or not it holds that
co-PATH ⊆ TREE.

REFERENCES
S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.
A. Blumensath and B. Courcelle. 2010. On the Monadic Second-Order Transduction Hierarchy. Logical Meth-

ods in Computer Science 6, 2 (2010).
H. Bodlaender. 1998. A Partial k-Arboretum of Graphs With Bounded Treewidth. Theoretical Computer

Science 209 (1998), 1–45.
Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Rela-

tional Data Bases. In Proceddings of STOC’77. 77–90.
Hubie Chen and Martin Grohe. 2010. Constraint Satisfaction with Succinctly Specified Relations. J. Comput.

System Sci. 76, 8 (2010), 847–860.
Y. Chen, J. Flum, and M. Grohe. 2003. Bounded Nondeterminism and Alternation in Parameterized Com-

plexity Theory. 18th IEEE Conference on Computational Complexity (2003), 13–29.
Y. Chen and M. Müller. 2014. Bounded variable logic, parameterized logarithmic space and Savitch’s theo-

rem. 39th Mathematical Foundations of Computer Science (2014).
A. Chiu, G. Davida, and B. Litow. 2001. Division in logspace-uniform NC1. Theoretical Informatics and

Applications 35 (2001), 259–275.
N. Creignou, S. Khanna, and M. Sudan. 2001. Complexity Classification of Boolean Constraint Satisfaction

Problems. Society for Industrial and Applied Mathematics.
Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer (Eds.). 2008. Complexity of Constraints - An

Overview of Current Research Themes. Lecture Notes in Computer Science, Vol. 5250. Springer.

3Very recently Yijia Chen showed that p-EMB(P) ∈ para-L (see [Chen and Müller 2014]).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

V. Dalmau and P. Jonsson. 2004. The complexity of counting homomorphisms seen from the other side.
Theoretical Computer Science 329 (2004), 315–323.

R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer.
M. Elberfeld, C. Stockhusen, and T. Tantau. 2012. On the Space Complexity of Parameterized Problems.

7th International Symposium of Parameterized and Exact Computation, Springer LNCS 7535 (2012),
206–217.

T. Feder and M. Y. Vardi. 1999. The Computational Structure of Monotone Monadic SNP and Constraint
Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28, 1 (1999), 57–104.

J. Flum, M. Frick, and Grohe. 2002. Query evaluation via tree-decompositions. J. ACM 49, 6 (2002), 716–752.
J. Flum and M. Grohe. 2003. Describing Parameterized Complexity Classes. Information and Computation

187 (2003), 291–319.
J. Flum and M. Grohe. 2006a. The Parameterized Complexity of Counting Problems. SIAM J. Comput. 33

(2006), 892–922.
J. Flum and M. Grohe. 2006b. Parameterized Complexity Theory. Springer.
Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2001. The complexity of acyclic conjunctive queries.

Journal of the ACM 48, 3 (2001), 431–498.
Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree decompositions and tractable

queries. J. Comput. Syst. Sci. 64, 3 (2002), 579–627.
Martin Grohe. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the

other side. J. ACM 54, 1 (2007).
Martin Grohe, Thomas Schwentick, and Luc Segoufin. 2001. When is the evaluation of conjunctive queries

tractable?. In STOC 2001.
P. Kolaitis and M. Y. Vardi. 1998, full version at: http://www.cs.rice.edu/∼vardi/papers. Conjunctive-

query containment and constraint satisfaction. 17th ACM Symposium on Principles of Database Sys-
tems 10 (1998, full version at: http://www.cs.rice.edu/∼vardi/papers), 205–213.

R. E. Ladner and N. A. Lynch. 1976. Relativization of Questions About Log Space Computability. Mathemat-
ical Systems Theory 10 (1976), 19–32.

Dániel Marx. 2010a. Can You Beat Treewidth? Theory of Computing 6, 1 (2010), 85–112.
DOI:http://dx.doi.org/10.4086/toc.2010.v006a005

Dániel Marx. 2010b. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In
Proceedings of the 42nd ACM Symposium on Theory of Computing. 735–744.

J. Nešetřil and P. O. de Mendez. 2006. Tree Depth, Subgraph Coloring, and Homomorphism Bounds. Euro-
pean Journal of Combinatorics 27, 6 (2006), 1022–1041.

C. Papadimitriou and M. Yannakakis. 1999. On the Complexity of Database Queries. J. Comput. System Sci.
58, 3 (1999), 407–427.

Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin. 2009. Database Theory: Query Languages. In
Algorithms and Theory of Computation Handbook (second ed.), Mikhail J. Atallah and Marina Blanton
(Eds.). Vol. 2: Special Topics and Techniques. CRC Press, Chapter 19.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.

