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Menschen, die von der Algebra nichts wissen, kénnen sich auch nicht die wun-
derbaren Dinge vorstellen, zu denen man mit Hilfe der genannten Wissenschaft
gelangen kann.

Gottfried Wilhelm Leibniz

They that are ignorant of Algebra cannot imagine the wonders in this kind are
to be done by it.

John Locke
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Preface

History

This course covers classical algebra as the theory of solving polynomial equations, a theory
that found its completion in the 19th century. Here, we give a brief historical overview.

An early and famous example is X2 = 2 for the length /2 of the diagonal in the unit
square. A Babylonian clay tablet dating ¢.1700 BCE gives a 6 digit approximation of /2.
The discovery that /2 is not rational is sometimes but uncertainly credited to Hippasus
(¢.530- ¢.450 BCE). This shattered the numerological esoterics of pythagorean sects, and
legend has it that Hippasus was punished by the gods (read: pythagoreans) to drown.

Irrational numbers were hard to conceptualize by the Greeks, dubbed alogos, and later
‘irrational’ in Euclid’s Elements (c.300 BCE). This may be the most influential textbook
ever written. It established the axiomatic method itself and carried it out for geometry. It
also contains a basic development of number theory and proves the infinitude of primes.

Diophantus (c.250 BCE) was the first to accept positive rationals as numbers. His
book Arithmetica introduced the notation of variables and showed how to solve 130 specific
quadratic equations in several variables over the rationals or the integers — the latter being
known today as Diophantine equations. He rejected, however, negative numbers. These
first appeared in the Chinese anonymous book Nine Chapters on the Mathematical Art
(c.100 CE) and Liu Hui (c.350 CE) explained how to compute with them.

The first systematic approach treating equations as the objects of study was al-Kitabal-
Mukhtasar fi Hisab al-Jabr wal-Mugbalah (The Compendious Book on Calculation by Com-
pletion and Balancing) by the polymath al-Khwarizmi (¢.780-¢.850). Even the word ‘alge-
bra’ stems from this book — al-Jabr, originally meaning bone-setting. Its topic is how to find
positive solutions to quadratic equations. General formulas had been found already by the
Indian mathematician Brahmagupta (c.598-c¢.668) in the book Brahma-sphuta-siddhanta
(Correctly Established Doctrine of Brahma), notably using negative numbers which were
absent from al-Khwarizmi’s work. But already his successor, “the Egyptian calculator”
Abu Kamil (¢.850-¢.930) became the first mathematician to accept both negative and ir-
rational numbers. The first proof of the fundamental theorem of number theory (prime
factorization) also stems from the Golden Age of Islam, and is due to al-Farisi (1267-1319)
in his book Tadhkira al-ahbab fi bayan al-tahabb (Memorandum for Friends on the Proof
of Amicability), completing the steps taken in Euclid’s Elements.

The Indo-Arabic decimal notation was introduced to Europe, replacing the cumber-

v
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some Roman notation, by Fibonacci (¢.1170-¢.1245) in his book Liber Abaci (The book of
Calculations), following Abu-Kamil. The book described the growth of rabbit populations
by what became known as the Fibbonaci sequence — known in India since the 6th century.

In Europe, negative numbers were first used in the book Ars magna of the Italian
polymath Cardano (1501-1576). He was a provocative, irascible gambler, chronically short
of money, who said to despise religion and ended up jailed by the inquisition for heresy.
Ars magna contained formulas solving cubic and quartic equations, namely expressions
built from the coefficients by arithmetical operations, divisions and roots. Formulas for
the quartic are due to his scholar Ferrari (1522-1565). Formulas for (a special case of)
the cubic are due to del Ferro (1465-1526) who kept them secret in order to maintain
advantage in public challenges lecturers posed each other at the time in order to win over
or defend their positions. On his deathbed he passed them to his scholar Fiore who went
on to challenge Tartaglia (the stammerer, ¢.1500-1557). Tartaglia won, figuring out the
formulas himself. He revealed them in the form of a cryptic poem to Cardano who had
pressured him with insults and sworn an oath of secrecy. After finding dead del Ferro’s
notebook, Cardano decided to publish them — and enraged Tartaglia.

The formulas required computations with complex numbers, for Cardano a “mental
torture”. The imaginary unit ¢ got its derogatively meant name from Descartes (1637).
Still in 1702, Leibniz called i a “feine und wunderbare Zuflucht des menschlichen Geistes,
beinahe ein Zwitterwesen zwischen Sein und Nichtsein.” Why the trouble? The first to
give calculation rules for complex numbers was Bombelli (1526-1572), crucially considering
them as neither negative nor positive — they cannot be organized on an line compatibly with
the arithmetical operations. Now, this is a conceptual leap: numbers are often vaguely
thought to represent ‘magnitudes’ or ‘quantities’. E.g., the opening sentence of Euler’s
book Algebra (1770) reads “Endlich wird alles dasjenige eine Grofle genennt, welches einer
Vermehrung oder Verminderung fahig ist, oder wozu sich noch etwas hinzusetzen oder
davon wegnehmen lafit”. Whatever this means, if anything at all, it seems to imply a
linear order since for any two distinct ‘quantities’ one is smaller than the other.

Number theory gained unlikely momentum from a lawyer, namely Fermat (1607-1665).
He did, however, not prove his insights — famous is Fermat’s Last Theorem, annotated
around 1637 at the margin of Diophantus’ Arithmetica, and finally proved 1994 by Wiles.
Fermat’s work was continued by Euler (1707-1783). The first rigorous textbook on number
theory was Disquisitiones Arithmeticae published 1801 by Gaufl (1777-1855). This work
also contains Gauf’ law of quadratic reciprocity, a suprising result that keeps facinating
mathematicians through the centuries — by today more than 300 proofs appeared.?

Another lawyer, d’Alembert, stated the fundamental theorem of algebra in in 1746: all
reasonable polynomial equations in one variable have complex solutions. Gaufl corrected
an error and gave an own proof in 1799, also incomplete, later giving several others. The
first complete proof appeared 1813 by a mysterious amateur, named Argand — mysterious

'R. W. Feldmann Jr., The Cardano-Tartaglia dispute. The Mathematics Teacher 54 (3): 160-163, 1961.
’https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html


https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html

PREFACE vi

because not much is known about him besides his surname.?

A central question that eluded all efforts for centuries was to find formulas a la Cardano
to solve quintic equations. Gaufl conjectured, in the Disquisitiones, that such formulas
might not exist. 1799 appeared Ruffini’s book Teoria Generale delle Equazioni, in cui S
dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al
quarto. The proof was largely ignored at the time (Cauchy being an exception), probably
due to its length (> 500 pages) and weird methods - today named group theory. Ruffini’s
proof was incomplete. A complete proof stems from a shy, modest teenager, named Abel
(1802-1829) and later also the “Mozart of mathematics” (Klein). He published Mémoire
sur les équations algébriques ou on démontre l'impossibilité de la résolution de l’équation
générale du cinquiéme degré 1824 at own costs, condensed to 6 pages to save money. Gaufl
received a copy — and ignored it like everybody else. Abel died at age 26 from tuberculosis,
in abject poverty, buried under the debts of his alcoholic parents.

The Abel-Ruffini theorem states that there are no formulas a la Cardano that work
generally for all quintic equations. Might every quintic equation be solvable by formulas
specially designed for it? No. Concrete counterexamples came from another teenager,
namely Galois (1811-1832), not shy at all but a french republican revolutionary who died
at the age of 20 in a mysterious duel. His paper Mémoire sur les conditions de résolubilité
des équations par radicaux revolutionized algebra. It was first rejected as “incomprehen-
sible” (Poisson), published posthumously 1843 by Liouville, and only slowly understood
by the community. The revolutionary insight was that the existence of solving formulas
is determined by a property of the Galois group: those permutations of the roots of the
given polynomial that preserve all polynomial equations satisfied by these roots. By lack
of fantasy, this group property is called solvability.

People started to develop group theory. Poincaré’s statement “Les mathématiques
ne sont qu’une histoire des groupes” from 1881 underlines the enthusiam continuing all
through the 20th century. Feit and Thompson proved 1963 that every finite group of odd
order is solvable; the paper has more than 250 pages. The enormous theorem classifies
all finite so-called simple groups - in some sense, the building blocks of all finite groups.
The proof is » 15000 pages long and scattered in hundreds of papers by about 100 au-
thors, mainly from the 2nd half of the 20th century. The “proof has never been written
down in its entirety, may never be written down, and as presently envisaged would not be
comprehensible to any single individual.” (E. B. Davies)

The 19th century also found answers to ancient Greek questions on ruler and compass
constructions. Wantzel (1814-1848) — also french and dying young and unrecognized —
proved 1837 the impossibility of trisecting angles and doubling cubes, working through
the nights “faisant alternativement abus de café et d’opium” (Saint-Venan). In 1882,
Lindemann proved that 7 is not a solution of any rational polynomial equation and, thus,
squaring the circle is impossible.

At the beginning of the 19th century new mysterious objects entered mathematical
practice with Newton and Leibniz’ calculus: infinitessimals, supposed to behave like pos-

3https://mathshistory.st-andrews.ac.uk/Biographies/Argand/
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itive reals but being smaller than all 1/2,1/3,... Their geometric siblings indivisibles had
been used already by Archimedes (c.287-212 BCE) to calculate volumes. The Jesuate
Cavalieri (1598-1647) and others elaborated this method until the Jesuites, for some rea-
son, deemed indivisibles dangerous and banned talk about them in 1632.* Dangerous or
not, infinitessimals lacked a definition. E.g., Abel said 1826 “the most important parts
of mathematics stand without foundation. It is true that most of it is valid, but that is
very surprising.” Cauchy and Weierstrafl re-built calculus without infinitessimals, as it is
still taught today. Only much later in the 1960s, A. Robinson defined the hyperreals and
developed calculus rigorously just as originally envisioned.

This required basic methods of mathematical logic whose development was pushed
by Hilbert (1862-1943) during the so-called foundational crisis of mathematics. At the
time mathematics gained new levels of abstraction following Galois’ algebra and Cantor’s
(1845-1918) set theory. Paradoxes appeared and called for more rigor. Modern logic
had already been set up in an unreadable notation called Begriffsschrift 1879 by Frege
(1848-1925). He wanted to know what the natural numbers are and why 1+ 1 = 2 but
nobody paid attention at his time. Contrarily, the businessman and influential algebraist
Kronecker (1823-1891) said “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
ist Menschenwerk” and opposed Cantor’s infinities. He was sided by “the living brain of
the rational sciences”, the polymath Poincaré (1854-1912) who wrote in 1908 “Il n’y a
pas d’infinie actuel; les Cantoriens 'ont oublié, et ils sont tombés dans la contradiction.”
Cantor suffered from biploar disorder, severed ties with his disinterested or openly hostile
mathematical contemporaries and, himself deeply religious, wasted his time with worries
of catholic clerics that his discoveries might be a vessel for pantheism.”

Such were the foreshocks of the foundational crisis. It was mainly fought between
Hilbert’s formalism and Brower’s (1881-1966)) intuitionism which, in particular, rejected
non-constructive existence proofs — at the time a wide-spread source of uneasiness. E.g.,
Lindemann, Hilbert’s thesis advisor, found his (non-constructive) proof of the Basis Theo-
rem “unheimlich”, and Gordan said first “Das ist keine Mathematik; das ist Theologie” but
later conceded “Ich habe mich davon iiberzeugt, dafl die Theologie auch niitzlich sein kann.”
In Hilbert’s Gottingen, the “mecca of mathematics”, the new abstract, axiomatic approach
to algebra was developed by Gordan’s student Noether (1882-1935), the first women joining
a faculty with the support of Hilbert against sexist norms: “Eine Fakultat ist doch keine
Badeanstalt.” In 1921, E. Artin (1898-1961) nicknamed “Ma” (for Mathematik), arrived
in Gottingen. He and Noether are considered the founders of modern algebra.

The tone during the crisis sharpened 1921 with an article of Hilbert’s student Weyl
(1885-1955) who had temporarily changed camps. In Hilbert’s words the intuitionists
want “eine Verbotsdiktatur a la Kronecker errichten. Dies heifit aber unsere Wissenschaft
zerstiickeln und verstiimmeln” and sought a provably consistent axiomatization, like Eu-
clid’s of geometry, but of the whole of mathematics including Cantor’s infinities: “Aus dem

4Slava, Gerovitch, Infinitesimal : How a Dangerous Mathematical Theory Shaped the Modern World:
A Book Review, in Notices of the AMS 63 (5): 571-574, 2016.

5J. W. Dauben, Georg Cantor and Pope Leo XIII: Mathematics, Theology, and the Infinite Dauben,
Journal of the History of Ideas 38 (1): 85-108,1977.
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Paradies, das Cantor uns geschaffen hat, soll uns niemand vertreiben konnen”. Hilbert’s
ambitious program was proved impossible 1931 by Godel (1906-1978), chronically sick,
paranoid and according to his friend Einstein “the greatest logician since Ariostotle”.

Intuitionism found a degenerate heir in the national socialist “Deutsche Mathematik”
of Bieberach, Teichmiiller and other nazis. At the university in Berlin, Bieberach was
nicknamed “Groffiinquisitor” for his activity in antisemite persecutions, and, in Gottingen,
Teichmiiller organized nazi boycotts of Landau’s analysis courses. As part of the “Saube-
rung der Hochschulen von Gelehrten” Noether, a pacifist and former USPD member, got
suspended “bis zur endgiiltigen Entscheidung” (Arbeiterzeitung 26.4.1933) and left to the
US in 1933. Artin, then in Hamburg, fled to the US 1937 — while “arisch” his wife was
a “Mischling ersten Grades” and he had made no secret about his distaste for the nazis.
Asked by Kultusminister Rust (considered an idiot even among his nazi comrades) whether
his institute suffered “unter dem Weggang der Juden und Judenfreunde”, Hilbert replied
“Jelitten? Dat hat nich jelitten, Herr Minister. Dat jibt es doch janich mehr!”.

Luckily, Hilbert won the long run. Based on lectures of Noether and Artin “the most
influential text of algebra of the twentieth century” was van der Waerden’s Moderne Algebra
(1930). It established for good the abstract, axiomatic approach to algebra via groups, rings
and fields and “dramatically changed the way algebra is now taught” (Mac Lane).

On an even larger scale, 20th century mathematics was heavily influenced by Hilbert’s
23 problems posed 1900 at the ICM in Paris — some unsolved to date. The 10th asked —
more than 2 millenia after Arithmetica — whether there exists an algorithm that decides the
solvability of Diophantine equations. The word ‘algorithm’ is coined after (the latin version
of) al-Khwarizmi’s name and was informal at the time. Church and Turing formalized the
concept in 1936, thereby establishing computer science. Matiyasevich answered “no” to
Hilbert’s 10th in 1975 (building on the work of Davis, Putnam and J. Robinson).

This course

This course covers most of the material mentioned in the historical survey above and is
written for readers with basic knowledge of linear algebra and analysis, like a typical 3rd
semester student. The material follows Fischer’s Lehrbuch der Algebra, a canon for german
Staatsexamen students, but gives an extra emphasis on number theory. These lecture notes
are much shorter mainly due to a concise writing style, and not lack of content.

The abstract axiomatic approach to algebra is now standard and this course makes
no exception. In Weyl’'s words “We cannot help the feeling that certain mathematical
structures which have evolved through the combined efforts of the mathematical community
bear the stamp of a necessity not affected by the accidents of their historical birth.”

This course tries, however, a less standard presentation. We explain first why and then
how. Weyl still warned in 1939:

Important though the general concepts and propositions may be with which the
modern industrious passion for axiomatizing and generalizing has presented us,
i algebra perhaps more than anywhere else, nevertheless I am convinced that
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the special problems in all their complexity constitute the stock and core of
mathematics; and to master their difficulties requires on the whole the harder
labor.’

This is the motto of this course. Historically, the abstract concepts evolved from con-
crete problems as means to understand them. We claim that this is how they should be
taught. In slogan form: the art of mathematics is abstraction, not deduction. As an illus-
trating example, after the 1st world war a secretive, elitist group of french mathematicians
under the alias Bourbaki set out, in the words of its member Cartier (1997), “to submit all
mathematics to the scheme of Hilbert; what van der Waerden had done for algebra would
have to be done for the rest of mathematics.” He said “The misunderstanding was that
many people thought that it should be taught the way it was written in the books.[...] If
you consider it as a textbook, it’s a disaster.”

Schiller wrote to Goethe (1796) “wo es die Sache leidet, halte ich es immer fiir besser,
nicht mit dem Anfang anzufangen, der immer das schwerste und das leerste ist.”

Many courses take a merciless deductive top-down approach in the groups-rings-fields
structure. This is “leer” in that typical students lack non-trivial examples of these struc-
tures and can only see in the very end how the generality pays off. Good such books
counterbalance the general nonsense by extensive motivational discussions and/or arrays
of examples. However, Schiller suggests a development bottom-up, starting from familiar
structures and stepwise abstracting. This poses a didactical dilemma because it reverses
the logical structure. We thus have conflicting goals and leave it to the reader to judge
how well we manoeuvered the contradiction.

Exemplary models are M. Artin’s Algebra, or Borcherd’s online courses on elementary
number theory. We aim, however, at different material — visible from the fine-structured
table of contents. We make some brief comments concerning how we tried a bottom-up
approach. Often results are proved twice, with a second “more abstract proof” presented
once the appropriate portion of theory is at hand. We hope this helps appreciating that
and how the more abstract theory is indeed useful.

Chapter 1 gives set-theoretic constructions of N,Z,Q,R and C. This is non-canonical
and in this sense optional material that we think is valuable especially for ongoing school
teachers. The proper material starts in Chapter 2 with Z — as concrete as it can get. We
give special emphasis to applications in computer science: we explain central cryptographic
algorithms, namely RSA encryption, the Digital Signature Algorithm and also mention the
Diffie-Hellman protocol for key exchange and ElGama-encryption (Section 2.6.1 and 2.7.1).
More thoroughly, Sections 2.7.2 and 2.9.1 detail two famous algorithmically efficient prob-
abilistic primality tests, namely the Miller-Rabin test and the Solovay-Strassen test.

Polynomial rings are familiar from linear algebra. Chapter 3 gives material accessible
via direct combinatorial arguments and without ring theory. It puts some elementary
knowledge (e.g. polynomial division or discriminants) into the conceptually wider context
of algebraic field extensions. This aims to reveal the need for more theory. The chapter
also functions as a teaser by proving the fundamental theorem of algebra with only some
polynomial combinatorics assuming the existence of splitting fields (Chapter 6).
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Thus, abstract algebra starts quite late in Chapter 4 on rings. Here, our presentation
deviates most significantly from a more standard one — by turning it upside down. Having
seen quadratic number fields in Chapter 3, it starts with their rings of integers as first
examples of less well-behaved rings. This motivates the definition of factorial rings as
enjoying a good portion of the familiar divisibility theory. Principal ideal domains appear
as examples, easy in that arguments are just abstract versions of known ones. This makes
ideal theory well-motivated at the end of the chapter (often done in the beginning).

Chapter 5 on groups starts with symmetry groups in the plane, a concrete example
accessible with basic linear algebra. We then treat permutation groups as another concrete
example, also familiar from linear algera. We continue with three classes of groups that
are easily described: cyclic groups are accessible with divisibility theory in Z, finitely
generated free abelian groups are accessible with techniques familiar from linear algebra,
and finitely presentable groups are handled by direct computations. We define the latter
semantically instead of syntactically, thereby avoiding the usual definition based on normal
hulls. Normal subgroups are introduced afterwards, starting abstract group theory.

The crown of typical introductory algebra courses is Galois theory treated in Chapter 6
on fields. It starts with ruler and compass constructions as a motivating example. The
first theoretical steps elaborate preliminary material from Chapter 3 on algebraic extensions
and give quick and easy impossibility results for ruler and compass. We then pay back
our debt inherited from Chapter 3 and construct splitting fields and algebraic closures.
Back to more concrete structures we treat finite fields and describe Reed-Solomon error
correcting codes as an application in computer science (Section 6.5.1). The rest is devoted
to Galois theory, the most abstract part of this course. We treat many examples. This is
not easy and showcases our motto, Weyl’s warning.



Chapter 1

Logical foundations

In this chapter we recall some basic algebraic notions, characterize the natural numbers N
axiomatically and then construct Z,Q,R and C.

Set-theoretic notations

For sets X,Y we let X xY denote the set of pairs (z,y) with x € X,y € Y. For n e N we
write X" := X x -« x X (n times) for the set of n-tuples (x1,...,x,) with z1,...,2, € X. A
(binary) relation f € X xY is a function or map if for all x € X there is at most one y € Y’
such that (z,y) € f. Its domain is {x € X | (z,y) € f for some y € Y}.

A function f is said to be from its domain D and into Y, symbolically f: D — Y.
For z € D we write f(x) for the unique y € Y with (x,y) € f and say f is defined on x.
If D is clear from context we often refer to f by = — f(z). E.g., the usual addition
(z,y) » x +y on the naturals N is the function + : N2 - N which, as a set of pairs, equals
{((z,y),x +y) | z,y € N}; here we use infix notation and write x + y instead +(x,y).

For X c DY, cY we write

f(X)={f(z)|ze X}, f'(Yo)={xeD|f(z)eYy}.

The image of f is f(D). Similarly, for a binary function o: X x X — Y in infix notation
(i.e., xoy:=o(x,y)) and for Z, Z' ¢ X we write

ZoZ':={z02'|2z€Z,2 7'}

For X ¢ D, the restriction of f to X is g:= f1X = fn(X xY): X > Y. Then f
extends g. f: X — Y is injective if f(x) # f(z') for all z,2" € X with = # 2. It is said to
be surjective or onto Y if its image is Y. It is bijective if it is both injective and surjective.
Then f~!:={(y,z) | (z,y) € f} : Y - X is the inverse of f. A bijection from X onto X is
a permutation of X. E.g., the identity on X, namely x — x, i.e.,

idy :=={(z,2) |z e X}.

If f: X >Yandg:Y — Z, then the composition go f : X — Z is the function z — g(f(z)),
ie, gof:={(z,9(f(2)))|zeX}
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Exercise. f: X — Y is injective if and only if there exists g : Y — X such that go f = idx.
f:+X =Y is surjective if and only if there exists g: Y — X such that fog=idy.

R ¢ X? is reflexive if (x,x) € R for all x € X, and drreflexive if (z,z) ¢ R for all z € X.
It is transitive if (z,y),(y,z) € R implies (x,2) € R for all z,y,z € X. R is an equivalence
relation on X if it is reflexive, transitive and symmetric: (x,y) € R implies (y,x) € R for
all x,y € R. Then the equivalence class of x is {y € X | (x,y) € R}. The set of equivalence
classes partitions X, i.e., the classes are nonempty, pairwise disjoint and their union is X.

R is a partial order on X if it is irreflexive and transitive. It is a [linear order if
additionally (z,y) € R or (y,x) € R or x =y for all x,y € X. Typically linear orders are
denoted < with infix notation, i.e., we write < y or y > x instead (z,y) € <; then z <y
means r <y Or & = .

The 2nd statement in the exercise is (a version of) the aziom of choice in set theory. This
axiom was first formulated by Zermelo (1871-1953) who considered it unproblematic, even
‘logically true’. Nevertheless this axiom was a bone of contention during the foundational
crisis of mathematics — conceptually because it embodies a non-constructive existence
claim, and technically because it does have some counterintuitive consequences. It is
today commonly accepted. We shall occasionally use an equivalent statement, namely
Zorn’s lemma whose statement we recall here.

Let X be a set and R ¢ X? a partial order on X. A chain is a linearly ordered subset,
i.e., aY € X such that RnY? is a linear order on Y. We call R inductive (on X ) if every
chain Y € X has an upper bound, i.e., an x € X such that (y,z) e Rory=xz for all yeY.
Call z € X mazimal if (z,2") ¢ R for all 2/ € X.

Zorn’s Lemma. Inductive partial orders have maximal elements.

1.1 Basic algebraic notions

1.1.1 Monoids and groups

Definition 1.1.1. A monoid is a pair (G, o) of a set G and a function o : G2 —» G that is
associative (i.e., (xoy)oz =xo(yoz) for all x,y, z € G) and such that there exists a neutral
element e € G satistying x =xoe=eox. It is commutative if xoy =yox for all x,y e G.

(G,0) is a group if every x € G is invertible, i.e., x has an inverse x™' € G, i.e., zox™! =
x7l oz =e. Commutative groups are also called abelian.

Remark 1.1.2. Let (G, o) be a monoid and =,y € G.

1. There cannot be another neutral element e’ € G (since then e = eo e’ = ¢’).
2. The notation z~! is justified because if y is another inverse of x then y = yoe =
yo(xozl)=(yox)oaxt=eoxt=al

3. In particular, (z~1)~! =z for all x € G because x is an inverse of z~!.
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4. If for every x € G there is y € G with yx = e (omitting o), then y is an inverse of z:
yx = e implies (yx)y = y; multiply from the left with z such that zy = e gives xy = e.

5. (zoy) =y oz ! and similarly (y~'z=!)(xy) = e, because
(y)(ya™h) =a(y(y'2™h) =2((yy™)a™") =z(ea™) =2z =e.

Exercise 1.1.3. A group (G, o) has cancellation: if xoz=yoz or zox = zoy, then x =y.
For all z € G the left and right translation x — z o x and = — x o z are permutations of G.

Example 1.1.4. In this chapter we are going to explain what N, Q,Z, R, C are and how
+,- are defined on them. This gives commutative monoids in all cases. With +, the sets
Z,R,C are abelian groups but not with - because 0 does not have a multiplicative inverse

(and in Z only +1 have); (Q {0},-), (R~ {0},-), (C~ {0},-) are abelian groups.

Example 1.1.5. For n > 0 let R»*" be the set of nxn matrices with entries in R. With ma-
trix addition + it is an abelian group, with matrix multiplication - it is a non-commutative
monoid and not a group if n > 1. The set of invertible matrices GL(n,R) € R™™" is a group
with -: the general linear group over R; it is non-abelian if n > 1.

Definition 1.1.6. Let (G,o) be a group. A set @+ U € G is a subgroup of G if e € G and
for all z,y e U: xoyeU and x71 e U.

Remark 1.1.7. Equivalently, zoy™! € U for all z,y € U.

Clearly, this is implied by U being a subgroup; conversely, e = x ozt € U and z,y € U
implies y ! =eoytelU,soalso xoy=xo(yt)tel.

Note that then (U, o) is a group with the same neutral element — more, precisely we
should use the restriction o1 U x U.

Definition 1.1.8. Let (G,0),(H,*) be monoids (groups) with neutral elements eq,ep.
A monoid (group) homomorphism from (G,o) to (H,*) is a function ¢ : G - H that
preserves o and e, i.e., for all z,y € G:

o(roy)=w(x)*p(y), »leg)=en.

The kernel of p is
ker(p):={xeG|p(x)=eg}.

If o is injective (surjective, bijective), then it is a monomorphism (epimorphism, isomor-
phism). (G,o) and (H,*) are isomorphic, symbolically (G,o0) = (H, *) if there exists an
isomorphism ¢ : G — H; in case, they are isomorphic via .

An endomorphism of (G, o) is a homomorphism from (G, o) to itself. Aut(G,o) is the
set of automorphisms of (G, o), i.e., bijective endomorphisms.

Remark 1.1.9.

1. If ¢ is a another monoid (group) homomorphism from (H, *) to (H’,*’), then ¢ o ¢
is a homomorphism from (G, o) to (H’, *').
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2. If (H,*) is a group, preservation of e is automatic: multiply both sides of p(eg) =
vlegoeq) =pleq) * pleq) by w(eg)™! (inverse in H), and get ey = p(eq);

3. ¢ preserves -~ if defined: assume x € G has an inverse z7!. Then ¢(z7!) is an
inverse of ¢(x) in (H, *) because ey = p(eg) = p(zox~t) = p(x) * p(x~1); similarly,
er = p(a7!) * p(x).

4. Tf (G,0), (H.*) are groups, then ¢ is injective if and only if ker(p) = {eg}.

Indeed, = is clear; <: if ¢(x) = ¢(y), then ey = p(x) * (y)™ = p(x o y™t), so
zoyteker(p),soxoyt=eqg, s0x=y.

5. If (G, o), (H.x) are groups and U a subgroup of G, then ¢(U) is a subgroup of H.
Indeed, let y,y’ € o(U), say, p(z) = x',o(x') =y’ with x,2' € U; then 2’ ox~! € U and
Y xyt=o(at) «p(x)™h = (a0 x™h) e p(U).

6. If (G,0),(H.*) are groups and V' a subgroup of (H, *), then ¢=1(V) is a subgroup
of (G,0). In particular, ker(¢) = ¢! ({en}) is a subgroup of (G, o).

Indeed, if z, 2" € U := o1(V), then 2’oz~! € U because p(x'ox™t) = p(a')xp(x) eV
as a subgroup of H.

Exercise 1.1.10 (Subgroup correspondence). Let (G, o), (H,*) be groups and ¢ : G - H
a (group) epimorphism. Then U ~ p(U) is a bijection from the set of subgroups U of G
with ker(y) € U onto the set of subgroups V' of H; its inverse is V = ¢=1(V).

Exercise 1.1.11. If ¢ : G - H is a group epimorphism and G is abelian, then so is H.
Examples 1.1.12.

1. The map x +~ e* is a group isomorphism from (R, +) onto (R*,-); here, R* is the set
of positive reals.
2. Preservation of e is not automatic in monoids: the map z [ g 8 ] from R into R?*2

preserves - but not 1.

3. The determinant for invertible matrices satisfies det(AB) = det(A)det(B). This
means that det : GL(n,R) - (R~ {0},-) is a group homomorphism. Since inverses
are preserved, it follows that det(A=1) = 1/det(A). We have ker(det) = SL(n,R) :=
{A e R™™ | det(A) = 1}; this is the special linear group, a subgroup of (GL(n,R),-).

4. z ~ |z| is a homomorphism from (C\ {0},-) into (R*,-); its kernel is the circle group

St:={zeC||z| =1}, a subgroup of (C\ {0},-).

Notation: we usually write groups G multiplicatively or additively, namely - or + for o. In
the former case we write 1 for e, and often omit -, i.e., write zy instead x -y. In the latter
case we write —z instead z~! and 0 for e; we also write = — y instead = + (-y).



CHAPTER 1. LOGICAL FOUNDATIONS 5

1.1.2 Rings and fields

Definition 1.1.13. A (unitary) ring is a triple (R,+,-) where +,- : R?> > R are called
addition and multiplication (of R) and are such that (R,+) is an abelian group (with
neutral element 0), and (R,-) is a monoid (with neutral element 1) and for all z,y,z € R

z-(y+z)=(r-y)+(z-2), (z+y)-z=(x-2)+(y-2)

It is commutative if z-y=vy-x for all z,y € R.

A commutative ring (R, +,-) is an integral domain if 0 # 1 and there is no zero-divisor
in R, i.e., an z € R~ {0} such that z-y =0 for some y € R~ {0}.

An integral domain (R, +,-) is a field if every x € R\ {0} has a multiplicative inverse.

Notation: we omit parentheses and - as usual: e.g., zy+xz is understood as (z-y) + (z-2).
To emphasize the ring (group or field) we sometimes write indices +g, g, 0g, 1g. But we
usually omit listing +,- and simply say R is a ring (group, field).

Remark 1.1.14. Let R be a ring. For all x,y € R:

1. A zero-divisor as defined above is often called a left zero-divisor; but we shall be
interested in this concept only in commutative rings.

2. 0z = 0 because 0x = (0 + 0)z = 0z + Ox; similarly, 20 = 0.

3. —=(-x) = x by Remark 1.1.2 (2).

4. (-x)y = —(xy) because 0 =0y = (z + (-z))y = vy + (—z)y. Similarly, z(-y) = —(zy).
)

: (_‘T)(_y) =2y because (—:L')(—y) (i) _(I(—y) @ —(—(:Ey)) (g) zy.

Lemma 1.1.15. Let R be a commutative ring with 0 # 1. Then R s an integral domain
if and only if it has cancellation for -, i.e., for all x,y,z € R,z #0: xz =yz implies x = y.

Proof. =: if xz =yz, then z(x —y) =0; as z # 0 is not a zero-divisor, z —y =0, i.e., x = y.
<: if zz=0for 2 #0, then zz =0z, so x = 0 by cancellation. O

Definition 1.1.16. Let R be a ring. Then x € R is a unit if it has a multiplicative inverse,
i.e., there is 7! € R such that z-2~'=x~!-2 = 1. The set of units of R is denoted R*.

Examples 1.1.17.

1. If Ris aring with 1 =0, then 1z =0z =0 for all z € R, so R ={0}. This is the trivial
ring. It is commutative and not a field.

2. Q,R,C are fields. Z is an integral domain (hence the name) with Z* = {£1}.

3. The set C'(R) of continuous functions from R to R is a commutative ring with +,-

defined pointwise, i.e., for f,g € C(R) the sum f + g is defined as the function
x~ f(x)+g(z); the product f-g is defined analogously.
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4. Let n>1 and V be an n-dimensional vector space over R. The set of endomorphisms
of V' (linear functions from V' to V) is a non-commutative ring with addition defined
pointwise and o as multiplication. It is isomorphic (see Definition 1.1.21 below) to
R™" with the usual matrix operations +,-; its units are (R™")* = GL(n, R).

+|0 1 [0 1
5. Fo:={0,1} is a field with 0|0 1 and 0|0 O ;note 1=-1.
111 0 110 1

Remark 1.1.18. Let R be a ring.

1. (Rx,-) is a group.

Indeed: 1€ R* is clear, and z,y € R* implies zy € R* and z7! ¢ R*: (zy)(y~lz7!) =
(ylzYay =1, so xy € R*; and 2~ € R* because it has inverse z.

If z € R*, then —z € R* and (-z)! = -2~! (by Remark 1.1.14 (4)).

No zero-divisor is a unit: if zy =0 and x € R*, then z 'xy =y =0.

If R is commutative and finite, every € R~ {0} is a zero-divisor or a unit (exercise).

Thus, every finite integral domain is a field.

I

R is a field if and only if (R~ {0},-) is an abelian group (exercise).

Definition 1.1.19. Let R be a ring (field). A subset S ¢ R is a subring (subfield) of R if
0,1€¢S and for all z,y €S we have x+y e S,—x e S,zye S (and 271 € S if x #0).

Remark 1.1.20. Then S is a ring (field) with -, + the operations of R (restricted to S?).

Definition 1.1.21. Let R, S be rings (fields). A ring (field) homomorphism from R to S
is a function ¢ : R — S that preserves +,- and 1, i.e., for all x,y € R

ez +ry) =¢@) +s (W), ¢(@ry)=¢@)-se(y), ¢(1gr)=1s.

The kernel of ¢ is
ker(y) :={z e R| p(x)=0g}.

Injective, surjective, bijective homomorphisms are again called mono-, epi-, isomorphisms,
and R, S are isomorphic, symbolically R = S, if there exists an isomorphism ¢ : R - S.
For R =S, homo-, isomorphisms are endo-, automorphisms of R; the set of automor-

phisms of R is denoted Aut(R).
Remark 1.1.22.

1. ¢ preserves 0, and — and -~! if defined (Remark 1.1.9). Hence, p(R*) € S*.

2. If Ris afield and S not trivial, then ¢ is injective. In particular, field homomorphisms
are injective.
Indeed: if p(z) = ¢(y), then 0g = p(x) -5 (y) = ¢(2) for z := r—gu. Hence p(z) ¢ S*
(here we use Og # 1g), so z ¢ R* = R\ {Og}, i.e., z=0g, so z =y.
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Exercise 1.1.23. Let ¢ : R - S be a (ring, field) homomorphism.

1. If U is a subring (-field) of R, then ¢(U) is a subring (-field) of S.
2. If V is a subring (-field) of S, then ¢=1(V) is a subring (-field) of R.
3. ¢ is injective if and only if ker(y) = {Og}.

4. If ¢ is homomorphism from S to S’, then ¢ o ¢ is one from R to S'.

Exercise 1.1.24. Let R be a group, ring or field. The set of endomorphisms of R together
with composition (p,1) = ¢ o1 is a monoid with neutral element idg. The invertible
elements are exactly the automorphisms of R. (Aut(R),o) is a group.

Definition 1.1.25. An ordered field is a tuple (K, +,-,<) such that (K, +,-) is a field and
< a linear order on K such that for all z,y, 2z € K:

1. compatible with +: if x <y, then r + 2z <z + z;

2. compatible with -: if xt <y and 0< 2z, then x-z<y- 2.

K is archimedian if for all x € K there is n € N such that x < n; here, for n € N we set
0:=0g andn+1:=n+glg.

Exercise 1.1.26. Let K be an ordered field and x,y € K.

1. If x #0, then 0 < 22. Hence 0 <1 and 22 # —1. Further, 0<1<2<3<....
2. f0<z<y, then 0<y !t <zt
3. <is dense: for all z,y € K with x <y there is z € K such that z < z < y.

Example 1.1.27. Q,R with the usual order < are archimedian odered fields. By Exer-
cise 1.1.26 (1) there is no linear order < on C that would make C an ordered field.

Remark 1.1.28 (Nonstandard analysis). Basic methods of mathematical logic allow to
extend R to a non-archimedian ordered field R* that is in a precise sense very similar to R.
In R* there are infinitessimals, elements A such that 0 < A < 1/n for all n e N.

1.2 Naturals

We assume that there is a triple (N, s,0) with N a set, 0 € N and s: N — N a function such
that the Peano axioms are satisfied:

(PO) s is injective;
(P1) s(n)#0 for all n e N;
(P2) (induction) every X c N that contains 0 and is s-closed, equals N.

That X is s-closed means s(n) € X for all n e X. We write 1 :=5(0),2:=s(1), ...
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Remark 1.2.1. The elements of N are natural numbers. A proof of the existence of such
a triple is given in any introductory course of set theory. This can be reasonably explained
only in an axiomatic framework and is thus omitted here. To spark some curiosity:

0:={}, 1:={0} = {{}}, 2:={0, 1} = {{}, {0}, 3:=H0, 1,2} = {3, {U1 AT T

We are not interested in what the triple exactly is because they all look the same:

Theorem 1.2.2 (Categoricity). If (N,0',s") satisfies the Peano axioms, then there is a
unique 7 : N - N that preserves 0 and s, that is, 7(0) =0’ and w(s(n)) = s'(7w(n)) for all
n € N; this m s bijective.

Proof. Uniqueness: if 7’ is another such map, consider X := {n e N | n(n) = 7’(n)}. Then
0 € X and if n € X then n(s(n) = s'(7(n)) = s'(n'(n)) = 7'(s(n)), so s(n) € X. By
induction, X =N. Thus 7 = 7’.

Existence: call a set F'€ Nx N good if (0,0") € F' and for all n € N: if (n,a) € F, then
(s(n),s'(a)) € F. E.g., Nx N is good. The intersection 7 of all good sets, is good - so 7 is
the smallest good set.

7 is a function on N: let X be the set of n € N such that (n,a) € 7 for exactly one a € N.
We prove X = N be induction. Note 0 € X: if (0,a) € 7 for a # 0/, then deleting (0, a)
from 7 is good — contradiction to m being smallest. We show X is s-closed: let n € X, say
(n,a) € m; then (s(n),s'(a)) € m being good; as before (s(n),b) ¢ w for b + s'(a).

7 is as desired: for n € N we have (n,7(n)) € m, so (s(n),s'(w(n))) € m as 7 is good;
this means 7(s(n)) = s'(7(n)).

7 is injective: let X be the set of n € N such that w(n) # 7(m) for all me N~ {n}. We
claim 0 € X. To see this, let Y := {m e N|7(0) # m(m)} u{0}. Then 0 e Y and if meY,
then 7(s(m)) = s'(w(m)) # 0’ =7(0) (with # by (P2)), so s(m) €Y. By induction, Y = N.
Thus, 0 € X. By induction, it suffices to show s(n) € X for n e X. Let

Z:={meN|n(m)=n(s(n))}u{s(n)}.

We prove Z = N by induction. Note 0 € Z because w(0) = 0’ # s'(w(n)) = n(s(n)) (with #
by (P2)). Assume m € Z. If s(m) = s(n), then s(m) € Z. Otherwise n # m, so w(n) + 7(m)
as n € X; then w(s(m)) = s'(w(m)) # s'(w(n)) =w(s(n)) (with # by (P0)), so s(m) € Z.

7 is surjective: the image of 7 contains 0’. If it contains n’, say 7(n) = n’/, then also
s'(n') because 7(s(n)) = s'(w(n)) = s'(n’). By induction (in N’), the image equals N'. [

Exercise 1.2.3. For every n € N {0} there is a unique m € N with s(m) = n.

Lemma 1.2.4. There is a unique function +:N? - N such that n+0=n and n+ s(m) =
s(n+m) for all n,m e N. It is called addition (on N).

Proof. 1t suffices to show for every n € N that there is a unique function f, : N - N with
fn(0) =n and f,(s(m)) = s(fn(m)) for all n € N. Then the union of the f,’s is a function
+ as desired. Any +' as desired equals f,, when the first argument is fixed to n, so +’ = +.

Let n € N. Existence is proved as in Theorem 1.2.2. Uniqueness: if f’ is another such
function, then f,(0) = f7(0) and, if f(m) = f'(m), then f,(s(m)) = s(fu(m)) =s(f'(m)) =
f'(s(m)); hence, f = f’ by induction . O
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Proposition 1.2.5 (Properties of addition). (N, +) is a commutative monoid with neutral
element 0. Further, for all n,m,k € N:

(cancelling) n+ k =m+ k implies n = m.

Proof. Associativity: let X be the set of k such that n+ (m + k) = (n+m) + k for all
n,m € N. We show X = N by induction. Clearly, 0 € X. If k € X, then n+ (m + s(k)) =
n+s(m+k)=s(n+(m+k))=s((n+m)+k)=(n+m)+s(k),so s(k)eX.
Commutativity: let X be the set of n € N such that n +m =m +n for all m € N. To
see 0 € X is suffices to show Y :={m e N |0+m =m} equals N. But 0 e Y and, if meY,
then 0+s(m) =s(0+m) = s(m), so s(m) € Y. We are left to show s(n) € X for ne X i.e.,
Z:={meN|s(n)+m=m+s(n)} equals N. But 0 € Z because 0 € X. If m e Z, then

s(s(n) +m) mes s(m+s(n)) =s(s(m+n)) neX s(s(n+m))

s(n+s(m)) "E s(s(m) +n) = s(m) + s(n).

s(n) +s(m)

0 is neutral because 0+ n =n + 0 by commutativity and n + 0 = n by definition of +.

Cancelling: let X be the set of k£ € N such that the implication holds for all n,m € N.
Clearly, 0 € X. Assume k € X and n+ s(k) =m+ s(k). Then s(n+k) = s(m+k). Since s
is injective, n + k =m + k. Since k € X this implies n = m. [

Similarly as in Lemma 1.2.4 one verifies:

Lemma 1.2.6. There is a unique function - : N> - N such that n-0 = 0 and n-s(m) = n-m+n
for all n,m e N. It is called multiplication (on N).

2+2=2+5(s(0)) =s(2+5s(0)) =s(s(2+0)) =s(s(2)) =s(3) =4,

Example 1.2.7. 5 5 o o(s(0)) =2-5(0)+ 2= (2-042)+ 2= (0+2) +2=2+2 =4,

Proposition 1.2.8 (Properties of multiplication). (N,-) is a commutative monoid with
neutral element 1. Further, for all n,m,k € N we have

1. (cancellation) n-k=m-k and k # 0 implies n =m;
2. (distributivity) k- (n+m) =k-n+k-m.

Proof. (Left-)distributivity: let X be the set of m € N such that k(n+m) = kn+ km for all
k,n e N. Clearly, 0 € X. Assume m € X. Then k(n+s(m)) =ks(n+m)=k(n+m)+k=
(kn+km)+k=kn+(km+k)=kn+ks(m).

Associativity: let X be the set of k& € N such that (nm)k = n(mk). Clearly, 0 € X.
Assume k € X. Then, using distributivity,

(nm)s(k) = (nm)k + nm heX n(mk) + nm =n(mk +m) = n(ms(k)).

1 is neutral: note ns(0) =n0+n =0+n=n. Let X be the set of n € N such that 1n =n.
eX

Then 0 € X. Assume ne X. Then 1-s5(n)=1-n+1"= n+s(0) =s(n).
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Right-distributivity: we show (n+m)k = nk+mk for all n,m, k € N.Let X be the set of
k such that this holds for all n,m. Assume k € X. Then ms(k) = mk +m "E km +m "=

(k+1)m =s(k)m. Then (n+m)s(k) = (n+m)k+(n+m) " (nk + mk) + (n+m). Since
+ is commutative and associative, this equals (nk +n) + (mk +m) = ns(k) + ms(k).
Commutativity: let X be the set of all £ such that nk = kn for all n € N. To see
0 € X note 0-0 =0 and, assuming 0-¢ = 0 and using £+ 1 = s(¢{ +0) = s({), we get
0-5()=0(f+1)=0-£+0-1=0+(0-0+0)=0.
Now, if k € X, then ns(k) =nk+n =kn+n = (k+1)n = s(k)n using right-distributivity.
We leave the verification of cancellation as a (non-trivial) exercise. ]

Proposition 1.2.9 (Properties of order). For n,m € N let n < m if n+k =m for some
ke N\N{0}. Then < is a linear order on N that is compatible with +,- (see Definition 1.1.25)
and has minimal element 0.

Proof. That 0 <n for all n # 0 is trivial. Irreflexivity: let X be the set of n € N such that
n+k#n forall £k +#+0. We show X = N. Clearly, 0 ¢ X. Let n € X and k£ # 0. Then
s(n)+k=k+s(n)=s(k+n)=s(n+k)+s(n)since n+k+nbyneX and s is injective.

Transitivity: if n+k =m and m+k’ = ¢ for k, k' e Nx{0}, then n+(k+k') = (n+k)+k' =
m+ k' = (. By Exercise 1.2.3, k' = s(k") for some k" € N, so k+ k' =s(k+ k") # 0 by (P2).

Linearity: by irreflexivity and transitivity at most one of n < m,n = m, m < n holds.
Let X be the set of n such that at least one holds for all m. Then 0 € X being minimal.
Assume n € X. We show s(n) € X by induction on m. Let Y be the set of m € N such
that s(n) <m,s(n) =m or m < s(n). Then 0 € Y because 0 < s(n). Assume m €Y. Note
n<m,n=m or m<mn, since n € X These cases imply respectively s(n) < s(m),s(n) =
s(m),s(m) < s(m); e.g., if n <m, say n+k =m with k # 0, then s(n) +k = k + s(n) =
s(k+mn)=s(n+k)=s(m). Hence s(m)eY.

Compatibility with +: let X be the set of ¢ € N such that £ =0 or m + ¢ < n + ¢ holds
forallm<m and £ #0. Then 0 e X. If /€ X then n+s({) =s(n+/{) <s(m+{)=m+s({)
is implied by n + ¢ <m + ¢ as above. Thus, < is compatible with +.

We leave compatibility with - as a (now easy) exercise. ]

Exercise 1.2.10. For all n,m € N wer have: m < s(n) if and only if m =n or m < n.

Theorem 1.2.11 (Least number principle). Every nonempty X ¢ N has a minimal element
neX,ie,n<m forallmeX ~{n}.

Proof. Let Y be the set of n € N such that m ¢ X for all m <n. Then 0 €Y by (4) above.
As X # @, Y # N. By induction, Y is not s-closed, i.e., there is n € Y with s(n) ¢ Y.
Then there exists m < s(n) in X. Then m =n or m <n by Exercise 1.2.10. The latter is
impossible as n € Y. Hence m =n € X. Then n is a minimal element of X: if m € X ~ {n},
then m < n or n < m; the former is impossible, as n €Y. O

Remark 1.2.12. This section exemplifies what one does in mathematical logic: reducing
a given body of mathematics to fundamental reasoning principles. Here, the principle is
induction, or equivalently, the least number principle. As seen, the reduction often amounts
to tedious and somewhat boring work. One interest of mathematical logic is to compare
the relative logical strength of the various thereby identified reasoning principles.
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1.3 Integers

Idea: 7 enlarges N by providing solutions of n+ X = 0. We know z € Z equals n —m for
some (n,m) € N2. This pair is not unique, so z corresponds to the set of such pairs (n/,m’)
with the same “difference”, i.e., n’ —=m’ = n—m. We can write this as n’ + m = n + m/,
avoiding the not yet explained —.

Lemma 1.3.1. Define ~ ¢ (N?)2 setting for n,m,n’,m’ e N:
(n,m)~((n',m'") <= n+m’=n"+m.
Then ~ is an equivalence relation on N2,

Proof. Reflexivity and symmetry are trivial. For transitivity let (ng,mg) ~ (nq,m;) ~
(ng,ms), i.e., ng+my = ny + mg and ny + mg = ngy + my. Then ng + my + ny + my =
ny +mg + ny +my. Cancellation (see Proposition 1.2.5) (ny +my) gives ng + mg = ny + my,
i.e., (ng,mg) ~ (ny,my). O

Definition 1.3.2. Z is the set of equivalence classes [n,m] of (n,m) € N2 under ~. Its
elements are called integers.

Definition 1.3.3. For z,y € Z, say = = [k, /],y = [n,m] with (k,£),(n,m) € N, set
r+y:=[k+n,l+m].

Remark 1.3.4. This is well-defined: assume [k,¢] = [K’,¢'] and [n,m] = [n/,m']. Then
k+0 =k +¢and n+m' =n'+m. Then (k+n)+(m'+¢) = (m+4)+ (kK +n'), so
[k+n,m+/l]=[K+n',m +/{].

Proposition 1.3.5. (Z,+) is an abelian group with neutral element [0,0].

Proof. Commutativity: [k,¢] + [n,m] = [k+n,0+m] = [n+k,m+{] = [n,m] + [k, {].
Associativity is similar. [0,0] is neutral because [0,0] + [n,m] = [n+0,m +0] = [n,m] =
[0+n,0+m] = [0,0]+[m,n]. The inverse of [n, m] is [m,n] because [n+m,m+n] =[0,0]. O

Multiplication is straightforwardly defined: if we already knew what it is, then we could
note (k-¢)(n-m) = (kn+4¢m) - (km+¢n). We use this equation as a definition:

Definition 1.3.6. For z,y € Z, say = = [k,{],y = [n,m] with (k,£),(n,m) € N, set
x-y:=[kn+0lm, km+{n].
Remark 1.3.7. This is well-defined: let x = [k, ¢] = [K/,0'], y = [n,m] = [n/,m/], i.e.,
kE+0 =k'+¢, n+m'=n"+m.
We have to show [kn + ¢m, km +{n] = [k'n' + I'm', k'm’ + ('n], i.e.,

kn+fm+k'm' +0n =k'n" +0'm’ + km + In.
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This follows by cancellation (see Proposition 1.2.5) from a simple tricky calculation:

(kn+fm+KEm'+0n")+ ('n+Em+kn+0m)
=(k+0)n+{U+EYm+E(m +n)+0(n"+m)
=(l+E )+ (E+0)ym+E(n" +m)+ 0 (n+m')

=(K'n"+0m"+km+n)+ (U'n+Em+Ekn+0m).
Theorem 1.3.8. (Z,+,-) is an integral domain.

Proof. We first show (Z,-) is a commutative monoid with neutral element [1,0]. For
neutrality, note [1,0]-[k,¢] =[1-k+0-£,0-k+1-£] = [k,¢]. Commutativity: [k, ¢]-[n,m]=
[kn+fm,km+{n] = [nk+ml, mk+nl] = [n,m]-[k,£]. Associativity follows similarly from
properties of N. Distributivity:

([k, 0]+ [n,m]) - [r,s] = [k+n,0+m]-[r,s] =[rk+rn+sl+sm,rl+rn+sk+sn]

=[rk+sl,rl+ sk]+[rn+sm,rn+sn] = [k, 0] [r,s] +[n,m] - [r,s].

By Proposition 1.3.5, (Z, +,+) is a commutative ring. We are left to show that z -y = [0, 0]
implies x = [0,0] or y = [0,0]. Say, x = [k,{],y = [n,m], and assume y # [0,0], i.e., n #m,
and [0,0] = [kn + fm, km + {n], i.e., kn+fm =km + {n.

By Proposition 1.2.9, n <m or m <n. We assume n < m (the other case is analogous)
and write n+r = m for some r # 0. Plugging this in our assumption above gives kn+£(n+r) =
k(n +r) + ¢n. Using commutativity and cancellation for + (in N), this implies ¢r = kr.
Cancellation for - (in N) gives ¢ = k. Thus, z = [k, ¢] = [0,0]. O
Remark 1.3.9.

1. Consider the injection 1+~ [n,0] from N into Z. Then + (on the image of this map)

as defined in Z extends + as defined in N. E.g., [4,0]+[5,0] =[4+5,0+0] =[9,0].

2. More precisely, n ~ [n,0] is a monoid monomorphism both from (N,+) to (Z,+),

and from (N,-) to (Z,-).

Indeed: the map is clearly injective. As 0~ [0,0] and 1 ~ [1,0] the neutral elements
are preserved. We leave preservation of + to the reader. Preservation of = [k,0]-
[n,0]=[k-n+0-0,0-n+k-0]=[k-n,0].

3. We “identify” n with [n,0] and, somewhat sloppily, view N as a subset of Z.

Compatibility of order is explained as in Definition 1.1.25:

Proposition 1.3.10. For x,y € Z let x < y if and only if there is n € N~ {0} such that
x+n=y (i.e, a+[n,0]=b). Then < is a linear order on Z that is compatible with +,-.

Proof. We only show compatibility. Assume x+n =y for n e Nx{0}. Then y+z=x+z2+n,
SO z+2z<y+z Assume 0 < z, ie., z € NN {0}. Then yz = xz + nz, so xz < yz as
nz e N\ {0}. O

Remark 1.3.11. Clearly, < as defined in Z extends < as defined in N. More precisely, the
monomorphism n ~ [n,0] preserves <: n<m in N < [n,0] < [m,0] in Z.
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1.4 Rationals

Idea: we want to enlarge Z to add solutions of aX =1 for a # 0. We know every x € QQ
equals a/b for some (a,b) € Z x (Z ~ {0}). This pair is not unique, so z corresponds to the
set of such pairs (a’,b") with the same “fraction”, i.e., a/b = a’[/l/. We can write this as
ab’ = a’b, avoiding the not yet explained /.

Lemma 1.4.1. Define ~ € (Z x (Z~ {0}))? setting:
(a,b) ~ (a', V") < ab =d'b.
Then ~ is an equivalence relation.

Proof. Reflexivity and symmetry are trivial. For transitivity, assume (ag,bo) ~ (a1,b1) ~
(Cbg,bg), i.e., a0b1 = a1b0 and a1b2 = agbl.
Then agbia1by = a1bgasby, so (aghs —boas)-(a1by) = 0. Assume first that a; #0. As by #0
we have a1b; # 0 since Z is an integral domain. Then (agba—boaz) =0, i.e., (ag, bg) ~ (az,bs).
Now assume a; = 0. Then agb; = 0 = asb;. Since Z is an integral domain and by, by # 0
we get apg = ag = 0. Hence CL()bQ = (lgbg(: 0), SO (ao,bo) ~ (ag, bg) O]

Definition 1.4.2. Q is the set of equivalence classes a/b of (a,b) € Z x (Z ~{0}) under ~.
Its elements are called rationals.

Addition and multiplication are straightforwardly defined: if we already knew the ra-
tionals we could note a/b+ c/d = (ad + ¢b)/bd and a/b- c/d = ac/bd (we read e.g. ac/bd as
(ac)/(bd)). We use these equations as definitions:

Definition 1.4.3. For z,y € Q, say = = a/b,y = ¢/d with (a,b), (c,d) € Z x (Z~ {0}), set
x+y:=(ad+cb)[bd, x-y:=ac/bd.

Further, set z < y if and only if x + z = y for some positive z € Q, i.e., z = e/ f for some

O<e, feZ.

Remark 1.4.4. These are well-defined. Assume z = a/b = a//b' and c/d = '[d', i.e.,
y=ab =a'band cd =c'd.
For + we have to show (ad + ¢b)/bd = (a’d" + ¢'b') [b'd’. This is true:
(ad + cb)b'd = ab'dd +bb'cd' = a’bdd" + bb'c'd = (a'd" + b'c")bd.
For - we have to show ac/bd = a'c’[b'd'. This is true: acb'd’ = ab'cd’ = a’bc'd.
For < assume z +e/f =y with 0 < e, f. Then a/b+e/f = (af +eb)/bf = c/d, ie.,
afd+ebd=cbf. We claim o' /b +e/f =c'[d', i.e., a' fd' +eb'd =V f. Argue
afd-a't'dd +ebd-d'b'dd =cbf-a'b'c'd
a fd -ab'dd+ebd -a'bd’d=cVf-a'bed
a' fd-a'bdd +eb'd -a'bd'd=c"Vf-a'bdd.
The 2nd is only re-arranging the 1st, the 3rd uses ab’ = a’b on the left, and cd’ = ¢’d on the
right. It implies our claim by distributivity and cancellation in Z.
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Remark 1.4.5. x € Q is positive if and only if 0 <z in Q.
Theorem 1.4.6. (Q,+,-,<) is an archimedian ordered field.

Proof. 1t is easily checked that (Q,+) and (Q~ {0/1},-) are associative and commutative.
The neutral elements are 0/1 and 1/1 respectively: a/b+0/1 = (a-1+0-b)/b-1 = a/b
and a/b-1/1 = a-1/b-1 = a/b. The additive inverse —(a/b) of a/b is (-a)/b because
a/b+ (-a)/b=(ab+—(ab))/b=0/b=0/1. The multiplicative inverse (a/b)~! of a/b# 0/1 is
b/a — note a # 0 because otherwise a/b=0/b=0/1. Indeed, a/b-b/a = ab/ba = 1/1.

For distributivity we use a//b’ = a/c’[b'¢’ for ¢’ + 0:

(af/b+c/d)-elf=(ad+cb)/bd-e]f = (ade + cbe)/bdf = (ade bdf + cbe bdf)[(bdf bdf)
= ade/bdf + cbe/bdf = ae[bf + ce/df =alb-e]f +c/d-e]f.

Concerning < we only verify compatibiliy: if x <y and z € Q, then (y+2)-(z+2)=y-=
is positive, so y+ z < y+ z. Note a product of positive rationals is positive. Hence, if 0 < z,
then yz —xz = (y — x)z is positive, so xz < yz.

Archimedian: if x is not positive, then = < 1. Otherwise = = a/b with a,b € Z and
a,b>0. Then x < a/1 because a/1 —a/b= (ab-a)/ab with a(b—-1),ab>0 in Z. O

Proposition 1.4.7. The map a ~ a/l is a ring monomorphism from Z into Q. Moreover,
it preserves < in the sense that for all a,b € Z:

a<bin?Z < a/l<b/1in Q.

Proof. The map is clearly injective. It preserves 1 because 1 — 1/1. It preserves + because
a/l+b/1=(a-1+b-1)/1-1= (a+0b)/1. It preserves - because a/1-b/1 = ab/1-1 = ab/1.
Finally, it preserves < because

b/1-af/l=(b-1+(-a)-1)/1-1is positive <= 0<b-ainZ <= a<binZ. O

Notation: From now on we “identify” a with a/1 and, somewhat sloppily, view Z as a
subset of Q. By the above then Z is a subring of Q.

z ifz>20

Definition 1.4.8. The absolute value of x € Q is |z| := { —r else

Remark 1.4.9. For all z,y € Q we have |zy| = |z|-|y|, the triangle inequality |x+y| < |x|+]y],
and, |z| = 0 if and only if = = 0.

1.5 Reals

Write Q* for the positive rationals and recall that a sequence (g, )nen of rationals has limit
q € Q if and only if for all € € Q* there is ng € N such that |g, — ¢| < € for all n > ny. Each
sequence has at most one limit. If it exists, the sequence is Cauchy: for all € € Q* there is
ng € N such that |q, — ¢| < € for all n,m > ng.
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Idea: e.g. X? = 2 has no solution in Q but can be “approximated” by rationals. We
know every real x € R is the limit of a Cauchy sequence of rationals. The sequence is not
unique, so every real corresponds to a set of Cauchy sequences, namely those with the
same limit. We can say two Cauchy sequences have the same limit, without referring to
this yet undefined limit, by stating that their difference has limit 0.

Lemma 1.5.1. Let C be the set of rational Cauchy sequences. For (qn)n, (Pn)n € C set

Then ~ is an equivalence relation on C.

Proof. Reflexivity and symmetry are trivial. For transitivity, assume (pn)n ~ (¢n)n ~ (7n)n,

i.e., (Pn = Gn)n and (g, — 7)n have limit 0. Then ((pn — ¢n) = (Gn = 70))n = (Pn — m)n has
limit 0. U]

Definition 1.5.2. R is the set of equivalence classes (¢,), of (¢.)n € C under ~. Its
elements are called reals. For reals x = (¢,), and y = (p,)n set

r+y:= (Qn+pn)n7 Ty = (ann)n

Further, define z < y if and only if there are € € Q* and ng € N such that p, — ¢, > € (in Q)
for all n > nyg.

Remark 1.5.3. These are well-defined. We leave it as an exercise (in elementary analysis)
to verify this for + and .. -

For <, assume = = (¢n)n = (¢)n <y = (Pn)n = (P,)n. Choose € € Q*,ng € N such that
Pn — Gn > € for all n > ng. We claim there is n; € N such that p/, — ¢/, > ¢/2 for all n > n;.
Namely, choose ng < n; € N such that |g, — ¢/,| < €/4 and |p,, — p/,| < €/4 for all n >ny. Then

P=q = =)+ (P — @) + (g —¢,) > —€/4+e—€/d=¢/2 for all n >n;.
Theorem 1.5.4. (R, +,-,<) is an archimedian ordered field.

Proof. 1t is clear that +,- are associative and commutative with neutral elements (0,0, ...)

and (1,1,...). Distributivity is also clear. The additive inverse of (¢, ), is (=g, )n. For the
multiplicative inverse of (¢,), # (0,0, ...), note (g, ), does not have limit 0. Being Cauchy,
there are € € Q* and ng € N such that |g,| > € for all n > ng; let (p,), be defined by p, =1
if n < ng, and p, := g, for n>ng. Then (¢,)n - (Pn)n = (o, -y Gy, 1, 1,...) = (1,1,...).

We only show compatibility of < with -. Let x = (¢,)n <y = (pn)n and z = (7,),,. Choose
€ € Q*,ng € N such that p, — ¢, > € for all n > ng. Then p, +r, —q, — 1, > € for all n > ng, so
T+2z<y+z. Assume z >0, so there are § € Q*,ny € N such that r,, > ¢ for all n >n;. Then
Pnln = Gnrn 2 0(pn — qn) > € for all n >ny. Hence, xz < yz.

Archimedian: let x = (¢, ),. Being Cauchy, there are ¢ € Q,ng € N such that ¢, < ¢ for
all n > ng. By Theorem 1.4.6 there is m € N such that ¢ <m in Q. Then z < (m,m,...). O

Remark 1.5.5.
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1. ¢ » (q,q,...) is a field monomorphism from Q to R; moreover, it preserves <. We

“Identify” ¢ with (q,q, ...) and, somewhat sloppily, view Q as a subset of R. Then Q
is a subfield of R.

Indeed, preservation of +, - is clear, e.g., (¢,q,...)-(p,p,...) = (qp, qp, ...). Tt is injective
by Remark 1.1.22. It preserves < because

(0:¢,-) <(pp,) = p-qeQ" < q<pinQ
2. |z| is defined for x € R as in Definition 1.4.8; it has the properties in Remark 1.4.9.

For sequences (x,), in R we define limits in R and being Cauchy exactly as for Q (recall
the beginning of this section).

Theorem 1.5.6. R is complete: every Cauchy sequence in R has a limit in R.

Proof. Let (x,), be Cauchy (in R). For n € N write z, = (¢ux)x for (gux)x € C. For n e N
choose k, € N such that |z, —qu, | < 1/n for all k& > k,,. Then (g, )n € C and (z,,), has limit
2 = (Gni, )n: given € € Q*, choose ng € N such that ng > 2/e (archimedian), so 1/n < ¢/2 for
all n > ng. Choose ng < ny € N such that |g,x, — x| < €/2 for all n >ny. Then for all n > n;:

|z, — x| < |20 = Gk, | + @k, — x| < 1/n+€/2 <e. O
We now show that the order < on R is determined by its field structure:

Lemma 1.5.7. Fvery positive real is a square. Hence, for all x,y € R, x <y if and only if
x+ 2% =y for some z e R\ {0}.

Proof. (Sketch) Given z > 0 define a sequence (¢, p,), of pairs of rationals such that
—2
p2 <x<q?and p, —q, <2™ Then (¢,), ==x.
If x <y, then z + 22 = y where z € R~ {0} is such that 22 = y —x > 0. Conversely,
y—x=2%2>0 by by Exercise 1.1.26 (1), so x < y. O

Corollary 1.5.8. The only automorphism of the field R is the identity idg.

Proof. Let ¢ be an automorphism. Then ¢(1) = 1,0(2) = (1) +p(1) =1+1=2..., so
p(n) =n for all n € N, so also p(-n) =-n and p(1/n) = 1/n. As every q € Q equals +n/m
for some n,m € N we have ¢(q) = ¢ for all g€ Q.

It should be clear that ¢ preserves |-| (i.e., |z| = |p(x)| for all x € R). By Lemma 1.5.7,
@ preserves <: if z + 22 =y with z # 0, then ¢(z) + ¢(2)% = p(y) and p(z) # 0.

Let z e R, say = = m and set y := p(x). Given € € Q* it suffices to show |xr —y| < €
(then |z —y| =0, so x =y =0). Choose n € N such that |z - ¢,| <e. Then

e =€) >p(lz = gnl) = lo(x) = (gn)| = [y = anl- O
Remark 1.5.9. We showed our construction of the reals has a series of fundamental
properties we expect the reals to have. The reader might still worry whether the “real”
reals are “the same” as our R. They are: every complete archimedian ordered field is
isomorphic to R (think about why, the argument is similar to Corollary 1.5.8). “Complete
archimedian” can be equivalently replaced by the statement that every non-empty upward
bounded subset has a supremum. This statement plus the axioms of ordered fields thus
constitute an elegant categorical axiomatization of the reals (as we had for N).
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1.6 Complex numbers

Idea: we intend to enlarge the field R to another C so that X2 = -1 has a solution (recall
Exercise 1.1.26), denoted 7, so i? = —1. Then, for z,z’,y,y’ € R:

(x+iy)+ (2" +iy") = (x+2") +i(y +v),
(z+iy) - (2" +3y") = (2’ +izy +iyx' +i*yy’) = (v’ —yy') +i(zy’ +2'y).
To find such a field C we use these equations as a definition:

Definition 1.6.1. The set of complex numbers is C :=R2. For z = (x,y), 2" = (2/,y") set
z+z2 = (x+2 y+y), z-2'= (2’ -yy,xy +2'y).

For z = (x,y) we call Re(z) := x and Im(z) := y the real and imaginary part of z. The
(complex) conjugation is
z=(x,y) ~ zZ:=(z,-y).

The absolute value of z = (x,y) is |z| :== V22 = /2 + y2.

Remark 1.6.2. We write i := (0,1). Then i2 = (0,1)-(0,1) = (0-0-1-1,0-1+0-1) = (~1,0).
This is -1 € R after our “identification” of x € R with (x,0) to be explained below.

Theorem 1.6.3. (C,+,) is a field and conjugation is an automorphism.

Proof. Associativity, commutativity and distributivity are clear. The additive and mul-
tiplicative neutral elements are (0,0) and (1,0). The additive inverse of z = (z,y) is
-z =(-z,-y). If 2+ (0,0), then z2 +y? # 0, and its multiplicative inverse is

e = (@l -y,

Indeed: (z,y)- (/|22 ~y/|21?) = (x2/|21?~y(~y) /|2, 2 (~y) [|2[> +yx/|z]?) = (1,0). We leave
the verification that conjugation is an automorphism to the reader. ]

Remark 1.6.4. z ~ (z,0) is a field monomorphism from R to C. Indeed: recall Re-
mark 1.1.22 (3); the map preserves 1 and +,- because for all z, 2’ € R:

(z,0) + (2',0) = (x +2',0), (x,0)-(2",0)=(z-2"-0-0,2-0+0-2") = (x-2',0).

We “identify” x € R with (z,0) and, somewhat sloppily, view R as a subset of R. Then R
is a subfield of C. For z = (z,y) we have z = x + iy, or, more precisely,

z=(2,y) = (2,0) +(0,1) - (y,0).
Remark 1.6.5. The absolute value |z| satisfies the properties in Remark 1.4.9.

For sequences (2, )neny in C having a limit and being Cauchy is explained as for rationals
and reals (see beginning of Section 1.5). It has limit z if and only if both (Re(z,)), has
limit Re(z) and (Im(z,)), has limit Im(z). Further, (z,)ney is Cauchy if and only if both
(Re(zn))n and (Im(z,)), are. This implies:
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Theorem 1.6.6. Every Cauchy sequence in C has a limit in C.

We define exponentiation, sine and cosine on C via their power series. Convergence
and basic properties are verified as in R, known from calculus.

e = l+z+422/21+23/3+- = Y72, 2]k,
sin(z) = z-23/31+25/5!—-.. = Yroo(=1)F22+1 /(2K + 1),
cos(z) = 1-22/20+24/4] - ... = Yro(=1)F22R[(2K)!.

Remark 1.6.7.

1. Euler’s identity e™ = -1 follows noting for « € R:

e =1+ia-a?/2 —ia®[3! + a*[4! + i[5! - - = cos(a) + isin(a).

In particular, |e?®| = \/cos(@)? +sin(a)? = 1, i.e., all e lie on the unit circle S

2. (Polar coordinates) Every z € C equals |z|(cos(a) + isin(a)) for some unique a €
[0,27), the argument of z. This becomes z = |z]e’®. For 2’ = |2/|e**’, complex multi-
plication becomes z - 2’ = |2 - || - eile+e’)

3. (De Moivre) For n > 1 and any z € C with argument o we have w™ = z for n distinct

|V gialng2mifn | [1n il 22miln.

|1/n6ia/ne(n—1)27ri/n‘

w = Y |z |2 |z

Definition 1.6.8 (Roots of unity). Let n > 1 the n-th roots of unity are
C, = {(2, e C,’j‘l} where ¢, := 2™/,
Remark 1.6.9. (), is a subgroup of the circle group S! (Example 1.1.12). Further,
L+ GG+ Gt = (G -1)/(G - 1) =0.

Example 1.6.10. (y,...,(s are -1, (-1++/=3)/2, i, cos(27/5) +isin(27/5), (1++/-3)/2.
E.g., one easily computes ¢, ¢}, (2, ¢3,¢8, ¢ as

1, (1+4V3)/2, (-1+iV/3)/2, -1, (-1-iv3)/2, (1-iV3)/2.

Figure 1.1: For n=4,5,6,7, C, is marked red, the regular n-gon blue.



Chapter 2

Number theory

2.1 The Euclidian algorithm

Definition 2.1.1. Let x,y € Z. Then z is a dwisor or factor of y, and y a multiple of x,
symbolically z | y, if x -z =y for some z € Z. The negation is denoted = + y.

Remark 2.1.2. For all z,2",y,vy', z,u,u’ € Z:
x |01z -1 |z, x |2, —x |2, x| —x.
. | is transitive: if x |y and y | z, then z | z.

1
2
3. If |y and x| ¢/, then x| uy +u'y’.
4. If x|y and z' |y, then zz’ | yy';

5)

. Ify#0and x|y, then 1 <|z| < |yl;
Indeed: y = zu implies |y| = |z|- Ju| and y # 0 implies = # 0, so |z| # 0, so |z| > 1.
6. The divisors of 1 are =1, i.e., Z* = {1} (if | 1, then 1 <|z| <1 by (5), so |z|=1).
7. x|y and y |z, if and only if, x =y or z = —y.

Indeed: <: by (1). =:if y =0, then 2 =0 by y | x; if y # 0, then x # 0 by x | y;
by (5), [a] <[yl <lal, so || = [y|.

Theorem 2.1.3 (Euclidian division). Let z,y € Z and y # 0. Then there is a unique pair
(q,7) € Z? with x = qy +r and 0 <r <|y|. Moreover, if x >0 and y >0, then ¢ > 0.
q is called the quotient and r the remainder of (z,y); we agree both are 0 if y = 0.

Proof. Uniqueness: assume qy +r = ¢'y +r' with 0 <r, 7' <|y|. Then (¢-¢" )y =1"—-1r, so
y| (r'=r). If r =7’ then by Remark 2.1.2 (5) |y| < |r" = r| < max{r,r’} (since r,r" > 0), a
contradiction. So r =r'. Then qy = ¢’y and ¢ = ¢’ follow.

Existence: assume first y > 0. Let R be the set of r € N such that r = x — qy for some
qge€Z. Then R+ @: if 20, then x =2 -0y, so v € R; if x <0, then z -2y € R.

Let r be a minimal element of R. Then r > 0 and x = qy + r for some q € Z. Further,
r < |y| = y because otherwise r —y = x - (¢ + 1)y € R, contradicting the minimality of r.

19
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Now assume y < 0. Then there are g, € Z such that z = ¢'(-y) +r" and 0 <7’ < |y| = -y
and we can set q:=—q',r =1'.
Moreover: if y >0> ¢, then qy < -y, sox=qy+r<-y+r<0 (as 0<r<y). ]

Remark 2.1.4. Call z € Z even if 2 | x and otherwise odd. Since every x € Z equals either
2q + 1 or 2q for some q € Z, we see z is odd if and only if x = y + 1 for some even y.

Lemma 2.1.5. Every subgroup of (Z,+) equals nZ :={nz|z € Z} for some n € N.

Proof. Let U be a subgroup. If U = {0}, then U = 0Z. Otherwise there is x € U \ {0}. As
-z eU, UnN~ {0} # @. Let n be the minimal element of U n (N {0}).

We claim U =nZ. 2 is clear. C: let x € U. Write x = gn +r using Euclidian division, so
0<r<n. Then gne U, sor=x—-qneU. Then r =0 by choice of n, so x = gn € nZ. O]

Definition 2.1.6. Let n > 0 and z,...,z, € Z not all 0. Then x € Z is a common divisor
of x1,...,x, if x| z; for all 1 <i<n. The largest of them is the greatest common divisor of
X1, ..., Tp, denoted ged(xq, ..., z,). If it equals 1, then 1, ..., x, are coprime.

Remark 2.1.7. This is well-defined: the set of common divisors contains 1, so is non-
empty; it is finite because, if say z; # 0, then all common divisors z satisfy 1 < |z| < |z;| by
Remark 2.1.2 (5).

Lemma 2.1.8 (Bézout). Let n>0 and x1, ...,x, € Z not all 0. Then there are ¢y, ...,c, € Z
such that

ged(xy, ..., Ty) = €11 + - + Cu Ty

Proof. Let U be the set of all ¢;z1 + - + ¢, with ¢; € Z. Then U is a subgroup of (Z, +),
so U = dZ for some d € N by Lemma 2.1.5. As d € U it suffices to show d = ged(zy, ..., z,).
As all z; € U = dZ, d is a common divisor. As not all x; = 0, U # {0} and d # 0.
By Remark 2.1.2 (3), any common divisor ¢ divides all elements of U, so also d. By
Remark 2.1.2 (5), ¢ <|c| <|d| = d. O

Remark 2.1.9. Let n >0, xq,...,z, € Z not all 0, d := ged(z1, ..., 2,) and z,y,z € Z~ {0}.

1. Every common divisor of xy, ..., x,, divides d (by Lemma 2.1.8 and Remark 2.1.2 (3)).
2. x1,...,x, are coprime if and only if c;xq + ... + ¢,x, = 1 for certain ¢; € Z;

Indeed: = by Lemma 2.1.8, <: d |1 by 2.1.2 (3), so d =1 by Remark 2.1.2 (6).
3. x1/d,...,x,/d are coprime (divide the equation of Lemma 2.1.8 by d and apply (2)).
4. ged(z,y, z) = ged(x, ged(y, 2)) (by (1), z,y, z and z, ged(y, z) have the same divisors).
5. If x |yz and z,y are coprime, then z | z.

Indeed: by Lemma 2.1.8 write 1 = cx + ¢’y for certain ¢, ¢’ € Z, so z = zcx + zc'y, so
x|z (by z | yz and Remark 2.1.2 (3)).

6. If 2|z and y | z and z,y are coprime, then zy | 2.

Indeed: write z = cx, so y | xc, so y | ¢ by (5), say ¢ = 'y, then z = c'yx.
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Exercise 2.1.10. Let z,y,z € Z ~ {0}. Show that ggT(z,yz) | ggT(z,y) - ggT(x,z). For
coprime vy, z we have equality.

By (4), an algorithm for computing the ged of two integers can be iterated to compute
the ged of any finite number of integers.

Theorem 2.1.11 (Euclidian algorithm). For x,y € Z ~ {0} with y + x let ro,r1, ... be the
sequence with ro:=x,r1 =y and, fori>0,

~._ | the remainder of (ric1,mi) ifri #0
R ) else.

Then 1,11 =0 for some 0 <n <|y| and r, = ged(z,y) for the minimal such n.
Moreover, for this n let sg, ..., s, and tq,...,t, be the sequences with sg:=1,s1 :=0 and
to:=0,t1:=1 and for 0 <i<n, letting q; be the quotient of (r;_1,7;),

Si+1 *= Si-1 ~ ¢iSiy i1 = tio1 — Qit.
Then ged(x,y) = sy + thy.
Proof. Note |y| >79>0 as y + x, and 7o > 13 > -+ are all >0, so n as claimed exists. Note
T=qQy+7ry, Y=Qqro+T3, To=Qq3r3+T4, o Tp2=QuTn1+Tn, Tno1=qnrn+0.

Work the equations backwards: 7,41 =0, so r,, | -1, SO 7, | Tp—o by Remark 2.1.2 (3), etc.,
so r, | =y and r, | o = x. Hence 7, is a common divisor of x,y.
To see it is the largest, ¢ be a common divisor of x,y. Work the equations forwards: as
r9 =x —qry we have ¢ | ry by Remark 2.1.2 (3); as 73 = y — gar2 we have ¢ | r3, etc., so ¢| 7.
Finally, we claim r; = s;x + t;y for all ¢ <n. This is true for ¢ = 0, 1. Inductively,

Tis1 = Tic1 = Gi7% = (8im12 + ti1y) = Gi(8ix + 1y) = 8% + L1y, O
Example 2.1.12. We compute ged(122,16) = 2 = r5 with re, r3, 74,75, 76 being 10,6,4,2,0:
122=7-16+10, 16=1-10+6, 10=1-6+4, 6=1-4+2, 4=2-2+0.
Note qo, g1, 2, q3,q4 are 7,1,1,1,2. Thus,

S9=1-7-0 s3=0-1-1  s4=1-1-(=1) s3=-1-1-2
ta=0-7-1 t3=1-1-(-7) ty=-7-1-8 t5=8-1-(-15).

and r, =2=-3-122+23-16. Or look at the equations and substitute from right to left: 4
by 10 — 6, then 6 by 16 — 10, then 10 by 122 -7 - 16:

2

6-4=6-(10-6)=2-6-10
2.(16-10)-10=2-16-3-10
2.16-3-(122-7-16) = -3-122 + 23 16.
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Exercise 2.1.13. Recall Bézout’s lemma. Consider an equation a; X7 + ---a, X,, = b where
a,...,an,b € Z and Xy,..., X,, are variables ranging over Z. How do you decide whether
there is a solution and, in case, compute one?

Definition 2.1.14. Let n > 0. Then y € Z is a common multiple of x1,...,x, € Z ~ {0} if
x; |y for all i. The minimal (least) common multiple in N\ {0} is denoted lem(xy, ..., x,).

Exercise 2.1.15.

1. Show this is well-defined.
2. Show y is a common multiple of x1, ..., z, if and only if lem(x1,...,x,) | y.

3. For x,y € Z~ {0} show |zy| = ged(z,y) - lem(z,y).

2.2 The fundamental theorem of number theory

Definition 2.2.1. n > 1 is prime if only 1 and n are factors of n; otherwise it is composite.
Lemma 2.2.2. Every integer x € Z with |x| > 1 has a prime factor.

Proof. As |z| | z there exist a natural n > 1 dividing x. The smallest such n is prime. [
Exercise 2.2.3. Every composite natural n has a prime factor < \/n.

Theorem 2.2.4 (Euclid). There are infinitely many primes.

Proof. Let py,...,p, be finitely many primes (n > 0). Then z := p;--p, +1 > 1. By the
lemma, z has a prime factor p. Then p is distinct from all p;: otherwise, p |z — py--p, =1
by Remark 2.1.2 (3), a contradiction. O

Exercise 2.2.5. Let n > 1.

1. Gaps: there are n consecutive naturals that are not prime.
2. There is a prime p with n < p < nl.
3. There are infinitely many primes of the form 4x + 3 with z € N.

Hint: given finitely many primes 3 < py, ..., p, of the form 4x + 3, consider 4p;---p, + 3.
Can all its prime factors have the form 4x + 17

Theorem 2.2.6 (Wilson). A natural n > 1 is prime if and only if n| (n—1)!+ 1.

We defer the proof to Section 2.5. The theorem was stated already by the medieval
polymath Ibn al-Haytham (c.965 — ¢.1040), sometimes called “the first true scientist”.

Lemma 2.2.7 (Euclid’s lemma). p € N is prime if and only if for all x,y € Z:

p|xy implies p|x or p|y.



CHAPTER 2. NUMBER THEORY 23

Proof. =: if p| xy is prime and p 4 x, then ged(p,z) =1, so p |y by Remark 2.1.9 (5). <:
if p is not prime, then p = nm for certain 1 < n,m < p; then p|nm but p+ nand p +m. O

Lemma 2.2.8. Let k,¢,n >0 and p be prime.

1. If xy,...;xp, € Z and p| x1--x,,, then p|x; for some i.
2. If xy,...,x, are prime and p | x1---x,, then p = x; for some i.

3. If v,yeZ and pFx =p'y and p+x and p + vy, then k=1 and x = y.

Proof. (1): for n = 1 there is nothing to show. Assume n > 1 and argue inductively: if
p| (z1-2p-1)xp, then p |z, or p|z1--x,-1 by Lemma 2.2.8. In the 1st case we are done,
and in the 2nd too by induction.

(2) follows from (1) because p | ; implies p =1 or p = z; if x; is prime.

(3): by cancellation it suffices to show k = ¢. Otherwise assume k < ¢ (the case £ < k is
analogous). Then p | p*~*y =z as £ -k >0, a contradiction. O

Theorem 2.2.9 (Fundamental theorem of number theory). For every natural n > 1 there
are r € N and primes p; < --- < p, and naturals kq, ..., k, >0 such that

n=pptph.
The numbers r,p1, ..., pr, k1, ..., k. are unique and called the prime factorization of n.

Proof. Existence: otherwise there is a minimal natural n > 1 that is not a product of
primes. Then n is not prime, say n = ry with 1 < z,y < n. By minimality of n, both x
and y are products of primes. Hence so is n, a contradiction.

Uniqueness: assume n = qfl---qﬁs for s,¢; > 0 and primes ¢; < -+ < ¢g;. We show by
induction that r = s and k; = ¢; and p; = ¢;. For n =2 this is clear.

Assume n > 2. By Lemma 2.2.8 (2), p; = ¢; and ¢; = p; for some 4, j. Then p; <p; = ¢; <
gj=p1,s0i=7=1and p; = q. Let v := p’;?---pff"" and y := q§2~--qﬁs — we agree the empty
product is 1. By Lemma 2.2.8 (2), p; +  and p; + 3. Since n = pf'z = ¢!y, Lemma 2.2.8 (3)
gives k; =1 and x =y. Now, if x =1, then r = s =1 and we are done. If x> 1, then r,s > 2
and pé"?---p’ﬁ = qu---qﬁs > 1. By induction, r = s and ¢; = k; and p; = ¢;. [

We introduce notation for the k;’s:
Definition 2.2.10. Let p be prime. The p-adic valuation v, : N - N is given by
v,(n) = max{k e N| p* | n}.

Remark 2.2.11. The fundamental theorem states n = [],p*»(™ where p runs over all
primes. Note the product is finite in the sense that all but finitely many factors are 1.

Exercise 2.2.12. Let n,m ¢ N.

1. n|m if and only if v,(n) < v,(m) for all primes p.
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2. How many divisors does n have?
3. gcd(n,m) = prmin{yp(n),yp(m)}’ lcm(n7m) = prmax{yp(n),yp(m)}.

Notation: for z € R let |x| denote the largest integer < .

Note the sum below is finite in that only finitely many terms are # 0:
Lemma 2.2.13 (Legendre’s formula). Let n,p € N, p prime. Then
vp(n!) = Lisol n/DF].

Proof. Count occurrences of p as a prime factor of a number < n. One per multiple of p:
|n/p| many. One additional occurrence per multiple of p?: |n/p?| many. And so on. [

2.3 Chebychev’s prime number theorem

How many primes are there? We want to know the growth rate of:
Definition 2.3.1. For n € N let 7(n) be the number of primes p < n.

Landau notation: Let f,g: N — R. Then both f < O(g) and g > Q(f) mean: there is
c € N such that f(n) <cg(n) +c for all n € N; if additionally g < O(f), then f =0(g).

Remark 2.3.2. We need some simple bounds on binomial coefficients. For 0 < k < n:

-1 - 1
(n/k)k < (Z) - %Z_ 1‘”71 ]1{:+ < nk/k‘! < (e-n/k)k.

The final < is equivalent to k*/k! < ek which is clear from the power series of e*.
Theorem 2.3.3 (Chebychev 1850). m(n) = ©(n/lnn).

Proof. ' Upper bound: let n > 0; a prime n < p < 2n divides (2n)! but not n!n!. Consider
the product [],,< <0, p, Where p ranges over primes. It divides the binomial coefficient

(") = Gl < (2e)" using Remark 2.3.2. Tt is > n™(")=7(W, Thus, n=2m=7(") < (2¢)" and
w(2n) - 7(n) < 2n/lnn,

Givenn > 2, choose ¢ € N minimal such that 2¢ > n. Note 2 < 2n and ¢ > Inn/In2. By the

above, m(2F) — w(2k-1) <2F/In(2F1) = 2¥/((k - 1)In2) for all k£ > 0. Thus,

< 72 =72 -2 + 727 - w(272) + (272) =+ w(22) - w(21) + 7 (2Y)

< (2= + 271 (0=2) + - +22/1+1)/In2< (12-2°/0)/In2 < 24 - n/Inn,

where the penultimate step is an easy induction. Hence, 7(n) < O(n/Inn).

T learned this proof from S. Glock.
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Lower bound: for a prime p we have z/p((zr?)) =1,((2n)!) - 2-v,(n!). By Legendre,

vp((7) = Tioo (120/0F | = 2 [nfp* ) < max{k | p* < 2n},
where the inequality follows from |2z | - 2|z € {0,1} for all z € R. Thus,

27 < (%) = Ty prime PG < (2) 7m0,

n

Thus, 7(2n) > In2-n/In(2n). This implies 7(n) > Q(n/Inn).

25

O

Remark 2.3.4. Chebychev gave estimates close to 1 for the constants in ©. The Prime
Number Theorem states that indeed 7(n)Inn/n —, 1. It was conjectured by Legendre and
16 year old GauB in the 1790s, and proved in 1896 independently by Hadamard and De La

Vallée-Poussin following Riemann’s seminal work from 1859.

Remark 2.3.5. More about primes.

1. A Fermat prime is a prime of the form 27 + 1. Then n is a power of 2: otherwise

write n = 2¥m for odd m > 1 and factor 2 +1 = (z+1)-(z™ ! —2™2+...—z+1) with
z:= 22", Fermat conjectured that all 22° + 1 are prime, a surprising error revealed by
Euler: 22° +1 = 641-6700417. It is conjectured that

22 1 1=3, 22 +1=5, 22 +1=17, 22° +1=257, 22" = 65537

lists all Fermat primes. The largest 22" +1 known to be composite is for k := 18233954
with prime factor 7- 218233956 4 1

. A Mersenne prime is a prime of the form 2" — 1. Then n is prime because 2+ — 1 =
(28 = 1)(1 + 2k + 2%k... + 20Dk - Cole refuted 1903, after “three years of sundays”,
Mersenne’s two centuries old conjecture showing 267 — 1 = 193707721 - 761838257287
is not prime. It is conjectured that there are infinitely many such non-primes. It is
also conjectured that there are infinitely many Mersenne primes. The largest known
is also the largest known prime: 2136279841 — 1. it has 41024320 digits.

. It is unknown whether there are infinitely many twin primes: a prime p such that
p+2 is also prime. The largest currently known one has 388342 digits. Brun showed
1919 that there are much less twin primes than primes: if mo(n) is the number of
twin primes < n, then m(n)/7(n) -, 0.

. Goldbach’s conjecture (1742) is also open: is every even n > 2 the sum of two primes?
Computers verified this for all n < 4-10'8.

. Dirichlet’s theorem (1837) states that for all coprime a,b € N there are infinitely many
primes of the form az + b where x € N. Theorem 6.9.15 proves this for b = 1.

. Green and Tao proved 2004 that there are arbitrarily long arithmetic progressions of
primes: for every £ >0 there are primes p; < --- < py such that ps —p; =+ =pp—ps_1.

Exercise 2.3.6. Let p >3 be a twin prime and ¢ := p+ 2 (prime). Show 12| p+g.
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2.4 The Chinese remainder theorem

Definition 2.4.1. For n € Z call x,y € Z congruent modulo n, symbolically x =y mod n,
if n | x-y. The equivalence class of x € Z is the residue class of x modulo n and denoted
[x]n, or Z if n is clear from context. The set of equivalence classes is denoted Z,.

Remark 2.4.2. This is indeed an equivalence relation. It is reflexive because n | z -z =0,
symmetric because n | z—y if and only if n | —(x-y) = y—x, and transitive because n | x -y
and n |y -z impliesn|(z-y)+(y-2)=x- 2.

We usually take n € N; note n and —n define the same relation. Any two numbers are
congruent modulo n := 1; only identical numbers are congruent modulo n := 0. If m | n, then
congruence modulo n refines congruence modulo m: x =y mod n implies =y mod m.

Remark 2.4.3. Let n>1 and x,2',y,y, 2z € Z.
1. [2]lp=x+nZ:={x+nz|zeZ}.
Indeed: ye[z], & n|r-y<nz=x-y for some z € Z < ycx+nZ.
2. There are n residue classes modulo n,namely [0],,...,[n - 1],.

Indeed: clearly, the listed classes are pairwise distinct; the list is complete: for x € Z
write = gn + r by Euclidian division, so 0 <r<n-1and r =2 —gn =z mod n.

3. If x=2" modn and y =y’ mod n, then
r+y=a2'+y modn, z-y=2'-y modn, xzy=2zy modn.

4. If x =y mod n and k €N, then 2% = y* mod n.
5. If 2+ 0 and zz =yz mod n, then 2 =y mod n/d for d := ged(z,n).

Indeed: n | (zz -yz) = z(x —y) implies n/d | (z/d)(z —y). By Remark 2.1.9 (3),
n/d, z/d are coprime, so n/d| (z —y) by Remark 2.1.9 (5).

E.g,1-2=4-2 mod 6 and 1 #4 mod 6 but 1 =4 mod 6/2.
Example 2.4.4. [0]5 = [2025]5, [1]5 = [66]5, [2]5 = |:—33:|57 [3]5 = [—102]5, [4]5 = [—1]5.
We sample some applications of reasoning with congruences.

Example 2.4.5. What is the last digit of n := 13147

Solution: that the digits are asa,_i---ap with a; <9 means n = a,10¢ +--- + a; 10 + ay. Hence,
ao is the unique natural < 9 with n = ag mod 10. We use the Russian peasant method,
i.e., repeated squaring: modulo 10 we have 13 =3, s0 132=9=-1, s0 13* = (-1)2=1, so
138 =1; then 136=13%-132=-1 and 134 =13%-136=-1=9. Hence, ag = 9.

Exercise 2.4.6. A natural n is divisible by 9 (or 3) if and only if so is the sum of its digits.

Exercise 2.4.7. Consider an equation a1 X +--- + @, X, = b mod n where aq,...,a,,b € Z,
n > 0 and Xi,..., X, are variables ranging over Z. Show it has a solution if and only if
ged(aq, ..., a.,n) | b. In case, how do you compute one?
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Example 2.4.8 (ISBN). Books are assigned an ISBN, a sequence of 11 digits (until 2007)
determining 10 naturals aq, .. <9 and ay9 £ 10. The numbers a4, ..., ag code information
about the book (editor etc.), and ayo is such that ;% i-a; =0 mod 11.

Assume one of the first 9 numbers is corrupted, say a;,. Then one can still compute
b:=3,.,% a;. Then ig-a;,+b=0 mod 11. Then a;, is a solution of i(¢cX =-b mod 11 and
the unique one in {0,...,9}. Thus a;, can be computed as in the previous exercise.

Theorem 2.4.9 (Chinese remainder theorem). Let r > 0, aq,...,a, € Z and assume that
ma,...,m, > 1 are pairwise coprime. Set m :=mq---m,.

1. The following system of equations has a solution in Z:

X=a; modmq, .. X=a modm,

2. For all 1 <i<r there is b; € Z with n. b; =1 mod m;. Then a solution s
my

3. If xo is a solution, then the set of solutions is [xg]m

Proof. (2) implies (1). (2): we claim m; and m/m; are coprime for all . Otherwise there
is a common prime factor p of m; and m/m;. Then p | my--m;_ym;;1---m, and Euclid’s
lemma gives j # with p | m;. As also p|m;, this contradicts m;, m; being coprime

Bézout gives y,z € Z with 1 = ym,; + Zor. Then 1 = zm/m; mod m; so b; == z is as
claimed. Let = be as in (2) and 1 <i <. Notemz| R fOl"j:#Z S0 a;- bJ_O mod m;.
Hence = = a;;-b; = a; -1 mod m;.

(3): let S be set of solutions and xg € S. We show S = [x¢],,,. If €S, then z =2y =qa;
mod m; for all j, i.e., m; | xg—x . Since my, my are coprime, Remark 2.1.9 (6) gives myms |
xo—z. But also mymgy and mg are coprime (see the argument above), so mymoms | xo — x
etc. Hence m | g — z, i.e., o = x mod m. Conversely, if m | xg - x, so m; | zo — = for all i,
so x =xo =a; mod m; for all ¢, i.e., x €S. O

Example 2.4.10. We compute all solutions (in Z) of
X=1 mod2, X=2 mod3, X=4 modb>.
We copy the notation: aq,as,a3 are 1,2,4 and mq, mo, ms are 2,3,5 and m = 30.

— we want blmﬂl =1 mod my, i.e., 15-b; =1 mod 2 and take b; := 1;

— we want by =1 mod my, i.e., 10-b2 =1 mod 3 and take b := 1;

— we want bgmﬂ3 =1 mod mag, ie., 6-b3 =1 mod 5 and take b3 := 1;

— we get a solution xg ::almﬂlb1+a2mﬂ2b2+a3mﬂ3b3:1~15~1+2-10~1+4~6-1=59;
the set of solutions is [59]3p = [-1]s0.

Exercise 2.4.11. Find the smallest n € N such that for all 2 < m < 7 the remainder of
(n,m) is m-1.
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2.5 Residue class rings
Definition 2.5.1. Let n > 1. For =,y € Z set

[2]n + [Y]n = [ + Y], [2]n - [y]n = [7 Y]n

Remark 2.5.2. These are well-defined by Remark 2.4.3 (2) and make (Z,,+,-) a commu-
tative ring (exercise). Further, x — [x], is a ring epimorphism from Z onto Z,.

Examples 2.5.3. Here are the tables for Zs and Zy:

101323 101 2 3
6813 08(1)(2) 00 1 2 3 070 000
z,. 0012 01000 > 1|1 2 3 ¢ 110 1 2 3
111 2 0 110 1 2 |z Z Z Z i B
505 0 1 500 5 1 212 3 0 1 210 2 0 2
313012 300321

In Zs we have 271 = 2, so every 7 # 0 has a multiplicative inverse and Zs is a field.
In Z4 we have 2 # 0 and 2-2 = 0, so 2 is a zero-divisor and Z, is not an integral domain;
its units are Z; = {1,3} with 3-1 = 3.

Exercise 2.5.4. Let n > 1. Give an isomorphism from (Z,, +,-) onto ({0,...,n—1},+,")
where i+’ j,i - j are defined as the remainders of (i +j,n),(i-7,n).

Exercise 2.5.5. Recall Definition 1.6.8. Show (Z,,+) = (Cy,-).
Proposition 2.5.6. Let n>1. Then Z, is a field if and only if n is prime.

Proof. «<: assume n is prime. We have to show that for every 7 € Z, ~ {0} there is y € Z,
such that -7 = 1. Then n + z, so ged(z,n) =1 as n is prime. By Bézout’s lemma there
are y,z € Z such that 1 =yz +2zn. Then 1=y-2+2z-n. But n=0,s0 1 =¢-7Z..

=: assume n is not prime, so there are 1 < x,y < n with n = 2y. Then 0 = 7 -7 and
7+ 0 and 3 # 0. Hence, Z, is not an integral domain, so not a field. O

Notation: for a prime p the field Z, is denoted I,

Using the field structure it is easy to prove:

Theorem 2.5.7 (Wilson). n > 1 is prime if and only if (n—1)! = -1 mod n. Moreover,
(n=1)!'=0 mod n if n is not prime and n + 4.

Proof. Clear for n < 3. Assume n > 3. <: if n> 1 is not a prime, let 1 < ¢ <n be a prime
factor. If n/q # q, then n=q-n/q| (n-1)!, so (n-1)! =0 mod n. If n/q = q, then n = ¢*
and we have two subcases. If ¢ = 2, then n =4 and (4-1)! =2 mod 4; if ¢ > 2, then
2g<¢*=nand 2n=q-2q|(n-1)!,s0 (n-1)!=0 mod n.

=: if n> 1 is prime, Z, is a field. Let f map 0 <i <n to the unique 0 < j < n such that
[¢]n - [J]n = [1]n; note that then f(j) =i. We have f(1) =1 and f(n—-1) =n -1 but no
other fixed points: if 1 <i<n-1, theni?—1=(i—-1)(i+1) #0 mod n because i—1,i+1 %0
mod n (and Z, is an integral domain). Hence 2---(n —2) =1 mod n — it is a product of
(n-3)/2 many 1 modulo n. Then (n-1)!=1-(n-1)=-1 mod n. O



CHAPTER 2. NUMBER THEORY 29

Another easy application is:

Theorem 2.5.8 (Fermat’s little theorem). If p is prime and x € Z with p + x, then
2P1=1 mod p.
Proof. §+~ z-j permutes Z,~{0}, s0 2--p-1=22z(p-1)=2P"1-2-p-1,s0 271 =1. [0

Remark 2.5.9. There are infinitely many Carmichael numbers: composite n such that
2" 1 =1 mod n for all z coprime to n. Below 108 there are only 255 of them, the first
three are 561 =3-11-7,1105=5-13-17 and 1729="7-13-19.

What does the Chinese remainder theorem tell us about the ring 7Z,,7

Lemma 2.5.10. Let r > 0 and (Ry,+1,1), .., (R, +r,+) be (commutative) rings. Then
their direct product Ry x---x Ry, is a (commutative) ring with +,- defined for all (x1, ..., z,),
(Y1,--,Yr) € Ry x - x R, as follows:

(T1+1 Y15 T+ Y ),

(T11 Y1 oo Ty o Yr).

(Ily -"7'1:7’) + (yh "'7yT)
(33'1, "-7'x1“) . (y17 "'73/7")

Further, (Ry x - x R.)* = RY x -+ x RX.

Proof. Associativity (commutativity) and distributivity of +,- are clear. The neutral el-

ements are (0q,...,0,),(1y,...,1,) with 0;,1; denoting the neutral elements of R;. The

additive inverse of (z1,...,x,) is (=121, ..., =2, ) with —; denoting additive inverse in R;.
Further: (z1,....,2.) (y1,..-,yr) = (11, ..., 1) if and only if x; -; y; = 1; for all 1. O]

Corollary 2.5.11. Let r >0 and mq,...,m, > 1 be pairwise coprime, and m := mq---m,..
Then Ly, = Ly % -+ X Loy, ViG

EAEE (I PR £

Proof. The map is well-defined: if [x],, = [#'], then ' = 2 mod m; for all ¢ (as m; | m),
e, ([Z]mys o [T]m,) = ([2 ]mys -5 [2"]m, ). Tt is clear that the map preserves +,- and 1. It
is surjective by Theorem 2.4.9 (1). Hence it is bijective (both rings have size m). O

Example 2.5.12. Z, # 7y x Zy: note x +x = 0 for all x on the right, but not on the left.
The additive group of Zy x Zs is the Klein four-group and denoted

Ky.

More generally, one easily sees that (the additive subgroups of) Z, x Z,, and Z,,, are
not isomorphic if n, m are not coprime (exercise).
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2.6 FEuler’s totient

By Proposition 2.5.6, if n is prime and z,y € Z, \ {0}, the equation Z- X = y has exactly 1
solution in Z,, namely z-!'y. What about non-prime n > 1?7 We show there are either 0 or
“ged(z,m)” many solutions. We avoid this notation but it makes sense — the reader might
verify as an exercise: if T = 7/, then ged(z,n) = ged(x',n).

Lemma 2.6.1. Let n>1 and z,y € Z,. Then T-X =1y has a solution in Z, if and only if
d:=ged(z,n) | y.
Moreover, if Z € Z,, is a solution, then there are exactly d solutions, namely

zZ, z+nld,...z+ (d-1)n/d.

Proof. Assume there is z € Z with -z = g, i.e., Tz = y; then n | y — 2z, so y = un + xz for
some u € Z; then d | y. Conversely, assume d | y, say y = ud for some u € Z; by Bézout,
Y = uupx + uuyn for some g, u; € Z, so i = utly - T + 0 and Wy is a solution.

Moreover, the listed classes are solutions: Z -z +in/d = Tz + (z/d)in = § + 0. They are
pairwise distinct: if i,7 < d and z+1in/d = zg + jn/d, then n | (z + jn/d) - (z + in/d) =
(j—i)n/d, i.e., un=(j—i)n/d for some ueZ, soud=(j—-1). Buti,j<d, soj=i.

No other solutions: assume -z’ = ¢, so xz’ = zz =y mod n. Then 2’ = z mod n/d
by Remark 2.4.3 (4). Then 2’ = z + u-n/d for some u € Z. Write u = qd + r by Euclidian

division, so 0 <r <d. Then 2/ =z +qn +rn/d, so z' = z + rn/d. ]

We leave the verification of the following as an easy and recommended exercise.
Corollary 2.6.2. Let n> 1, and T € Z, ~ {0}. The following are equivalent.

1. T eZ.

2. ged(z,n) = 1.

3. For all iy € Z, there is zZ € Z,, such that T -z =17.

4. For all y € Z,, there is exactly one zZ € Z,, such that x -z =79.

5. T is not a zero dwisor in Z,,.
Example 2.6.3. Is [109]34; € Z3,,? If so, find 0 < k < 341 with [k]34 = [109]34;-
Solution. following Euclid’s algorithm write:
341=3-109+14, 109=7-14+11, 14=1-11+3, 11=3-3+2, 3=1-2+1.
So ged(109,341) =1 and the answer is yes. Then plugging in backwards:

3-2=3-(11-3-3)=4-3-11
4-(14-11)-11=4-14-5-11
4-14-5-(109-7-14) =39 14— 5-109
39(341-3-109) - 5- 109 = 39 - 341 — 122 109,

1

s0 109 (-122) =1 mod 341 and [109]5}, = [~122]341 = [219]541. 0
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Remark 2.6.4. By Remark 1.1.18, Z is an abelian group (with -).

Exercise 2.6.5 (Another view of ZX). Let n > 1. If & € ZX, then z(y) := T -y defines an
automorphism of the group (Z,,+). Any automorphism has this form. Conclude = ~ @z
is a group isomorphism from (Z,-) onto Aut(Z,,+).

Definition 2.6.6. Euler’s totient ¢ : N\ {0} - N is defined by ¢(1) =1 and for n > 1:
p(n) = |Zy].

Remark 2.6.7. By the previous corollary, for n > 1, ¢(n) is the number of 1 < z < n with
ged(z,n) = 1. In particular, p(p) = p—1 for a prime p. For composites, e.g.,
n [4]6|8]9]10]12|14|15[16|18]20 21|22 242526272830
p(n)|2|2]4]6[4]4]6|8][8|6][8]|12[10]8[20|12][18]12] 8

We now learn how to compute . First, we generalize Fermat’s little theorem:

Theorem 2.6.8 (Euler). Let n>1 and x € Z be coprime to n. Then
29 =1 mod n.
Proof. We have T € Z. Let Ty, ..., Ty(n) list Zy. Since Z7 is a group, § = T -y permutes Z
(cf. Exercise 1.1.3). Thus, z#(") =1 follows by cancellation from
Ty = (T11) (T p(ny) = TP - 21T (- O
Lemma 2.6.9 (Multiplicativity). ¢(nm) = p(n)p(m) for all coprime n,m > 0.

Proof. We can assume n,m > 1. By Corollary 2.5.11, Z,, 2 Z,, X Z,,,. The isomorphism
maps units onto units, i.e., ZX, onto (Z,xZ,)*. By Lemma 2.5.10, the latter is ZXxZ,. O

Theorem 2.6.10. Let n > 1 have prime factorization n = p'flu-plﬁr. Then

p(n) = P -1 e =1) = n-(1=1/p1)(1-1/py).
Proof. By Lemma 2.6.9 it suffices to show ¢(p*) = (p* — p#~1) for primes p and k > 0. For
this is suffices to show there are exactly p*~! numbers 1 < x < p¥ which are not coprime
to pF. But ged(z, p¥) > 1 means p | x, so x = pm for some 1 <m < pFL. O

Exercise 2.6.11. How many 0 < n < 3000 are coprime to 30007 Show 22378001 is divisible
by 3000. Is 246 — 1 prime?

Theorem 2.6.12 (Totient sum formula). Let n>0. Then ) ¢(d) =n.
dln

Proof. We first treat the case n = p* for a prime p and k> 0. Then our sum is
p(1) +o(p) ++ o) =1+ (p-1) +p(p-1) +-+p*(p-1) = p~.

Now proceed by induction. For n =1 our claim is trivial. Given n > 1 let write n = p*m
with p prime and p + m. The divisors of n are d, dp, ..., dp* where d | m. Hence our sum is

P P(d) + L ©(dp) + -+ Ty 0(dp*) = (1 +@(p) + -+ 0(p*)) - Lapm ().

The 1st factor is p* as seen above, the 2nd is m by induction. O

We shall later see a more abstract proof (cf. Corollary 5.3.24).
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2.6.1 RSA encryption

Rivest, Shamir and Adleman suggested 1977 the following protocol of secret communication
that is widely in use today. The basic idea is as follows.

Alice wants to send a secret message to Bob, say of 100 bits, that is, she wants to send
a number m < 2199, She sends a ciphertext instead the message, a number ¢ instead m.
Bob should be able to recover m from ¢ but nobody else, so Bob should know something
nobody else does, not even Alice. Here is how it is done.

Bob chooses two primes ¢ > p > 2190 and e(ncryption) coprime to ¢(pg) = (¢—1)(p-1).
The primes p,q are Bob’s secret. He sends n := pg and e to Alice. Alice sends to Bob ¢ :=
the remainder of (m®¢ n). Bob computes d(ecryption) such that de =1 mod ¢(n) (say, by
the Euclidian algorithm). He decrypts the message m as the remainder of (¢¢,n).

This works: for some k € N this remainder is = ¢ = me? = m**¢(®) = ; mod n by Euler
(m < p < q is coprime to n); both the remainder and m are < n, so equal.

Is this encryption secure? Can Eve, seeing c,n, e, compute m? The hope is that Eve
needs ¢(n) to compute d and for that she needs p,q, i.e., to factor n. Many believe (or
hope) that factoring large integers cannot be done in reasonable time. There are, however,
no results in computational complexity theory that would support this belief.

2.7 Primitive roots

By Euler’s Theorem 2.6.8 the following is well-defined:

Definition 2.7.1. Let n > 1 and 0 < x < n be coprime to n. The order of x modulo n is
the minimal & > 0 such that z* =1 mod n. If this is p(n), then x is a primitive root of n.

Remark 2.7.2. Let n>1 and x coprime to n of order k£ modulo n.

1. For all £>0, =1 mod n if and only if k | £.

<: if £ = km, then z¢ = (zF)™ =1m =1 mod n.

=: write £ = gk +r with 0<r <k and ¢ > 0; then 1= (2)?-2" = 2" mod n, so r = 0.
2. k|¢(n) (by Euler’s theorem).
3. For all £,¢', x* = 2 mod n if and only if k| (¢ - ¢").

Indeed: say, ¢ < {; then z¢ =2 mod n, 2¢~* =1 mod n, k| ({ - ') are equivalent.
4. For all £ € N, z¢ has order k/ged(k,¢) modulo n.

Indeed: (2f)7 =1 mod n 8 k|tlj < klged(k,0) | j-€]ged(k,l) < kfged(k,l) | j
(by Remark 2.1.9 (3), (5)). The minimal such j > 0 is k/ ged(k, ).

Examples 2.7.3. 2,3,4 have primitive roots 1,2,3. Z3 = {1,5} and 5 is a primitive root
of 6. The tables below show 5 has primitive roots 2,3 and 7 has primitive roots 3, 5.
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8 does not have primitive roots: Z3 = {1,3,5,7} and 32 = 52 = 72 = 1. Seeing Corol-
lary 2.7.5 below, note there are > 2 many 1<z <8 with 22=1 mod 8.

Zx | x? | a3 | xt | 25 | 28 | order
7% | 2 ‘ x3 ‘ x4 ‘ order 2 1411 3
214131 4 3121614 ]3]1 6
314121 4 41211 3
4|1 2 5141612131 6

6 |1 2

Lemma 2.7.4. If n>1 has a primitive root, then (Zyy, +) = (Z7,-).

Proof. If z is a primitive root of n > 1, then [1],, [%]n, [2%]n, .., [2#(~1], lists ZX and the
map [i],en) = [2], for 0 <i < ¢(n) is an isomorphism. O

This lemma turns multiplicative problems into additive ones. E.g.:

Corollary 2.7.5. Assume there exists a primitive root of n > 1 and let y € Z be coprime
with n. Then there are 0 or 2 many 1 < x <n such that x> =y mod n.

Proof. Note no such z can be a zero-divisor in the ring Z,, so z € ZX. Write m = @(n).
By the isomorphism the number of such x is the same as the number of [z],, € Z,, such
that [2], + [2]m = [2]m - [2]m = [u]m where [u],, € Z,, corresponds to [y], € ZX under the
isomorphism. By Lemma 2.6.1, there are 0 or 2 of them. O

We saw 2,3 have 1 = ¢(2-1) = ¢(3 - 1) primitive roots, and 5,7 have 2 = p(5-1) =
©(7-1) many. This is generally so:

Theorem 2.7.6. If p is prime and d | p— 1, then there are exactly p(d) many naturals
below p of order d modulo p. In particular, there are exactly o(p—1) primitive roots of p.

Proof. For d | ¢(p) =p—1let 1»(d) be the number of 0 < z < p that have order d modulo p.
Then ¥ y4,-1 ¢(d) = p—1. By Theorem 2.6.12 it suffices to show 1(d) < ¢(d) for all d | p—1.

Analogously to the corollary, one sees that there are < d many 0 < y < p such that y? =
mod p (alternatively use Corollary 3.3.3 in the field Z, = F,).

Assume ¥(d) > 0, so there exists z of order d modulo p. Choose 0 < xg,...,24.1 <P
with zg = 1,21 = x, [22], = [2%]p, -+, [Ta-1]p = [t 1]y As the z; are pairwise distinct, all y
of order d modulo p appear. By Remark 2.7.2 (4), z; has order d modulo p if and only if
ged(i,d) = 1. These are ¢(d) many. Thus, ¥(d) < ¢(d). O

Exercise 2.7.7. Assume n > 1 has a primitive root and let d € N. How many 0 <z <n
coprime to n have order d modulo n?

8 is the first natural without a primitive root. What’s so special about 87

Theorem 2.7.8. Let n>1. Then there exist primitive roots of n if and only if n equals 4
or p* or 2pF for a prime p>2 and k € N.
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Proof. =: We first show 2% does not have a primitive root modulo for k > 2. Clearly, such
a root would be an odd z, say x =2y +1. Then 22 =4y? +4y+1=4y(y+1)+1=8z+1 for
some z € N. And z* = 8222+ 162+ 1 = 16u + 1 for some u € N. And so on. By induction,
227 = 2ky+1 for some v € N. Hence, 22 = 1 mod 2, so z has order < 2¥-2 < 2k=1 = (p(2F).

Assume there is a primitive root of n > 1. By the above, it suffices to show that n cannot
be written n = ngn; with coprime ng,n, > 2. Otherwise, by Corollary 2.5.11, Z,, = Z,, X Zy,
as rings. By Corollary 2.7.5, Z,, x Zy, has < 2 elements x with 22 = 1. But it has > 4,
namely (+1,+1)— we have 1 # -1 in both Z,, and Z,, since ng,n; > 2.

<: we show pF has a primitive root. We can assume k > 1. Let z be a primitive root of p.
Set y := +p and note yP~! = 2P~ + (p—1)aP2p+mp? for some m € Z; note p—2 makes sense
as p > 2. By Fermat xP~! =1+ m/p for some m’ € Z, so y?~ =1+ (m' + (p - 1)2P~2)p + mp?.
Note p + (p—1)xP=2. We can assume that p + (m’+ (p—1)xP=2): indeed, one easily checks
that otherwise this condition is ensured for y = x + 2p.

Thus, y?~! = 1+mgp and for some mq € Z with p + mg. Now (yP~1)P = 1+mep? + m/'p3 =
1+mqp? for some m"”,my € Z with p + m;. Then (y?®-D)? = 1+mp3+m"'p* = 1+myp? for
some m'’',mq € Z with p + my. Continuing, we get for all £ € N some my € Z with p + my
and y? (P = 1 + mypt+L.

The order e of y modulo p* divides ¢(p*) = p*1(p-1), so e = p'd for some £ < k-1 and
d|(p-1). Then e|p‘(p-1), so y?®D =1 mod p*, so 1+mep®t =1 mod p*, so £+1 > k.
Thus £ =k -1 and e = p*1d.

By Fermat, y* = y =z mod p, so y?" has order p — 1 modulo p. Since (yp[')d =yt =1
mod p we have p—1|d. Hence, p—1=d. Thus, e = p(p*) and y is a primitive root of p*.

Finally, we show 2p* has a primitive root: we want an element z of the ring Zy,+ whose
powers are Z;pk. By Corollary 2.5.11, we want a pair (z,y) whose powers in Zj x Z,. are

73 x Z;k. Easy: set x :=1 and y := a primitive root of p*. O]
Remark 2.7.9. No efficient algorithm is known for determining primitive roots.
Exercise 2.7.10. Carmichael numbers do not have primitive roots (cf. Remark 2.5.9).
Exercise 2.7.11. For every prime p there is n € N such that np + 1 is prime.

Hint: Let q be a prime divisor of 27 — 1 and consider the order of 2 modulo q.

2.7.1 Digital Signature Algorithm

Alice wants to sign a message m to Bob. A signature should be a small amount of in-
formation allowing Bob to efficiently verify that indeed Alice was the sender. The public
information is p, q, g where p > ¢ are primes such that p =1 mod ¢ and g < p has order ¢
modulo p (by Theorem 2.7.6 there are ¢(q) = ¢ —1> 0 such gs).

Alice chooses the private key 0 < x < ¢ at random and keeps it secret; she publishes
y = g* mod p, the public key; here, we write 2 mod p for the remainder of (z,p).

Each time Alice wants to sign a message m < ¢, she chooses 0 < z < ¢ at random and
computes 0 < z7! < ¢ with z- 271 =1 mod ¢; she sends the signature (a,b) where

a:=(¢g° modp) modgq, b=z (m+2za) modyq.
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Bob, upon receiving a pair (a,b), checks that a equals

a = (gmlf1 4" mod p) mod g.

This check clears for (a,b) sent by Alice: since z = (m + xa)b~! mod ¢ we have

mb~t  ab7!

Y mod p.

z = g(m+am)lf1

g =y

Can Eve fake Alice’s signature? One hopes, the only way to find (a,b) passing Bob’s
check is to compute z from p,q,g,y, i.e., to solve y = ¢¥ mod p — this is known as the
discrete log problem and believed or hoped to be computationally hard.

To sign large messages m > ¢ one replaces m above by a so-called cryptographic hash
of m, a number < ¢q. One chooses large p for security, and small g to get short signa-
tures. E.g., the U.S. Department of Commerce and National Institute of Standards and
Technology (1994) officially recommends 1024 bits for p, and 160 bits for q.

Remark 2.7.12 (Diffie-Hellman key exchange 1976). Alice and Bob can share a secret as
follows: Bob sets a private key Z and a public key 7 := ¢% like Alice. The shared secret is y*
mod p = ¥ mod p computable by both but hopefully not by Eve: one hopes computing
g*® mod p from g%, g* requires z, T, so solving instances of the discrete log problem.

Exercise 2.7.13. Why should Alice avoid using the same z signing different messages?

Exercise 2.7.14 (ElGamal encryption). Bob can encrypt a message m < p to Alice as
follows. He chooses secretly a random z < p and sends the ciphertext (co,c1) where

co:=¢° modp, c:=my* mod p.

Show Alice (knowing x) can decode by computing &2 *"'¢; mod p.

2.7.2 The Miller-Rabin primality test

How to decide whether a given number n is prime? A good “witness for compositionality”
of n is a prime factor of n. By Exercise 4.2.8, a composite n has a prime factor < \/n. We
can check whether one exists by first computing all primes < \/n.

The Sieve of Erathostenes does this as follows: start with a list of all numbers < /n.
Mark 1 and all multiples of 2 except 2; mark all multiples of 3 except 3;...; choose the first
unmarked number p not yet considered and mark all its multiples except p. The finally
unmarked numbers are the primes < y/n. This method is unfeasible: for an input n of only
160 digits, the size of the list is about the number of atoms in the observable universe.

Another way to make the point: to decide whether an input n is prime, you run
a program that checks for each m < \/n whether m | n; say n has 40 digits and your
computer does 1 billion checks per sec; then, if n is prime, you wait > 1000 years, and 55
digits make you wait more than the age of the universe.

We now design a fast probabilistic algorithm that your PC executes in only a split
second on much larger inputs — but has a 0.001% chance of error. The key is a concept of
“witness” with the property that most numbers < n are witnesses if n is composite.
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Definition 2.7.15. Let n > 1 be odd and write n — 1 = 2'm for odd m and t > 0. An
RM-witness for n is a number 1 < x < n such that

1. 271 #1 mod n, or,

2. there is j <t such that 2™ # 1 and 2%"'™ =1 mod n.
Proposition 2.7.16. If n > 1 is prime, then there is no RM-witness for n.

Proof. "' =1 mod n by Fermat. If 2™ # +1 and 22"'m = 1 mod n, then +1 and the
remainder of (z%™, n) are 3 solutions of X2 =1 mod n, contradicting Corollary 2.7.5. [

Exercise 2.7.17. A proper subgroup H of a finite group G has size |H| < |G|/2.
Hint: for x € G~ H consider the set of xh,h e H.

Theorem 2.7.18. Every odd composite n > 1 has >n/2 many RM-witnesses.

Proof. Write n —1 = 2'm as above. Call x € Z bad if it is not an RM-witness. Then
T €7 since z-2"2 =1 mod n. By the exercise, it suffices to show that there is a proper
subgroup B of Z} that contains & for every bad x. This is clear in case there exists 7 € Z
such that 2”1 # 1 mod n: take B to be the set of § € ZX such that y"' =1 mod n.

So assume z" ! =1 mod n for all Z € Z¥, i.e., n is Carmichael. By Exercise 2.7.10 (and
Theorem 2.7.8), n is not a prime power, so n = ngny for odd coprime ng,n; > 1.

Let j <t be maximal such that 2™ = -1 mod n for some = € Z — such j exist, e.g.,
(-1)2"m = -1 mod n. Set

B:={yeZ;| y¥™ =41 mod n}.

Clearly, B is a subgroup and contains 7 for every bad y: either all y2'™ are =1 mod n,
or there is i < t such that 2™ # 1 mod n and 2™ = 1 mod n; as y is bad, y2'™ = -
mod n; by choice of 7 we have i < j, and hence y € B. We are left to show B # Z}.

The Chinese remainder theorem gives z with z =2 mod ng and z=1 mod ny;. Then

J J
Z2mEI2mE

-1 mod ng, 22m=1 mod n,.
This means, the isomorphism of Corollary 2.5.11 maps 72m to (-1,1). Note -1 # 1 as
ng > 2. Thus z2™ # 1 in the ring Z,; hence, z ¢ B. O

The Miller-Rabin test The algorithm takes as input n > 1 odd and k > 1 and works as
follows: choose 1 < z1,...,x, < n —1 independently and uniformly at random and test for
each of them whether it is an RM-witness for n. If there is one, then answer “composite”,
otherwise answer “prime”.
If n is prime, the algorithm answers “prime” for sure (Proposition 2.7.16). If it is
composite, it errs and answers “prime” only with probability < 2% (Theorem 2.7.18).
Some basic algorithmics give efficient RM-witness-checks.
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2.8 The law of quadratic reciprocity

This section studies the question whether X2 = a mod n has a solution in Z. The Legendre
symbol is a cumbersome but established notation for the answer with a special treatment
of the case a =0 mod p:

Definition 2.8.1. Let n > 1 and z € Z. Then x is a quadratic residue modulo n if y? = x
mod n for some y € Z; otherwise it is a quadratic nonresidue modulo n.
For a prime p > 2, the Legendre symbol is

1 if p+x and x is a quadratic residue modulo p,
(—) :=¢ -1 if p+ 2 and z is a quadratic nonresidue modulo p,
p 0 ifpla.

I
[}

Exercise 2.8.2. Let p > 2 be prime, a,b, c € Z with a coprime to p. Then aX?+bX +¢
mod p has a solution if and only if (b2 — 4ac) is a quadratic residue modulo p.

Examples 2.8.3. Modulo 11 and 13 and 15 we have quadratic residues 1,3,4,5,9 and
1,3,4,9,10,12 and 1,4,6,9, 10:

o @ |1[2]3]4[5]6[7|8[9]|

W T Z[9]5(3]3[5]9]4] 1

7 x |1]2[3|4|5[6|7]8|9]10]11]I
WA T T A 9312 (10|10 (1239 [ 4] 1
" x |1]2[3|4|5[6|7[8[9[10|11[12]|13]1L
B T T E[ 9| 1[10[6[4[4[6[10][ 19|41

Proposition 2.8.4. Let p > 2 be prime. Then exactly half of {1,....p—1} are quadratic
restdues modulo p.

Proof. By Theorem 2.7.8, p has a primitive root. Map 1 <z <p-1tothe l1<y<p-1

such that 22 =y mod p. By Corollary 2.7.5, each value has exactly 2 preimages. [
Theorem 2.8.5 (Euler). Let p > 2 be prime and x € Z. Then (f) =2 mod p.

p
First proof. We can assume x # 0 mod p and write x = ¢g* mod p where k € N and ¢ is a
primitive root of p. Then ¢(®»1/2 = -1 mod p because it is not 1 and its square is 1 by

Fermat. Clearly, z is a quadratic residue modulo p if and only if k£ is even. But

D2 = (gr-D/2)k = (_1)k mod p. ]
Second proof. If (%) =0, then (V2 = 0 mod p. If (%) = 1, say 42 = = mod p, then
x®1/2 = yr-1 =1 mod p by Fermat (and y # 0 mod p). If (%) = -1, we argue as Wilson:

pair each 1 <y < p—1 with the 1 < z < p—1 such that yz = x mod p; then z is paired with y,
and y # z as x is a quadratic nonresidue. Thus (p-1)!=z®D/2 mod p and (p-1)! = -1
mod p by Wilson. ]
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Corollary 2.8.6. Let p>2 be prime and x,y € Z.

H(3)- () ()
P p) \»

The product of two quadratic residues or nonresidues is a quadratic residue, and the

product of a quadratic residue with a quadratic nonresidue is a quadratic nonresidue.

2 (5) =1 (5= ()=t (3)=(neore

Lemma 2.8.7 (GauB). Let p > 2 be prime and x coprime to p. Let k be the number of
remainders of (x,p), (2x,p), ..., (p%l:c,p) that are > p/2. Then

()

Proof. Let ry, ..., list the remainders > p/2 and sy, ..., s, the remainders < p/2. Then
k+0=(p-1)/2. Further, the numbers p — r; are < p/2 and pairwise distinct, and distinct
from the s;: assume p —r; = s;, and, say, 7; is the remainder for 1 < i* < p-1/2 and s;
for 1 <j*<p-1; thenp—rZ =¢*x mod p and s; = j*x mod p, so i*x = j*x mod p, so
p|x(i +j *); since p 4 z, this implies p | i* + j* < p/2 + p/2, a contradiction.
It follows that the p—r; and s; list 1,...,(p—1)/2. Thus
p-1,_

1
= (-1)*ry-rpsyesp = (=1)Fz - 22 pTa: mod p,

o (=1)kz(#-1/2 =1 mod p. Now apply the previous theorem. O
Lemma 2.8.8. Let p>2 be prime and x be odd and coprime to p. Then
(p-1)/2

(E) =(-1)' where t:= Z liz/p].
p i=1

Proof. Define ry,...,7, S1,...,5¢ as in the previous proof. E.g., if r; is the remainder of
(yap)a then y=p- [y/pJ +7;. Observe

(p-1)/2 (P*l)/Q
1T

lix/p| + Zrl + 2537
-1 -1

(p-1)/2 k ¢
Z;(p—ﬂ')"‘zsj = k'p—ZTH'Z;Sj,

?
(r-1)/2 » (r-1)/2

(z-1) ; p-( Z liz/p| - )+2Zn,

i=1
where the 3rd follows by subtracting the 2nd from the 1st. Its l.h.s. is even as x is odd, so
P D22 /p] -k =0 mod 2. The lemma follows. H

2 2
Corollary 2.8.9. Let p>2 be prime. Then (—) = (=1)-D/8,
p
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Proof. Note Z(p D22 (p-1)/2-((p-1)+2)/2-1/2 = (p*-1)/8. The last displayed formula
above gives (p? -1)/8 = Z(p D2132/p| - k mod 2 and all [i2/p] = 0. O

Exercise 2.8.10. Let p > 2 be prime. Then X? =2 mod p has a solution if and only if
p=+1 mod 8. And X?=-1 mod p has a solution if and only if p=1 mod 4.

The following result is very surprising. Gaufl proved it 1801 and referred to it as the
“theorema aureum”.

Theorem 2.8.11 (Quadratic reciprocity). If p,q > 2 are distinct primes, then

(£)(2)- o

Proof. Let S be the set of pairs (z,y) with 1 <z <p-1and 1 < ¢ < ¢-1; it has size
(p—-1)(q—-1)/4. Partition S into Sy, S; where Sy contains the (x,y) with gz > py and
S1 the (z,y) with gz < py; note qx = py is impossible. Note (x,y) € Sy if and only if

1<z <p-Tand 1<y <gafp, so |So| = £ gu/p]. Similarly, |Si] = ¥4 |py/q).
Now Lemma 2.8.8 implies the theorem
(p-1)/2 (g-1)/2
p-1 qg-1
> lax/pl+ Y lpyle) = ————. O
x=1 y:l 2 2

Remark 2.8.12. Note (p-1)/2 is even if and only if p=1 mod 4. Hence another way to
phrase the reciprocity law is:

(2):(2) ifporgis=1 mod 4,

q p

(2):_(2> if both p and ¢ are =3 mod 4.

q p
The reciprocity law enables very quick computations — if one has prime factorizations:

Example 2.8.13. Is 1001 a quadratic residue modulo the prime 999917 Write 1001 =

7-11-13 and (%) = (ﬁ) (%) (%) and consider each factor in turn.

(99591) = (99?91) since both numbers are 3 mod 4, = —(%) as 99991 = 3 mod 7,
= % since both numbers are 3 mod 4, = ( ) =1 since 7=1 mod 3.

sor) == (2228) = — () = -1 since 99991 = 1 mod 11.

o (o) = (%%1) since 13 = 1 mod 4, = (42) since 99991 = 8 mod 13, = (&) by

99991 13 13
Corollary 2.8.6 (2), = (=1)(13-1/8 = (~1)2L = —1 by Corollary 2.8.9.
Thus the answer is yes. Indeed, one can verify 385212 = 1001 mod 99991.

Example 2.8.14. Here is why the prime 773 is a quadratic residue modulo the prime
1373: since 773 = 1 mod 4, we have (£2) = (£Z) = (&) - (23'52'3) = (&) (&)

1373 773 773 773 73) \73
by Corollary 2.8.6 (2). Both factors are —1: (&) = (-1)(7™*-D/8 = (-1)74691 = _] by

Corollary 2.8.9; and (773) (753) ( )as 773=2 mod 3, = (-1)B*-D/8 = _1.
1001)

Exercise 2.8.15. 9907 is prime. Compute (9907
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2.9 The Jacobi symbol

Definition 2.9.1. The Jacobi symbol (f) extends the Legendre symbol to odd naturals
n
n>1. If n =pq---py for odd primes p;, then, using the Legendre symbol on the r.h.s.,

x x x
()= G)-G)
Lemma 2.9.2. Let x,y € Z and n,m > 1 be odd.
=) GR=G)-G)
. If ged(z,n) > 1, then (£) =0
If ged(z,n) =1, then( ’
. If =y mod n, then(

()= Cnen, (3
. If ged(n,m) =1, then(

8 3|

) - (%) - 1.
)= (%)
) = (~1)@*-nss,

()= (1)

let n = p --pF" be the prime factorization. For the first
(2) and note

Sle 3

S N S

Proof. (1)-(4) are easy. For (5),
statement, recall Corollary 2.8.6

(2)- ()" - Pl 2y - 0, st = S

n bi i=1 i=1

We claim (n—-1)/2 =k mod 2. Since p; — 1 is even, the binomial formula implies
pii=(1+(pi-1)k=1+k(p;—1) mod 4.

Noting (p; - 1)(p; —1) =0 mod 4 we get
”EH(1+ki(pz—1) 51+Z/€i(pz—1) =1+2k mod 4.
i=1 i=1

This implies (n—1)/2 =k mod 2 (by Remark 2.4.3 (4)), and thus our claim.
The 2nd statement of (5) is proved similarly using Corollary 2.8.9 and 8 | n?2 — 1. For
(6), let m = qfl---qﬁ“’ be the prime factorization and use the law of quadratic reciprocity:

ny (M) pi) @) kil _ (1Y where © Yiki(pi—1)/2
(m) (n) lz‘_j[((Qj) (pi ) S Ci=%,6i(q - 1)/2.
Note p; # g; as n,m are coprime. As seen above, k¢ = (n—-1)/2-(m-1)/2 mod 2. O

Proposition 2.9.3. Let n > 1 be odd and x € Z coprime to n. If x is a quadratic residue
modulo n, then (f) =1.
n
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Proof. Let n = py---p, for odd primes p;. If y?> =2 mod n, then y?> =2 mod p;. Since p; + x,

(E)—l Hence, (g):(pﬂl)m(%)ﬂ. O

Example 2.9.4. The converse is false: (%) = (%)( ) (-1)(-1) =1 and (%) (%)3 =1

but 2,8 are quadratic nonresidues modulo 15 (Example 2.8.3).

Remark 2.9.5. One can show, using the lemma and some basic algorithmics, that the
Jacobi symbol can be efficiently computed. In contrast, computing the Legendre symbol
seems to require prime factorizations for which no efficient algorithm is known.

Example 2.9.6. We compute (%) from Exercise 2.8.15 using the Jacobi instead of the

Legendre symbol: ($001) = (2207) since (1001 -1)/2 is even (hence (—1)(1001-1)/2:(9907-1)/2 =

1), so = (25.) as 9907 = 898 mod 1001, so = (137 ) (1a) = (149 since (-1)(100*-D/S =1,
so = (%) as (1001 - 1)/2 is even, so = (%) as 1001 = 103 mod 449, so = (%) as
(449 - 1)/2 is even, so = (£5) as 449 = 37 mod 103, so = (12) as (37 - 1)/2 is even, so

= (2) as 103229 mod 37, s0 = (31) = (&) = (Z)" = (~1)2C9-1/s = (-1)305 = -1,

Exercise 2.9.7. 511 =7-73 is not prime. Compute (é%’)

2.9.1 The Solovay-Strassen primality test
Definition 2.9.8. Let n > 1 be odd. An Fuler-Jacobi- or EJ-witness for n is a number

1 <z <n-1 coprime to n such that (f) # 2" D/2 mod n.
n

Theorem 2.9.9. An odd n > 1 is composite if and only if there is an EJ-witness for n.

Proof. < is clear by Euler’s theorem 2.8.5. =: assume n is composite.

Case 1: n = pi---p, for distinct primes p; > 2 and r > 1. Choose 1 < y < p; — 1 with
(m) —1 (Proposition 2.8.4). By the Chinese remainder theorem choose 1 <z <n—-1 such
that x =y mod p; and 2 =1 mod p; for 7 # 1. Then no p; divides x, so x is coprime to n.

Then (p%) = (m) -1 and ( ) (pi) =1forz+1,so (%) =TI, (;;%) = -1. But -1 # 2(»-D/2

mod n. Otherw1se, as py | m, also =1 = 2(1/2 =1 mod p,, a contradiction as py > 2.

Case 2: n = p*m for some prime p > 2,k > 1 and m € N with p + m. The Chinese
remainder theorem gives 1 < & < n -1 such that z = (1 +p) mod p and xr =1 mod m.
Then ged(z,n) = 1. Indeed: p 4+ x (otherwise p + 2 — (1 +p) but p? | z - (1 +p)) and no
divisor ¢ of m divides = (otherwise ¢ + x -1 but m |z —1). Assume z is not an EJ-witness
of n. Then

£\2
o (2(D/2)2 2 (—) =1 modn
n )
Since p? | n we have 1 =271 = (1+p)"! mod p? and this is =1+ (n—1)p mod p? by the
binomial theorem. Hence, 0 = (n—1)p mod p?. Then p|n - 1, contradicting p | n. O
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Lemma 2.9.10. If n > 1 is odd and composite, then at least half of all 1 < m < n-1
coprime to n are EJ-witnesses for n.

Proof. Call m € Z bad if it is coprime to n and (2Z) = m( /2 mod n. Clearly, 1 is bad
and, by Lemma 2.9.2 (1), if m,m are bad, then so is mm. Thus, the residue classes of bad
m € Z form a subgroup of ZX. It is proper by the previous theorem. By Exercise 2.7.17,
its size is <|ZX|/2. This is our claim. O

The Solovay-Strassen test The algorithm takes as input n > 1 odd and k£ > 1 and
works as follows: choose 1 < zq,...,x; < n — 1 independently and uniformly at random and
check for each of them whether ged(n,z;) > 1 or (%) E2 mgn_l)ﬂ mod n. If there is one,
then answer “composite”, otherwise answer “prime”.

If n is prime, then this algorithm answers “prime” for sure (Theorem 2.9.9). If n is
composite, then each choice of x; has probability > 1/2 to either have a nontrivial divisor

# xgnfl)/z mod n. Hence the algorithm

with n (and then n is not prime) or to satisfy (%)
errs and answers “prime” only with probability < 27%.
Each check is efficient: we already remarked that the Jacobi symbol can be efficiently

computed, and ged(n,m;) can also be efficiently computed using Euclid’s algorithm.

Remark 2.9.11 (Computational complexity theory). The Cobham-Edmonds Thesis states
that a property P of (one or a tuple of) natural numbers is “efficiently decidable” (informal
concept) if and only if P is decidable in polynomial time — a formal concept. Decidability
means that there is an algorithm that given any input n € N performs at most a finite
sequence of basic computational steps and halts with output 1 or 0 according to whether
n € P or not. It is a matter of no consequence how one defines “basic computational step”.
Being polynomial time means that on an input of length ¢ the number of steps is O(£¢) for
some constant ¢ € N (i.e., independent of the input). Here, the length of an input n € N is
the length of the binary representation of n, so ¢ = [log(n +1)].

E.g., primality is decided by an algorithm that on input n checks for all m < y/n whether
m | n. This can take more than \/n ~ 2¢/2 steps, so is exponential time. In contrast, the
property of (z,n) that x is an RM-witness for n, or the property of (x,n) that ged(x,n) > 1
or z is an EJ-witness of n are polynomial time decidable. The input length is ~ log z+logn,
so this means the property is decidable in time O((logx +logn)¢) for some constant ¢ € N.

Probabilistic algorithms toss fair coins during their computations, so their output be-
comes a random variable. In the terminology of computational complexity theory, both
the Rabin-Miller test and the Solovay-Strassen test give probabilistic polynomial time al-
gorithms deciding primality with one-sided error (one-sided because they do not err when
the input is prime). In 2002, Agrawal, Kayal and Saxena found a deterministic polynomial
time algorithm for primality. This is outside the scope of this course.
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Polynomials

3.1 Univariate polynomials

In this section, let R, S be commutative rings. A polynomial over R is an expression of
the form a, X™ + -+ + a1 X + ag with n € N,a; € R. But what is an “expression”? In what
sense is e.g. 3X3+2X + 1 the same as 0- X2+ 1+ 2X +3X3?

We are used to judge equality of polynomials by comparing coefficients. The idea is
thus to define a polynomial as a sequence of coefficients, one for each power of X and only
finitely many # 0. E.g. the two “expressions” above become (1,2,0,3,0,0,...).

Definition 3.1.1. Let R[X] be the set of (univariate) polynomials (over R): sequences
(ag)ren With ai € R for all k£ € N and a; # 0 for only finitely many k € N. Given another
polynomial (by)ren define + componentwise and - as the Cauchy product:

(ae)k+ (Or)e = (ar + bp),  (ap)e- (b= Y. a;i-b; )k

i+j=k
Remark 3.1.2.

1. (R[X],+,-) is a commutative ring with additive and multiplicative neutral elements
(0,0,...), the zero polynomial, and (1,0, ...). The additive inverse of (ax)y € R[X] is
—(ag)r = (—ag)y (additive inverse in R on the r.h.s.).

2. a~ (a,0,0,-) is a ring monomorphism from R into R[X]. We “identify” a € R with
(a,0,0,---) and view R as a subring of R[X].

3. Write X :=(0,1,0,0,--) and note X* = (0,...,0,1,0,...) for k € N (where the 1 is at
position k). Given (ay)x € R[X ] choose n with ag =0 for all k£ > n; then

(ap)k = apn X"+ + a1 X + ag.
Formally, e.g., a1 X stands for (aq,0,0,...)-(0,1,0,...).

Definition 3.1.3. Let f =a, X"+ +ag € R[X] with a, # 0. The a; are coefficients of f,
a, is the lead coefficient, and ag the constant coefficient. The degree of f is deg(f) = n.
The zero polynomial has degree —oco. Polynomials with lead coefficient 1 are monic.

43
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Remark 3.1.4. Understanding —oo < n and —oo = —oo + n = —o0 + —oo for all n € N, we
have for f,g e R[X]:

L. deg(f +g) <max{deg(f),deg(g)};
2. deg(fg) < deg(f)+deg(g);
3. if R is an integral domain, then deg(fg) = deg(f) + deg(g) .
Indeed: if f =a, X"+ +ag,g =0, X"+ +by with a,,b,, # 0, then a,b,, #0 as R

is an integral domain, and fg has lead coefficient 3;,, ..., @ibj = @by,

Example 3.1.5. For f = 2X + 1 € Z4[X] we have deg(f) = 1 and deg(f - f) = 0 since
f2=4X24+2X+2X +1=1.
Lemma 3.1.6. If R is an integral domain, then so is R[X] and R[X]* = R*.

Proof. If f,g € R[X]~{0}, then their degree is > 0, so deg(fg) > 0 by the above, so fg # 0.
To show R[X]*= R, let fe R[X]*. Then 0=deg(1) =deg(ff!)= deg(f)+deg(f 1)
by the above, so deg(f) =deg(f=1) =0, ie., f,f'eR, so feR*. 2is clear.

Theorem 3.1.7 (Universal property). Let ¢ : R — S a (ring) homomorphism, and x € S.
Then there is a unique homomorphism ® : R[ X ] — S that extends ¢ and satisfies P(X) =

Proof. For f=a,X"+-+ag € R[X] with a, # 0 define

O(f) = plan)z™ + -+ ¢(ao).

Then ®(X) = x and ® extends . Uniqueness is clear as every such homomorphism
satisfies the equation above. We leave it to the reader to verify that ® preserves +,1 and
treat . Let g := b, X™ + -+ by € R[X]. Then by definition of - and ®:

m+n m+n

©(f-9) = O X (X aby)- X )= ¥ el 3 i)t

k=0 i+j=k i+j=k

Note 335" denotes first a sum in R[X] and then in S; ¥;,,; is a sum in R. Then

<I>(f-g)=n]§( S o(a)e(by)) - a —(Zm ). (wa Jad) = 0(f) - B(g). O

i+j=k

Remark 3.1.8. There is a unique homomorphism ® : R[ X | — S[X] that extends ¢ and
maps X to itself (view p: R — S[X] and apply the theorem with = := X).

Abusing notation we write again ¢ for ®. It just replaces coefficients by the p-values;
more precisely, for f =a, X"+ +ag € R[X] we have

2(f) = p(an) X" + -+ p(ao) € S[X].

Of course polynomials determine functions: we can plug for X a value from R and get
another value from R.
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Corollary 3.1.9 (Evaluation homomorphism).

1. Let a € R. Then there is a unique ring homomorphism ¢, : R[X] — R that is the
identity on R (i.e., p 1R =1idg) and satisfies p,(X) = a.
We write f(a):=p.(f) for f e R[X].

2. Let ge R[X]. Then there is a unique ring homomorphism g, : R[X] - R[X] that is
the identity on R and satisfies ¢,(X) = g.

We write f(g) := @4(f) for f e R[X].

It is important to distinguish a polynomial f from the function a ~ f(a):
Example 3.1.10. f:= X2+ X, g:=0 € Zy[X] both determine the function constantly 0.

Definition 3.1.11. Assume R is a subring of S and A € S. The ring generated by A
over R (in S) is the intersection of all subrings of S containing RuU A; it is denoted R[A].
One says, R[A] results from R (in S) by adjunction of A.
If neNand A ={ay,...,a,} one writes R[ay,...,a,] = R[A].
Remark 3.1.12.
1. This is well-defined because the intersection of a non-empty set of subrings is a
subring.
2. R[A] is the smallest subring of S containing Ru A, i.e., R[A] is contained in any
other such subring.
3. If ae S, then Rla]={f(a) eS| feR[X]}={rna"+--+19|neNrg,..,1m € R}
Indeed: c: the r.h.s. is a subring (Exercise 1.1.23) containing Ru{a}. 2: any subring
containing Ru {a} also contains any element of the form r,a™ + -+ + rg.

Example 3.1.13. The subring Z[1/2,1/3] of Q contains precisely the rationals z2-"3-™
for x € Z and n,m e N.

Proof. The set of these numbers is easily seen to be a subring containing Z u {1/2,1/3}
and hence contains Z[1/2,1/3]; conversely, these numbers are contained in any subring

containing Z u {1/2,1/3}. O
Proposition 3.1.14. Every subring R of Q equals Z[{1/p | p € P}] for P ¢ N a set of
primes.

Proof. Clearly, R contains Z, so RUZ, so Z[R] ¢ R; since R € Z[R], we have Z[R] = R.
We claim R = Z[{1/p € R | p prime}]. 2 is clear. C: if a/b € R, assume a,b coprime and
b > 0; by Bézout za + yb = 1 for certain =,y € Z, so za/b+y = 1/b € R; if b = py---p,, for
primes p;, then Z[{1/p € R | p prime}] contains 1/b = 1/p;---1/p,, and hence a/b =a-1/b. O
Exercise 3.1.15 (Rational root theorem). Let f = a, X" + -+ ag € Z[X] ¢ Q[X] with

a, # 0. Assume f(a/b) =0 for a/b € Q with coprime a,b € Z. Show a | ap and b | a,,. In
particular, a/b e Z if f is monic. (Later we generalize this to other rings than Z.)

Exercise 3.1.16. Let K be a field and let g € K[X]. Show f ~ f(g) is an automorphism
of K[X] if and only if g has degree 1.
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3.1.1 Formal power series

A good way to understand a definition is to slightly change it and see what happens.
Here, we drop the finiteness condition in the definition of R[X], so allow infinite sums of
monomials. The resulting formal power series cannot be evaluated like polynomials, so do
not determine functions on R. But we can manipulate them much like polynomials.

Definition 3.1.17. The set R[[X]] of formal power series (over R) is the set of sequences
(ag)ren With ag € R. Addition 4+ and multiplication - are defined as for R[X]. We write

Zk aka = (ak)k
The order of (ax)y # (0,0, ...) is n:=min{k e N | a5 # 0}.
Remark 3.1.18.
R[[X]] is a commutative ring with subring R[X].
For f = (ax)r € R[[X]], X - f=(0,a0,a1,...), X% f =(0,0,a0, a4, ...) etc..
(1-X)1'=1+X+X2+- (1+X)1=1-X+X2-X3+. (exercise).
If R is an integral domain, then so is R[[X]].

Indeed: let f := (ag)k,g := (bp)r € R[[X]] ~ {0} have orders n,m; write fg = (cx)x;
then ¢,y = anb, # 0 as R is an integral domain.

=W =

Many polynomials have inverses in R[[ X]]:

Lemma 3.1.19. Let R be a commutative ring and f =Y, axX* € R[[X]]. Then
feR[[X]]" < ape R
In case, f~1 =3, bpX* where by = ag' and for all k> 0:
by = —ag' Y0y aibe-.

Proof. =: if f-¥, bpX* =(1,0,...), then apby = 1. <: assume the b;’s satisfy the recursive
equations and write f- Y, b X* =Y, ¢z X*. Then ¢q = agby = 1. For k > 0,

Cr = Zf:o aibk_i = aobk + Zle aibk_z- = aobk + (—ao)bk =0. L]
For a field K already a slight extension of K[[X]] is a field:

Definition 3.1.20. Let R be a commutative ring. R((X)) is the set of formal Laurent
series: sequences (ag)kez in R such that the are only finitely many % € N such that a_ # 0.
For another such sequence (b)y set, as before (note the sums are finite sums in R),

(ar)k + (bk)k = (ar + b))k, (ar)k - (br)k = ( Zi+j:k aibj)k-
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Example 3.1.21. Write X for the sequence (ci)r with ¢; =1 and ¢ = 0 for k£ # 1. For
(€ Z, then X =(c,)r where ¢, =1 and ¢} =0 for all k£ # £. E.g., underlining entry 0 of a
sequence, multiplying with X2 or X2 looks as follows:

X2 (ar)e =(..,0,1,0,0,0,...) - (..., a1, ag, ay, ...) = (..., ag, ar, as, as, ...),

X2 (ap)e = (...,0,0,0,1,0,...) - (-va_y,a9,aq,...) = (-..,a-1,a-9, a1, ag, ...).
Remark 3.1.22. R((X)) is a commutative ring and there is a ring monomorphism from
R[[X]] into R((X)): it maps f = (ag,a1,...) € R[[X]] to f*=(...,0,0,a0,a1,...) € K((X)).
We identify f and f* and view R[[X]] as a subring of R((X)).

Proposition 3.1.23. If K is a field, then K((X)) is a field.
Proof. Let f = (ay)r € K((X))\{0}. The order of f is
ko :=min{k € Z | a, # 0}.

Then g := (cg)r == X% . fis in K[[X]] with ¢y # 0. By the lemma, g has an inverse
g € K[[X]]. Then X~*0.g7!is an inverse of f in K((X)). O

3.2 Polynomial division

We all learned how to do polynomial division in school. Here we prove that it is possible.

Theorem 3.2.1. Let R be a commutative ring and f,g € R[X] with g #+ 0. Let b € R be
the leading coefficient of g. Then there are q,r € R[X] and k € N such that

Vof=qg+r and deg(r)<deg(g).

Proof. 1f deg(g) > deg(f), set ¢:=0,7r:= f,k:=0. So we assume n := deg(f) > deg(g) >0
and proceed by induction on n.

If n =0, then f,g € R and g = b and we set ¢ := f,r := 0,k := 1. Assume n > 0 and
write f = a, X" +--+ag and g = b,, X" + --- + by with b = b,,, #+ 0 for some m < n. Set
h :=bf - a, X" ™g (understanding X% = 1). Then deg(h) < n. By induction, there are
q',r" € R[X] and k € N such that b*h = ¢'g + r with deg(r) <m. Then

VL f = bFh + bFag X Mg = (¢ + bFag X ™) g + 7. O

Example 3.2.2. As is often the case, the above inductive proof describes a recursive
algorithm. Given f:=3X3+ X +1,9:=2X + 1€ Z[X] compute:

hy:=2f-3X2g=(6X3+2X+2)-(6X3+3X?%)=-3X2+2X +2

ho:=2h; +3X1g=(-6X2+4X +4)+(6X?2+3X)=7X+4

hg:=2hy = 7X% = (14X +8) - (14X +7) =1

2ho =h3+Tg=1+7g

4dhy =2hy - 6Xg=1+(7-6X)g

8f =4h; +12X2%2g=1+(7T-6X +12X?)g
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Corollary 3.2.3 (Polynomial division). Let K be a field and f,g € K[X] with g # 0. Then
there are unique q,r € K[X] such that f = qg+1r and deg(r) < deg(g).
q and r are the quotient and remainder of (f,g).

Proof. Existence follows from the theorem: divide by ¥ # 0. Uniqueness: assume [ =
qg +r =q'g+r" where r,r’ have degree < deg(g). Then (¢—-¢')g =r"-r and

deg(g) > deg(r' —7) = deg(q - ¢') + deg(g),
so deg(q' - q) = o0, s0 ¢’ = q. This implies 7 =1". u

Exercise 3.2.4 (Remainder theorem). Let K be a field, f € K[X] and a € K. Show f(a)
is the remainder of (f, X —a). For K =R, assume 5 is the remainder of (f, X —1), and -1
is the remainder of (f, X +2). What is the remainder of (f,(X - 1)(X +2))?

We next check the Euclidian algorithm works in K[X] the same way as in Z — with
deg(-) playing the role of |-|. These functions are Euclidian valuations (cf. Definition 4.6.8).

Definition 3.2.5. Let K be a field and f,g € K[X]. g is a divisor of f, symbolically ¢ | f,
if f = gh for some h e K[X]. Forn>0and fi,..., f, ¢ K[X] not all zero, a common divisor
of fi,..., fn is some g € K[X] such that g | f; for all 4.

A greatest common divisor of f1,..., f, is a common divisor g that is monic and such
that every common divisor of fi,..., f, is a divisor of g. We write g = ged(fy,..., fn). If
g=1, f1,..., fn are coprime.

Remark 3.2.6. There is at most one greatest common divisor g. If ¢’ is another, then

gl g and ¢’ | g. Then g, ¢’ have the same degree, so g = ag’ for some a € K. But g is monic,

so a=1 and g = ¢’. The reason for requiring monic is just to ensure this uniqueness here.
We now verify existence, thereby justifying the functional notation ged( f1, ..., fr)-

Theorem 3.2.7 (Euclidian algorithm for polynomials). Let K be a field and f,g € K[X]
with deg(f) > deg(g) >0 and g + f. Let ro,71,... be given by ro:= f,r1:=g and, fori>0,

~_ | the remainder of (ri_y,r;) ifri #0
Tis1 =3 else.

Then r,41 =0 for some 0 <n <deg(g) and a~'r, = ged(f,g) for the minimal such n and a
the lead coefficient of r,,.

Moreover, for this n let sq,...,s, and tg,...,t, be the sequences with sy :=1,s1 :=0 and
to:=0,t1:=1 and for 0 <i<n, letting q; be the quotient of (r;_1,7;),

Siv1 = Si-1 — ¢iSi,  tis1 = o1 — qit;.

Then r, = s, f +t,g.
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Proof. Note deg(g) >r2>0as g+ f, and 1o >r3 > are >0, so n as claimed exists. Note
f=qlg+7’2, g =(qoTrg+ T3, T9 =3T3+ Ty, oo Tp2=QqpTn-1+7Tn, Tph-1 :ann-l-O.

Work the equations backwards: 7,,1 =0, so 1, | -1, S0 7, | Thoo, €tc., so 1, | 71 =y and
Tn | 7o = x. Hence 7, and a~'r, are common divisors of f,g.

Let h be a common divisor of f,g. Work the equations forwards: as ry = f — q1g we
have h | re; as r3 = g — qaro we have h | rs, etc., so h|r, and h|a lr,.

Finally, we claim r; = s; f + t;g for all 2« <n. This is true for 7 = 0,1. Inductively,

Tiv1 = Tic1 — Qi1 = (Sic1 f +tic19) — i (Sif +1:g) = i1 f + i g. [

Example 3.2.8. In Q[X], we compute ged(X6+ 1, X% -1) = X2+ 1: polynomial division
gives first X041 = X2. (X4-1)+ (X2 +1), then X4—1=(X2-1)(X2+1).

Exercise 3.2.9. For f:= X3-X+1,9:=2X?2-3X +2¢eQ[X] find s,t € Q[ X] such that
1=sf+tg.

Definition 3.2.5 is given with respect to a field K. We justify that the dependence on K
is not reflected in the notations, e.g., we just write ¢ | f and not, say, g |k f.

Remark 3.2.10. Let L | K be a field extension and f, g€ K[X]. Slightly informally:
1. Since K[X] is a subring in L[ X ], polynomial equations are true in K[X] if and only
if they are true in L[ X].

2. Division by remainder done in K[X] gives the same answer as done in L[ X];

Indeed: if f = qg + r by Euclidian division in K[X], then this equation holds also
in L[ X ]; by uniqueness, Euclidian division in L[ X] also yields f =qg +7.

3. ¢g| fin K[X]if and only if g | f in L[X] (this is just (2) for the case that r = 0).

4. The greatest common divisor of f, g is the same, computed in K[X] or L[ X] (by (2)
and the previous theorem).

The following construction is analogous to Z,,. Section 4.8 gives a general construction.
Exercise 3.2.11 (Polynomial residue classes). Let K be a field and let g € K[ X], g # 0.

1. On K[X] define an equivalence relation setting f ~, f’ < ¢ | f - f'. Show that every
f € K[X] is equivalent to exactly one polynomial of degree < deg(g), namely the
remainder of (f,g).

2. Let K[X]/(g) be the set of equivalence classes [f],, f € K[X]. Show

[flg+[hlg=[f+hlg [flg-[R]g:=[fh],

are well-defined and make K[X]/(g) aring. Think about whether it has zero divisors.

3. Let Ky € K be a subfield and Ko[X]/(g) be the set of [f], with f € Ko[X]. Show
this is a subring of K[X]/(g). For a € K show Ky[a] 2 Ko[X]/(X - a).
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3.3 Roots

As in Z also here Euclidian division is highly consequential.
Definition 3.3.1. Let R be a commutative ring. a € R is a root of f € R[X] if f(a)=0.

Corollary 3.3.2 (Factor theorem). Let R be a commutative ring, and f € R[X]. Then
a€ R is aroot of f if and only if f =(X —a)g for some g€ R[X].

Proof. < is clear. =: by Theorem 3.2.1 write 1% - f = ¢(X - a) + r; then deg(r) < 1 and
0= f(a)=r(a), so r=0 (zero polynomial). O

Corollary 3.3.3. Let R be an integral domain and f € R[X]|~{0}. Then f has < deg(f)
many 1oots.

Proof. Induction on n := deg(f). If n =0, f € R~ {0} has 0 roots. Assume n > 0. If
f has 0 roots, we are done. Otherwise, let a € R be a root of f and write f = (X —a)g
by Corollary 3.3.2. As R is an integral domain, deg(g) = n -1 by Remark 3.1.4 (3). By
induction it suffices to show that every root b # a of f is aroot of g. But 0 = f(b) = (b—a)g(b)
implies g(b) =0 as b—a # 0 and R is an integral domain. O

We observed in Example 3.1.10 that distinct polynomials can determine the same func-
tion. We now get a better understanding. Recall I, = Z,, denotes the p-element field.

Proposition 3.3.4. Let p € N be a prime number and let f,g € F,[X]. Then f(a) = g(a)
for all a €F, if and only if (XP-X)| f—-g in F,[X].
Proof. < by Fermat’s little theorem. =: f-g=(X-0)-(X-(p-1))h for some h € F,[ X]

(Corollary 3.3.2). But (X -0)--(X - (p-1)) equals X? — X because their difference has
degree < p and p many roots, so equals 0. O]

Example 3.3.5. We saw in Example 2.7.3 (4) that X2 -1 has roots 1,3,5,7, i.e., £1,+3
in Zg. In Zg[ X] we factor X2 -1=(X -1)(X +1) = (X - 3)(X +3).

Exercise 3.3.6. If R is an infinite integral domain, then distinct polynomials determine
distinct functions.

Corollary 3.3.7 (Interpolation). Let K be a field, n >0 and ay, ..., a, € K pairwise distinct
and by, ...,b, € K. There is a unique f € K[X] of degree <n such that f(a;) =b; for all i.

First proof by Lagrange interpolation. Uniqueness: if f’ is another such polynomial, then
f = f" has degree < n but n roots a,...,a,, so f— f'=0.

Existence: set f:= Lyby +---+ L,,b,, where L; € K[X] satisfies L;(a;) = { (1) % ;g E.g.,

(X ) (X =) (X~ i) (X — an)
b (aiar)--(a; = ai1)(a; = i )-(ai —an) -

Second proof by linear algebra. The coefficients x := (x1,...,x,) € K™ of the wanted degree

< n -1 polynomial must satisfy Az =b where A is the n x n matrix over K with i-th row

al,al,...,a? ! and b:= (by,...,b,) € K™ a column vector. This is a Vandermonde matrix, so

177

invertible, and hence Az = b for a unique x (namely, x = A~1b). O
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3.3.1 Multiple roots

Definition 3.3.8. Let K be a field. A a € K a root of f e K[X]\ K is multiple if
(X —a)k| f for some k > 1; the maximal such k > 1 is the multiplicity of a wrt f.

Exercise 3.3.9. Show the multiplicity is well-defined, and k is the multiplicity if and only
if f=(X-a)kg for some g e K[X] with g(a) # 0.

Definition 3.3.10. Let K be a field. The formal derivative of f = a, X"+ +ag € K[X] is
fri=na, X"+ + 200X + aq;

recall n=1g + -+ 1 (n times). We define (O := f and f(+1) := (f(R))",

Lemma 3.3.11. Let K be a field and f,ge K[X] and a,be K.

1. (af +bg) =af +bg" and (fg) = f'g+ fg'.
2. If char(K) =0, then f' =0 if and only if f € K.
3. If p:=char(K) >0, then f'=0 if and only if f = g(XP) for some g€ K[X].

Proof. (1): Linearity is easy to check. For 7,7 > 0 note
(XEXT) = (XY = (i + )X = iX1 X0 4 XX = (XY X0+ X(XTY.
Let f=X"ya; X", g=%7b;X’. Then by linearity
(fg) = 2 aibj (X' X7) = 2 ab;j(X")' X7 + 2 aib; X' (X7) = f'g+ fg'.

(2) and (3): f’ =0 if and only if na, = (n-1)a,_1 = - = 2as = a; = 0. If char(K) =0,
this means a, = ---=a; =0, i.e., f € K. If p = char(K) > 0, this means a; = 0 for all i < n
with p + 4; this means f = ap, X + a(e_1), X “VP + .- + a4, XP + ay where ¢ is maximal with
lp <m; set gi= agp X+ a@-1), X+ +a, X + ap. ]

Example 3.3.12. In F5[X], e.g., (4X°+3X10+2X5%+1)" =0.
Lemma 3.3.13. Let K be a field, f e K[ X]\ K and a€ K a root of f.

1. a is a multiple root of f if and only if f'(a) = 0.
2. If char(K') =0, the multiplicity of a wrt f is the mazimal k >0 such that

FO(a) = FV(a) = = f4 D (a) =0

Proof. (1): write f = (X —a)g for some g € K[ X] (Corollary 3.3.2). Then [’ = g+(X-a)¢/,
so f'(a) = g(a). Thus, f'(a) =0 implies (X —a) | g, so (X —a)?| f and @ is multiple.

Conversely, if a is multiple, then f = (X —a)((X - a)h) for some h € K[X]; by the
product rule, f'= (X -a)h+ (X -a)((X -a)h)’, so f'(a) =0.
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(2): let k be the multiplicity of a wrt f. Note deg(f) > k, so f() # 0 for j < k — here
we use char(K) = 0. We prove that the multiplicity of a wrt f() is k - j.

If j = 0, this is trivial. Assume the claim for j < k, and write f) = (X - a)k7g with
g(a) # 0 by Exercise 3.3.9. An easy induction shows ((X —a)?)’ = (X - a)*!. Thus,

fUD = (k=) (X =a) g+ (X —a)* g = (X =) U ((k - j)g + (X - a)g).

Evaluating the r.h.s. factor on a gives (k — j)g(a). Thisis # 0 since k—j # 0 and g(a) # 0 -
here we use char(K) = 0 again. This implies the multiplicity of a wrt fU*D is k—(j+1). O

3.4 Quotient fields

Where are the roots? Consider the tower
Z<cQcRcC.

The polynomial 2X -1 € Z[ X ] has a root in Q but not in Z; the polynomial X2 -2 € Z[ X ]
has a root in R but not in Q, and X2+ 1 € Z[X] has one in C but not in R.

Smallest subrings of C where these polynomials have a root are Z[1/2],Z[\/2],Z[i].
What are the smallest fields?

Definition 3.4.1. L | K is a field extension if L is a field and K a subfield of L. Let A ¢ L.
The field generated by A over K (in L) is the intersection of all subfields of L containing
K U A; it is denoted K(A). One says, K(A) results from K (in L) by adjunction of A.

If neNand A={ay,...,a,} one writes K(ay,...,a,) := K(A).

Remark 3.4.2. This is well-defined because the intersection of a set of subfields is a
subfield. Clearly, K(A) is the smallest subfield of L containing K u A, i.e., K(A) is
contained in any other such subfield.

We generalize the construction of Q from Z in Section 1.4.

Definition 3.4.3. Let R be an integral domain. Quot(R) is the set of equivalence classes
a/b of (a,b) € Rx (R~ {0}) under the equivalence relation ~ ¢ (R x (R~ {0}))? defined by

(a,b) ~ (a',b") <= ab' =a'b.
Quot(R) is quotient field of R with +,- defined for x = a/b,y = ¢/d € Quot(R) by
x+y:=(ad+cb)[bd, x-y:=ac/bd.
Remark 3.4.4. Exactly as done in Section 1.4 for R = 7Z one verifies:

1. ~ is an equivalence relation, +,- are well-defined and Quot(R) is a field.

2. a » afl is a ring monomorphism from R into Quot(R). If R is a field, it is an
isomorphism (surjective because a/b=ab=!/1).
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3. We “identify” a with a/1 and view R as a subring of Quot(R).
Quot(R) is the smallest field extending R:

Theorem 3.4.5 (Universal property). Let R be an integral domain, K a field and ¢ : R —
K a ring monomorphism. Then there is a unique field monomorphism ® : Quot(R) —» K
that extends @; for a,be R with b+ 0 we have

©(a/b) = p(a)- o(b)™".

Proof. The equality follows from ®(a/b) = ®(a/1)®(1/b) = p(a)p(b)! since b' = 1/b
in Quot(R); note p(b) # 0 as b # 0. Thus, uniqueness is clear. Well-defined: if a/b =
a'[b! where a/; b € R I + 0, i.e., ab’ = a’b, then p(a)p(t’) = p(a’)p(b), so p(a’)p(b)™ =
w(a)p(t)1, ie., ®(a/b) = P(a’[b"). Clearly, ®(1/1) = 1.

® preserves +: ®(a/b+c/d) = p(ad+cb)p(bd)~! = p(a)p(d)e(bd)™ + p(c)p(b)p(bd)!.
But ¢(bd)1 = ¢(5)10(d) ", 50 = p(a)p(b) L + p(c)p(d)" = B(afb) + B(cfd),

® preserves -: ®(a/b-c/d) = p(ac)p(bd)™ = p(a)p(c)p(b)tp(d)t =d(a/b)-P(c/d). O

Exercise 3.4.6. Let K be a field. Then K((X)) = Quot(K[[X]]).

Definition 3.4.7. Assume R is a subring of the field K. The quotient field of R in K is
{ab™ | a,be R,b# 0},
the image of the unique homomorphism @ : Quot(R) - K extending idg: R - K.

Remark 3.4.8. It is not hard to see that this is the smallest subfield of K that contains R.
In particular, if L | K is a field extension and A € L, then K(A) equals the quotient
field of the subring K[A] of L.
The quotient fields of Z, Z[1/2], Z[\/2],Z[i] in C are Q,Q, Q(+/2),Q(7). The subrings
Z[\/2],Z[i] of Q(v/2),Q(4) play a similar role as the subring Z of Q — see Section 4.1.

By Lemma 3.1.6, with R also R[X] is an integral domain. Hence we can define:
Definition 3.4.9. Let R be an integral domain. The field of rational functions over R is
R(X) := Quot(R[X]).

Remark 3.4.10. Intuitively, a rational function over R is a fraction f/g of polynomials.
Despite the wording it does in general not determine a function on R, i.e., we do not have
an evaluation homomorphism (e.g., what should ¢o(1/X) be?).

Exercise 3.4.11. Quot(R[X]) = Quot(Quot(R)[X]).
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3.4.1 Prime fields

Definition 3.4.12. Let K be a field. The smallest k£ > 0 such that k& = O is the charac-
teristic char(K) of K; if no such k > 0 exists, we set char(K) := 0.

Remark 3.4.13. Let K be a field. Recall n = 1x + -+ + 1k for n € N (Definition 1.1.25)
and extend this notation to Z setting —n := —n (additive inverse in K in the r.h.s.).

1. char(K) is 0 or prime.
Indeed: 0 < char(K') =:n =kl with 1 < k,¢ <nimpliesn = k-£ = 0 but both k, £ + O,
so are zero-divisors, a contradiction.

2. If char(K) =0, then a ~ a is a ring monomorphism from Z to K.
Indeed, it is clearly a homomorphism. It is injective: if ¢ = b, then a—b = O, so
a-b=0and a=5.

3. If p:= char(K) > 0, then [a], = a is a ring monomorphism from Z, to K.

Indeed, this is well-defined: if [a], = [b],, then a — b = pc for some c € Z, so a—b =
pc =0k, 80 a= b. Tt is injective since these implications can be reversed.

Theorem 3.4.14. A field K has a smallest subfield, the prime field of K. If char(K) =0,
it is isomorphic to Q. If p:= char(K) > 0, it is isomorphic to F,,.

Proof. Every subring of K contains the elements a,a € Z. They form a subring R of K
(being the image of a ring homomorphism) isomorphic to Z (resp. to Z, = F,). The quotient
field of R in K is the smallest subfield of K. It is isomorphic to Quot(Z) and thus to Q
(resp. equals R = F, being a field). ]

Exercise 3.4.15. Let K be a field. Every endomorphism ¢ of K is the identity on its
prime field P ¢ K, i.e., ol P =idp.

Lemma 3.4.16 (Frobenius). Let K be a field of characteristic p>0. Then x — xP is an
endomorphism of K, the Frobenius endomorphism (of K).

Proof. Clearly, the map preserves -. For + note (z+y)? = ¥! (f )xp‘iyi and for 0<i<p, p

divides (f) =p(p-1)---(p—i+1)/i! because no factor in ¢! can cancel p; hence, (?)xp‘iyi =0g.

Thus (z +y)P = 2P + yP (the so-called freshman’s dream). O

It is natural to ask when the Frobenius endomorphism is surjective, and hence an
automorphism (Remark 1.1.22 (2)). This is going to play a role in the last chapter and
therefore earns a definition:

Definition 3.4.17. A field K is perfect either if char(K) = 0 or, if char(K) > 0 and the
Frobenius endomorphism of K is surjective.

Examples 3.4.18.



CHAPTER 3. POLYNOMIALS 95

1. Finite fields are perfect.
Indeed, the characteristic is positive, and the Frobenius homomorphism injective
(Remark 1.1.22 (3)), so surjective by finiteness.

2. Let p be prime. Then F,(X), the field of rational functions over F,, is not perfect.

Indeed: if (f/g)? = X for some f,g € F,[X] with g # 0, then fP = g?X, so pdeg(f) =
pdeg(g) + 1. But this is nonsense because deg(f),deg(g) > 0.

3.5 Algebraicity

Let L | K be a field extension. For a € L, clearly K[a] ¢ K(a) and, K[a] = K(a) if and
only if K[a] is a field. When does this happen?

Example 3.5.1. R[i] = R(¢) = C because R[i] € R(i) c C = {z+iy | z,y ¢ R} c R[4]. Using
the notation below, we have ms =my = X2 + 1.

Definition 3.5.2. a € L is algebraic over K if it is a root of some f € K[X]; otherwise a
is transcendental over K. For L = C, K = QQ we omit “over Q.

If a € L is algebraic over K, then the minimal polynomial mX of a over K is a monic
fe K[X]~ K of minimal degree with root a.

Remark 3.5.3. This is well-defined: let f € K[X]~\ K be of minimal degree, say n, with
root a; we can take f to be monic by dividing by the lead coefficient. If g € K[X] is
another such polynomial, then f — ¢ has root a and degree < n; hence f-¢g=0, i.e, f=g.

Remark 3.5.4 (Cantor). “Most” reals are transcendental since the set of algebraic num-
bers is countable.

Definition 3.5.5. f € K[X] is reducible if f € K or f is the product of two polynomials
in K[X] of positive degree; otherwise f is irreducible.

Lemma 3.5.6. Let a € L be algebraic over K and f € K[X] monic. The following are
equivalent.

1. f=mkE.
2. a is a root of f and f is irreducible.
3. ais a root of f and f|g for every g € K[X] with root a.

Proof. 1 = 3: assume g(a) = 0 and write g = ¢f +r with deg(r) < deg(f); then 0 = g(a) =
h(a)f(a)+r(a) =r(a); then r =0, so f|g.

3= 1: f|g implies deg(f) < deg(g), so f has minimal degree among the polynomials
with root a; as f is monic, f =mkK.

1 = 2: clearly, deg(mX) > 0; if m& = gh for g,h € K[X] of positive degree, then g, h
have degree < deg(mf) by Remark 3.1.4 (3). Then 0 = f(a) = g(a)h(a), so at least one
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of g(a),h(a) # 0. Divide by the lead coefficient to get a monic polyomial with root a and
degree < deg(mk), a contradiction.

2 = 1: assume f(a) =0 and f is irreducible. By 1 = 3, f = m&h for some h € K[ X];
by irreducibility, deg(h) =0, so h € K; as f and mX are monic, h =1 and f =mk. O

Corollary 3.5.7. Let f,ge K[X]. If f is irreducible over K and f,g have a common root
in L, then f|g.

Theorem 3.5.8. Let a€ L. Then Kla] is a field if and only if a is algebraic over K.

Proof. =: a™' = f(a) for some f e K[X], so aisaroot of Xf-1eK[X].
<: given 0 # b € K[a] we look for an inverse in K[a]. Write b = f(a) for f e K[X].
By irreducibility, ged(f, mX) is either 1 or mX. But it cannot be mX because m& 4 f as

f(a) # 0. Thus, the Euclidian algorithm for polynomials gives 1 = gf + hmX for certain
g,h e K[X]. Then g(a) € K[a] is an inverse of b:

1=g(a)f(a)+h(a)mg (a) = g(a)b. .

Exercise 3.5.9. If f € K[X] has degree 2 or 3, then f is irreducible if and only if f does
not have a root in K.

Exercise 3.5.10. Let a € C be a root of f:= X3 - X +1€eQ[X]. Show f =mg. Show
b:=2a?-3a+2+0 and find h e Q[X] with h(a) =1/b in Q(a). (Hint: Exercise 3.2.9.)

Irreducibility for higher degrees is difficult to understand and studied in the next chap-
ter. Algebraicity is a central concept of algebra but we do not yet have the theoretical
means to understand it and defer a more serious study to the last chapter.

3.5.1 Quadratic and cubic equations

A description of the quadratic case is in reach of our currently available methods, in fact, we
learned in school how to solve quadratic equations. Landau said, however, “Bitte vergessen
Sie alles, was Sie in der Schule gelernt haben, denn Sie haben es nicht gelernt.”

Recall, in a ring or field K we write 2:= 1 + 1x,3 =2+ 1 etc.

Lemma 3.5.11. Let K be a field with char(K) # 2 and f = aX? +bX + ¢ € K[X] with
a # 0. The discriminant of f is
Dy :=b*-4dace K.

1. f is reducible if and only if Dy is a square in K.

2. If L| K is a field extension with o€ L a root of f, then K(«) = K(§) for some d € L
with 6% = Dy; we write K(\/D_f) = K(0).

3. Then K(0) =K+ Ké:={x+yd |y,yec K}.
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Proof. (2): ac?+ba+c = 0 is equivalent to 4a?2a?+4aba = —4ac (note 4ac # 0 as char(K) # 2),
hence to (2aa)? +2 - 2aab + b? = b? - 4ac, so to (2aa +b)? = Dy. Set § := 2aa +b.

Clearly, K(a) = K(6). The notation K (\/D_f) is justified because it does not matter
which square root & we choose: the other one is —§, and K(0) = K(-9).

(1): if f is reducible, it has a root o € K, so, by the above, D; is a square in K.
Conversely, if 62 = Dy with 6 € K, the above shows (0 - 0)/(2a) € K is a root of f
(Mitternachtsformel), so f is reducible. Note division by 2 requires char(K') # 2.

(3) is trivial if 6 € K. Assume ¢ ¢ K. 2 is trivial. For ¢ it suffices to show K + K0 is a
subfield of L. It clearly contains 0,1 and with «, 8 also a+ 3, a-3,-0 and, if a« = x+yd # 0,
then ot = (x —yd) /(2?2 —y?Dy) € K + K§: note 22 -y?0 # 0 as 6 ¢ K. O

For a real r > 0 we understand /7 to be positive; further, \/r = i\/|r| € C for r < 0.

Corollary 3.5.12. Let a« € C\Q be a root of a quadratic polynomial over Q. Then Q(«)
s a quadratic number field, i.e.,

Qo) =Q(Vd) =Q+QVd
for some d € Z satisfying d = -1, or, |d| > 1 is square-free: m? 4 |d| for all m > 1.

Proof. Let f e Q[X] be quadratic and a € C a root. We can assume f € Z[X ] (otherwise
multiply with some large integer). Then Q(«) = Q(y/Dy) and, as a ¢ Q, Dy € Z is not
a square in Q. If [Dy| > 1 is not square-free, say, Dy = m2D’ for D’ € Z and m > 1, then

Dy =mvVD"and Q(/Dy) = Q(v/D"). Then |D’| < |Dy|, so continuing like this for finitely
many steps we get Q(a) = Q(v/d) for a square-free |d. O
Remark 3.5.13. Read K(a) = K(1/Dy) as a statement about solvability of the equation

f =0: that a solution « is in K (\/D_f) means that we can construct it by finitely many
applications of addition, subtraction, multiplication and division plus a single use of taking
some square root. Of course, we already know the formula from school.

As mentioned in the introduction, allowing more uses of taking (possibly non-square)
roots allows to construct roots of polynomials of degree 3 and 4. In the last chapter we
show this is not generally possible for degree 5. Here, we treat the cubic case.

Remark 3.5.14 (Tschirnhausen transformation). We want to solve a3 X3+as X?+a; X +ag =
0 where a; € C and a3 # 0. We can assume a3 = 1 (otherwise divide by a3). Substitution of
X +ay/3 for X yields X3 +aX +b=0 for certain a,b € C.

Recall, (5 = e2mi/3 = (=1 +/-3)/2.
Proposition 3.5.15 (Cardano’s formulas). Let f:= X3 +aX +be C[X]. Let
Dj = —4a® - 271
be the discriminant of f. Let d,z,y € C be such that
5% = —D; /27, 2® = (5-b)/2, v° = (6 +b)/2.
Then the roots of f in C are x -y, (x -2y, Gr-(y.
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Proof. Since (z —y)? = 23 — 322y + 3xy? — y3 we have (x —y)3 + 3zy(z —y) — (x3 -y3) = 0.
Then = -y is a root if z,y are good: xy = a/3, 23— y3 = —b. We solve for z,y.
Being good implies 4x3y3 = 4a3/27 and 2 — 223y + y5 = b2. Adding these gives

(2% + %)% = b* + 4a® /27

The r.h.s. is —D/27. Hence, 23 +y3 = . Using 23 —y® = b gives the equations listed. The
roots of f are those choices of 3rd roots that give good z,y. O]

3.6 Multivariate polynomials

Multivariate polynomials are “expressions” like X?2Y Z3+2XY?2-3Y and it should be clear
how to sum and multiply them. Formally, we proceed similarly as in Definition 3.1.1. There
we wrote sequences (ag)r assigning coefficients to powers X*: now we assign coefficients
to primitive monomials, above X?Y 73 XY? and Y.

Let R be a commutative ring and [ # @ a set — intuitively, we want variables X;,7 € I.

Definition 3.6.1. Let M be the set of primitive monomials: functions m : I — N such
that there are only finitely many i € I with m(i) > 0.
Given m,m’ € M, define m @ m’ € M setting for all ¢ € I:

(mom')(i) =m(i) +m'(3).

R[X;,i€I] is the set of (multivariate) polynomials (over R in variables (X;)ier): func-
tions f: M — R such that there are are only finitely many m € M with f(m) # 0.
Given polynomials f, g define polynomials f + ¢ and f - g setting for all m e M:

(f+9)(m) = f(m)+g(m), (f-g)(m)=" 3  f(mo)g(ma).

moOmMmi=m

Observe that the sum above is a finite sum in R. As in the univariate case we now
introduce the familiar notation and do suitable identifications.

Remark 3.6.2.

1. (M, ®) is a Monoid with neutral element 1, := the function constantly 0. For m € M
let 41, ...,4 list the i € I with m(i) > 0; we write

m= XZIL(il)"'Xm(ik).

i
2. For m € M let g,, € R[X;,i € [] map m to 1 and m' #+ m to 0. Then m ~ g,, is a
monoid monomorphism from (M, ®) to (R[X;,i€I],-).
We “identify” m with g,, and thereby view M as a subset of R[X;,i € I].
3. For m as above and i € [,k € N we have in R[X;,i€[]:

m= X" X and XE= X X, (K times).

K
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4. For a € R let f, € R[X;,1 € I] map 1y to a and m # 1, to 0. Then a ~ f, is a ring
monomorphism from R into R[X;, 7€ I].
We “identify” a with f, and view R as a subring of R[X;,i € I].
Indeed, R[X;,i € I] is a commutative ring with neutral elements Og[x,icr] = fo
(zero polyomial) and 1g(x, ;11 = f1; additive inverses are given by (-f)(m) = —f(m)
(inverse in R on the r.h.s.).

5. Given f € R[X;,i € I]~{0} let mq,...,mg € M for s € N list the m € M with f(m) # 0.
Writing a; := f(m;) for j < s we have

f=aomg+ -+ asms.

Definition 3.6.3. A monomial is a polynomial in R[X;,i € ] of the form am where
ae R~{0},me M; we say X; occurs in am if m(i) > 0. A polynomial f # 0 as in (5) above
has (total) degree

deg(f) = max;jcs e m(i);

note the sums are finite; the zero polynomial has degree —co. Writing

f = f(Xi17 "‘7Xir)

means that the variables that occur in the a;m; are among X;, , ..., X;

Notation: We write e.g. R[X,Y, Z] instead of R[X;,i € {1,2,3}].
Exercise 3.6.4. Show R[X,Y]~ R[X][Y]. If R is an integral domain, so is R[X;,i € I].
If R is an integral domain, and f,g € R[X;,i € I], then deg(fg) = deg(f) + deg(g).

Infer that R[X;,ie[]*= R*.

Hint: for the 2nd statement, assume f,g € R[X7,..., X,,]. Order monomials according to
the graded lexicographic order of exponent tuples in N™: (eq,...,e,) <je (d1, ..., d,) if # and
either Y ;e; <Y, d;, or Y;e; =y d; and e; < d; for the first j with e; # d;.

Definition 3.6.5. Let R be an integral domain. R(X;,i € I) := Quot(R[X;,7 € I]) is the
field of multivariate rational functions over R in variables X;,1 € I.

Of course, we write R(X,Y,Z) for Quot(R[X,Y, Z]) and the like. The following is
analogous to Theorem 3.1.7.

Theorem 3.6.6 (Universal property). Let I be a nonempty set, R, S be commutative rings,
p:R— S aring homomorphism, and x; € S for everyi e I. Then there exists a unique ring
homomorphism ® : R[X;,i€ I — S that extends ¢ and satisfies ®(X;) = x; for all i€ I.

Corollary 3.6.7 (Evaluation homomorphism).

1. Foriel let g€ R[X;,ieI]. There is a unique ring homomorphism ¢y, : R[X;,1 €
Il > R[X;,i €] that is the identity on R and satisfies @), (Xi) = gi for all i e I.

[ff = f(Xin "'7Xir)7 we write f(gin "-agir) = So(gl)z(f)
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2. Foriel let a; € R. There is a unique ring homomorphism ¢4, : R[X;,i € I] - R
that is the identity on R and satisfies ¢(,,),(X;) = a; for allie .

k3

]ff = f(Xin "'7Xir)7 we write f(ahv "'7a'ir) = gp(az)z(f)

Exercise 3.6.8. Let f € R[X,Y ] and a,b € R. Formalize and prove: plugging a,b for X, Y
in f is the same as plugging first a for X and then b for Y.

The following generalizes Remark 3.1.12 (3). We leave the proof as an exercise.

Lemma 3.6.9. Let S be a commutative ring with subring R and A={a;|iel}<cS. Then
R[A] is the image of Y(ay),, i-€-,

R[A]={f(ai, ....a;,) |neNir,..,in e [, (X, ..., Xi,) € R[X; i € ]}
In particular, for n >0 and aq, ...,a, € S we have
Rlay,...;a,] = {f(a1, ...,an) | fF(X1,...., X0) € R[X1, ..., X,,]}.
Lemma 3.6.10.
1. Let S,S" be commutative rings and R be a subring of both S and S’, A < S and
p:S =S5 a ring homomorphism with 1R =1idgr. Then
p(R[A]) = R[»(A)].

Moreover, if a ring homomorphism 1 : R — S" agrees with ¢ on RuU A, then also
on R[A].
2. Let L| K and L' | K be field extensions, Ac L and ¢: L - L' a field homomorphism

with o1 K =idg. Then
P(K(A)) = K(p(A4)).

Moreover, if a field homomorphism ¢ : L — L' agrees with @ on K U A, then also
on K(A).

Proof. We can assume A # @. (1) 2: ¢(R[A]) is a subring of S’ that contains RuU p(A).
c: write A ={a; |i €I} for a suitable set I and let z € R[A], say = = f(a;,...,a;,) as in the
previous lemma; then ¢(z) = f(p(a;,),...,o(a;,)) € R[e(A)].

Moreover: /() = F(t(an )., )) = £(2(an ). 0(as,)) = o().

(2) 2: p(K[A]) is a subfield of L’ that contains K up(A). c: let x € K(A), say = =y/z
for y,z € K[A] with z # 0; then ¢(z) = p(y)/p(z) € K(p(A)) by (1).

Moreover: () =¥ (y)[¥(2) = p(y)/¢(2) = ¢(x) since ¢, agree on K[A] by (1). [

Definition 3.6.11. Let n >0 and f € R[Xy,...,X,,]. Then a = (ay,...,a,) € R" is a root
of f if and only if f(a) =0.

Exercise 3.6.12. ...if and only if there are gy, ..., g, € R[ X1, ..., X,,] such that

f=(Xi—ar) + + g (X = an).
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Exercise 3.6.13. Let d,n >0 and f,g€ R[X,..., X, ]. Then f = f(Xy,...,X,) is homoge-
neous if all its monomials have the same degree. Equivalently, writing d := deg(f),

fYX), .., YX,) =Y (X1,.... X,),

in R[X1,...,X,,Y]. Further, fg is homogeneous if and only if both f and g are.

3.7 Symmetric polynomials

The polynomials X?Y?2+3XY +2X +2Y and X2+Y? are symmetric in the sense that they
do not change when X,Y are interchanged. E.g., X?Y + XY is not symmetric.

Definition 3.7.1. Let R be a commutative ring, n > 0 and f = f(X3,..., X)) € R[ X1, ..., X,.].
Then f is symmetric if f = fo for all permutations o : {1,...,n} - {1,...,n}; here,

fa = f(Xa(l), ey Xg(n)).

For 1 < k <n, the k-th elementary symmetric polynomial in n variables is

Snk = Z X“sz

1<iy <<ig<n
Example 3.7.2. 531 = X1 + Xo + X3, s50= X1 Xo + X1X3 + Xo X3, $33 = X1 XoXs.
Remark 3.7.3.
1. All s, are symmetric. In R[ X, ..., X,,][X], we have Vieta’s formula

(X — Xl)(X - Xn) =X"- Sn,an_l + Sn’an_l — e+ (—1)n5n’n.

The coefficients of a monic degree n polynomial with n roots (not necessarily distinct)
are values of symmetric polynomials of these roots.

2. (f+9)? =fo+g°and (f-9)° = f7-¢9°, so f — f° is an automorphism of R[ X}, ..., X,,].
The set of symmetric polynomials is the fixed ring (see below).

3. Hence, g(sn1, ..., Snn) is symmetric for every g € R[ X7, ..., X, ].

Definition 3.7.4. Let R be a group, ring or field, and ® ¢ Aut(R). The fized group (ring,
field) of ® is
R®:={zeR|p(z) =z for all p € P}.

Remark 3.7.5. R?® is a subgroup (subring, subfield) of R.
Example 3.7.6. X12X22 + 3X1X2 + 2X1 + 2X2 = 8372 + 38272 + 28271 and X12 + X22 = 8%71 - 25272.

Theorem 3.7.7. Let R be a commutative ring and n > 0. For every symmetric f €
R[ X1, ..., X,] there is a unique g € R[ Xy, ..., X, ] such that f = g(Sn1, ..., Snn)-

Hence, the evaluation homomorphism mapping Xy t0 Spk, 1.€., Q(s, 1)y, 1S AN 1SOMOT-
phism from R[X1,...,X,] onto the subring of symmetric polynomials.
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Proof. The weighted degree of a monomial aX{'---X;" with a#0is 1-7y +--+n-r,. The
weighted degree wdeg(g) of g € R[ X, ..., X,,] N {0} is the maximum weighted degree of its
monomials; wdeg(0) := —co. One easily checks deg(¢(g)) = wdeg(g) where v =, ),

We proceed by induction on n. For n =1 our claim is trivial: X; = 511, ¢ is the identity
and all polynomials in R[X;] are symmetric. Let n > 1 and assume our claim for n — 1.

We first show ¢ is surjective. Otherwise, choose f symmetric of minimal degree d
outside the image of . For a polynomial ¢(X7, ..., X,,) let §:= (X1, ..., X,_1,0). Then f is
symmetric with n—1 variables. Thus, f = g(Sn-1.1,---s Sn-1.n-1) for some g € R[X1,..., X;,1].

Set hi= f = g(Sp1,.... Snm1). Note h is symmetric of degree < d: indeed, d > deg(f) =
wdeg(g) = deg(g(Sn.1, -+, Snn-1)). Further, noting s, = 5,1 for k <n,

];' = f_g(gn,h "wgn,n—l) = f_g(sn—l,la "'an—l,n) = 0

It follows that X,, occurs (with positive exponent) in all monomials of k. As h is symmetric,
this holds for all Xj, and we can write h = s, ,h’ for some A’. This A’ is symmetric
since h is: s,,h' = h = h? = 83 /" implies b’ = b’ since 57, = s,,. But deg(h’) < d, so
h' =¢'(Sni,--, Snn) for some g’. But then f is in the image of ¢, a contradiction:

F=h+3g(Sn1, s Snn-1) = Snnd (Sn1s-r Snmn) ¥ 9(Sn1s ey Snn-1)-
For injectivity, we show ker(y) = {0}. Otherwise choose f of minimal degree d > 0 with
©(f) =0. Then, noting §,,, =0,
0= f(gn,la ceey §n,n—17 gn,n) = f(Sn—l,la <y Sn-1,n-1, 0)

By induction, f(Xi,...,Xn-1,0) = 0. Thus, f = X,,f’ for some f’ + 0. Then 0 = p(f) =
Snn@(f") implies p(f") = 0. But deg(f’) < deg(f), a contradiction. O

Exercise 3.7.8. The ring of symmetric polynomials equals the subring R[s 1, ..., Spn] of
R[X1,...,X,]. (Notation check.)

Here is an important consequence:

Corollary 3.7.9. Let K be a field, R a subring and let f € R[X] be monic of degree n > 0.
Assume f=(X-ay)(X-ap) with o; € K. Let g(Xq,...,X,) € R[X;..., X, ] be symmetric.
Then g(aq,...,an) € R.

Proof. Write X, & for the n-tuples of the Xj, a; and f = X" —a; X" 1 +a, X" 2~ +(-1)"ay,
with a; € R. By the theorem, g(X) = G(Sp1, ..., Snn) for some G € R[X]. By Vieta’s

formula, s, ;(@) = a;. Then
g(@) = G(sp1(@), ..., Sun(@)) = G(as,...,a,) € R. O

Exercise 3.7.10. Let K be a field, R a subring, f € R[X], ae€ R~ {0}, n >0 and assume
that f=a(X —ay)-(X —a,) € R[X] with o; € K. Let g € R[ X1, ..., X,,] be symmetric of
(total) degree < n such that a™ divides all coefficients of g. Then g(@) € R.

Hint: find a monic f* € R[X] with roots aq;.
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Example 3.7.11 (Higher discriminants). Let R, f, K, & be as above. Then

D(X) = [1;;(Xi - X;)?

is symmetric, so equals A, (Sp1, ..., Spn) for some A, € R[X]. By Vieta’s formula,
D(@) = Ay(ar, an) € R,

where f= X" —a; X" 1 +ayX"2 -+ (-1)"a, with a; € R. This is called the discriminant

of f and denoted Dy. It can be computed without knowing K and roots a. It is 0 if and

only if f has a multiple root in K — in particular, this does not depend on the choice of K.
The above generalizes the familiar formula for n = 2:

f=X%=501(Q)X +899(q), Dj=(X;-Xz)*= sg’l 4895, Ag=X?-4X,.
Unfortunately, A,, is complicated for n > 2. E.g.,
Az =-4X3 X5+ X7X3+ 18X X X5 —4X35 - 27X2.
This matches the definition of D in Proposition 3.5.15.
Exercise 3.7.12. D; = (1)) [T (i —a;) = (-1)E) - (o) (an).

Exercise 3.7.13. For R=R, K = C,n = 3 above, show D; =0,<0,> 0 if and only if f has
a multiple root, one real and two complex roots, resp., three real roots.

Remark 3.7.14. We defined Dy for monic f, i.e., with lead coefficient ag = 1. Definitions

for ap # 1 add a normalizing factor, e.g., often but not always a2"2 is used. We omit this

in order not to spoil the elegance.

3.8 The fundamental theorem of algebra

In the last chapter we shall prove (Theorem 6.3.5):

Theorem 3.8.1. Let K be a field and let f € K[X] have degree n > 0. Then there exists
a field extension L | K and a € K and ay, ..., a, € L such that f =a(X —ay)-(X —ay,).

Already in 1795 Laplace sketched a proof of the fundamental theorem of algebra that
in Lagrange’s words “ne laisse rien désirer comme simple démonstracion”. It is based on
the above, the theorem on symmetric polynomials, and the following basic facts:

Remark 3.8.2. Recall conjugation z — z is an automorphism of C.
1. For f=a,X"+-+ageC[X]let f:=a, X"+ +ag; then f(z) = f(2) for all zeC.
2. For Theorem 3.8.3 it suffices to show that every g € R[X] \ R has a root in C.

Given f € C[X], note f_f:ff, so ff e R[X]; aroot aeC of ff is a root of f or of
f; in the 2nd case a is a root of f.
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3. Every f e R[X] of odd degree has a root in R.

Assume [ is monic; then f(-n) <0 and f(n) > 0 for large enough n € N; apply the
mean value theorem.

4. Every quadratic f € C[X] has a root in C (exercise).
Theorem 3.8.3 (Fundamental theorem of algebra). Fvery f e C[X]\C has a root in C.

Proof. Given f e R[X]\R we look for a root of f in C (Remark 3.8.2 (2)). We can assume
f is monic, say of degree n > 0. Write n = 2km for k,m € N and m odd. We proceed by
induction on k. For k =0 apply Remark 3.8.2 (3). Assume k > 0.

By Theorem 3.8.1, f = (X -a)---(X —a,) where the «; are in some field extension L | C.
For ¢t € R set

ft = Thicicjen (X = (i + o + taza)).

By Vieta’s formula the coefficients of f; are s,(,-1)/2,(..-8ij...) where 1 <k < n(n-1)/2
and f;; := oy + a; + toyay for 1 <7< 5 <n. But these are symmetric polynomials in «; for
1<i<n. By Corollary 3.7.9, f; e R[X].

We have deg(f;) = n(n—1)/2 = 25"Im(2km - 1) = 2¥-Im/ for m’ odd. By induction,
fi has a root in C. This root equals «; + a; + ta;or; for some 7 < j. This way each t
is mapped to a pair ¢ < j and there are ¢ # s mapped to the same ¢ < j. Then both
a; + o +toyag, o + o + sz € Co As s £t 29 = apog € C and 21 := o + j € C and
(X —0;)(X —aj) = X2 =X +2 € C[X]. Remark 3.8.2 (4) gives a root z € C of this
polynomial, so z = o; or 2z = o, so z is a root of f. O]

Exercise 3.8.4. For every f € C[X] of degree n € N there are ay,...,a, € C such that
f=ao(X—-ay)-(X-ay). Infer that every f e R[X]\R is a product of linear and quadratic
polynomials in R[X].

3.9 Transcendence of 7

Hermite showed 1873 that e is transcendental. He said “I shall risk nothing on an attempt
to prove the transcendence of w. If others undertake this enterprise, no one will be happier
than I in their success. But believe me, it will not fail to cost them some effort.” We give
Niven’s “relatively simple proof” (1939) based on “an ingenious device” of Hurwitz.

Theorem 3.9.1 (Lindemann 1882). 7 is transcendental.

Proof. For contradiction, assume 7 is a root of g € Q[X]. Then i7 is a root of g(iX)g(-iX)
and it is straightforward to check g(iX)g(-iX) € Q[ X]. Hence, i is a root of some monic
f e Q[X]. By Exercise 3.84, f= (X -a;)(X —a,) for some n € N and «; € C and, say,
aq =im. By Euler’s equality €™ = -1, so

0=(e* +1)(e +1)=elr +---+efor =P 4+ ... 4 eBr + .
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Here, the §; enumerate the sums €0 +---+€,0, with €1, ..., €, € {0,1}. For the 2nd equality
we assume [y, ..., 3, list the §; # 0 and set k:=2" —r e N.

By Vieta’s formula, H?;(X - B) = X¥ I (X - ;) is a symmetric polynomial
whose coefficients are son ¢(f1, ..., Bor) for 1 <£<2". But this is a symmetric polynomial in
a1, ..., Qp, SO the coefficients are in Q by Corollary 3.7.9. Thus, for a suitable a € Z,

g:=a(X - f1)(X-p5) e Z[X].
For a prime p to be chosen later, set s:=rp—1 and define h € Z[ X] of degree s + p by
h(X) :=a*XP1g(X)P.
Define ‘Hurwitz’s device’ H € Z[ X ] using formal derivatives
H:=h+hW ...y 452,

Note H' = h() + ...+ h(stP) | By evaluation, H, h determine functions from C to C, namely,
x ~ H(x) and z — h(z). We denote these functions by H(x), h(z) for a complex variable z.
Using derivatives in the sense of calculus, we have (e7*H(z))’ = —e"*h(x) and hence

eH(z)-e"H(0) = [ —e*h(z)dz.
Substituting yz for z gives
H(z) - eH(0) = —z [, e(=0=h(yx)dy.
Plug the ;’s for x and sum the equations:
X H(B) + kH(0) = =iy B, fo 095 h(ys,)dy.

Consider the r.h.s. as a function of the (not displayed) prime p. It is easy to check, that
the r.h.s. has absolute value < ¢® for some ¢ € N. Dividing the r.h.s. by p! gives a number
with absolute value < 1 for all sufficiently large primes p. We get the desired contradiction
by showing that the 1.h.s. is an integer # 0 for all sufficiently large primes p.

We first examine Y, H(3;). Let 1 <j <r. As f3; is a root of g, we have h()(3;) =0
for all ¢t < p. Let t > p. Since products of any p consecutive integers is divisible by p!, the
coefficients of (") are divisible by a* - p!; also note deg(h()) <'s. Thus z,:= Y7, h(D(;) =
hi(B1, ..., By) for hy € Z[ X7, ..., X, ] symmetric of degree < s with coefficients divisible by pla®.
By Exercise 3.7.10, x; € p!Z. We thus have

X1 (B;) € p'Z.

Obviously, kH(0) € Z, so it suffices to show p + kH(0) for sufficiently large primes p.
Note ) (0) =0 for t <p—-1 and h)(0) € p!Z for t > p. Further,

BOD(0) =a (p- 1)1 g(0) = a* - (p-1)!-ac,

where ag € Z is the constant coefficient of g. But no prime p > k, a, ay divides kh(®-1(0). O



Chapter 4

Ring theory

4.1 Quadratic integer rings

Let d € Z be such that either d = -1, or, |[d| > 1 is square free. Recall the quadratic number
field Q(+v/d) = Q + QV/d from Corollary 3.5.12.

Definition 4.1.1. For a = z + yv/d € Q(V/d) with =,y € Q let
Q=T - y\/a
be the conjugation of a. The norm and trace of a are
N(a)=a-a=2*>-y*d, T(a):=a+a-=2x.
Remark 4.1.2.

1. Conjugation is an automorphism of Q(v/d) that fixes Q. E.g., - is preserved:

(2 +yVd)(u+ovVd) = zu+yod - 2oVd - yud = (z - yVd) (u - vV/d).

2. N(a-fB)=aBaf =N(a) -N(B) and T(a+ ) =T(a) +T(B).

3. N(«) =0 if and only if o = 0.
Indeed: N(«) =22 —y%d =0 clearly implies 2,y = 0 in case d < 0. If d > 0, it suffices
to show y = 0: otherwise (2/y)? = d, so V/d € Q, a contradiction.

Exercise 4.1.3. Q(\/d) is a vector space over Q with basis 1,4/d. For a € Q(+/d) let
A, € Q%2 be the matrix representing the linear map 3 — « - 8 on this vector space.

Show N(«) = det(A,), and T'(«) equals the trace of A, in the sense of linear algebra.

Definition 4.1.4. Call o € Q(+/d) integral if N(a),T(c) € Z. The set of integral elements
is Oy4. It is called a quadratic integer ring, and imaginary if d <0 and real if d > 0.
O_; are also called the Gaussian integers, and O_3 the Fisenstein integers.

66
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Figure 4.1: The Gaussian and Eisenstein integers

Lemma 4.1.5.
1. Ifd=2,3 mod 4, then Oy =Z+ZVd = {z +yVd|z,y e L}.
2. Ifd=1 mod 4, then for w:= (1+/d)/2

Od:{($+?J\/3)/2|$7yEZ,2|x—y}:Z+Zw.

Proof. The 2nd equality in (2) is straightforward. 2 is trivial in (1); in (2) let x,y € Z with
z—y even and o = (2 +yv/d)/2. We show N(«) = (22 - y2d)/4 € Z: since also = +y is even,
4| (z+y)(z-y)=22-y% then 4 | 22 —y? - (d - 1)y? = 22 — y%d.

c: let ,y € Q and assume a = x + y\/d is integral, so T'(a) = 2z € Z and N(a) =
2?2 —y?d € Z. Say, x = r[2 for r € Z. Then 4N(«a) = (22)? - d(2y)? € Z and (2z)? € Z,
so d(2y)? € Z. Since d is square free, this implies 2y € Z. Say, y = s/2 for s € Z. Then
N(a)=r%/4-ds?[4€Z, so

r? —ds*=0 mod 4.

Note all squares are 0 or 1 modulo 4. Hence, in (1) we get 72 = s2=0 mod 4. Then r,s
are even and x,y € Z. In (2), write r2 - s2 = (r+s)(r—s) =0 mod 4. Then r =s mod 2,
say =5+ 2t with t € Z. Then a = (r/2) + (s/2)V/d = t + sw. O

Corollary 4.1.6. Oy is a subring of @(\/c_l) and, in particular, an integral domain.

Proof. Clearly, 1,0 € Oy4. Let a, 8 € O4. By the lemma, o+ 3, —a € O, and we have to show
a- €Oy This is obvious if d =2,3 mod 4. If d=1 mod 4, say d = 4r + 1 for r € Z, note
o-feZ+Zw+7Zw? and w? = (1/4+Vd[2+d[4) =w + 7, s0 Zw? € Z + Zuw. O

Lemma 4.1.7 (Pell equalities).

1. O} = {ae(’)d | N(a) = :I:l}.

2. Ifd=2,3 mod 4, then for all x,y € Z: x+y\/ae(9§ < x?-y%d=+1.

3. Ifd=1 mod 4, then for all x,y € Z: (x+y\/d)/2 € 05 o a?-y*d=+4.
Proof. (1) ¢: 1= N(aa™?) = N(a)N(a™) and N(«) € Z2* = {£1}. 2:if 1 = N(«a) = aa,
then & is an inverse of a.

(2) and (3) = follows from (1). (3)<«=: 22 -y%d=(z-y)(z+y) =0 mod 4 implies z -y
is even, so (z +yvd)/2 € O,. O
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This allows to determine the units in imaginary quadratic number rings. Recall C,
denotes the group of n-th roots of unity (Definition 1.6.8).

Cy = {z1} ifd=-2 ord<-3
Corollary 4.1.8. O ={ Cy={+1,+i} if d=-1
Co = {1, (1 £i\/3)/2} ifd=-3.

Proof. For d = 2,3 mod 4 and d # —1, the Pell equation 22 + 4?|d| = 1 has only ‘trivial’

solutions(z,y) = (£1,0); for d = -1 we additionally have (z,y) = (0,+1), so get +i € O*,.
For d=1 mod 4 and d < -3 we have d < -7, and the Pell equation x2+y2|d| = 4 has only

trivial solutions. For d = -3, we have additionally (+1,+1), so get (x1+i\/3)/2€ 0%,. O

Units in real quadratic number rings are more difficult to determine.

Example 4.1.9. O is infinite: € := 1++/2 has norm -1 so is in Oj. Also —e = —1—\/5, el=
~1+v2,-¢1 =1-+/2 € 03. The powers (1 ++/2)F have norm (-1)*, so are in OF and
pairwise distinct (their absolute values in R grow).

Similarly, OF is infinite: it contains € := 1/2 ++/5/2,—¢, €71, —e"! and powers.

Remark 4.1.10 (Integer rings). The following explains the wording “integral” and the
rationale behind its definition. (3) is used to define the integer ring of Q(«) for any
algebraic a € C. Recall Definition 3.5.2.

Theorem 4.1.11. For o€ Q(\/d) the following are equivalent.

1. « is integral.
2. mE e Z[X].

3. « is a root of a monic polynomial in Z[X].

Yet incomplete proof. 1 < 2: if a € QQ, it has minimal polynomial X -« and, by Lemma 4.1.5,
being integral means « € Z. So assume a ¢ Q. Then deg(m<) > 1. Hence,

m2=(X-a)(X-a)=X*-T(a)X + N(a).

2 = 3 is trivial. For 3 = 2 choose a monic integer polynomial of minimal degree that
has a as a root. Is this the minimal polynomial? Or is it possible to find a monic rational
polynomial of smaller degree? We need a better understanding of divisibility in rings.

We shall complete the proof in Section 4.4 as follows. Assume « is a root of a monic
feZ[X]. Then f=mg-g for some g e Q[X] by Lemma 3.5.6. But f,m are monic, and
we shall prove in Lemma 4.4.15 that this implies m$ € Z[X]. O
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4.2 Irreducible and prime elements

In this section we make the discomforting observation that there exist natural rings where
divisibility behaves quite differently from what we are used to from the integers or poly-
nomials, in particular, we face rings that violate Euclid’s lemma 2.2.7.

Let R be a commutative ring.

Definition 4.2.1. Let z,y € R. Then x is a divisor of y (in R), and y a multiple of
(in R), symbolically z |y, if -z =y for some z € R. The set of multiples of z is

rR:={xz|z€R}.
We say, x and y are associate (in R), symbolically x ~ y, if both z |y and y | z.

Remark 4.2.2. For all z,2',y,vy', z,u,u’ € R:

2|01 |z, -1|z,x|z,—x |z, |-z (recall Lemma 1.1.14 (3)).
.| is transitive: if z |y and y | z, then x| z.
. ~ is an equivalence relation on R.

x|y and z |y, then z | uy + u'y’.

1

2

3

4

5. If x|y and 2’ | ¢/, then za’ | yy'.

6. If x|y, then xe | ye' for all £,¢’ € R*. Indeed: if zz =y, then ze(e~1ze’) = ye'.
7. If xe =y for some € € R*, then x =ye~!, so z ~y.

8. x|y < reyR < yRCcxR;in particular, x ~y < xR =yR.

9

.xeR* < x|l & zR=R.

Definition 4.2.3. = € R is irreducible (in R) if x + 0,2 ¢ R* and z is not the product of
two non-units, i.e., all divisors of = are units or ~ z. Otherwise z is reducible (in R).

Lemma 4.2.4. Let R be an integral domain and x,y € R.

1. x ~y if and only if xe =y for some € € R*.
2. If x 1is trreducible and associate to y, then y is irreducible.
3. x is irreducible if and only if t # 0, xR #+ R and for ally € R: xR ¢ yR implies yR = R.

Proof. (1) = is Remark 4.2.2 (7). (1) < assume zz = y,y2' = z; if x =0, then y = 0 and
x=1ly; if x #0, then 22’ =, so 2z’ =1 as R is an integral domain; thus, z, 2’ € R*.

(2): if x = ey for some € € R*, then y # 0 and y ¢ R* (otherwise = = 0 or x € R*); by
Remark 4.2.2 (6), x,y have the same divisors; hence, y is irreducible.

(3) =: 2R+ Rasx ¢ R* by Remark 4.2.2 (9); if R € yR, then y | by Remark 4.2.2 (8),
so y is a unit or associate to z. Then yR = R or yR = xR by Remark 4.2.2 (9), (8).

(3) <: = ¢ R* by Remark 4.2.2 (9); assume y | z; then 2R € yR by Remark 4.2.2 (8),
so xR =yR or yR = R; this implies  ~ y or y € R* by Remark 4.2.2 (9), (8). ]
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Examples 4.2.5.

1.

Recall Z* = {#1}. Remark 2.1.2 (6) becomes (1) above. By definition, the irreducible
elements of Z are +p for prime numbers p € N.

Let K be a field. Then f e K[X]\ {0} is irreducible by the above definition if and
only if it is irreducible by Definition 3.5.5 (recall K[X]* = K* by Lemma 3.1.6).

2X € Z[ X] is not the product of two polynomials of positive degree but reducible as
2, X ¢ Z[ X ] =2* ={«1}.

4. 2=(1+14)-(1-1) is reducible in O_; — note 2,1 £ are not units by Corollary 4.1.8.

2 =1/2-1/2 is reducible in Oy — note 2,v/2 are not units by Lemma 4.1.7 (1).

2,31+ 2'\/5, 2 +iv/5 are irreducible in O_s.

Indeed: assume « is one of these and o = 8. Then N(«) = N(B)N(v) € {4,6,9}.
Assume f,v are not units, so have norm # 1. Then N(f) € {£2,+3}. But +2,+3
are not of the form 2 + y25 for z,y € Z.

Exercise 4.2.6. Let O, be a quadratic integer ring.

1.
2.

If e Oy and N(«) is prime, then « is irreducible in O,.
A prime p e N ¢ O, is reducible if and only if there exists a € Oy with N(«) = p.

Euclid’s lemma 2.2.7 states that in Z irreducible elements are prime:

Definition 4.2.7. pe R is prime (in R)if p+0,p ¢ R* and for all z,y € R:

p| zy implies p |z or p|y.

Exercise 4.2.8. Let R be an integral domain, p € R be prime and x,vy,q, 21, ...,x, € R.

1.
2.
3.

If p|xy--x,, then p|x; for some i (by induction on n).
If ¢ ~ p, then ¢ is prime.
If R is an integral domain and ¢ is prime and p | ¢, then p ~ q.

Lemma 4.2.9. Let R be an integral domain. If p € R is prime, then p is irreducible.

Proof. 1f x| p, say p = xzy for some y € R, then p |z or p|y. In the 1st case, p ~ x. In the
2nd, xpz = p for some z € R, so zz =1 (as R is an integral domain), so x is a unit. ]

Example 4.2.10. 3 is prime in Zg but not irreducible as 3 =3 - 3.

Recall, in Z, the converse is stated as Fuclid’s lemma 2.2.7. Recall also that, in K[X],
we copied Euclid’s algorithm. We can also copy the proof of Euclid’s lemma:

Lemma 4.2.11. Let K be a field. In K[X] irreducibles are prime.

Proof. Assume f,g,h € K[X], f is irreducible, f | gh. Let d = ged(f,g). Since f is
irreducible, d ~ f or d € K[X]* = K~ {0}. In the 1st case, f | g. In the 2nd, d = 1. By
Theorem 3.2.7, 1 = sf +tg for certain s,t € K[X]. Then h =sfh+tgh, so f | h. ]
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Example 4.2.12. Euclid’s lemma fails in some integral domains:

1. Let R ¢ R[X] contain the polynomials ag + a1 X + --- with a9 € Q. Tt is easy to
check that R is a subring. In R, X is irreducible (having degree 1) but not prime:
X | (v2X)2 but X +/2X since V2 ¢ R.

2. 2 is irreducible in O_5 (by Example 4.2.5) but not prime: 2|6 = (1 +iv/5)(1 - iv/5)
but 2 4+ 1 +iv/5: if 1 +4v/5 = 2a, then 6 = 4N (), contradicting N(«) € Z.

Exercise 4.2.13. Let K be a field and R ¢ K[X] be the set of a, X" + -+ + ag with
neN,a; € K and a; =0. Show R is a subring. Show X?3 is irreducible and not prime in R.

Exercise 4.2.14. Let O4 be a quadratic integer ring and 7 be prime in Q4. Then there
is a unique prime number p € N such that 7 | p; moreover, |N(7)| € {p,p?}. If |N(7)| = p?,
then 7 ~p (in Oy).

Lemma 4.2.15. Let R be an integral domain and x,y € R.

1. x|y in R if and only if x|y in R[X].
2. x~y in R if and only if x ~y in R[X].
3. x is irreducible in R if and only if x is irreducible in R[X].

4. x is prime in R if and only if x is prime in R[X].

Proof. We leave (1)-(3) as an exercise. (4) <: assume z | yz for y,z € R, so x| yz in R[ X].
Then z |y or x| z in R[X] (z being prime in R[X]),so x|y or | zin R by (1).

(4) =: assume x is not prime in R[X]. Choose f,g € R[X] such that x| fg, z + f and
x4 ¢gin R[X]. We claim x is not prime in R. Write f = a, X"+---+ag and g = b,,, X +---+by.

Let k£ be the minimal ¢ < n such that = + a;, and ¢ be the minimal j < m such
that = + b;. Write f = fo+ fi with fo == ag1 X* 1 + - + ao (the empty sum is 0) and
fi1=a, X"+ +a, X" Analogously write g = gy + g;. Then x divides fog0, fog1, f1, g0 and
fag=fogo+ figo+ foor + f191, so x| fig1. Say xh = fig; and let h have coefficients ¢;. Then
XCrye = apby. Hence x| agby, x + ax,x + by, and z is not prime. O

4.3 Factorial rings

In this section we shall see that reasoning about divisibility follows familiar lines in rings
that allow prime factorizations:

Definition 4.3.1. A ring is factorial if it is an integral domain such that every nonzero
non-unit is a (finite) product of prime elements.

A more honest generalization of prime factorization in Z is (2) below.
Theorem 4.3.2. Let R be an integral domain. The following are equivalent.

1. R is factorial.
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2. FEvery nonzero non-unit of R is a product of irreducible elements that is essentially
unique: if n,m > 1 and q1--q, = q}--q), for irreducible q1,...,qn,q,....q, € R, then
n=m and, after a possible re-enumeration, q; ~q. for all 1 <i<n.

3. Irreducibles are prime and every nonzero non-unit of R is a product of irreducibles.

Proof. 1= 3: by Lemma 4.2.9, a decomposition into primes is one into irreducibles. Every
irreducible q € R is prime: write ¢ = p;...p, for primes p; € R; then n =1 and ¢ = p;.

3 = 2: it suffices to verify essential uniqueness for prime elements ¢;,¢;. If ¢i---q, =
41" Q> then g ~ ¢ for some j by Exercise 4.2.8 (1) and (3). We can assume i = 1.
Then ¢, = eq; by Lemma 4.2.4 (1) and e¢{qa--qs = ¢}--q},. Since R is an integral domain,
G2Q3°Gn = @b +*qm for §o := £qo, prime by Exercise 4.2.8 (2). Continuing yields the claim.

2 = 1: it suffices to show every irreducible ¢ € R is prime. Let ¢ | xy, say gz = vy. Write
T =q1qn, Y = q1 G, # = q1--q) for irreducibles ¢;, ¢;, ¢ Then qqi'--qy = ¢1-*qnqy-+q7,- By
essential uniqueness, ¢ is associate to some g; or some q,. Then ¢ = eg; or q = £¢;] for some
€€ R* by Lemma 4.2.4 (1). As ¢; | z,q] | y we get ¢ |z or ¢|y by Remark 4.2.2 (6). O

Remark 4.3.3. Let R be a factorial ring and let P € R represent the primes in R: it
contains exactly one element of every ~-equivalence class of a prime element of R. Then
for every nonzero non-unit x € R there are unique n,ey,...,e, > 0,p1,....,p, € P and € € R*
such that

T =epypy

For R =7 and P the set of prime numbers, this is the fundamental theorem.

Example 4.3.4. O_; is not factorial by Example 4.2.12. By Example 4.2.5 (6) we have de-
compositions into pairwise not associate irreducibles (recall 0%, = {+1} by Corollary 4.1.8):

6=2-3=(1+iV5)(1-iV5), 9=3-3=(2+iV5)(2-iV5).
Exercise 4.3.5. The subring Z + Z~/-3 ¢ O_3 is not factorial.

Lacking a notion of size like |-|, it is not obvious how to generalize ged and lem to an
integral domain R. But we can use Remark 2.1.9 (1) and Exercise 2.1.15 (2):

Definition 4.3.6. Let R be an integral domain, n > 0 and z1,...,x, € R not all zero. A
common divisor of x1,...,x, is an x € R such that x | x; for all ¢; it is greatest if additionally
all common divisors divide x. If 1 is a greatest common divisor, then x4, ..., z,, are coprime.

A common multiple of x1,...,x, is an x € R such that z; | z for all i; it is least if
additionally x divides all common multiples.

Remark 4.3.7. In case greatest common divisors or least common multiples exist at all,
we avoid the functional notations ged,lem because we only have ‘almost’ uniqueness: any
two greatest common divisors are associate, any two least common multiples are associate.
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Proposition 4.3.8. Let R be a factorial ring and n > 0 and x1,...,x, € R~ {0}. Let P
represent the primes in R. Let m >0 and py,...,pm € P and e;; €N for 1 <i<n,1<j<m
and €1...,€, € R* such that for all1<i<n

€il,

.= 5zp1 p%m.

Then x4, ...,x, have greatest common divisor and least common multiple

min; €i1, min; €;,,

“Pm

max; €1 max; €im

and e

Dy

Proof. We treat ged (lem is similar). It is clear that d == p™™ “!...pni%¢m i a common
divisor. Let ¢ be a common divisor and write ¢ = eqj'---q,* according Remark 4.3.3, in
particular with e; > 0. Fix 1 <4 < n. Then every ¢; divides z; and hence sorme P* | s0

¢; = p; by Exercise 4.2.8 (3). Thus {qi,....,q} € {p1,....pn} and ¢ = spl ---p,?;” for certain

ei € N. Write cy = x; for some y € R. As y | z; we similarly write y = 5’pi’1’---pf7’él for certain

e” e N. Then z; = e¢ pl1 el pfn *em Tt follows €ij = e + e ' by uniqueness Remark 4.3.3.

Hence e; < ey forall 4, j. As 1 <i<n was arbitrary, €] < mml e;j. 1t follows that ¢|d. O
Exercise 4.3.9. Let R be a factorial ring, y,z € R, n>0 and x4, ...,z, € R not all zero.

1. xy,...,x, are coprime if and only if there does not exists a prime element p € R that
divides all z;.

2. If y is a greatest common divisor of xy,...,z, and y1y = ©1, ..., Yny = T, then yy, ..., y,
are coprime.

3. If y is a greatest common divisor of zy,...,z,, then 2y is a greatest common divisor
of zxq, ..., zx,,.

4. If x,y are coprime and x | yz, then z | z.
Lemma 4.3.10. Let R be a factorial ring.

1. For all x € R,y € R~ {0} there are coprime x' € R,y € R~ {0} such that x|y = x'[y’
in Quot(R); such x',y" are unique up to ~.

2. For alln >0 and x1,...;Tn, Y1, ..., Yn € R~ {0} there exists z € R such that zx1/y, ...,
2%, [yn € R and have the same greatest common divisors as i, ...,Ty.

Proof. (1): write x = za',y = zy' for a greatest common divisor z of z,y. Then x/y =z’ /[y’
in Quot(R) and z’,y" are coprime by Exercise 4.3.9 (2).

(2): write z; = e;p¢"--pim and y; = 6;¢%1 g™ according Proposition 4.3.8 for suitable
primes p;, ¢; and units €;, ;. We can assume {p1,...,pm} N {q1, .-, qm} = 3.

Let z = g™ dir...gmaxidim 1,6 g least common multiple of the y;. Then

max; di1— d]l max; gim —0jm 6]1 €im

zajfy; = 67'e;q) “Gm, Py o Pm
for all 1< j <n. By Proposition 4.3.8 a greatest common divisor of the zz;/y; is

min; (max; di1—d;1)  min;(max; dzm_djm)pmlnz €1, ., min;

min; €i1, min; elm
1 m pm

“m = py “Dm

This is a greatest common divisor of the z;’s. This is enough by Remark 4.3.7. O
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4.4 Polynomial factorization

Recall our main interest are polynomial rings. This section gives good news showing they
are well-behaved:

Theorem 4.4.1 (GauB). If R is a factorial ring, then so is R[X].
Z[X1] is factorial. Then Z[X;, Xo] = Z[ X ][ X2] is factorial. And so on. Thus:

Corollary 4.4.2. Let n >0 and K be a field. Then Z[X,...,X,] and K[X1,...,X,] are
factorial.

We aim to verify Theorem 4.3.2 (3) and first ask for decompositions into irreducibles.
We explore the straightforward idea to repeatedly replace reducible factors by products.

Definition 4.4.3. Let R be an integral domain. A proper divisor chain in R is a sequence
(21 )nen Of elements of R such that x,,1 |z, and 2,1 ¢ z,, for all n € N.

Example 4.4.4. Z does not have proper divisor chains. Indeed: if y | z, then |y| < |z| and
ly| = |x| means y ~ x. Hence, a proper divisor chain satisfies |zo| > || > ---, impossible.

Lemma 4.4.5. A factorial ring R does not have proper divisor chains.

Proof. Assume (x,), is a proper divisor chain. Let P represent primes in R and write
xo = €opy'--pm according Remark 4.3.3. Then z; = elpig---pf}i” with €9 € R* and €] < e; for
all ¢ and €] < e; for at least one 7. Continuing gives x,, € R* for n:=};e;. Then z,,; € R*
and x,,1 ~ T,, a contradiction. O

Lemma 4.4.6. In an integral domain R without proper divisor chains, every nonzero
non-unit is a product of irreducibles.

Proof. Assume zy € R is a nonzero non-unit that is not a product of irreducibles. Then
xg is reducible, so zg = y1y2 where y;,ys are nonzero non-units. Then y;,ys ¢ x¢: if, say,
y1 ~ x, ie., y; = ex for € € R, then = = exys, so 1 = eys (R is an integral domain) and
Yo € R*, contradiction. At least one of y,1ys is not a product of irreducibles. Call it ;.
Continuing gives a proper divisor chain. O

Lemma 4.4.7. If R is an integral domain without proper divisor chains, so is R[X].

Proof. Let (f,), be a proper divisor chain in R[X]. Then all f, are nonzero, so have
degree > 0. Then deg(fo) > deg(f1) > -+ so there are d,ng € N such that deg(f,) = d
for all n > ng. Let a, be the lead coefficient of f,,. For n > ng write f,.19, = f. and note
d =deg(f,) = deg(fn+1)+deg(gn) = d+deg(g,), so deg(g,) =0, so g, € R. Then a,, = ap419n,
SO Apy1 | an in R[X ] and hence in R by Lemma 4.2.15 (1). Since R does not have a proper
divisor chain, there is m > ng such that a,,,1 = €a,, for some € € R*. But a,, = @;n119m, SO
gm € R* = R[X]* by Lemma 3.1.6. Thus, fj+1 ~ fm in R[X]. O
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Corollary 4.4.8. If R is a factorial ring, then every nonzero non-unit in R[X] is a finite
product of irreducibles.

Corollary 4.4.9. Let K be a field. Then K[X] is factorial.

Proof. K is factorial, so in K[X ] nonzero non-units are finite products of irreducibles. But
irreducibles are prime by Lemma 4.2.11. By Theorem 4.3.2, K[X] is factorial. [

We shall re-prove this in the next section by more abstract means.

Exercise 4.4.10. In F5[X] we have 3X2+4X +3=(3X +2)(X +4) = (4X +1)(2X +3).
Why does this not contradict the uniqueness of factorizations? (Hint: 2-3 =1)

We next aim to show that irreducibels are prime in Z[ X, ..., X,,] and K[X7,..., X, ].

Definition 4.4.11. Let R be a factorial ring, and f € R[X ]\ {0}. A content of f is a
greatest common divisor of the coefficients of f. f is primitive if 1 is a content of f.

Example 4.4.12. In Z[ X ], the contents of 12X3 + 16X + 8 are +4. E.g., 49X° + 10X and
3X +4 are primitive.

Remark 4.4.13. Let R be a factorial ring and f € R[X ]\ {0} with content a € R.

1. If be R is a content of f, then a ~ b (by Remark 4.3.7).

2. There is a primitive g € R[ X | such that f = ag.
Indeed: define g from f replacing every coefficient ¢ by some b with ba = ¢; these b
are coprime by Exercise 4.3.9 (2).

3. If be R~ {0}, then bf has content ba (by Exercise 4.3.9 (3)).

Lemma 4.4.14 (Gaul). Let R be a factorial ring. If f,g € R[X] have contents a,b, then
fg has content ab.

Proof. By Remark 4.4.13 (2) write f = af’, g = bg’ with primitive f’, ¢’. By Remark 4.4.13 (3),
a content of fg is abc with ¢ a content of f’g’. We claim that we can take ¢ =1, i.e., that
f'g" is primitive. Write f' =a, X" +--+ag,g" = 0, X™+---+by and f'g" = cppin X+ -+ .
Assume f’g’ is not primitive, say p is a prime divisor of the ¢;’s. Let r be the minimal
i <nsuch that p + a;. Let s be the minimal j < m such that p 4+ b;. Note ¢,4s = ¥4, 215 aib;.
If (¢,7) # (r,s), then i <r or j <s, so p|a;b;. Thus, p divides all a;b; # a,bs. As p| ¢y,
we get p | aqbs. As pis prime, p|a, or p|bs, a contradiction. ]

Lemma 4.4.15. Let R be a factorial ring, f € R[X]~{0}, g,h € Quot(R)[X] and f = gh.

1. There are §,h € R[X] of the same degree as g, h such that f = gh.
2. If g € R[X] is primitive, then h € R[X].
3. If f,g are monic, then g,h € R[X].
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Proof. (1): by Lemma 4.3.10 (2) there are a,b € R such that ag,bh € R[X]. By Re-
mark 4.4.13 (3) there are a’,b' € R and primitive ¢’, h' € R[ X ] such that ag = a’g’,bh = U'h/.
Then abf = a’b'g’h!. Let ¢ be a content of f. By Remark 4.4.13 (4), abc is a content of
abf. By Gau’ Lemma, a’b’-1-1 is also a content of abf, so abce = a’b’ for some € € R* by
Remark 4.4.13 (1). Hence, abf = abce - g'h', so f =ceg’h’. Set g :=g’, h = ceh!.

(2): if g € R[X] is primitive, we can choose a = @’ = 1 above. Then g = ¢’ = g, so
gh = f = gh = gh and hence h:ﬁeR[X].

(3): if f,g are monic, so is h. By Lemma 4.3.10 (2), ag,bh are primitive (their coeffi-
cients’ ged equals that of nominators in g, h). Hence we can choose a’ =0 =1 and ¢ = 1.
Then abce = '’ gives ab € R*. Since abg, abh € R[X], also g,h € R[X]. O

Exercise 4.4.16 (General rational root theorem). Let R be a factorial ring. If f e R[X]
is monic and x € Quot(R) a root, then z € R.

Theorem 4.4.17. Let R be a factorial ring and f € R[X]~ R. Then f is irreducible in
R[X] if and only if f is primitive and irreducible in Quot(R)[X].

Proof. =: if f is not primitive, then f = pg for some prime p € R (Exercise 4.3.9 (1)) and
ge R[X]NR. Then p,g ¢ R[X]* = R* (Lemma 3.1.6), so f is reducible.

If f is reducible in Quot(R)[X], then f = gh for certain g, h € Quot(R)[X ] with positive
degree. But then g, h from the lemma have positive degree, so f is reducible in R[ X].

<: assume f = gh for g,h € R[X]|~ R[X]*. Then g,h ¢ R as f is primitive, so g, h have
positive degree, so g, h ¢ Quot(R)[X]*, so f is reducible in Quot(R)[X]. ]

Proof of Gauf” theorem 4.J.1. By Corollary 4.4.8 and Theorem 4.3.2 (3) we are left to
show that every irreducible f € R[X] is prime.

Case f € R. Then f is irreducible in R by Lemma 4.2.15 (3), so prime in R by
Theorem 4.3.2, so prime in R[X] by Lemma 4.2.15 (4).

Case f ¢ R. Then deg(f) >0, so, by Theorem 4.4.17, f is primitive and irreducible in
Quot(R)[X]. Now, Quot(R)[X] is factorial by Lemma 4.2.11, so, by Theorem 4.3.2, f is
prime in Quot(R)[X]. Assume f | gh for g,h € R[X]. Then f|gor f|h in Quot(R)[X].
As f is primitive, Lemma 4.4.15 (2) implies f | g or f|h in R[X]. ]

4.5 Eisenstein’s irreducibility criterion

No efficient algorithm to test irreducibility of a given polynomial in Z[ X ] is known, exam-
ples are treated by ad hoc arguments and tricks. In slogan form: irreducibility is an art,
not a technique. In this section we learn some tricks. We start generalizing Exercise 3.5.9:

Corollary 4.5.1. Let R be a factorial ring and f € R[X] have degree 2 or 3. Then f is
irreducible if and only if [ is primitive and has no root in Quot(R).
If additionally f is monic, then f is irreducible if and only if it has no root in R.



CHAPTER 4. RING THEORY 7

Proof. f has a root a € Quot(R) if and only if (X —a) | f in Quot(R) (by Corollary 3.3.2),
equivalently f is reducible in Quot(R)[X]. Now apply Theorem 4.4.17. The 2nd statement
follows from Exercise 4.4.16. ]

Example 4.5.2. f:= X2+3X +1 is irreducible in Z[X] and Q[X].

Proof. For a € Z with |a| > 3 we have |f(a)| > |a|?> - 3|a] + 1 > |a|(Ja| =3) + 1> 0, so f(a) # 0.
Further, none of +2, +1,0 is a root. 0]

Example 4.5.3. f:= X2+ Y?2+1 is irreducible in Z[ X, Y].

Proof. We view f = X2 +a e Z[Y][X] with a := Y2 + 1 and show f has no root in Z[Y].
Otherwise g2 = =Y2 -1 for some g € Z[Y']. Then -1 is the square of the constant term of g,
contradiction. [

Exercise 4.5.4. To show f:= X4 -2X3+ X +1 € Z[X] is irreducible, first note it has no
linear factors, then show f = (X2 +aX +b)(X?+cX +d) for a,b,c,d € Z is impossible by
comparing coefficients.

Example 4.5.5. f:= X% -10X?+ 1 is irreducible in Z[ X ] and Q[X].

1st proof. In Z[ X ], f does not have a linear factor: such a factor would have the form X -a
(as f is monic) but f does not have a root in Z. Since f is primitive it suffices to show f is
irreducible in Z[X]. Assume otherwise. Writing f as a product of irreducibles thus reads
f = gog1 with go, g1 of degree 2; say go:= X2+ bX +c¢. One easily checks X?+c¢ + f for all ¢,
so b # 0. The evaluation homomorphism mapping X to —X is an automorphism of Z[ X].
Hence, go(-X) | f(-X) = f. Since go(-X) # go, we have go(-X) = g1 = X2 -bX +c. We
get ¢ =1,b% - 2¢ =10. But there are no such b, c € Z. O

2nd proof. Assume f = gh for g,h € Z[ X] of degree 2. Note |f(a)| is 1 or a prime in N for
a=0,+2,+4, +6,+8 which are 9 values. For each of them g(a) or h(a) is £1. But g, h take
each value < 2 times (by interpolation), a contradiction. ]

We shall see a third proof in Section 6.2.

Exercise 4.5.6. If f € Z[ X ] and |f(a)| is 1 or a prime in N for > 2deg(f) many a € Z,
then f is irreducible in Z[ X].

Theorem 4.5.7 (Eisenstein). Let R be a factorial ring, n >0 and f = a, X" +-+ag € R[X]
be primitive with a,, # 0. Then f is irreducible in both R[X | and Quot(R)[X] if there exists
a prime p € R such that:

plag,..p|an-1, p+a, and p* + ay.

Proof. Assume there is such a p. By Theorem 4.4.17 it suffices to show f is irreducible
in R[X]. Assume f = gh for f,g € R[X], say g = bpX¥ + -+ by, h = ¢, X + -+ + ¢o with
bi,coe #0 and £+ k =n. We claim g € R* or h € R*.
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Since p | ag = bocy and p? + ag, p divides exactly one of by, cq. Say, p | bo,p + co. As
P+ a, = bycy there is 0 < i < k such that p | bg,...,p | bi1,p + b;. Then p + by and hence

Pt a; =bico+ by + -+ + bocy,
setting ¢; :=0 for j > €. Thusi=n=~k,so £ =0and he R. As f is primitive, h € R*. ]

Example 4.5.8. f:=16X°-9X4+3X2+6X —21 € Z[ X] is irreducible in Z[ X ]| and Q[ X ]
(Eisenstein with p = 3).

Examples 4.5.9. Let n >0 and p € N a prime number.

1. f:= X" -pisirreducible in Z[ X ] and Q[ X].
2. fi=XPl4..+ X +1is irreducible in Z[ X ] and Q[ X].
3. f:==X"+Y"-1isirreducible in Z[ X, Y].

Proof. (1): by Eisenstein. (2): let ¢ be the evaluation homomorphism mapping X to X +1
(Corollary 3.1.9 (1)). This is an automorphism of Z[ X]. It thus suffices to show ¢(f) is
irreducible. Since f-(X -1)=X? -1, we have o(f) - X = (X +1)?-1, so

o) =X (1) X2 ().

Apply Eisenstein: primitive and (’1’) =pand p| (f) =p- (pzl) forall 1<i<p—-1.

(3): view fin Z[Y'][X] and write f = X" +a with a:=Y"-1€Z[Y]. Thena=(Y -1)g
for g:= (Y"1 +--+Y +1). Note Y -1 is prime in Z[Y] and Y -1 4 ¢ since g(1) # 0, so
(Y =1)2 + a. Since f is primitive, Eisenstein applies. ]

Exercise 4.5.10.

1. X?+10X°+15X3 + a is irreducible in Z[ X ] and Q[X] for infinitely many a € Z.

2. X3+3X +2and X*+1 are irreducible in Z[ X | and Q[ X ] (Hint: plug X + 1 for X).
3. Y2+ XY + X is irreducible in Z[X,Y].

4. 72 +Y? - XY + X is irreducible in Q(X,Y)[Z].

4.6 Principal ideal domains

Definition 4.6.1. Let R be a commutative ring. I € R is an ideal (of R) if I is a subgroup
of (R,+) and xzr e[ forall z € I,r e R. It is properif I + R. 1t is trivial if I = {0} or I = R.
It is principal if I = xR for some x € R.

R is a principal ideal domain if R is an integral domain such that all ideals of R are
principal, i.e., for every ideal I of R there is x € R such that I = xR.

Remark 4.6.2. Let R # {0} be a commutative ring.
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1. An ideal I of R is proper if and only if I n R* = @.
Indeed: if ee I n R* and = € R, then z =e(e71x) € I.
2. R is a field if and only if all ideals are trivial.
= by (1). < if 0+ x € R, then xR # {0}, so xtR=R>31, s0 z € R*.

Examples 4.6.3.

1. Z is a principal ideal domain by Lemma 2.1.5.

2. Z[X] is not a principal ideal domain.
Indeed: let I be the set of polynomials in Z[X] with an even constant term. This
is an ideal but not principal. Otherwise I = fZ[X] for some f € Z[X]. Then there
are g,h € Z[X] with 2 = fg and X = fh. The former implies f,g € Z. Then the
latter implies h = yX for some y € Z with yf =1, so f ==+1. Then fZ[X]=7Z[X], so
I=7Z[X]. But 1¢ I, contradiction.

3. For a field K, K[X] is a principal ideal domain (see Example 4.6.10 and Lemma 4.6.9
below) but K[X,Y] is not (exercise).

Exercise 4.6.4. For a field K, K[[X]] is a principal ideal domain.
Lemma 4.6.5. In a principal ideal domain, irreducibles are prime.

Proof. Let R be a principal ideal domain, ¢, z,y € R and assume ¢ | xy and ¢ is irreducible.
Consider J :=zR+qR = {xr+qs|r,s € R}. This is an ideal, so principal, say J = zR. Then
gR ¢ J = zR and, since ¢ is irreducible, Lemma 4.2.4 (2) gives ¢R =zR or zR = R.

In case ¢R = zR, we have ©R € qR, so ¢ | x by Remark 4.2.2 (8). In case J = zR = R,
choose 19, 59 € R with 1y + ¢so = 1, and note q | xroy + ¢soy = y by Remark 4.2.2 (4). ]

Theorem 4.6.6. Principal ideal domains are factorial.

Proof. By Theorem 4.3.2 (3) and Lemmas 4.4.6, 4.6.5 it suffices to show that a principal
ideal domain R does not have proper divisor chains. Assume (z,,), is one. Then

IQR (2 J]lR (2 ZEQR G -

by Remark 4.2.2 (8). Let I :=U,, z, R and observe I is an ideal. Choose = € R with I = zR.
As z €I, there is n € N such that z € z,R. Then z,.1Rc I =xR ¢ z,R, contradiction. [

Exercise 4.6.7. Principal ideal domains R satisfy Bézout’s lemma: for zy,...,x, € R not
all zero, there are rq,...,7, € R such that rizq +--- +r,2, is a gcd of xq,..., x,.
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4.6.1 FEuclidian domains

Which integral domains are principal ideal domains? Beginning number theory, our main
tool was Euclidian division:

Definition 4.6.8. R is an FEuclidian domain if R is an integral domain and there is a
Euclidian valuation

d: R~ {0} >N,
i.e., for all z,y € R~ {0} there are ¢,r € R such that x = gy +r and, r =0 or 6(r) < 0(x).

Lemma 4.6.9. Euclidian domains are principal ideal domains.

Proof. Let R be a Euclidian domain with valuation d, and I ¢ R an ideal. If I = {0}, then
I =0R is principal. Assume [ # {0}. Choose z € I with minimal J-value. We claim [ = zR.

2 is clear. C: given y € I, write y = gz +r with ¢, € R and, r =0 or §(r) < §(z); then
r=y—qxe€l, sor=0 by choice of x; then y = qx € xR. [

Examples 4.6.10.

Z has Euclidian valuation x ~ |z| (by Euclidian division).
A field K has Euclidian valuation x + 0.
K[X] has Euclidian valuation f ~ deg(f) (by Theorem 3.2.1).

The Gaussian integers O_y = Z + Zi have Euclidian valuation a » N(«).

=W D=

Indeed: note N(x+iy) = 22 +y? = |z +iy|? extends to Q(i). We want for all o, 5 € O_
some ¢,7 € O_; such that a = B¢+ r with r =0 or N(r) < N(). Working in Q(7),
this means N (r/5) = N(a/8-q) <1. So we ask for g € Z + Zi with |- |-distance < 1 to
a given point (namely «/f3). The maximal distance to grid points is realized by the
midpoints of the squares of the grid. This is [(1+4)/2| = 1/v/2 < 1.

5. Similarly, O_y = Z + Z+/2 has Euclidian valuation a = N(a).

More abstract proof of Corollary 4.4.9. By (3) above, K[X] is a Euclidian domain, so a
principal ideal domain by Lemma 4.6.9, so factorial by Theorem 4.6.6. O

Remark 4.6.11. It is known that a — |N(«)| is a Euclidian valuation in Oy for exactly 21
values of d, namely -1,-2,-3,-7,-11,2,3,5,6,7,11,13,17,19,21,29, 33,37,41,57,73. It is
conjectured that there are infinitely many d > 0 such that Oy is Euclidian. E.g., Oy, is
known to be Euclidian but not by its norm. Heegner proved 1952 that there are exactly 9
values of d < 0 such that O, is a principal ideal domain, namely -1, -2, -3, -7,-11,-19, 43,
-67,-163. E.g., O_19 is known to be a principal ideal domain that is not Euclidian.

Remark 4.6.12. What if we require (g, 7) in Definition 4.6.8 to be unique? It was observed
by Jodeit (1967) that then K := R*u {0} is a field and, R= K or Rz K[X].

Exercise 4.6.13. Give a version of the Euclidian algorithm for a Euclidian ring.
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Exercise 4.6.14. Are subrings of Euclidian rings also Euclidian?
Exercise 4.6.15 (Euclidian valuations). Let R be a Euclidian domain.

1. R has a Euclidian valuation ¢ satisfying 6(x) < 0(zy) for all z,y € R~ {0}.
Hint: given an arbitrary valuation ¢’, set §(z) := min{d’(zy) |y € R~ {0}}.
2. Forall ze R~ {0},e e R*,y ¢ R*u{0}:

5(1)<8(x), d(ex) =d(x), o(x)<d(ay).

3. x € RN {0} is a unit if and only if 6(z) = J(1).

4.7 1Ideals

Let R, S be a commutative rings. Ideals are ‘ideal numbers’ and we compute with them:

Lemma 4.7.1. Let T be the set of ideals of R. Then (Z,+) and (Z,-) are commutative
monoids with neutral elements {0} and R. Here, for I,JeL:

I+J
I-J := {:z:ly1+---+:z:nyn|neN,x1,...,;z:n el yi, ...y, € J}.

{x+y|xe[,yeJ},

Moreover, I+ =1 and (I+1')-J=1-J+1"-J forall I,I',J€T.

Proof. We only verify distributivity: if z € (I +1')-J, then z = (z1+x))ys +- + (zp + 2}, Yn
for somen e N,z; e I,zl e I’ y; € J. Then z = (v1y1 +--+2pyn) + (2iys +--2hyn) € [- J+1"- J.
Conversely, (I +1")J contains I.J and I’J and is closed under +. O

Remark 4.7.2. Let I, J be ideals of R. Then
I-JciInJcludJcIl+J

Clearly, I +J is the smallest ideal containing both I and J (every such ideal contains I +.J).
InJ is an ideal, and clearly the largest one contained in both I and J. IuJ is not always
an ideal, e.g. in Z, 21 =6+ 15 ¢ 6Z u 15Z.

Definition 4.7.3. The ideal generated by X cRis (X):= (] [

I ideal, X cI

Remark 4.7.4. Intersections of nonempty sets of ideals are ideals; in particular, (X) is
an ideal. It is the smallest ideal that contains X. For xq,...,x, € R we have

(r1,..,x0) = ({x1, ..,z }) =1 R+ + 2, R.
For z,y € R, note xR = () and (@) = (0) = {0}, and (x) - (y) = (zy). Using distributivity,

(v1,22,23) - (y) = ((21) + (22) + (23)) - (y) = (21y) + (229) + (23Y) = (¥1Y, T2y, T3Y).
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Exercise 4.7.5. Let R be a principal ideal domain, n > 0 and x1,...,z, € R not all zero.
Show z € R is a greatest common divisor of x1, ..., z,, if and only if (x) = (z1,...,2,). Show
x € R is a least common multiple of 1, ..., z, if and only if N, (z;) = (z).

Example 4.7.6. In Z, (6)-(15) =(90) € (30) = (6)n (15) ¢ (6) u (15) & (6) + (15) = (3).
Why are the finite sums needed in the definition of the ideal product?
Example 4.7.7. In Z[ X ], consider the ideals I := (2, X), J := (3, X) and note

I-T=((2)+ (X)) ((3) + (X)) = (2-3) + (2X) + (3X) + (X?) = (6) + (X).

The last equality follows from [’ := (2X) + (3X) + (X?) = (X); indeed, € as X divides all
elements of I, and 2 as X =2X-(-1)+3X -1+ X2-0¢€ I’. Less formally, note I,.J and I-.J
are the ideals of polynomials with constant term divisible by 2,3 and 6.

But X € I-J cannot be written X = fg with f € I, g € J because X is irreducible and
I, J (are non-trivial, so) do not contain units +1.

Exercise 4.7.8. {f(X,Y) e R[X,Y]| f(z,22) =0 for all x €e R} € R[X, Y] is the ideal of
real polynomials vanishing on the parabola. Show it equals (Y — X?2).

The ideal of real polynomials vanishing on (a,b) € R? is (X —a,Y - b). Verify (X -
2,Y —4) 2 (Y - X?) algebraically.

Definition 4.7.9. Let I, J be ideals of R.

1. I,J are coprime if [ +J = R.
2. I is prime if I is proper and for all x,y € R: xy € I implies x € [ or y € [.
3. I is mazimal if I is proper and for every ideal J: I € J implies [ = J or J = R.

Exercise 4.7.10. Maximal ideals are prime.
Remark 4.7.11. Assume R is a principal ideal domain and let x,y,z € R~ {0}.

1. The ideals 2R, yR are coprime if and only if 2, y are coprime (in R, cf. Exercise 4.3.9).

=: if xR+ yR = R choose r,s € R such that zr + ys = 1. Let d #+ 0 be a common
divisor of x,y. Then d | zr + sy = 1. Hence, 1 is a greatest common divisor.
<: Exercise 4.6.7 gives 1 e tR+yR, so tR+yR = R.

2. xR is a prime ideal if and only if x is prime. (Holds in any commutative ring.)
=: if x| yz, then yze xR, soyexRor zexR, so x|y or z|z.
<: ifyzexR, then x |yz,sox |yorx |z soyexR or z€xR.
3. xR is a maximal ideal if and only if z is irreducible (by Lemma 4.2.4).
4. Anideal # {0} of R is maximal if and only if it is prime (Exercise 4.7.10, Lemma 4.2.9).

Example 4.7.12. The maximal ideals of Z are pZ for a prime number p. The prime ideals
of Z are these plus 0Z = {0}.
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Example 4.7.13. Let K be a field. In K[X,Y], the ideal (X) is prime because X is
prime in K[X,Y] (Remark 4.7.11 (3)). (X) is not maximal as (X) ¢ (X,Y). (X,Y) is
maximal: the elements of K[X,Y]~ (X,Y) are the polynomials with non-zero constant
term; any such f can be written f=g+a with ge (X,Y) and ae K*,s0 1€ (X,Y, f).

Example 4.7.14. Let L | K be a field extension, and a € L be algebraic over K. The set
I, of fe K[X] with f(a) =0 is an ideal. That a is algebraic over K means that I, # {0}.
By Lemma 3.5.6 (1 = 3), I, =m&K[X]. By Lemma 3.5.6 (1 = 2) , m& is irreducible,
so I, is maximal.
Conversely, I, = gK[X] for some g € K[X] (Example 4.6.3). Then g # 0, so we can
choose g monic. Then f € I, if and only if ¢ | f and Lemma 3.5.6 (3 = 1) shows g = mX.

Theorem 4.7.15. Fvery proper ideal of R is contained in a maximal one.

Proof. Let Z be the set of proper ideals, partially ordered by ¢. Let C be a chain. Then
I:=JC eZ. Indeed, I is clearly an ideal and it is proper: otherwise 1 € I, so 1 € J for some
JeC,s0J=R¢I, contradiction. Hence, the partial order is inductive. By Zorn’s lemma
it contains a maximal element. This is a maximal ideal. O]

Remark 4.7.16. Let ¢ : R - S be a ring homomorphism.

1. If J is an ideal of S, then p~1(J) = {z € R| p(x) € J} is an ideal of R that contains
ker(¢). In particular, ker(p) = ¢=1({0}) is an ideal of R.

Indeed: ¢~ 1(J) 2 ker(y) because 0 € J. We show ¢~1(J) is an ideal. Let z,y €
e 1(J) and 7 € R; then ¢(z —y) = p(x) —(y) € J, so x —y € o 1(J); further,
o(xr) = p(x)e(r) € J, so xzr e p=1(J).

2. If J is a prime ideal of S, then ¢=1(J) is a prime ideal of R.
Indeed: I:=1(J) is an ideal by (1) and proper as 1 ¢ I since p(1)=1¢ J. If ay e I,
then p(xy) = p(x)p(y) € J. As J is prime, p(x) € J or p(y)eJ,soxel oryel.

3. If S is an integral domain, then ker(y) is a prime ideal of R.

Indeed: if xy € ker(y), then ¢(z)p(y) = 0. Since S is an integral domain, ¢(z) =0
or p(y) =0, i.e., xeker(p) or y € ker(yp).
4. If ¢ is surjective and [ is an ideal of R, then () is an ideal of S.

Indeed: let y,y" € p(I), say p(x) =y, p(x) =y’ for x,2' € I; then y—y' = p(x)—p(z') =
o(x — ") € o(I). Given s € S, choose r € R with ¢(r) = s by surjectivity; then
ys = o(x)p(r) = p(zr) € p(I).

5. In (4) surjectivity cannot be omitted: e.g., the identity idz is a ring monomorphism
from Z into Q and idz(27Z) = 27Z is not an ideal of Q.

Proposition 4.7.17 (Ideal correspondence). Let ¢ : R — S be a ring epimorphism. Then
I — @(I) is a bijection from the set of ideals I of R with ker(p) € I onto the set of all
ideals of S; its inverse is J — @~1(J) for ideals J of S.
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Proof. We show I* := p=1(p(I)) = I for every ideal I of R with ker(y) € I. 2 is clear.
c: let x* € I*, so p(x*) € p(I), so p(x*) = () for some = € I. Then p(z*-x) =0, so
x*—xeker(p)cl. Then z* = (z*—z)+xel.

We show J* = ¢(p~1(J)) = J for every ideal J of S. < is clear. 2: let y € J; by
surjectivity, there is x € R such that ¢(z) = y; then z € o=1(J), so y € J*. O

4.7.1 Noetherian rings

We saw Z and K[X] are principal ideal domains, but Z[X] and K[X][Y] are not. A
weaker property is preserved moving to the polynomial rings:

Definition 4.7.18. R is noetherian if every ideal I of R is finitely generated, i.e., I = (X)
for some finite X ¢ R.

Proposition 4.7.19. The following are equivalent.

1. R 1s noetherian.
2. Ascending chain condition: if Iy € I} € --- are ideals of R, then there is n € N such
hat I,, = I,,, for all m >n.

3. Noetherian recursion: every nonempty set T of ideals of R contains a S-maximal
element I €L, i.e., for all JeZ: IcJ implies I =J.

Proof. 1 = 2: given Iy € I} € -+, set I := U, I, and note this is an ideal. Choose r > 0
and x1,...,x, € R such that I = (xq,...,z,). Choose n € N such that z,...,z, € I,. Then
I,cl,clcl,, sol,=1, forall m>n.

2 = 3: assume Z # @ does not have a maximal element. Choose Iy € Z. As I is not
maximal, there is Iy € Z with Iy ¢ I;. Continuing gives a chain violating (2).

3 = 1: given an ideal I of R let Z be the set of ideals (X) for X ¢ [ finite. Then a
maximal (X) e€Z equals I: if z € I\ (X), then (X) ¢ (X u{z}) €Z is not maximal. O

Exercise 4.7.20. The ascending chain condition restricted to principal ideals is equivalent
to not having proper divisor chains.

Theorem 4.7.21 (Hilbert’s basis theorem). If R is noetherian, then so is R[X].

Proof. Assume [ is an ideal of R[ X ] that is not finitely generated. Clearly, I # {0}. Choose
fo € I ~ {0} of minimal degree ng. As I # (fy), choose f; € I ~ (fo) of minimal degree n;.
As I # (fo, f1), choose fa € I\ (fo, f1) of minimal degree ny. And so on.

Then ng < ny < ng <. Let a, be the lead coefficient of f,,. Then (ag) € (ag,a1) € - is
a chain of ideals in R. As R is noetherian, (aq, ...,ax) = (ag, ..., ags1) for some k € N. Then
Qg1 = ToGo + -+ + rpay for certain r; € R. Set

g = Z’iék /rank:-#l_nifi.

Then g € (fo, ..., fr) has degree n;,; and lead coefficient ay,1. Then fri1—g e I~(fo, ..oy fr)-
But fri1 — g has degree < ng,1, in contradiction to the choice of fy,;. O

Corollary 4.7.22. If K is a field and n >0, then K[Xy, ..., X,,] is noetherian.
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4.8 Residue class rings

We defined Z,, from Z by identifying two integers that differ only by multiples of n, i.e., an
element of the principal ideal nZ. In the notation below this becomes Z,, = Z/nZ = Z](n).
In Exercise 3.2.11 we defined K[X]/(g) by identifying two polynomials that differ only by
multiples of g, i.e., an element of the principal ideal (g).

We now give a general definition. Let R, S be commutative rings.

Definition 4.8.1. Let [ be an ideal of R. Call x,y € R congruent modulo I, symbolically
x=y mod I, if x —y e l. The equivalence class of xis z+ [ :={x+y|yel}.
The set of equivalence classes is R/I. Define +,- on R/I setting

(z+D)+(y+1)=(x+y)+I, (z+I)-(y+1):=axy+1,
for all z,y € R. For X c Rwe let X/I:={z+1|xzeX}.

Example 4.8.2. The set C' of rational Cauchy sequences are a ring with componentwise
addition and multiplication. Those with limit 0 form an ideal N. We defined R as C//N.

Theorem 4.8.3. Let I be an ideal in R. Then (R]/I,+,-) is a commutative ring, the
residue class ring modulo I. The canonical projection 7; given by

mr(x)=x+1
for x € R is a ring epimorphism from R onto R/I with kernel I.

Proof. 1t is easy to check that congruence is an equivalence relation with classes x + 1. We
show +, - are well-defined: assume u := x—x',v := y—y’ € . Then (x+y)+1 = (u+x'+v+y’)+I =
(z+y)+Tasu+vel,anday+1=(u+a")(v+y )+ =2y +(uwv+uy +ve')+ 1 =x'y' +1
as (uv +uy' +vz') e I.

It is easy to see that +,- are associative and commutative with neutral elements 0+1 = [
and 1+ I. The additive inverse of x + I is (—x) + I. Distributivity is also clear.

The canonical projection is obviously surjective, preserves 1 and also +,- by definition
of +,-in R/I. For the kernel, note x + I =0+ I if and only if z € I. ]

Exercise 4.8.4. Let x € R and [ be an ideal of R. Then z + I € (R/I)* if and only if 2R
is coprime to I.

Ideal correspondence for the epimorphism 7y : R — R/I gives:

Corollary 4.8.5. Let I be an ideal in R. The ideals of R/I are exactly the sets J/I for J
an ideal of R with I ¢ J.

Exercise 4.8.6. Iterating factoring does not yield anything new: let I, J be ideals of R
with 7 ¢ J. Then (R/I)/(J]I)2 R/J via (z+ 1)+ J/]— z+J.

Exercise 4.8.7. Let I,J be ideals of R. Then the map z+ (I nJ) ~ z+J is a bijection
from I/(InJ) onto (I +J)/J that preserves + and -.
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Exercise 4.8.8. Show Z0/([5]10) 2 Zs. For ideals of Z show (3)/(15) is isomorphic to
((3) +(5))/(5) and Zs.

Lemma 4.8.9. Let I be an ideal of R.

1. I is a prime ideal if and only if R/I is an integral domain.
2. I is mazximal if and only if R/I is a field.

Proof. (1) = since [ is proper, R/I satisfies 0 # 1. If (x+1)(y+1)=0+1, then zy e, so
reloryel sox+l=Tory+1=1.

(1) «<: since R/I satisfies 0 # 1, [ is proper. If zy e I, then [ =ay+1=(x+1)(y+1),
sox+l=ITory+I=1ie,xeloryel.

(2) =: as I is proper, R/I satisfies 0 # 1. If R/I is not a field, it has a non-trivial ideal
by Remark 4.6.2. By Corollary 4.8.5 we can write it as J/I for some ideal J of R with
I ¢ J. Being nontrivial means I ¢ J ¢ R. Hence, I is not maximal.

(2) <=: as R/I satisfies 0 # 1, [ is proper. If I is not maximal, there is an ideal I ¢ J ¢ R.
By Corollary 4.8.5, J/I is a nontrivial ideal of R/I, so R/I is not a field. O

More abstract proof of Lemma 4.6.5. If x € R is irreducible, then zR is maximal by Re-
mark 4.7.11 (3). By (2) above, R/zR is a field, hence an integral domain, so xR is a prime
ideal by (3) above, so x is prime by Remark 4.7.11 (2). ]

Remark 4.8.10. Proposition 2.5.6 observed Z, = Z/pZ is a field if and only if p is a prime
number. By Example 4.7.12, these pZ are precisely the maximal ideals of Z.

Theorem 4.8.11 (Universal property). Let I be an ideal in R and ¢ : R - S a ring
homomorphism with I € ker(y). There is a unique ring homomorphism @ : R/I - S with

p=pomy.

Proof. ¢ = pom; forces the definition @(x+1) := p(x), so uniqueness is clear. Well-defined:
if v+ =x"+1,then x—xa' el cker(p),so0=p(zx-2")=p(x)-pz), soe(x)=p(x).
It is clear that ¢ is a homomorphism. E.g., it preserves -:

e((x+1)-(y+1))=@(xy +1) = p(ay) = p(x)p(y) =p(x+ 1) - ¢y + ). O

Corollary 4.8.12 (Isomorphism theorem for rings). Let ¢ : R - S be a ring epimorphism.
Then ¢ : R/ ker(p) = S.

Proof. Write I :=ker(p). ¢ is surjective: if y € S, say ¢(x) =y, then @(x+1) = y. Injective:
@(x+ 1) =0 implies o(z) = @(m;(x)) =0,s0 x €I, so x+ 1 =1 1is the 0 of R/I. O

Exercise 4.8.13. Recall the ring C'(R) from Example 1.1.17 (5). For a € R show that
I,:={feC(R)| f(a) =0} is an ideal of C(R) and C(R)/I, 2 R.

Example 4.8.14. Let K be a field, n >0 and a4, ...,a, € K. Then (X —aq,..., X, —a,) is
a maximal ideal of K[Xy,...,X,].
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Proof. Let @z be the evaluation homomorphism (cf. Corollary 3.6.7 (2)) that maps X; to a;.
It is onto K. Then K[Xj,...,X,]/ker(y;) = K is a field, so ker(y;) is a maximal ideal by
Lemma 4.8.9 (2). But ker(y;) = (X7 —aq, ..., X, — a,). This has been shown “by hand” in
Exercise 3.6.12. More abstractly we can now argue as follows: let I denote the r.h.s. ideal
and argue: X; =a; mod I for all i, so for any f(X) e K[X] we have f(X) = f(a) mod I;
hence, f(a) =0 if and only if f(X)=0 mod I, i.e., f(X)el. ]

Corollary 4.8.15. Let L | K be a field extension and a € L. Then

1. If a is algebraic over K, then K(a) = K[a] 2 K[X]/(mX) via an isomorphism that
maps © € K to x+ (mK) and a to X + (mk).

2. If a is transcendent over K, then K(a) 2 K(X) via an isomorphism that fizes each
x € K (maps it to itself) and maps a to X + (mk)

Proof. (1): = by Theorem 3.5.8 and 2 by ker(y,) = I, = (mX) as noted in Example 4.7.14.
(2): ker(p,) ={0}, so K[a] = K[X], so K(a) 2 K(X). O

Remark 4.8.16.

1. Recall Exercise 3.2.11 showed K[a] 2 K[X]/(X —a) (as defined there). The advan-
tage of the description K[X]/(mkE) is that it uses only data from K.

2. In Theorem 3.5.8 we showed, assuming a is algebraic over K, that K[a] is a field
using the Euclidian algorithm for polynomials. More abstractly we can now argue as
follows: mX is irreducible (Lemma 3.5.6), so (mX) is a maximal ideal in K[X], so
K[X]/(mE) is a field, hence the isomorphic K[a] is a field.

Examples 4.8.17. R[X]/(X?+1) 2 R[i] = C. Similarly, for a quadratic number field,
Q(Vd) = Q[X]/(X2 - d). By Lindemann, Q(7) = Q(X).

Theorem 4.8.18 (General Chinese remainder theorem). Let n > 1 and I, ..., I,, pairwise

coprime ideals of R. Then
R/I---1, = R/I; x -+ x R/ I,.

Proof. We first show for every 1 <4 <n that I; is coprime to I := N;.; [;. For each j #1
choose z; € I; and y; € I; such that 1 =xz; +y;. Then 1 = []..;(z; +y;) = [1;4; y; + z for some
z €l and [];,;y; € . Hence, 1€ I + I;.

Second we show NF, I, = [T, [; for all 2< k< n. k=2: 21is clear; C: let z € I; n Iy;
since Iy, [y are coprime, there are x € I,y € I such that x +y=1; then z =zx + 2y e [, - I5.

Assuming inductively J := ﬂle I = Hle I;, we show Jn I, =J-I;.1. This follows as
in the case k = 2 since J, I;; are coprime (J 2 I}/, | and Iy, I}, are coprime).

The map = ~ (z + I1,...,x + I,,) is clearly a homomorphism from R to the product. It
has kernel N, I; = I1---1,,. By the isomorphism theorem we are left to show surjectivity.

Given (z1,...,2,) € R* we want z € R with z = z; mod I; for all i. For every i choose
x; € l;,y; € IF with x; +y; = 1. Then y; =1 and y; =0 mod I; for every j # 4. Thus,

z= 30 2y = 2y = 2 mod 1. O
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4.8.1 An irreducibility criterion

Exercise 4.8.19 (Generalized Eisenstein criterion). Let R be a factorial ring, n > 0 and
f=a, X"+ +ag € R[X] be primitive with a, # 0. Let P be a prime ideal of R such that
a, ¢ P,a;e Pforalli#n,ap¢ P-P. Then f is irreducible in R[X] and Quot(R)[X].

Recall the notation from Remark 3.1.8.
Theorem 4.8.20. Let R be a factorial ring, and f € R[ X |\ R primitive with lead coefficient

a€R. Let P be a prime ideal of R with a ¢ P.
If mp(f) is irreducible in (R/P)[X], then f is irreducible in R[X ] and Quot(R)[X].

Proof. Write Z := wp(x),g = mp(g) for x € R,g € R[X]. By Theorem 4.4.17 it suffices
to show f is irreducible in R[X]. Otherwise f = gh for non-units g,h € R[X]. As f is
primitive, g, h ¢ R, so have positive degree.

We have f = gh and show g, h are not units. But (R/P)[X]* = (R/P)* by Lemma 3.1.6
because R/P is an integral domain by Lemma 4.8.9. It thus suffices to show g, h have
positive degree. Then 0 # @ = b¢ in R/P where b,c € R are the lead coefficients of g, h.
Then both b,é# 0, so g, h have the same degrees as g, h. O

Let us spell out what this means for R = Z. Recall, the nontrivial prime ideals of Z are
pZ for prime p € N (Example 4.7.12) and Z/pZ = F,,.
Corollary 4.8.21. Let f € Z| X |N\Z be primitive with lead coefficient a and p € N prime with
pta. Let fe F,[X] be obtained from f by replacing each coefficient b of f by b:= [b], € F,.
If f is irreducible in F,[ X ], then f is irreducible in Z[ X ] and Q[X].
Example 4.8.22. f:=5X3+6X2-7X + 3 is irreducible in Z[ X ] and Q[X]. Note Eisen-
stein’s criterion does not apply.
Proof. f is primitive and for p = 2 we have f = X3 - X + 1 € Fo[ X] is irreducible in Fy[ X ]:
it has degree 3 and no root in Fs. [
Example 4.8.23. The converse fails: f:= X2+ 1 is primitive and irreducible in Z[ X ] but
for p=2 we have f=X2+1= (X +1)2in Fy[X].

Example 4.8.24. The converse fails badly: f := X*+1 is primitive and irreducible in Z[ X]
(Exercise 4.5.10) but f is reducible in F,[ X ] for every prime p € N.

Proof. If ~1 is a square in I, (e.g., for p = 2), say a? = -1, then X*+1 = (X?+a)(X?-a)
is reducible in F,[ X ]. If p> 2 and 2 is a square in F,, say 2 = b?, then factor
X4eT=(X24+bX +D)(X2-bX +1).

Assume p > 2 and -1,2 are not squares in F,. Then -2 is a square in F, by Corol-
lary 2.8.6 (1). More directly: let x be a primitive root of p and write -1 = 77,2 = z* for
r,s € N; then r, s are odd, so =2 = ¢ for ¢ := z("**)/2 in F,. Then factor

X +1=(X?-ceX-1)(X?+cX -1). [

Exercise 4.8.25. For R = Zy,7Zs3,Z5,7Z,Q,R,C, consider f := X3+ X2+ X +2 € R[X]
(where 2:=1g + 1g). For which of these R is f irreducible?
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Group theory

5.1 Isometries

We recall some linear algebra. For n > 0 consider the vector space R" with the standard
basis e1, ..., e, where e; = (0,...,0,1,0,...,0) with 1 at the i-th component. The inner product
is (x,y) = ¥, xy; where = (x1,...,2,),y = (Y1, ..., yn) € R™. If (x,y) = 0, then z,y are
orthogonal. The (Euclidian) norm or length of x is |z| = \/{(z, ).

For a matrix A € R™" we have (Ax,y) = (x, ATy) where -7 denotes matrix transpose
and z,y are viewed as column vectors. The matrix A € R™"of a linear map ¢ : R* - R”
has i-th column ¢(e;); then p(z) = Az. We call ¢ orthogonal if its matrix A is orthogonal,
i.e., ATA = I, where I, ¢ R" is the matrix of the identity idgn.

Exercise 5.1.1. For all x,y e R™: if (z,y) = (x,x) = (y,y), then x = y.
Remark 5.1.2. Let n> 0.

1. Every orthogonal A € R™" has determinant det(A) = +1.
Indeed: 1 =det(l,) =det(ATA) = det(A)det(AT) = det(A)>2.

2. The set of orthogonal matrices O(n,R) is a subgroup of the general linear group
GL(n,R), namely the orthogonal group.

Indeed: O(n,R) € GL(n,R) is clear, and if A, B € O(n,R), then AB~!' € O(n,R):
AB Y (AB™Y)" = AB"(AB")" = AB"B""AT = AB'BAT = AA" = I,.

3. The A € O(n,R) with det(A) =1 form a subgroup of O(n,R), the special orthogonal
group SO(n,R). Indeed: if A, B € SO(n,R), then det(AB~!) =det(A)/det(B) = 1.

Orthogonal matrices are important for group theory — in the next section we prove:

Theorem 5.1.3. Every finite group of order n € N is isomorphic to a subgroup of O(n,R).

39
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Example 5.1.4 (Orthogonal group of the plane). Basic linear algebra shows that
X ::l cos(a) —sin(a) ] and S, ::[ cos(a) sin(«)

sin(a)  cos(«) sin(a) - cos(«)

for @ € R have determinants 1 and —1, respectively, and every A € O(2,R) has one of these
forms. R, is the matrix of a rotation p, : R? - R2, counterclockwise with angle a.. S, is
the matrix of a reflection o, : R? - R? of the plane about the line with angle «/2 with the

er-axis. In particular,
1 0

describes the reflection oy about the e;-axis and S, = R,S), i.€., 04 = pa 00 -

Proposition 5.1.5. Let n > 0. A linear map ¢ : R® - R" is orthogonal if and only if it
preserves lengths, i.e., ()| = || for all z € R™.

Proof. Let A be the matrix of ¢. = if A is orthogonal, then |p(z)|? = (Az, Azx)
(r, ATAx) = (x,I,x) = ||z||?. <: assume |Az| = |z| for all z € R*. Then (Az, Ay) = (z,y
for all x,y €e R?. Indeed: by |z+y| = ||[A(x+y)| we have |22| +2(x,y)+|y|? = (x+y, z+y)
(Az + Ay, Av + Ay) = [ Az |? + 2(Az, Ay) + |Ay|? = [z]? + 2(Az, Ay) + |y[*.

Thus, (Az, Ay) = 2TATAy = 27y, so xT(AAT - I,,)y = 0 for all x,y € R*. This implies
ATA=1,, i.e., Ais orthogonal. Indeed: if B € R™™" satisfies ™ By = 0 for all x,y € R™, then
all entries of B are 0 (the ij-th entry is e/ Be;). O

Definition 5.1.6. Let n > 0. A function f:R” — R" is an isometry of R™ if it is distance
preserving: | f(x) = f(y)| =[x - y| for all x,y €e R*. The set of isometries of R™ is I(n, R).

~

Example 5.1.7. Orthogonal linear maps ¢ are isometries: [¢(z) — o(y)| = [¢(z —y)| =
|z —y|. For a € R™ the translation
to(r) =2 +a

is an isometry which is not linear (unless a = 0). Note @ ot, =t,(4) © ¢.
Lemma 5.1.8. Let n>0 and f:R" - R"™. The following are equivalent.

1. f is an isometry with f(0) =0.

2. f preserves the inner product, i.e., (f(x), f(y)) = {(x,y) for all z,y € R™.

3. f is an orthogonal linear map.
Proof. 3 =1 is noted above. Write 2’ := f(x). 1 = 2: let f accord (1). Then (a' -y’ x’ -
y'y = (x—y,x—y). For y =0, noting 0’ = 0, we get (x',2') = (x, z). Similarly, (v',v") = (y,y).
Then (', 2') = 2(z",y") + {y', ') = {z, ) - 2(z,y) + {y, y) implies (2", y') = (z,y).

2 = 3: let f accord (2). By Proposition 5.1.5, it suffices to show f is linear, i.e.,
' +y' =2z where z:=z +y and (rx)’ =rz’ for r € R. The latter being analogous, we show
the former. By Exercise 5.1.1, it suffices to show (z/, 2') = (' +y/, 2’ +y') = (2', 2" +y'), i.e.,

(2, 2) = (o', 2") + 202", y") + (', ") = (2, 2") + {2, ).

We drop primes using assumption (2), so this is true by z =z +y. O
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Theorem 5.1.9. Let n > 0. For every isometry f of R™ there is a unique orthogonal linear
map ¢ : R® > R™ such that f =t, 0 for a:= f(0).

Proof. We have to show that ¢ :=%_, 0 f is a linear orthogonal map. But as a composition
of isometries, it is an isometry and clearly ¢(0) = 0. Apply the lemma. ]

Remark 5.1.10. Here is how isometries compose. Let a,b € R™ and ¢, be orthogonal
linear maps. Then (t, 0 @) o (ty01)) =ty 0tumy 0P o =tarpm) o (o).
Corollary 5.1.11. Let n>0. I(n,R) is a group (with composition o).

Proof. The composition of isometries is an isometry and the neutral element is idg». The
inverse of t, oy is ¢t ot_, — an isometry. [

Example 5.1.12 (Plane isometries). Every isometry of R? is of the form t,0p, or t,0p,000
where a € R and a € R?2. Compositions are computed by the rules (omitting o):

pata = tpa(a)paa Oota = tao(a)007 00Pa = P-a00, taty = Latbs PaPB = Pa+p-

E.g., (ta,1)px2) © (t1,0)Tx/200) = L1, 1)t (0,1)Pr/207/200 = t(1,2)P=00 15 (2,y) = (—x + 1,y + 2).
One can show that every plane isometry is a translation, or a rotation about some point,
or a reflection about some line, or a glide reflection (reflection followed by a translation).

Definition 5.1.13 (Symmetries of figures). Let n > 0 and F' € R” (read “figure”). A
symmetry of F is an isometry f of R™ with f(F) = F.

Exercise 5.1.14. Show the set of symmetries of F' is a subgroup of I(n,R). Let F :=
{(z,y) e R? |z = £1 or y = £1} be the square centered at (0,0) with side length 2. List the
8 symmetries of /. Show they are ‘generated’ by pr/, and oy.

Exercise 5.1.15. The symmetries of the unit circle are O(2,R). SO(2,R) is isomorphic
to the circle group S (Example 1.1.12).

5.1.1 Dihedral groups

Lemma 5.1.16. Let G be a nontrivial subgroup of (R,+) that is discrete, i.e., there is
€ >0 such that |g| > € for all g€ G. Then G = Za for some real a > 0.

Proof. Let gy #+ 0 in G. We can assume gy > 0 (otherwise use —go € G). If g,¢9’' € G are
distinct, they have distance |g—¢’| > . Hence, GN(0, go] is nonempty and finite, so contains
a minimal element a. Then Za € G. Conversely, let g € G and write g = (z + 0)a for z € Z
and 0 <d <1. Then ¢’ := g—za = da € G satisfies 0< g’ <a,s0 ¢’ =0,s06 =0, s0 g € Za. [

Theorem 5.1.17. For every finite subgroup G of O(2,R) there is n > 0 such that either
the elements of G are

R27r/n7 R2~27r/n7 cery Rn~27‘r/n = I27

or G 1is isomorphic to the dihedral group D,, whose elements are

RQW/n7 RQ.Qﬂ—/n, ceey Rn.gﬂ/n = 12, Rn,gﬂ—/nSo, RQ.Qﬂ—/nSo, ceey Rn.Qﬂ/nSQ = So.
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Proof. First case: G contains only rotations R,. Then G’ := {a | R, € G} is a discrete
subgroup of (R,+) (as G is finite). Choose a > 0 with G’ = Za. As Iy = Ry € G, G’
contains 27, so a = 27/n for some n € N. Then

G= {RZ~27r/n | Z€ Z} = {RQTK'/’I’H ceey Rn~27r/n}-

Second case: G contains some reflection S,. By linear algebra one sees that S, has
orthogonal eigenvectors with eigenvalues 1 and -1, so there is C' € O(2,R) such that
C-1S,C = Sy. Replacing G by the isomorphic subgroup C-'GC = {CtAC | A € G} (see
below), we can assume Sy € G. Let H be the subgroup of G containing all rotations in G.
Choose Ryy/, for H according to the 1st case. Then D, € G. We claim =. Let A € G.
If Ae H, then A € D,,. Otherwise, A = R,Sy describes a reflection. Then G contains
ASy = RyS2 = R, s0 R, € H is a power of Ry, Again, A€ D,. O

The argument concerning C~'GC' is a general one:

Definition 5.1.18. Let (G,-) be a group and g € G. The map x — gzg~! is conjugation
by g. Such maps are inner automorphisms of G.

Exercise 5.1.19. Check that inner automorphisms are automorphisms. If « is an auto-
morphism of G and H ¢ G a subgroup, then «(H) is a subgroup of G isomorphic to H.

Exercise 5.1.20. D, 2 K, the Klein four-group (cf. Example 2.5.12).

Example 5.1.21. Let n > 2 and P, € R? be the reqular n-gon: it contains
vy, = (cos(k2m/n),sin(k2m/n))

for £k =0,...,n—1 and line segments connecting consecutive ones. Then D,, is isomorphic
to the symmetries of P,.

Proof. Symmetries of P, permute the v;’s (since they preserve lengths) and this permuta-
tion determines the map on all other points — hence there are finitely many such symmetries.
We claim they are represented by matrices in O(2,R). Then we are done by the theorem:
the symmetries contain oy and pa,/, but no rotation p, with 0 <a < 27 [n.

To prove the claim, write a symmetry f as x — Ax +a with A € O(2,R) and a € R2.
We have to show a = 0. Recalling Definition 1.6.8, the v,’s are the n-th roots of unity
(viewing R? as C). By Remark 1.6.9, we have Y72 v = 0 in R2. As f permutes the v;’s,

0=37(Av +a) = A(XPZ) o) + na = na. ]

5.2 Permutations

Definition 5.2.1. For a set X let Sym(X) be the set of permutations of X. The symmetric
group over X is (Sym(X), o) where o denotes composition. We often write o7 instead gor.
For n € N write

Sy =Sym({1,...,n}).
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Remark 5.2.2.

1. The neutral element of Sym(X) is the identity idx on X; the group inverse of o €
Sym(X) is the inverse function o1,
2. The set X plays no role: if Y is a set and B : X - Y a bijection, then Sym(X)
Sym(Y') via 0~ Booo B! (exercise).
3. S, has order |S,| =n!. If n > 2, then S, is not abelian.
Proposition 5.2.3 (Cayley). Every group G is isomorphic to a subgroup of Sym(G).

Proof. Tt suffices to define a group monomorphism from G into Sym(G). For z € G let A,
be the map y — zy. By Exercise 1.1.3, A\, € Sym(G). Define ¢ : G - Sym(G) by

() = A
Homomorphism: we have to show that ¢(zy) = ¢(x) o ¢(y), i.e., Ay = Az o Ay, But for all
z € G, Ay(2) = zyz = M (y2) = Aa( My (2)).
Injective: if p(x) = p(y), then A\, = \,, so xz=yz for all ze G, so x =y. O

Proof of Theorem 5.1.3. Tt suffices to find a monomorphism ¢ from S,, into O(n,R). Let ¢
map o € S, to the permutation matrix P, with i-th column e, ;) (from the standard basis).
Then ) is clearly injective and a homomorphism: P,, = P, P, because for all ¢:

PJPTei = PcreT(i) =Co(r(i)) = Pchei' O

Definition 5.2.4. Let n > 1. 0 € .5, is a cycle if it is a k-cycle for some k > 1, that is, if
there are pairwise distinct iy, ...,4, € {1,...,n} such that o(i1) = iz, 0(i2) = i3, ...,0(i)-1) =
ir,0(iy) =1y and o(¢) =i for all i € {1,...,n} \ {i1,...,ir}. We write

o = (leglk)

Two cycles (iy--+i) and (ji---je) are disjoint if {i1,....ix} N {Jj1,...,Je} = @. 2-cycles (ij)
(with |i - j| = 1) are (neighbor) transpositions.
Remark 5.2.5. Let £ > 1 and consider S,,.

1. The inverse of a k-cycle is a k-cycle: (iyigix) ™" = (ipip_1--+i1).

2. (Zl’LQZk) = (ZklllQZk_l) = (ik_likilig'“ik_l) = e

3. Write 0% = 00,0° = 002, .... For a k-cycle o we have 0% =idy;, ) and of # ¥ for all

0 <l <k (exercise). E.g., (123)((123)(123)) = (123)(132) = id{1,03}.
4. Disjoint cycles 0,7 commute: o7 = 70.

Example 5.2.6. Consider the symmetries of the regular 3-gon Pj (the triangle). There is
exactly one symmetry for every permutation of the 3 vertices. So D3 ¢ Ss.

In more detail, the elements of D5 ¢ O(2,R) are the identity I5, reflections Sy, Sax/3, Sar/3
and rotations Ry, Rar/3. S3 has 3! = 6 elements, namely the identity id;; 23, transposi-
tions 7 = (23), 72 := (12), 73 := (13), and 3-cycles o1 = (123), 09 := (132).

The order of the lists show the isomorphism from D3 onto Sz, namely: I = id 231,50 =
71, Sar/3 = T ete.. The vertices of Py are 1,e2™/3 e4mi/3. E.g., Sy is the reflection about the
x-axis; it behaves like 71 in that it fixes vertex 1 and swaps vertices 2 and 3.
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Theorem 5.2.7 (Cycle decomposition). Let n > 1. FEvery o € S, is a product of disjoint
cycles. The set of these cycles is unique.

Proof. By convention we understand the identity idy; .,y equals the empty product.

Existence: let idy, . ) # 0 € S,. Consider ‘fixed’ and ‘moved’ points: F':={i|o(i) =1}
and M :={1,...n} N F # @. Choose i; € M; and consider o(i1),0%(i1),.... Choose d; < ds
with 0% (i1) = 0% (i1). Then o%~% (i) = 4;. Hence there is a minimal k; with o*1+1(iy) = 4;.
Then we have a ki-cycle oy := (iy o(iy)---0*(i1)) in M;. Note k; >0 as iy ¢ F.

Let My := My~ {iy,0(i1),...,0%(i1)}. If My =@, then o = 07 and we are done. Other-
wise, choose iy € My and find a cycle o9 = (i5 0(i1)--0%2(iz)) as before. We observe that
01,09 are disjoint: every element of Cy := {i1,0(i1),...,0% (i1)} equals o(z) for another
x € C1; as iy ¢ C4, by injectivity o(i2) ¢ Cy; for the same reason 02(iy) ¢ C; and so on.

Continue.

Uniqueness: assume o = 0y---0), = 71---7¢ for disjoint cycles o; and disjoint cycles 7;. Let
1 ¢ F'. Since disjoint cycles commute, we can assume ¢ appears in o; and 77. Let d > 1 be
minimal with ¢%(i) = 4. Then o1 =71 = (i 0(i)--09(i)). Hence o0y = T9--74.

Continue. ]

Corollary 5.2.8. Let n>1. Every o €S, is a product of neighbor transpositions.

Proof. A cycle is a product of transpositions: (i1ig--iy) = (i1ix)---(i173)(i172). A transposi-
tion (i7),with i < j, is a product of neighbor transpositions: move j stepwise to position i,
and then 7 from position ¢ + 1 stepwise to position j:

(J-145)G-15-2)(G+1i+2) (Gi+1) (i+1i+2)--(j-2757-1)(j-15). O
Example 5.2.9. In Sy (14) = (34)(23)(12)(23)(34).
Below we understand {+1} as a group with multiplication, i.e., Cy (Definition 1.6.8).
Theorem 5.2.10. Let n> 1. There exists a group homomorphism
sign: S, - {1}

mapping transpositions to —1. In particular, it maps o € S, to 1 if and only if o is a
product of an even number of transpositions.

Proof. Define sign := det o) where 1) is the homomorphism from Theorem 5.1.3, i.e.,
sign(o) := det(FP,).

Note P(; ;.1 results from I, by swapping row 7 and row 7+ 1. Hence, neighbor transpo-
sitions have sign —1. We just saw that (i) with ¢ < j is a product of 2(j —4) — 1 neighbor
transpositions, so sign((ij)) = (-1)20-1)-1 = 1. The 2nd sentence follows. O

Definition 5.2.11. Let n > 1. A permutation o € S, is even if sign(o) = 1, and otherwise
odd. The set of even permutations is denoted A,, and called alternating group.
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Remark 5.2.12. A, is a subgroup of S,, of order n!/2

Proof. Subgroup: o,7 € A,, then o771 € A, since sign(o77!) = sign(o)sign(r)~! = 1. For
the order, one easily checks that o — (12)0 is a bijection from A, onto S, \ A,. O]

Exercise 5.2.13. Let n>1 and 1 <k <n. k-cycles in S,, have sign (-1)*L.

Example 5.2.14. Writing o € S, as a product of disjoint cycles, we see o is a 4-cycle, a
3-cycle or a product of at most 2 transpositions. If ¢ is even, it is a 3-cycle or a product
of 2 disjoint transpositions (not disjoint would give a 3-cyle or 1 =id; 234y). Hence, the
41/2 = 12 elements of A, are

(123),(132),(234),(243),(134), (143), (142), (124)

(12)(34), (13)(24), (14)(23), 1.

The second row forms a subgroup K of A4 consisting of all x with 22 = 1. It is isomorphic
to Klein’s four-group Ky (write down an isomorphism or apply Proposition 5.3.19).

5.3 Cyclic groups
Notation: if not stated otherwise we write groups G in multiplicative notation. The
neutral element is denoted 1 or 15. Given z € G we write z° := 1 and for ke N\ {0}:

k

a* = x-x (k times), 7"

=7 her™ (K times)
In additive notation (G, +), the neutral element is 0 and z** becomes k.

Definition 5.3.1. For a group G and X ¢ G the subgroup of G generated by X is
(X):={z{a5 [ne NN {0}, 2, € X, € {1} for all 1<i<n}.

Exercise 5.3.2. (X) is a subgroup of G that contains X and it is the smallest such
subgroup (i.e., is contained in any other such subgroup).

Definition 5.3.3. Let G be a group and X ¢ G. If G = (X)), then G is generated by X. G
is finitely generated if G is generated by some finite X ¢ G. We write

(z1, ..., ) = (X),
if X ={xy,...,2,} for some n e N. G is cyclic if G = (x) for some generator x € G.
Remark 5.3.4. Let G be a group and z € G.

1. (z) ={2¥| k € Z}. In particular, x = z* is an epimorphism from (Z,+) onto (z).

2. If G is abelian and 1, ...,z, € G, then (zy,...,2,) = {2¥ah | ky, ...k, € Z}. In
particular, (ki,...,k,) — x]flel” is an epimorphism from (Z",+) onto (x1,...,2,);

here, (Z",+) is the additive group of the ring Z".
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3. Cyclic groups are abelian. Indeed, z*x*" = zk++ = gk gk,
Example 5.3.5. Let n > 1.
(Z,+) and (Z,,,+) are cyclic, (Z™,+) is not.
In O(2,R), <R27r/n7 So> = Dn

By Theorems 5.2.7, 5.2.8: S, = (cycles) = (transpositions) = (neighbor transpositions).
Sy =((12--n), (12)). This follows from Corollary 5.2.8 noting for o := (12--n)

=W

(23) =0(12)07,(34) =0 (23)07},...,(n-1n)=0(n-2n-1)o".

5. (Q,+) is not finitely generated.
Indeed: given finitely many aq/by, ..., a,/b, with a;,b; € Z choose a prime p + by---by;
then 1/p # Y, ¢;-a;/b; for all ¢; € Z, so 1/p ¢ (a1/b1, ..., an/bn).

6. Similarly, the additive group (Q/Z, +) of the ring Q/Z is not finitely generated.

Exercise 5.3.6. Let 1 <i<j<n and ged(j—i,n) =1. Then S, = ((12:-n), (5)).
Example 5.3.7. Let n > 2. The alternating group A,, is generated by the 3-cycles.

Proof. Clearly, 3-cycles are in A, (Exercise 5.2.13). By Theorem 5.2.10, every o € A, is
a product of an even number of transpositions. It thus suffices to write a product of 2
transpositions (ij), (k¢) as a product of 3-cycles.

If (ij), (k) are disjoint, then (ij)(k¢) = (kji)(k¢i). Otherwise we can assume i = k. If
j ={, then (i7)(kf) is the identity, so assume j # £. Then (ij)(kl) = (ij)(il) = (ilj). O

Definition 5.3.8. Let G be a group, and x € G. The order ord(z) of z (in G) is the order
(i.e., cardinality) of (x); we write ord(z) := oo, if (z) is infinite.

The following lemma gathers all you have to know about orders.
Lemma 5.3.9. Let G be a group and x € G have finite order n.
1. E={k>0|2F=1} g,

2. n=minF,

3. (z) = {1,3:, ...,:(:"‘1},

4. for every keZ: x*F =1<=n|k.

5. for every k € Z: ord(a*) =n/ged(k,n).

Proof. (1): as (x) is finite and x, 22, 23, ... € (x) there are 0 < k < ¢ with % = ¢, so 2% =1,
sok-leE+@. Lett:=mink.

(2,3): the elements 1,z,..., 27! are pairwise distinct (otherwise there are 0 < k< ¢ <t
with £ -k € E, a contradiction to the choice of t). We claim these elements list (x). They
are clearly contained in (x). We show they contain z* for all k € Z. Write k = gt +r by
Euclidian division, so 0 <7 < t. Then z¥ = (zt)92" = a".
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(4): if n | k, say nl =k, then 2% = (2)¢ = 1. Conversely, assume x* = 1 and write
k =gn+r with 0 <r <n by Euclidian division; then 1 = 2% = (a")%z" = 27, so r = 0 by (2).
(5): argue as in Remark 2.7.2 (4): (2*)) =1 < n | kj < n/ged(k,n) | kj/ged(k,n)
< n/ged(k,n) | j (by Remark 2.1.9 (3), (5)). The minimal such j >0 is n/ged(k,n). O

Definition 5.3.10. The ezponent exp(G) of a group G is the minimal n > 0 such that
am =1 for all x € G; if no such n exists, then exp(G) := oco.

Remark 5.3.11. If exp(G) # oo, then ord(z) | exp(G) for all x € G (by the lemma (4)).
Exercise 5.3.12. Groups with exponent 2 are abelian.

Remark 5.3.13 (Boolean rings). One easily (but tediously) checks that (P(N),+) is an
uncountable group where X +Y := (X\Y)u(Y \ X) is the symmetric difference of X,Y ¢ N.
The neutral element is 0 := @ and the inverse is —X = X. Then X + X =0, so the exponent
is 2. If we set XY := X nY we get a commutative ring with 1 := N satisfying X2 = X for
all X ¢ N. Such rings are called Boolean and are “the same” as so-called Boolean algebras
studied in mathematical logic.

Examples 5.3.14. Let n > 1.

1. In (Zg,+), list ‘powers’ lx =z, 2x =z +x,3x =x+T+T,...C

lr 2x 3z 4z 5x 6x | ord(x)
0O 0 0 0 0 0 1

1 2 3 4 5 0 6

2 4 0 0 0 0 3
30 0 0 0 0 2

4 2 0 0 0 0 3

5 4 3 2 1 0 6

2. In (Z%,-), the order of [z], is the order of z modulo n as defined in 2.7.1. Z is
a generator if and only if x is a primitive root modulo n. Thus, Theorem 2.7.8
determines the n for which Zx is cyclic.

3. In O(2,R), Rax/y, has order n, Ryoq/, has order n/ ged(nk,n) and Ryax/,So has order 2
(because it is a reflection — or compute Ry.or/nSoRk2x/mS0 = Ri2rnS0S0 Rokar/n = 12)-
4. In 0 € S, if 0 = 7y---7, for disjoint k;-cycles 7;, then ¢ has order lem(ky, ..., k).

Indeed, o¢ = 7f---7¢ is the identity if and only if k; | £ for all i (Remark 5.2.5 (3), (4)).

Note that all orders of elements above divide the group order (if finite). This always
happens and follows from Lagrange’s Theorem 5.6.4 proved in the next section.

Lemma 5.3.15. Let G be a finite group and x € G. Then ord(z) | |G].

Exercise 5.3.16. Prove this for abelian groups (Hint: cf. Theorem 2.6.8).
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Theorem 5.3.17 (Classification of cyclic groups). A group is cyclic if and only if it is
isomorphic to either (Z,+) or (Zy,,+) for some n>0.

Proof. Let G be cyclic, say with generator x, so G = {z* | k € Z}. Define ¢ : Z - G by
o(k) = 2*. Note p(k+/£) = o(k)p(l), so ¢ is a group homomorphism from (Z, +) to (G,-).
It is clearly surjective. If it is injective, we are done. Otherwise, say z* = z¢ for k < ¢
implies 2% = 1, so n := ord(z) is finite and G = {1,x,...,2"'}. We claim (k) := 2* defines
an isomorphism from (Z,,+) onto (G,).

Well-defined: if k = ¢, write k = £ + nm for some m € Z and note

(k) =a* = 2" (a")" = 2* = Y (0).

That 1 is a homomorphism and surjective is clear. Injective: if ¥ (k) = ¥(f) with 0 < k <
¢ <n, then % =1 and ¢ - k <n, contradicting ord(x) = n. O

Recall Z,, = C,,, a group in multiplicative notation (Exercise 2.5.5).
Proposition 5.3.18. Every group of prime order p is isomorphic to C,.

Proof. Let G be a group of order p and € G~ {1}. Then 1 <ord(z) | p by Lemma 5.3.15,
so ord(z) =p, so G = (z) = C,.

Recall the Klein four-group K, from Example 2.5.12.
Proposition 5.3.19. FEvery group of order 4 is isomorphic to either Cy or K.

Proof. Let G be a group order 4. If there is an element of order 4, then G = (. Otherwise
all elements # 1 have order 2 by Lemma 5.3.15. Let 1,z,y,z list the elements. Then
z = xy because: xy # x as otherwise y = 1; xy # y as otherwise x = 1; xy # 1 as otherwise
x =x%y =y (since 22 = 1). Similarly, yz = z. So we know the left partial table:

1 oz oy |1z oy =z + 1(0,0) (0,1) (1,0) (1,1)
11 z vy 1|1 =z y =z (0,0) | (0,0) (0,1) (1,0) (1,1)
rlx 1 z zlx 1 z y (0,1) | (0,1) (0,0) (1,1) (1,0)
vy = 1 yly = 1o L0 L) (LD 00) 0.1
z |z 1 zlz y x 1 (1,1) | (1,1) (1,0) (0,1) (0,0)

This determines G as the 2nd table because every column and every row must list G. The
3rd table is K, and we see G = K, via x,y, 2+ (0,1),(1,0),(1,1). O

What subgroups can cyclic groups have?

Example 5.3.20. (Zg, +) has subgroups (0) = {0} and (2) = (4) = {4,2,0} and (3) = {3,0}
and (1) = (5) = Zs. By the corollary below these are all subgroups.

Theorem 5.3.21. Let n, k>0 and G be a finite cyclic group of order n with generator x.

1. If k| n, then (z™*) is a subgroup of G of order k.
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2. If U is a subgroup of G of order k, then k |n and U = (a™/F).

Proof. (1): by Lemma 5.3.9 (5), ord(z™*) = n/gcd(n/k,n) = k. The proof of (2) is
tricky: the case k =1 is trivial, so assume k > 1. Write U = {x®, ...,z } for e; € Z. Let
d := ged(eq, ...,ex) and write d = cieg + -+ + cgeg with ¢; € Z by Bézout. Then (z?) ¢ U
because x¢ = (ze1)er---(x¢ )% € U. Clearly, z¢ = (z%)%/? € (z?), so U = (x4). Then k = |U| =
ord(z4) = n/ged(d,n) by Lemma 5.3.9 (5). Hence, n/k | d, so U = (z4) c (x"/*). By (1),
ord(z™*) =k = |U|, so U = (/). H
Exercise 5.3.22. If a group has an element of finite order, then also one of prime order.
Corollary 5.3.23. Subgroups of cyclic groups are cyclic.

Proof. For finite cyclic groups the claim follows from the theorem. Infinite cyclic groups
are isomorphic to (Z,+) by Theorem 5.3.17. Their subgroups are isomorphic to Z or nZ
for some n € N by Lemma 2.1.5, so cyclic. [

The following gives a more abstract proof of Theorem 2.6.12 on Euler’s totient.

Corollary 5.3.24. Let n> 1 and d |n. In (Z,,+) there are exactly p(d) many elements
of order d. In particular, n =¥, p(d).

Proof. In Z,, k = k-1 has order n, i.e., generates Z,, if and only if gcd(n,k) = 1: this
follows from Lemma 5.3.9 (5) or Corollary 2.6.2. Thus, Z, has ¢(n) many generators. For
d | n, there is exactly one subgroup U, of Z,, of order d. The elements of order d in Z, are
the generators of Uy. Since Uy 2 Z4, there are exactly ¢(d) many. 2nd statement: the sets
{z €Z, |ord(z) = d} with d | n partition Z, (Lemma 5.3.15). O

We gain an important insight:

Corollary 5.3.25. Let K be a field and G be a finite subgroup of its multiplicative group.
Then G is cyclic. In fact, for every d | |G| there are exactly ¢(d) elements of order d.

Proof. For d||G|=:n let ¥(d) be the number of elements of order d in G. Then

Xap () =n =Yg, p(n).

Thus it suffices to show 1(d) < ¢(d) for all d | n. Assume ¢(d) # 0 and choose x € G of
order d. Every y € (z) satisfies y? = 1. Hence, (x) contains d many such y and thus all
such y: the polynomial Y% -1 has < d roots in K. Thus, the elements of order d are the
generators of (). As (x) 2 Zy it has ¢(d) many generators. Thus, 1(d) = p(d). O

Exercise 5.3.26. List all subgroups of (Z5, +).
Exercise 5.3.27. Let G be abelian.

1. If z,y € G have orders n,m € N and n, m are coprime, then xy has order nm.
2. If x,y € G have orders n,m € N, then there exists z € G of order lem(n,m).

Hint: Induction on n. For n > 1 write n = p°n’,m = pm’ for a suitable prime p.
3. If G is finite, then exp(G) = max e ord(x).
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5.4 Finitely generated free abelian groups

In this section we write groups G additively, with neutral element 0 or Og. We use the
notation ax for x € G and a € Z from the previous section. We also write Zz := {ax | v € Z}.

Remark 5.4.1. This notation allows to view an abelian group G as a so-called Z-module:
the map (a,x) — ax from ZxG to G satisfies the vectorspace axioms of scalar multiplication
(but Z is not a field), namely, for all a,b € Z and z,y € G:

lz=x, (ab)r=a(br), (a+b)z=ax+bxr, a(x+y)=ax+by.

Exercise 5.4.2 (Divisible torsion-free abelian groups). An abelian group G is divisible if
for every x € G and n > 0 there is y € G with ny = x. It is torsion-free if nx # 0 for all
x € G~ {0g} and n > 0. Torsion-free divisible abelian groups “are” Q-vectorspaces. Why?

Recall Remark 5.3.4 (2) in additive notation: if G is abelian and x, ..., x, € G, then
(T1, .y 2p) = {arzy + -+ apzy | ay, ..., a, € Z}.

Definition 5.4.3. A finitely generated abelian group G is free if it has a Z-basis: a tuple
Z=(x1,....,x,) € G" for some r € N such that for all y € G there is a unique (aq,...,a,) € Z"
such that y = ayxy + - + a,x,.. We call (aq, ..., a,) the coordinates of y wrt T, and

11+ + Ay — (aq, ..., a,)
the coordinate map wrt x.
Remark 5.4.4. The coordinate map is a group isomorphism from G onto Z".
Example 5.4.5.

1. {0} has the empty tuple as Z-basis: by convention, the empty sum is 0.

2. Z has the Z-bases (1) and (-1); for n > 0, nZ has Z-bases (n) and (-n).

3. Let r>0. Then (Z",+) has the standard Z-basis (ey, ..., e,) where ¢; has 1 at the i-th
component and 0 elsewhere.

4. Abelian groups with an element x # 0 of finite order do not have a Z-basis.

This follows from Remark 5.4.4. More concretely, given = = (x1,...,z,) € G" and
ord(xz) = n # oo write x = ajxy + - + a,x, for certain a; € Z, not all 0. Then
0q =0zy + --- + Oz, = nx = nayx, + - + na,z, and the na; are not all 0.

Exercise 5.4.6. Let G be an abelian group. Show (z1,...,z,) € G" is a Z-basis of G if
and only if for every y € G there is (ay,...,a,) € Z" with y = a;x1 + -+ + a,z,, and, for all
(ai,....,a,) €Z": ajxy + -+ a,x, = Og implies a; = 0 for all 1.

In case, for every a € Z and i # 1 also (1 + ax;, xa, ..., x,) is a Z-basis.
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Exercise 5.4.7 (Universal Property). Let G be an abelian group with Z-basis = = (z1, ..., ;).
Let H be an arbitrary abelian group and yi,...,4,. € H. Then the map z; = y; has a unique
extension to a homomorphism from G into H.

We have an analogue of the notion of vector space dimension:

Theorem 5.4.8. All Z-bases of a finitely generated free abelian group G have the same
length, called the rank of G.

Proof. Let T := (x1,...,2,) and § := (y1,...,ys) be Z-bases of G, and ¢ the coordinate map
wrt . We have to show r = s. Note p(x1) = e, ..., p(z,) = e, is the standard basis of the
vector space Q7. It suffices to show that the ¢(y;)’s form a basis of Q.

Linearly independent: assume 0 = (a;1/b1)p(y1) + -+ + (as/bs)p(ys) for certain a;,b; € Z.
Set b :=by---bs. Then, since ¢ is a homomorphism, we have with ¢; := ba;/b; € Z:

0=cro(yr) +- +csp(ys) = p(eryr + -+ + csYs)

But ker(p) = {Og}, so ciys + -+ + ¢sys = Og. Since (y1,...,ys) is a Z-basis, all ¢; = 0. But
then all a;/b; = 0.

Generating: given v := (ay/by,...,a,/b,) € Q" with a;,b; € Z, set b := by---b, and note
bv = (c1, ..., ¢, ) € Z" where ¢; == ba;[b; € Z. As ¢ is surjective, there is x € G with ¢(x) = bv.
Since § is a Z-basis, there are dy, ...,ds € Z such that x = dyy; + -+ + dgys. Then bv = p(z) =
dip(yr) + -+ dsp(ys). Hence, v is a linear combination of the ¢(y;)’s. O

Theorem 5.4.9. Let G be a finitely generated free abelian group of rank r and U a subgroup
of G. Then U 1is a finitely generated free abelian group of some rank s <r.
Moreover, there exists a Z-basis (1, ...,x,) of G and dy, ...,ds > 0 such that (dyzy, ..., dsz)
1s a Z-basis of U and
di|dy, dol|ds, ... dsq]ds.

Proof. Induction on r. If r <1, the claim follows easily from Example 5.4.5. Let r > 1. If
U ={0¢}, the claim is trivial (s:=0), so assume U # {0g}.

Wrt to some Z-basis any u € U \ {O¢} has at least one coordinate # 0, so u or —u has at
least one positive coordinate. Let d; € N\ {0} be minimal such that there exist a Z-basis
Z:=(x1,...,x,), an uy € U and 1 <i < n such that u; has i-th coordinate d; wrt z. We can
assume i = 1 (otherwise re-index). Let u; have coordinates (dy,as, ..., a,) wrt .

We claim d; | a; for all 2 <i < n. Write a; = ¢;dy + r; with 0 < r; < d; by Euclidian
division. By Exercise 5.4.6 (x1 + ¢;z;, T2, ..., x,) is a Z-basis. The i-th coordinate of u; wrt
this basis is 7;. Then 7; = 0 by choice of d;.

Thus, u; has coordinates (dy, qady, ..., g-d1) Wrt T, so uy = dyy; for

Y1 =21+ Qg+ + @y

Then z’ := (y1, x2, ..., T,) is a Z-basis (apply r — 1 times Exercise 5.4.6). Since u; = dyy1, the
coordinates of u; wrt z’ are (d,0,...,0). Let G be the subgroup of G with 1st coordinate
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0 wrt z’. Let Uy be the subgroup of Gy of elements uy obtained from u € U by changing
the 1st coordinate of u wrt z’ to 0.

Since G has rank r—1, induction gives a Z-basis (y2, .., y») of Gy and s < r and positive
dy, ...,ds € N such that (days,...,dsys) is a Z-basis of Uy and dy | d3 | -+ | ds.

Every x € G can be uniquely written x = ay;, + yo with yy € Go,a € Z. Hence, y :=
(Y1, Y2, ---,Yr) is & Z-basis of G. We claim that (diy1, dsys, ..., dsys) is a Z-basis of U.

We have to show for every u € U that d; divides the 1st coordinate b; of u wrt . Write
u = byyy + ug for ug € Uy and write by = qd; + r with 0 <7 < d;.Then u — qui = ry; + up has
1st coordinate r wrt y; hence, r = 0 by choice of d;.

In case, Uy has the empty tuple as basis, then all v € U have wrt ¢ all coordinates 0
except possibly the 1st which is divided by d;. Hence (dyy1) is a basis of U.

Otherwise we are left to show that dy | dy: write dy = qdy + r with 0 < r < dy; then
¥ = (y1+qy2, Y2, ..., yr) is & Z-basis of G. Let uy := days € U and consider u; +us € U. Note
uy +ug = dy(y1 + qy2) + ryz has 2nd coordinate r wrt g’. Hence, r =0 by choice of d;. O

Exercise 5.4.10. Let GG, H be finitely generated free abelian groups with ranks r, s. Make
precise and prove: homomorphisms from G to H are given by r x s-matrices over Z.

Corollary 5.4.11. Subgroups of finitely generated abelian groups are finitely generated.

Proof. Let G be an abelian group generated by x1,...,x, € G. Let H be a subgroup of G.
By Remark 5.3.4 (2) there is an epimorphism ¢ : Z" - G. Then ¢~!'(H) is a subgroup
of Z". By the theorem it is generated by a finite set Y € Z". Then ¢(Y") generates H. [

Remark 5.4.12. There are non-abelian finitely generated groups with subgroups that are
not finitely generated. We shall see an example in Exercise 5.5.12.

5.5 Finitely presentable groups

Recall, the dihedral group G := D,, is generated in O(2,R) by Rax/n,So. Forget everything
about G except that it is generated by elements r, s satisfying the relations

=1, s*=1, sr=rls.
Write elements as a words like srsrr—trs~lrrr. The relations allow computations, e.g.:
srsrrtrsTlrrr = rlssrrTlrs Tl = lps Tl = 57 = 58 = (07135 = (91 )3s = 73,

The 1st = follows using sr = r~!s on the first 2 letters; the 2nd uses rr=! = 1 and s? = 1; the
3rd uses r~'r = 1; the 4th uses s = s implied by s? = 1; the 5th uses 3 times sr = r~1s; the
6th uses =1 = r»~1 implied by ™ = 1; the 7th uses r™ = 1 twice.

It is clear that such computations allow to re-write every word into one of 1,r,...,r?1,
s,rs,...,r"1s. Easy computations show these 2n elements have D,’s truth table. If no
more equalities hold, besides the implied ones, we see G = D,,.
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The above is highly informal, politely said. E.g., the stated equalities are plainly false
because the words are distinct — what is equal is their ‘meaning’. Also the words ‘imply’
and ‘computation’ are unclear. General definitions are given in mathematical logic. Here,
we only give some simplified ad hoc definitions.

Definition 5.5.1. An alphabet is a non-empty set of letters. For a set X # @ we consider
the alphabet A(X) that has two letters x,z! for every z € X. A word (over A(X)) is a
finite tuple of letters. The set of words is A(X)*. We write w = z1---x,, for w = (x1,...,2,) €
A(X)™ (where n e N). If v = y--ym, € A(X)™ then

WU = T1TpY1° Ym € A(X)TH—m

We write 1 for the empty word, the unique word of length 0. Abbreviations:

(z )=z forzeX and wli=gztat, w?=ww, W =wiw,...

Remark 5.5.2. A(X)* with (w,v) » wv is a monoid with neutral element 1.

Definition 5.5.3. Let X # @ and G a group. A waluation (of X )in GisamapV : X - G.
We extend V' to V*: A(X)* — G setting first V*(z7!) := V(x)~! for x € X and then for
w=x1my, € A(X)™
V*(w) = V*(xq)--V*(x);

the r.h.s. is a product in G; as usual, we agree the empty product is 1g, so V*(1) = 1¢.
We abuse notation and just write V' instead of V*.

A relation (over X )is a pair (w,v) € (A(X)*)2. It is true under V if V(w) =V (v). A
set of relations R (logically) implies (w,v) if for all groups G and all valuations V' in G:

if every relation in R is true under V', then (w,v) is true under V.
We leave it as an exercise to verify:
Remark 5.5.4. Let u,v,w e A(X)*.

1. @ implies (w,w), (w™tw, 1), (ww=,1).
2. {(u,v)} implies (v,u), (vw,vw), (wWu, wv).
3. {(u,v),(v,w)} implies (u,w).

4. By these rules alone, each of (u,v), (v-'u,1), (uv=1,1) implies every other.

Intuitively, (w,v) stands for the assertion w = v. By (2), {(u,v)} implies (w,w’) where
w is obtained from w’ by substituting a subword u by v. We refrain from a formal definition,
but such substitutions are what a ‘computation with R’ does; it consists in a sequence of
‘equalities” w = v with (w,v) implied by R.

Example 5.5.5. For X = {r, s} our ‘computations’ used the relations (s, s7!) and (r=*,r"1).
These are implied by the given R = {(r",1),(s2,1),(sr,r"1s)}. Our ‘computations’ show
that for every word w there is k < n such that (w,r*) or (w,r*s) is implied by R.
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Definition 5.5.6. Let X # @ be a set and R a set of relations over X. Consider the
equivalence relation ~g on A(X)* given by:

w~gw <= R implies (w,w").

(X | R) is the set of equivalence classes [w]g = {w' | w ~g w'} for w € A(X)*; we often
omit index R. For w,ve A(X)* set

[w]r - [v]g = [wv]g.
For X ={z,y,..}, R={(v,w), (v',w'), ...} write (x,y,...|v=w,v" =w',...) for (X | R).

Lemma 5.5.7. Let X, R be as above. Then (X | R) is a group with neutral element [1]g
and inverses [w]g = [w]g for all we A(X)*.

Proof. -is well-defined: given [w] = [w'] and [v] = [v'] we have to show [wv] = [w'v']. Let G
be a group and V' a valuation of X in G such that every relation in R is true under V. Then
V(w) =V (w'") and V(v) =V (v"). Thus, V(wv) = V(w)V(v) =V (w")V(v") =V (w").
[1] is neutral (recall 1 is the empty word): [w]-[1] = [wl] = [w] = [1w] = [1] - [w].
Inverse: [w]-[w™'] = [w™'] - [w] = [1] means [wlw] = [ww™'] = [1] and holds by
Remark 5.5.4 (1). O

Definition 5.5.8. A group G is finitely presentable if G = (X | R) for some finite set X # &
and a finite set of relations R over X.
For a set X # @ the free group generated by X is F(X) = (X | @).

Finitely generated free abelian groups are finitely presentable (recall Remark 5.4.4).
They are called “free” because, intuitively, they are obtained from the free group by re-
quiring commutativity and nothing else:

Example 5.5.9. Z = (x| @) = F({z}) and, for n > 1,
TN (xl, ooy T | {(miz g, wm;) | 1 <i< g < n})

Proof. The 1st statement is clear. For the 2nd, assume n = 2 for notational simplicity
and write z,y for x1,z5. Let w € A({z,y})*. Then R := {(zy,yz)} implies the relation
(w, z%yb ) where a,, is the number of occurrences z in w minus the number of occurrences
of 7! in w, and b, is similarly defined. Hence, R implies (wv, z%*avybw+bs) for any word v.

Define ¢ : ({z,y} | R) - Z? by ¢([w]) = (aw,b,) (omitting index R). This is well-
defined: assume [w] = [v]; then R implies (z%wybe z%ybv); consider the valuation V' of
{z,y} in Z? mapping x,y to (1,0),(0,1); as R is true under V', so is (x®wybe x2%yb ), that
18, (A, byw) =V (z0ybe) =V (x®yb) = (a,,b,) in Z2.

Surjectivity is trivial and injectivity is easy: if p([w]) = ¢([v]), then [w] = [xwybe] =
[x%yb] = [v]. To see ¢ is an homomorphism, recall we observed above that (., bwy)
(aw + Ay, by, + by); the Lhus. is o([wv]) = o([w][v]), the r.hus. is o([w])e([v]).

Ol o



CHAPTER 5. GROUP THEORY 105

Exercise 5.5.10. Let n > 1. Then C,, 2 (x| 2" = 1).
Finite groups are finitely presentable:
Exercise 5.5.11. Show G = (G | R) where R ‘is’ the computation table of G.

Exercise 5.5.12. In F'({0,1}), the subgroup generated by [0710"]g,n € N, is isomorphic
to F'(N) and hence not finitely generated.

Remark 5.5.13 (Word problem for groups). In 1911 Dehn, a student of Hilbert, intro-
duced the word problem for a finitely presented group (X | R), namely to decide for a given
word w € A(X)* whether R implies (w,1). In 1955 the soviet mathematician Novikov
found a finitely presented group with undecidable word problem. Beyond the iron curtain,
Boone gave 1958 a different proof.

Theorem 5.5.14 (Universal property). Let X + @, R a set of relations over X. Further,

let V' be a valuation of X in a group G such that every relation in R is true under V.
Then there is exactly one homomorphism oy : (X | R) > G with v ([z]g) = V(x) for

all z € X. Moreover, a relation (w',w) is true under V if and only if [w='w']g € ker(pv ).

Proof. Assume ¢y is such an homomorphism. Then oy ([271]) = oy ([z]™) = oy ([z])' =
V(x)™, so o([y]) =V (y) for all y e A(X). Then for all w =xy---x,, € A(X)™

ov([w]) = pv([z1][2n]) = v ([z1]) v ([Ta]) = V(21) -V (2,) = V(w).

Thus, the only possibility is to define ¢y ([w]) := V(w). Tt is easy to check that this is
a well-defined homomorphism.
For the moreover-part note the equivalences: (w’,w) is true under V, V(w') = V(w),

ev([w']) = pv([w]), ev([w])teov([w]) = 1a, pv([ww']) = 1. O

Exercise 5.5.15 (Universality of free groups). A group G generated by X # @ is isomorphic
to F(X)/N for some N. Make precise: every at most countable group is a factor of F'(N).

In the terminology of mathematical logic, the question of finite presentability is the
same as the question for the finite axiomatizability of a certain equational theory:

Theorem 5.5.16. A group G is finitely presentable if and only if G is generated by a
finite set @ + X € G such that there exists a finite set R of relations over X that implies
all relations over X that are true under the valuation idx n G.

Proof. =: assume ¢ : (X | R) G for finite X, R, write 2’ := ¢([z]g) for z € X and set
X":={z"|x e X}. Clearly, G = (X’). For a word w over X let w’ be obtained by priming
all letters, and set R’ := {(u',v") | (u,v) € R}. We claim R’ implies all relations over X' true
under idy: if (u',v’) is true under idy, then (u,v) is true under the valuation z ~ [z]g in
(X | R); this means [u]g = [v]g, i-e., (u,v) is implied by R; then (u/,v’) is implied by R'.

<: choose ¢y : (X | R) - G for the valuation V' := idy in G according to Theo-
rem 5.5.14. Then ¢y is surjective because its image contains X. We show it is injective: if
[w]g € ker(py), then (w, 1) is true under V' =idx, so implied by R, hence [w]g =[1]g. O
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Remark 5.5.17. The so-called lamplighter group is an example of a finitely generated
group that is not finitely presentable (Baumslag 1961).

Example 5.5.18. Let n>1. D, = (T, s|rm=s2=1,sr= 7"*13>.

Proof. Theorem 5.5.14 with the valuation r,s = Rox/n,So of {r,s} in D, gives an homo-
morphism from the r.h.s. into D,. It is surjective because its image contains Raz/n,So
generating D,,. It is injective because the r.h.s. has order < 2n by Remark 5.5.5.

More concretely: ‘computations’ show that every word has the form r*, r¥s up to equiv-
alence and verify the intended multiplication table. The words are pairwise not equivalent
because there exists a valuation giving them distinct values (the above one in D,,). ]

Example 5.5.19 (Quaternion group). Hamilton 1844:

“And here there dawned on me the notion that we must admit, in some sense,
a fourth dimension of space for the purpose of calculating with triples ... An
electric circuit seemed to close, and a spark flashed forth.”

In GL(2,C) consider the matrices

i) el n) e8] 2]

Then Qg := { + e, i, +j, ik} is a subgroup of GL(2,C). The Hamilton rules are:
i=j2=k*=ijk = —e.
These relations determine Q)g:
Qs = (é,i,j,k |e?=1,i% =52 = k? =ijk = é) ~ (x,y |zt =1,2% =2, yx :x_1y>.

Proof. The éijk-relations R are true under the obvious valuation in ()s. Theorem 5.5.14
gives an homomorphism onto Qg. It is surjective because its image generates (Jg. For injec-
tivity, we show (e,4,7, k| R) has order < 8. It suffices to verify the intended multiplication
table for 1,¢€,1, 7, k, éi, ej,ek. To see R implies e.g. (ij, k) note it implies (ijk,€), (ijk?,ek),
(ijk?, ke), (ije, ke), (ij, k). We omit the rest.

Let S denote the xy-relations. Theorem 5.5.14 gives an epimorphism from (€, 1, j, k | R)
onto (z,y | S) once we show the relations in R are true under the valuation é,i,j, k
22 x,y,xy. E.g. V(ijk) = V(€) means [zyzryls = [#%]s — ‘compute’ zyxry = xo~lyy = y? =
x2. Thus (z,y | S) has order < 8. We are left to find an epimorphism onto Qg: verify that
the relations in S are true under the valuation x,y ~ i,]j. O
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5.6 Normal subgroups

Recall, the ring Z,, is obtained by identifying elements x,y € Z that differ only by a multiple
of n. More generally, given a ring R, the ring R/I is obtained by identifying elements x,y
that differ only by an element of the ideal I.

We proceed similarly with a group GG and identify elements x,y € G that differ only by
an element of a subgroup U. If GG is non-abelian, this has two meanings: for x € G,u € U
identify z and zu, or, identify x and wuzx.

Definition 5.6.1. Let G be a group, x € G and U a subgroup. Then
zU:={zu|uelU}, Ur:={ux|uelU}
is the left, resp., right coset of x wrt U. We set
GIU :={zU |z e G}, U\G:={Uzx|zeG}.

The indez of U in G is [G: U] :=|G/U|. We write [G : U] = oo if this is infinite.

In an additively written group the notation zU becomes x + U.
We leave the following as an easy exercise.

Remark 5.6.2. G/U is a partition of GG, namely the set of equivalence classes of the
equivalence relation ~;; on G given by

repy = xlyel.
We have xU = yU < 7'y e U < x € yU and, in particular, zU =U < z € U.
Exercise 5.6.3. Picture the multiplicative group C* of C as the plane without the origin.

1. C*/S! is the partition of C* into circles around the origin, one for each radius r > 0.

2. C*/R* is the partition of C* into lines through the origin (without the origin), one
for each angle 0 < o < m with the z-axis.

3. Find a subgroup U ¢ C* such that C*/U is the partition of C* into orthogonal crosses
centered at the origin.

Theorem 5.6.4 (Lagrange). Let G be a finite group and U a subgroup. Then
G =1Ul-[G:U].

Proof. By the remark, it suffices to show that every left coset xU has cardinality |U|. But
u — zu is a bijection from U onto zU. O

Remark 5.6.5. The same proof works if we defined the index as |U\G|. Hence

|G/U| = |U\G] = |G/|U]
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Can we make G/U into a group, as we did for Z,? We want zU - yU := zyU. Is this
well-defined? Assume xU = 2'U,yU = y'U, i.e., x = x'u and y = y'v for certain u,v e U. We
want xyU = x'y'U, i.e., xy = 2'y'w for some w € U. We know zy = x'uy’v, so only need
uy' = y'u’ for some u’' € U (then set w := u'v). This means we want Uy’ € Uy’ for all y' € G.

This condition can be equivalently formulated as follows.

Exercise 5.6.6. Let G be a group and U a subgroup. The following are equivalent:

xUz™ 1 =U for all z € G.
xUz= 1 cU for all z € G.
Uz =zU for all z € G.
Ux czU for all z € G.
xU c Uz for all z € G.

AN

Remark 5.6.7. Recalling Definition 5.1.18, (1) states a(U) = U for all inner automor-
phisms « of GG, i.e., conjugation by any x € G permutes U.

Definition 5.6.8. Let G be a group. A subgroup U is normal (in G ), symbolically
U« G,

if zUz™" = U for all x € G. If this is the case, then the factor group of G modulo U is
(G/U,-) where for z,y € G:
xU -yU = xyU.

Remark 5.6.9. Let U« G.

1. We already checked that - on G/U is well-defined.

2. (G/U,-) is a group: the neutral element is 15/ = U; the inverse of U is 271U

3. If G is abelian, then all subgroups V' are normal and G/V is abelian.
Indeed, for x,y € G: 2V = {zvat |veV}={zaw|veV} =V and 2V -yV =
zyV =yxV =yV -2V,

4. {1},G are the trivial normal subgroups of G. Indeed: z{1}z~! = {1}, xGz~! = G.

5. Subgroups of index 2 are normal.

Indeed: let V' be such a subgroup and x € G. If x € V', then 2V =V =Vux. I[f x ¢V,
then both zV,Vz equal G \ V', the unique coset # V in G/V or V\G.

Exercise 5.6.10. Let G be a group, U a subgroup and N < GG. Then
NU::{nu|neN,ueU}

is a subgroup of G. More generally, if V' is a subgroup of G such that UV =V U, then UV
is a subgroup of G.
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Exercise 5.6.11. If GG is a cyclic group and U a subgroup, then G/U is a cyclic group.
Example 5.6.12.

1. Let n > 0. As (Z,+) is abelian, its subgroup nZ is normal, and Z, = Z/nZ by
definition; the index is [Z : nZ] = n.
2. The subgroup U :={1,(12)} is not normal in S3 because (123)(12)(321) = (23) ¢ U.
3. A, is normal in S, since it has index 2 by Remark 5.2.12 (or argue as below).
4. The special orthogonal group U := SO(n,R) is normal in G := O(n,R).
We verify index 2 showing AU = G\U for all A e GNU. c: if B € U, then
det(AB) =-1,80 ABe G\U. 2: if Be G\U, then A”'BeU and B=A(A™'B) € AU.
5. Recall Example 5.2.14: K < A,.

Use Remark 5.6.7: note K} is the set of elements of order 2 in A4; hence it is permuted
by all (inner) automorphisms of Ay.

As a first application of factor groups we show:

Proposition 5.6.13. Let G be a finite abelian group and p be a prime divisor of |G|. Then
G has a subgroup of order p.

Proof. We show by induction on |G|, that G has an element of order p. If |G| = p, use
Proposition 5.3.18. Assume |G| > p. Let x € G have prime order ¢ (Exercise 5.3.22) and
assume p # ¢. Since G is abelian, N := () < G and G/N is abelian. G/N has order |G|/q.
As p| |G| and p # q, also p | |G|/q. Induction gives an element yN € G/N of order p. Let n
be the order of y in G. Then (yN)™ = 1g/n, so p|n. If p=n we are done, so assume p # n.
By Lemma 5.3.9 (5), y"? has order n/ged(n/p,n) = p. O

Remark 5.6.14. We shall later see either one of the assumptions abelian or primality
(of p) can be omitted (Theorem 5.12.1 and Corollary 5.11.5). It is not generally true that
a finite group G contains for every divisor d of |G| a subgroup of order d (Example 5.7.13).

Example 5.6.15. There are groups U< V < G with U 4 G.

Proof. Consider the unit square (regular 4-gon) with corners numbered counterclockwise
1-4 starting at (1,0). Its symmetry group D, (Exercise 5.1.14) permutes the corners and
is isomorphic to the following subgroup of Sy, writing 1 =id; 2343

D) = {1, (13),(24),(14)(23),(12)(34),(13)(24), (1234), (1432)}.

D), has the subgroup K} from Example 5.2.14. Let C} := {1,(14)(23)} ¢ K. Then C} < K}
and Kj < D} because both have index 2 (Remark 5.6.9 (5)). But C} 4 D) because for
o:=(13) e D}, 7:=(14)(23) € C%:

oo = (31) (14)(23) (13) = (12)(34) ¢ C5. O
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Example 5.6.16. The quaternion group Qg from Example 5.5.19 is not abelian (e.g. ij =k
and ji = —k) but every subgroup of Qg is normal.

Proof. Let U be a subgroup of Qg. By Lagrange, |U| devides |Qg| = 8, so |U] € {1,2,4,8}.
If |Ul=1or|U|=8, then U ={e} or |U| =Qs, so U is normal. If |U| =4, then [Qg:U] =2
and U is normal by Remark 5.6.9 (5).

Finally, if |U| = 2, then U = {e,z} for some = # e with 22 = e. Hence, z = —e. But
A(xe)A! = ze for all A e Qg (in fact, GL(2,C)), so U = {+e} is normal. O

Exercise 5.6.17. For n > 1, show both O(n,R)/SO(n,R) and S,,/A,, are isomorphic to Cs.
Further, show Qg/{+e} = K. (Note the factor groups are well-defined.)

Exercise 5.6.18. Every abelian group of order 6 is isomorphic to Cj.
Example 5.6.19. Every non-abelian group of order 8 is isomorphic to D, or to Qs.

Proof. Let G be non-abelian of order 8. Possible orders of elements are 1,2,4,8. Order 8 is
impossible since G is not cyclic. By Exercise 5.3.12, not all elements have order 2. Hence
there is an element a € G of order 4. Then (a) has index 2 in G, that is, for b€ G \ (a)

G ={1,a,a* a*} u{b,ba,ba? ba’}.

What is ¢ := bab™'7 Note ce (a) < G . But c# 1 (else a =1), ¢ # a (else ba = ab and G
is abelian), ¢ # a? (else 1 = ¢? = ba?b!, so a® = 1). Hence, c=a? =a"!, so ba = a~'b.

What is 4?7 Since G/(a) = Cy, we have b*(a) = (b(a))? = 1gja) = (@), so b? € (a). But
b? #+ a and b? # a~! as otherwise ord(b) = 8. Thus we have two cases:

at=1, ba=a'b, b*=1 or at=1, ba=atb, b*=d>

By Examples 5.5.18 and 5.5.19 these relations R are those for D, and for Qs, i.e., (a,b| R)
is isomorphic to Dy or (Jg. For the valuation V' :=idy, in G, Theorem 5.5.14 gives an
homomorphism ¢y : (a,b | R) - G containing a, b in its image. But a,b generate G, so ¢y
is surjective. Since we know (a,b | R) has order 8, py is injective, so an isomorphism. []

How many abelian groups of order 8 are there? You might want to check all possible 8
multiplication tables with a computer. But this number dwarfs the number of atoms in the
solar system. Some theory is needed. We shall see that there are exactly 3 abelian groups
of order 8 up to isomorphism, and exactly 49 of order 100000 (Examples 5.11.18, 5.11.17).

5.6.1 Normal hull

We show that our definition of (X | R) is equivalent to a more standard one using normal
hulls. It is surprising that the concept of normality is linked to logical implication.

Definition 5.6.20. Let G be a group and Y ¢ G. The normal hull of Y (in G) is

(V)= ({xya:’l lyeY,xe G})
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Exercise 5.6.21. Show (Y)) is the smallest normal subgroup of G containing Y. That is:
(Y)< Gand (Y)c N for all N< G with Y € N.

Lemma 5.6.22. Let X + @ be a set, (u,v) a relation over X and R a set of relations over
X #@&. The following are equivalent.

1. R implies (u,v).
2. [vTlu]g is in the normal hull of {[w‘lw’]@ | (w',w) € R} in F(X), denoted (R)).

Proof. =: consider the valuation V(z) := [z]{R) of X in F(X)/(R). Then
V(u) =V(v) < [ul(R)=[v[(R) < [u"v]e(R),

for every relation (u,v) over X. In particular, all relations in R are true under V. Hence,
any implied relation (u,v) is also true under V. Hence, [v™lu] € (R)).

<: assume (u,v) is not implied by R. Then there is a group G and a valuation V'
in G such that all relations in R are true under V' but V' (u) # V(v). Choose ¢y according
to Theorem 5.5.14 and set N := ker(yy). Then [wlw'] € N for all (w’,w) € R. By
Exercise 5.6.21, {R) € N. Since (u,v) is not true under V', again Theorem 5.5.14 gives
[v7'u] ¢ N. Hence, [vlu] ¢ (R)). O

Corollary 5.6.23. Let X # & be a set and R a set of relations over X. Then
(X|R) = F(X)/{R).
Proof. The map [w]g = [w]z{R) is well-defined and bijective — use the lemma:
u~gv <= Rimplies (u,v) <= [vu]s € (R) <= [u]p(R) =[v]o(R).

It is easily checked to be a homomorphism, hence an isomorphism. O

5.6.2 Simple groups

Definition 5.6.24. A group G is simple if G # {1} and its only normal subgroups are {1}
and G.

Examples 5.6.25.

1. Groups of prime order are simple (by Lagrange). An abelian group is simple if and
only if it has prime order (Proposition 5.6.13).

2. For n>2, S, is not simple as A, < S,, (Example 5.6.12 (3)).

3. For n>1, D, is not simple: N := {Ry.97/, | k <n} has index 2 in D,,, so is normal.

Example 5.6.26 (Galois). Aj is simple.
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Proof. Assume {1} # N 4 A5. We have to show N = A;5. We first claim that every 3-
cycle (ijk) is conjugate to (123) in As, i.e., o(ijk)o~t = (123) for some o € A;. Note
o(ijk)o=t = (o(i)o(j)o(k)), so we clearly find such o € S,,. If o ¢ A5, note (45)0 € A5 and

(45)a(ijk)o™1(45) = (45)(123)(45) = (123).

It thus suffices to show that N contains some 3-cycle — then it contains all of them
as N is normal, and we are done by Example 5.3.7. Let 1 # o0 € N. If ¢ is not a 3-cycle its
cycle decomposition is (ij)(k¢) or (ijk¢m). But

(igm) (ig) (kO) (igm)~" (ij)(kC) = (imj),  (ijk)(ijkem)(ijk) ™ (ijktm)~" = (ij). O
Theorem 5.6.27 (Jordan 1870). Let n > 1. Then A, is simple if and only if n ¢ {2,4}.

Proof. A, is trivial, A3 has prime order 3!/2 = 3. A, has normal subgroup K from Exam-
ple 5.6.12 (5). We know Aj; is simple. Let n>5 and N < A,,.

Case 1: N contains some o # 1 with a fixed-point, i.e., o(i) = i for some i. Let
Gi={oeA,|o(i) =i} Clearly, G; 2 A,-; and {1} #+ NnG; < G;. By induction (and
n>5), NnG, =G, ie., G; € N. But for every j and o € G; we have to77! € G; € N for
any 7 € A, with 7(j) =4, hence 0 = 7707717 € N. Thus, N contains all Gy, ...,G,. Every
element of A, is a product of pairs of transpositions. As n > 5 such a pair is in some Gj.
Thus, N = A,.

Case 2: every permutation in N \ {1} moves all numbers. Then distinct 0,0’ € N
disagree on all 1 <i<n: if 0(i) = 0’(i), then o’0c71(i) =4, so o’'oc"! =1, 80 0 = 0.

Given o € N, we show o = 1. Write ¢ as a product of disjoint cycles. Assume a k-cycle
(ai---ap) with k > 3 appears. As n > 5 there is a 3-cycle 7 that contains as but not ay, as.
Then 7(ay-ax)T = (1(a1)-7(ar)) = (a1as7(az)---7(ax)). Hence, To77! € N agrees with
o on a; but not on as, a contradiction.

Thus, ¢ is a product of disjoint transpositions. We claim the product is empty. Oth-
erwise, > 3 transpositions appear (here we use n > 5). Say, 0 = (a1a2)(asaq)(asae)---. Let
7 := (a1a2)(azas). Then To77! = (araz2)(asaq)(azag)---. But this agrees with o on ay,ay but
not on as, contradiction. O

5.7 Noether’s isomorphism theorems

Normal subgroups are best identified as kernels:
Lemma 5.7.1. Let ¢ : G - G’ be a group homomorphism.
1. If N'" 4 G', then ¢=*(N'") < G; in particular, ker(p) = o1 ({1le'}) < G.
2. If N G, then o(N) < o(G).
Proof. (1): by Remark 1.1.9 (6), ¢~'(N’) is a subgroup of G; let z € G and n € o~ 1(N);
then p(znz=1) = p(z)p(n)p(z)~! is in N’ because p(n) € N'<1 G'; hence, xnz=' € p=1(N').
(2): by Remark 1.1.9 (5), ¢(N) is a subgroup of ¢(G), a subgroup of G’; let n’ € p(N)
and 7’ € o(G), say ¢(n) =n',o(x) =x' forne N,z € G. Then 2'n’z'~! = p(z)p(n)p(x)™t =
p(xnx=') € o(N) because znx~! e N« G. O
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Remark 5.7.2. In (2), ¢(N) < G’ can fail. E.g., if G is a subgroup of G’ that is not
normal and ¢ = idg, then N:=G < G but p(N)=N 4 G".

Examples 5.7.3. Let n > 1. A, is the kernel of sign : S,, > {£1}. SO(n,R) is the kernel
of det : O(n,R) - {£1}. SL(n,R) is the kernel of det : GL(n,R) - R*.

All normal subgroups are kernels:

Proposition 5.7.4. Let G be a group and N < G. The canonical projection wy given by
nwn(z) :=xN is an epimorphism from G onto G|N with kernel N.

Proof. my is clearly surjective. It is a group homomorphism by definition of G/N. For the
kernel note my(z) =1lgy < tN=N < zeN. O

Theorem 5.7.5 (Universal property). Let ¢ : G - G' be a group homomorphism and
N < G with N ¢ ker(p). Then there is exactly one group homomorphism @ : GIN - G’
with p = pomy.

Exercise 5.7.6. Prove this.
Exercise 5.7.7 (Correspondence theorem). Let G be a group and N < GG. Then
N'—an(N")=N'|N
is a bijection from the set of N’ <1 G with N ¢ N’ onto the set of N <« G/N; the inverse is
N & 1 (N).

Theorem 5.7.8 (1st isomorphism theorem). Let ¢ : G — G’ be a group epimorphism.
Then
G/ ker(p) 2 G'.

In fact, there is exactly one isomorphism @ : G[ker(y) = G with ¢ = ¢ © Tyer(y)-

Proof. Take the homomorphism @ from the universal property with N := ker(y). It is
surjective: let 2’ € G’ and choose x € G with ¢(z) = 2'; then p(zN) = p(x) = 2’
It is injective: if 2N € ker(@), then ¢(x) =1,s0 x € N, so aN = N = 1g/n. O

More abstract proof of Theorem 5.3.17. If G is a cyclic group, there is an epimorphism
¢:Z — G (Remark 5.3.4 (1)). Choose n € N such that ker(¢) = nZ (Lemma 2.1.5). By the
theorem, Z/nZ = G. But Z/nZ = Z for n =0, and Z/nZ = Z,, for n > 0. O

Example 5.7.9. SO(2,R) 2 R/Z for the additive groups R and Z.

Proof. The map a ~ €?™* is an epimorphism from (R,+) onto the circle group (S?,-).
The kernel is Z. By the theorem, R/Z = S'. But S* 2 SO(2,R) by Exercise 5.1.15. O

Exercise 5.7.10. For the additive groups C,Z show C/Z = C*.
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Theorem 5.7.11 (2nd isomorphism theorem). Let G be a group, U a subgroup and N< G.
Then NNnU < U and N < NU and

UJ(NnU) = (NU)/N.
In particular, if G is finite, then [NU| =|N|-|U|/|N nU].

Proof. Clearly, NnU is a subgroup of U. It is normal: let u € U,n € NnU; then unu=t e U
since U is a subgroup, and unu=' € N since N 4 G, so unu=!t e NnU.

NU is a subgroup of G by Exercise 5.6.10. As N =N1c NU, N is a subgroup of NU;
since N < G, also N < NU.

We define the isomorphism ¢ setting for v € U:

e(u(NnU)):=uN.

Well-defined: if w(NnU) = u/'(NnU) for u,u’ € U, then u'u/ ¢ NnU, so € N, so
uN =u'N, ie., o(u(NnU)) =@ (NnU)). ¢ is clearly a homomorphism.

Injective: if uw e U and u(N nU) € ker(p), then o(u(NnU))=N,soulN =N,soueN,
soue NnU,sou(NnU)=NnU = ly)nnv)-

Surjective: let nulN € NU/N where n € N,u € U; then nuN = nNu = Nu = ulN as
N < G; hence, o(u(NnU)) =nuN.

In particular, |[U|/|[N nU|=|U/(NnU)|=|NU/N|=|NU|/|NJ|. O

Exercise 5.7.12. The 2nd statement holds also for /N not normal.
Example 5.7.13. A4 has order 12 but no subgroup of order 6.

Proof. Assume U is a subgroup of A, of order 6. Then [A, : U] = 2 by Lagrange, so
U < Ay by Remark 5.6.9 (5). Recall K} = {1, (12)(34), (14)(23), (13)(24)} < A, from
Theorem 5.6.27. Then K} ¢ U since |K}| + |U|. Let 7€ K;~U. By index 2, Ay =U utU.
Hence, A, = KjU. By the theorem, 12 = |A4] = 4-6/|U n K}, so |Un K}j| = 2. Thus, U
contains exactly one of (12)(34), (14)(23), (13)(24). Whichever it is, U is not closed under
conjugation by o := (123) — a contradiction to U < Ay:

o(12)(34)07t = (23)(14), o(14)(23)07' =(24)(31), o(13)(24)07' = (12)(34). O
Example 5.7.14. Let n >0, G := GL(n,R),U := SL(n, R) and
N :=D(n,R) := {al, |« e R*}.

Then N <4 G and NU = G. Further, NnU = {I,}. Thus U/(NnU) 2 U = SL(n,R). By
the theorem, SL(n, R) 2 NU/N = GL(n,R)/D(n,R).

Theorem 5.7.15 (3rd isomorphism theorem). Let G be a group, N,N' < G and N € N'.
Then N'/N <4 G|N and
(G/N)/(N'|N) =GN

In particular, if G is finite, [G: N] =[G : N']-[N': N].
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Proof. N'/N =nn(N') < nn(G) =G/N by Lemma 5.7.1 (2). For x € G set
w(zN):=zN".

It is easy to check that this is a well-defined epimorphism from G/N onto G/N’. We have
N eker(y) if and only if e N’ = 1g/n» = N, i.e., x € N'. Hence ker(y)) = N'/N. Now apply
the 1st isomorphism theorem. O

Exercise 5.7.16. The 2nd statement also holds for N/ not normal.

5.8 Solvable groups

Recalling the preface, solvable groups get their name from Galois theory treated in the
next chapter. It is a beautiful fact that they can be independently motivated starting from
the following question. Can we make a group G abelian by somehow minimally mod-ing
out non-commuting elements, that is, find a minimal N < G such that G/N is abelian?

Definition 5.8.1. Let G be a group. The commutator of x,y € G is
[2,y] = ayx'y ™.
The commutator group of G is the subgroup
[G,G] = ([2.9] | 2,y € G).
Remark 5.8.2. Let G be a group and x,y € G.

Loay =yra~ty ey =yofzt y ], [y, @loy =yz, [2,y]" = [y, =]
2. Hence, [G,G] equals the set of products of commutators.
3. G is abelian if and only if [G,G] = {1}.

Remark 5.8.3. It is not so easy to find groups G such that [G, G] contains non-commuta-
tors. A known example is the free group with 2 generators (see Definition 5.5.8); the
smallest example has order 96.

Theorem 5.8.4. Let G be a group and N < G. Then [G,G] < G and, G|N 1is abelian if
and only if [G,G] € N. In particular, the abelianization G/[G, G] is abelian.

Proof. To see [G,G]< G, let z,y,z € G. Then

1

zlr,yle ™t = oy ly T e = s ey 2t syt 227 = (a7t 2y € [GL G

By the remark, every = € [G,G] is a finite product = = z1---x,, of commutators x;. By the
above, zxz™! = zx1z7lzwez7 2o 27 2, 271 is & product of commutators, so zxz™ € [G, G].
Assume G/N is abelian. Then 7y ([z,y]) = nn(2)7n (y) 7 (2) " 7n (y) ™ = 1g/n. Hence,
[z,y] € N for all z,y € G, so [G,G] c N.
Assume [G,G] € N. Then tNyN = zyN = yx[z~',y '[N =yaN =yNzN. ]
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Exercise 5.8.5 (Universal property). Let ¢ : G — G’ be a group homomorphism where G’
is abelian. Then there is exactly one homomorphism ¢ : G/[G,G] - G" with ¢ = o a1

Example 5.8.6. Let n> 1. Then [S,,,S,] = A,.

Proof. As A, < S, has index 2, S,,/A,, 2 Cy is abelian, so [S,, S,] € A, by the theorem.
For n =2, Ay = {1} €[S, S2]. For n>2, A, ¢ [Sy,,S,] because A, is generated by the
3-cycles (ijk) (Example 5.3.7) and (ijk) = (jk)(ij)(7k)(ij) = [(jk), (i5)] € [Sn, Sn]. O

Example 5.8.7. [Ay, Ay] = [As, As] = {1}, [Asg, Ay] 2 Ky, and [A,, A,] = A, for n> 4.

Proof. As is trivial, Az has order 3!/2 = 3, so is isomorphic to C3 (Proposition 5.3.18), hence
abelian. For n = 4, consider K| < A4 from Example 5.6.12 (5); it has index (4!/2)/4 = 3
in Ay, so Ay/Kj = C5 is abelian; by the theorem, [A4, A4] € K. Conversely, note K}
contains (the identity and) products of two disjoint transpositions (ij)(k¢) and

(i) (kL) = (ijk)(ig0) (kji)(£ji) = [(ijk), (ij0)] € [As, As].
For n > 4, it suffices to show every 3-cycle is a commutator of 3-cycles (Example 5.3.7):
(123) = (124)(135)(421)(531) = [(124),(135)]. O
Remark 5.8.8. Let G be a group. Then
GO:=G > GV =[GO,d9] b G? =[GV, GV] > G®:=[G? GP] ...

and all G® /G(#+D) are abelian. If G is finite, this series eventually stabilizes, i.e., G®)=G** =
-+« for some k. Does it stabilize with the trivial {1} or something bigger?

Definition 5.8.9. A group G is solvable if G*) = {1} for some k € N.

Example 5.8.10. S5, .55,.5, are solvable, and S,, is not solvable for n > 4. Same for A,,.
In fact, for G = S5, Ss,54 and G = S,, with n > 4 the sequences G >G® > G® > ... read

Sy > {1} Sz > Az > {1} Sy > Ay > K> {1} Sp DA, DA, D>
Remark 5.8.11.

1. Abelian groups G are solvable (GM) = {1}). In particular, groups of prime order are
solvable (Proposition 5.3.18). Later we find ourselves able to prove that also groups
of order a prime power are solvable (Corollary 5.13.13).

2. Non-abelian simple groups G are not solvable. Using Example 5.6.27, we see again
that A,, is not solvable for n > 4.

Indeed, [G,G] < G and [G,G] # {1} implies [G,G] =G, so G*) =G for all k€N,
3. Subgroups U of solvable groups G are solvable.

Say, G() = {1}. By Exercise 5.8.12 below with ¢ =idy : U - G we have UK®) ¢ G*#)|
so U®) = {1}.
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Exercise 5.8.12. Let ¢ : G - H be a group homomorphism. Then for all k € N:
©(G®Y) = p(G)® c H®),

Lemma 5.8.13. Let G be a group and N < G. Then G is solvable if and only if both N
and G/N are solvable.

Proof. =: assume G is solvable, say G*) = {1}. We just remarked, N is solvable. To see
G/N is solvable use Exercise 5.8.12 with ¢ = my:

(GIN)®) =7y (G)F) = 7y (GP)) = v ({La}) = {1gn )

<: say, (G/IN)® = {1g/n} = {N}. By Exercise 5.8.12, mx(G®)) = 7y(G)*) =
(G/N)®) = {N} and hence G*) ¢ N. By Remark 5.8.11 (3), G®) is solvable. Thus,
there is £ € N such that {1} = (G®)() = G=+0), O

Example 5.8.14. Let n > 0. The dihedral group D,, is solvable.

Proof. Dy, Dy are abelian. For n > 2, we have R< D,, for the abelian subgroup of rotations R
(of index 2). Both R and D,,/R (order 2) are abelian, so solvable. O

The G*) of a solvable group G from a so-called subnormal series; “sub” because possibly
some G*) 4 G. The following is sometimes taken as a definition of solvability.

Theorem 5.8.15. Let G be a group. Then G is solvable if and only if there exist £ € N
and a subnormal series of G (of length ¢)

{1} =No<a Ny << Ny =G
with abelian factors Ny,1 /Ny for k< (.

Proof. = is trivial. <: it suffices to show that G(*) ¢ N,_, for all k < ¢. This is trivial for
k = 0. Inductively assume k < ¢ and G(*) ¢ N,_;. Then

G*D =[G . GM] € [Ney, Neoi] € Ne— s
where the last € follows from Theorem 5.8.4 because Ng_k/Ng_(k+1) is abelian. O]

Example 5.8.16. We saw the subnormal series {1} < K <1 Ay of A4 with factors of order
4 and (4!/2)/4 = 3. This can be “refined” to {1} < {1,(12)(34)} < K} < A4 with factors of

prime orders 2, 2 and 3. Recall, prime order implies abelian (Proposition 5.3.18).

Theorem 5.8.17. A finite solvable group has a subnormal series with factors of prime
order.
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Proof. Let GG be a finite solvable group. Then it has a subnormal series of some length ¢ as
in the previous theorem. We can assume Ny # Ny, for all k£ < £. Assume there is 0 < k </
such that Ny/Nj_; does not have prime order. Lets us assume k = ¢ and write N := Ny_;.
We claim that there exists N < N’ < G such that N’//N has prime order.

The theorem follows: note N’/N is abelian (prime order) and G/N' = (G/N)/(N'|N)
(3rd isomorphism theorem) is abelian as a factor of an abelian group. Hence, we can
just repeat ‘inserting’ such N’ until all factors have prime order. To see this eventually
succeeds, note the index drops: [G: N'] =[G : N]/[N': N]<[G: N].

We are left to prove the claim: as G # N we have [G N]>1. Let p be a prime divisor
of [G: N']. By Proposition 5.6.13, G/N has a subgroup U of order p. Then U < G/N as
G/N is abelian. Let N’ := 7 1(U). Then N’ < G by Lemma 5.7.1 and ker(mwy) = N ¢ N'.
Then N < N” and N’/N 2 U by the 1st isomorphism theorem. O

Example 5.8.18. The subnormal series {I5} < {+l>} < SL(2,R) <« GL(2,R) has a non-
abelian factor and cannot be refined: one can show that {5} is the only non-trivial
normal subgroup of SL(2,R). Instead of R this holds for every field IF, of size ¢ > 3.

As an exercise, show GL(2,F,) has size (¢* - ¢)(¢—1) and SL(2,F,) has size ¢3 - ¢.

5.9 Direct products

Products of groups are defined just like products of rings (cf. Lemma 2.5.10):

Definition 5.9.1. Let r > 1 and G4, ..., G, be groups. Then their direct product Gy x---x G,
is the group with - defined for (x1,...,x.), (y1,...,4r) € Gy x -+ x G,. as follows:

(ajla'”?x'r)'(yla"'?y’r) = (xl'ylv"‘axr'yr)-

If all G; are the same group G we write G” for the direct product. For additively written
G; the direct product is written G; @ --- ® GG, and called direct sum.

Remark 5.9.2.

1. Above x; - y; refers to the group operation of G;. (G x - x G,.,- ) is a group with
neutral element (1g,, ..., 1g,) and inverses (z1,...,2,)"! = (x .

2. x is associative and commutative in the sense that Gox (G x Gg) ~ (GO x (1) xGo and
G1xGy 2 G9x (G, Sloppily, we shall not notationally distinguish products Gy x---x G,
parenthesized in various ways. E.g., we do not distinguish G® and G? x G3.

3. For every 1 < i < r, the projection 7; given by m;(x1,...,x,) := x; is an epimorphism
from Gy x--- x GG, onto G;. The kernel is

ker(m;) = {(xl, e X)) | Ty = 1Gi} Q4G x-x G,

and G x -+ x G/ ker(m;) 2 G; (1st isomorphism theorem).



CHAPTER 5. GROUP THEORY 119

4. For every 1 <i <r, we have a monomorphism from G; into Gy x --- x G,.:

T = (1G17 ceny 101,71,.%, 1Gi+17 ceey 1G7‘)'

The image of this map is a normal subgroup of Gy x --- x G,..
5. If p;: G, 2 G for all 7, then Gy x - x G, 2 G| x -+ x G, via

(21, .00y 2) = (p1(1), .., or (1)),

6. Gy x .- x (G, is abelian if and only if every G is abelian.

Examples 5.9.3. Our definitions click: Z" defined as the additive group of the ring Z"
equals Z @ --- & Z (r times) defined above. In particular, Ky = Zy @ Zy = Cy x Cs.
Also note that Corollary 2.5.11 states Zy,, & Z,, ® Z,, for coprime n,m.

Exercise 5.9.4. Let GG1,G4 be finite groups of coprime orders. Show every subgroup H
of G1 x G5 has the form H; x H, for subgroups H; of G;.
Show the coprimality assumption cannot be omitted.

Exercise 5.9.5. Let G1, G5 be cyclic groups. When is G x G5 cyclic?

Exercise 5.9.6. Let GGy, ...,G, be groups and N; < G; for i = 1,...,r. Then
N =Ny x--xN. QG xxG, =G and G'|N'2G{/Nyx-xG.|N,.

Theorem 5.9.7 (Universal property). Let Gy,Gs be groups. Then Gi x Gy is up to iso-
morphism the unique group satisfying:

1. there are epimorphisms o1 : Gy x Gy = Gy and py : Gy x Gy - G.

2. if G" is a group and V1 : G' - Gy and Yy : G' - Gy are homomorphisms, then there
is exactly one homomorphism ® : G' - Gy x Gy such that 11 = o1 0P and s = py0 P.

Proof. G1x G4 has properties (1) and (2): for (1) take ¢; := m;. For (2), given G, 14,15 the
equations force to set ®(x) := (Y1(x),Ya(x)) for x € G'. This is indeed a homomorphism
from G’ to Gy x Go.

Let H be a group satisfying (1) and (2). Apply (2) for H with G' := G; x G5 and
m; : G' - G;. This gives a homomorphism ¢ : G’ - H with 7; = p; o ®.

We show @ is bijective. Since G1xGy satisfies (2) we get d: H - Gy xGy with ©; = ;0.
Then

Wioci)oq)=go,;o(1>=7ri

It follows that ®o® = idg,xg,- Hence @ is surjective. To see injectivity, assume ®(x1,25) =
1y for (x1,22) € Gy x Gg; then z; = mi(x1,22) = ©i(P(21,22)) = ¢i(1g) = 1g,. Hence,
(z1,x2) is the neutral element of G1 x Gs. O]

When is G isomorphic to U; x U, for subgroups Uy, Uy of G7
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Lemma 5.9.8. Let G be a group and U,V be subgroups satisfying uv = vu for all we U,v €
V. Then UV is a subgroup of G and the following are equivalent:

1. (u,v) = wv is an isomorphism from U x V onto UV ;
2. for every x € UV there is a unique pair (u,v) € U x V' with uv = x;

3. UnV ={1}.

Proof. UV is a subgroup by Exercise 5.6.10; directly: let ugvg,uyvy € UV with ug,uy € U
and v, vy € V; then ugug(uiv1)™ = uovovytug! = ugvouytor! = uguytvevyt € UV.
Let ¢ denote the map in (a); it is a homomorphism:

©((ug,vo)(u1,v1)) = @(upuy, vov1) = U VeV = UgVeU V1 = P(Ug, Vo )P (U1, v1).

¢ is obviously surjective. (2) states injectivity, so (1) and (2) are equivalent. We show
injectivity, i.e., ker(y) = {(1,1)} is equivalent to (3 ).

<: let (u,v) € ker(p), i.e, uv = 1; then u = v=1, so both u € V and v=! € U, so
u,veUnV ={1}, so (u,v) = (1,1).

=:if xeUnV, then (z,27') eker(y) = {(1,1)}, so z =1. O

Example 5.9.9. S3 has the subgroups U := {1,(12)} and V := {1,(13)}. Then UV =
{1,(12),(13),(132)} is not a subgroup of S5 as (13)(12) = (123) ¢ UV,

Theorem 5.9.10. Let G be a group and let N, N'< G satisfy NN'=G and Nn N = {1}.
Then (n,n’) »nn' is an isomorphism from N x N’ onto G.
We say G is the inner direct product of N and N’.

Proof. We check the assumption of the lemma: for n € N,m € N’ we have nmn=tm™! is
in nN = N because mn='m~' € N by N < G. But also nmn=tm=! € N'm~! = N’ because
nmn~t e N' by N'<Q G. Hence, nmn~'m=e NnN’={1}, so nm =mn. O

Exercise 5.9.11. G x G5 is the inner direct product of G} := Gy x {1lg,} and G} :=
{1g,} x G. Every group G is the inner product of its trivial subgroups {1¢} and G.

Remark 5.9.12. Let r > 1. A group G is the inner direct product of Ni,...,N, < G if
(n1,...,n,) = nq---n, is an isomorphism from Nj x --- x N, onto G.

Similarly to the theorem, one can show that this is the case if and only if N;---N,. = G,
and N; N Ny-+-N;_ 1NN, = {1} for all 1 <i<r.

Example 5.9.13. That an abelian group (G, +) has Z-basis (x1,...,z,) means that G is
the inner direct sum of (z1), ..., (x,).

5.10 Semidirect products

Given a group G to analyze, it is good information finding out that every x € G' can be
uniquely written x = uyuy for elements wuy, us of proper subgroups Uy, Us. If Uy, Uy are both
normal, Theorem 5.9.10 tells us that G decomposes as U; x U;. What can we say about G
if only one of Uy, U, is normal? This is what actually happens:
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Example 5.10.1. Recall Theorem 5.1.17 and consider D,, for n > 2. The subgroup N :
{Ri2r/m | 1 <k <n} is normal and the subgroup U := {I5, Sy} is not (e.g., R2ﬂ/3SOR§71r/3 =
Ryzi380 ¢ U). We saw NU = D,, and NnU = {I,}.

But D, is not the inner product of N and U — e.g. use Remark 5.9.2 (4): D,, is not
abelian while both N and U are. Or note in an inner product we would have for k, k' < n,
and b, b’ <1 that Rk.Qﬂ-/nSg . ka.z,,/nsgl = Rkskry2n/n 5’85’8/ which is not true.

Example 5.10.2. Let n > 0 and recall Corollary 5.1.11. The group of isometries I(n, R) has
as subgroups the set of translations N := T(n,R) := {t, | a ¢ R"} and the set of orthogonal
linear maps U := O(n, R) (using the same symbol as for the representing matrices). Then
Theorem 5.1.9 states that [(n,R) = NU and, obviously, N nU = {idgn }.

N is easily checked to be normal nut U is not: (t,) '¢ts = t_qrpa)@ ¢ U unless a = p(a).
Clearly, I(n,R) is not the inner product of N and U. This would mean that (¢,)(tp0) =
tatppr) — nonsense.

Remark 5.10.3. Assume G = NU, N nU = {1} for subgroups N,U c G, i.e., every x € G
can be uniquely written as z = nu with ne€ N,u e U. If both N,U < G then G is the inner
product of N, U and we have

nu-n'u" =nn"-uu'.

In the examples above only N is normal. We can, however, always write

nu-n'u =n-un'ut - uu’.

Here, n’ gets conjugated with u, i.e., moved by the inner automorphism determined by u
(cf. Definition 5.1.18). Let’s turn this into a definition.

Recall, (Aut(G),o) is the automorphism group of a group G (Exercise 1.1.24).

Definition 5.10.4. Let G, G3 be groups, and ¢ : Go - Aut(G) an homomorphism. The
semidirect product of Gy and Gy wrt ®, denoted

G xg G,
is the set G; x G5 together with the operation - given by
(€E1,$2) : (91792) = (I1@x2(y1),$292)
for all (z1,22), (y1,y2) € G1 x Ga; here, we write @, := O(z3).
Remark 5.10.5. If ® is constantly idg, € Aut(G1), then Gy xp Go = G x Gs.

Lemma 5.10.6. Let Gy,Gy be groups, and ® : Gy - Aut(G1) an homomorphism. Then
G1 %9 Gy is a group with neutral element (1g,,1a,) and for all (x1,x2) € G1 x Go:

(xla Iz)_l = (q)xgl (xil)wxil)'
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Proof. For the neutral element note ®y,, =1dg, and ®,(1g,) = 1g, for all x € Gy; hence,

($17$2) : (1G17 1G2) = (mlq)xz(lGl)aleGz)) = ($1,$2),
(1G17 1G2) : (I’l,l’g) = (1G1q)1c2 (‘rl)7 1G2x2) = (Z’l,l’g).

For the inverse note ®, o ®,1 = idg, for all z € Gy and ®,(y)P.(y7!) = P.(yy™!) =
®,.(1g,) = 1g, for all y € Gy; hence,

(.Tl,l’g) ’ ((133551(1};1),1}51) = (mlq)mz(q)xgl(xil)LxeEI) = (xll’Il,IgfL'El) = (1G17 1G2)7

(@x;(xfl), 23") - (21, 22) = (@x51(x[1)@x51(x1), 13'w0) = (1gy, 1a,)

To verify associativity let (z1,22), (y1,vy2), (21,22) € G1 x G3. Then

(21, 22) (Y1, 92) ) (21, 22) = (21Py (Y1), w212) (21, 22) = (1P (Y1) Piry (21), T2Y222),
(z1,22) (41, 2) (21, 22) ) = (21, 22) (11 Py, (21),9222) = (21 Py (1 Py, (21)), T21222).

But ¢, (yl)q)xzyz(zl) =0, (yl)q)xz(q)yz(zl)) = q)xz(ylcbyz(zl))' U

Proposition 5.10.7. Let G1,Gs be groups, and ® : Gy - Aut(Gy1) an homomorphism.
Then G xg Gy is abelian if and only if both Gy and G are abelian and ® is constantly idg, .

Proof. =: assume G xg G9 is abelian. Clearly, G5 is abelian. For G, let z,y € G;. Then
(7,16,) - (¥, 16,) = (2®P1,, (), 1a,16,) = (2y,16,) since &y, =idg,. By assumption, this
equals (y,1g,) - (2, 1¢g,) = (y(D1G2 (2):16,16,) = (yx,1g,). Thus, zy = yz.

We show @, (z) =z for all y € Go,x € G1. Note (1g,,v) - (2, 1g,) = (Py(z),y). Since
Gl Hp GQ 18 abehanv this equals (l’, 1G2) ) (1G17y) = (xq)lcQ(lGl)ay) = (l',y)

<: by Remarks 5.10.5 and 5.9.2 (4). O

Example 5.10.8. There exists a non-abelian group of order 2025.

Proof. Zys »e Z4s5 is non-abelian for a non-constant homomorphism & : Z5 - Aut(Zys).
Does such ® exist? By Exercise 2.6.5, Aut(Z4s) = Z}; has order ¢(32-5)=3(3-1)(5-1)
(Theorem 2.6.10). Proposition 5.6.13 gives 1 € Aut(Zys) of order 3 (indeed, 16 has order 3
in Z:). Since 3 |45 there is a (unique) ® mapping 1 to . ]

Exercise 5.10.9. Construct a non-abelian group of order 2015.

Exercise 5.10.10. Let G, G5 be groups, and @ : G5 - Aut(G;) an homomorphism. Show
N :=G1x{1g,},U = {1g, } xG3 are subgroups of G1x4G2, N is normal, and NU = G1x¢Gs.

Exercise 5.10.11. Let G1,Gs be groups, and ®,¥ : Gy - Aut(G;1) be monomorphisms
with the same image. Then G xg Gy 2 G xg Gs.

Exercise 5.10.12. Assume G, G2 be groups, ® : Gy > Aut(G1) an homomorphism, and
©1:G1 2 G G 2 GY. Determine U, with ¢ : Gy 1 Gy 2 G 0y GY,.
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Theorem 5.10.13. Let G be a group, N < G and U a subgroup and assume NU = G and
NnU=A{lg}. Then (n,u) ~ nu is an isomorphism from N x U onto G.

Here, x stands for xg where ® : U - Aut(N) maps u € U to conjugation by u, i.e.,
®,: N —> N isneunut. We say G is the inner semidirect product of N and U.

Proof. Note ®,, permutes N because N < G, so &, € Aut(N). Let ¥ denote (n,u) — nu.
We verify it is a homomorphism: for (ny,u), (ne,uz) € N x U,

\I/((nl,ul)(ng,m)) = \I/(nlq)ul(ng),ulm) = \If(nlulngufl,ulm)
= NU U U Uy = MU Nty = U (ng, 1wy )W (ng, us).

U is surjective by NU = G. Injective: if ¥(n,u) =nu=1g, thenn=u"teU,sone NnU =
{1g}. Hence, n =1g and u=nu=1g, so (n,u) = (1g, 1lg)- O

Example 5.10.14. Recall Example 5.10.2 and let n > 0. Then I(n,R) is the inner semidi-
rect product of T(n,R) and O(n,R).

Example 5.10.15. Recall Example 5.10.1 and let n > 1. D,, is the inner semidirect product
of N :={Rpor/n | k=1,...,n} and U := {I5,Sp}. Since N = C,, and U = C; we get

D, = On xg Co

for a certain ® : Cy - Aut(C,,) by Exercise 5.10.12. Concretely: note SORkQW/nS(jl = R;%W/n,
i.e., conjugation with Sy gives the inverse in N. Since N = (), via Rjyor/n = ¢ and U = Cy
via I, So~ 1,-1 we can define ® setting ®; :=id¢, and $_; to be x — z~ L.

If n =2, then z =271, so ® is constant and Dy = Cy x Cy 2 K4 (Remark 5.10.5).
Exercise 5.10.16. For n > 1, S, is the inner semidirect product of A,, and {1, (12)}.

Remark 5.10.17. To express that G is the inner (semi)direct product of N, U it is unfor-
tunately quite common to use the notations G = NxU and G = N xU. This notation creates
a confusing ambiguity of the equality symbol: the same statement also expresses that G
equals a set of pairs, namely the product of N,U according to Definitions 5.9.1, 5.10.4.
For distinction it is common to express the latter saying G is the outer (semi)direct pro-
duct of N,U. But thereby one only escalates the confusion because only one (semi)direct
product operation is defined. We avoid all these notations and modes of speech.

5.11 Finitely generated abelian groups

In this section we use additive notation for groups unless stated otherwise.

Definition 5.11.1. Let G be an abelian group. The torsion subgroup of G is
T(G) :={x e G |ord(x) # oo}.

G is a torsion group if T(G) = G. It is torsion-free it T(G) = {0} (cf. Exercise 5.4.2).
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Remark 5.11.2. T'(G) is a subgroup of G and G/T(G) is torsion-free.

Proof. 1st statement: let x,y € T(G) have orders n,m € N, i.e., nx = 0,my = 0. Then
m(-y) =0 and nm(x-y) =0, so z —y € T(G).

2nd statement: assume z+7T(G) € G/T(G) has order n € N; then T(G) =n(z+T(G)) =
nx +T(G), so nx e T(G), say mnz =0,s0 x € T(G), so x +T(G) =T(G). O

Example 5.11.3.

1. Above it is crucial that G is abelian: in I(2,R) (multiplicative notation), sq¢ is the
reflection at line y = 0, and s; := t(071)50tz&1) the reflection at line y = 1. Then sq, s1
have order 2 and sgs; = f_(02) has infinite order.

2. Let n>1. Z" is torsion-free, Z,, is a torsion group.

3. Let r;s € N and ng,...,ns > 1. Then (forgetting about parentheses)
TL &Ly, @ @Zy,)={0} @Zp, ® - ®Lyp, = Lp, ®®Ly,.

4. (Q/Z,+) is a torsion group with infinite exponent.
Indeed: b-(a/b+Z) =0+Z for a,be Z,b> 0, so ord(a/b+Z) <b, and ord(1/b+Z) = b.

Kronecker classified finite abelian groups 1870, generalizing a result from Gaufl’ Dis-
quisitiones Arithmeticae 1801. The following is due to Poincaré 1900:

Theorem 5.11.4 (Classification of finitely generated abelian groups). Let G be a finitely
generated abelian group. Then there exists unique naturals r,s € N and invariant factors
di,...,ds > 1 with d; | diyy for all i < s such that

G2Z" &Ly ® - ®ZLy,.

Moreover, ds is the exponent of T(G) and r is the rank of the finitely generated free abelian
group G|T(Q), called rank of G.

Proof. If G is generated by a set of cardinality ¢, then there is a surjective homomorphism
from Z! onto G (Remark 5.3.4 (2)). Let U be its kernel, so G = Z!/U by the 1st isomorphism
theorem. By Theorem 5.4.9, there is a Z-basis & = (z1,...,x;) of Z! and s <t and positive
dy |-+ | ds such that (dyxy_si1,...,dsx;) is a Z-basis of U.

The coordinate map wrt to z (Remark 5.4.4) maps U onto V := {0} @ 1 Z & --- & dsZ
where r:=t—s. Then G 2 Z!/V, so by Exercise 5.9.6

G2l &Ly ® &Ly, =G'.

We can assume dy > 1. Then T(G') = {0}" @ Zy, & ®Z,4,. Thus, G/T(G) 2G'|T(G") =2 Z"
(Exercise 5.9.6) is free of rank r. Since T(G) 2 Zg, &+ ®Zq, and d; | -+ | ds, we have dsz =0
for all x € T(G) satisty dsz = 0. Since (0, ...,0,1) has order d,, we have exp(T(G)) = d.
We show that r,s and the d; are unique. Assume G = Z" @ Z,, ® - ® L, where
e1 |- |es are > 1. Then r =’ = rank of G/T(G) . Hence Z,, & - ® Z,, = Lg, ® - & Ly, .
Then ey = ds = exp(T(G)) and the sums without the last factor are isomorphic; they have
exponent d,_; and ey_1, so ds_1 = ey_1. Continuing like this gives s = s’ and d; = e;. O
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Corollary 5.11.5. Let n,d > 1 and G an abelian group of order n. If d | n, then G has a
subgroup of order d.

Proof. We can assume G = Zg4, ®---®Z,4, where dy | -+ | ds. Then we can write d = e;---e5 with
e; | d;. By Theorem 5.3.21 (1), there is a subgroup U; of Z4, of order e;. Then U; & --- & U
is a subgroup of G of order d. ]

Example 5.11.6. Above, the subgroup is not necessarily unique: {0} ® Z, and Zy & {0}
are distinct subgroups of Zs @ Z,.

2nd proof of Corollary 5.5.25. In the classification for G we have r = 0 as G is finite. Then
ds = exp(T(G)) = exp(G). Clearly, x% =1 for all z € G. In other words, every x € G is a
root of X% -1 e K[X]. Since there are < d roots, |G| < d,s. By Exercise 5.3.27, G contains
an element of order ds, so G is cyclic. O

Exercise 5.11.7. Let G be a finitely generated abelian group. Then G is free if and only
if it is torsion-free. G is finite if and only if it is a torsion group.

Exercise 5.11.8. Subgroups of finitely generated abelian groups are finitely generated.

Remark 5.11.9 (Burnside problem). One defines non-abelian torsion groups analogously.
Burnside asked 1902 whether all finitely generated torsion groups are finite. In 1964 Golod
and Shafarevich finally answered “no”. Even finitely generated groups with finite exponent
can be infinite (Novikov, Adian 1968), and so-called Tarski monsters are striking examples
(Olshanskii 1979). Which finite exponents can appear is not fully understood.

5.11.1 Finite abelian groups

Finite abelian groups of a given order are products of certain Z,’s. Which ones? The
answer is not much more than notational warfare:

Definition 5.11.10. A partition of k € N is a tuple £ = (¢4, ...,£,) € N" for some r > 0 such
that 0 < 01 < ... </l and k =0y + -+ L,. A partition of (ki,...,k.) € N" for some r >0 is a
tuple 7 := (¢1,...,£,) such that /; is a partition of k;.

For n > 1 with prime factorization pf---pF” let P(n) be the set of partitions of (ki, ..., k,.).
For m = (04, ...,0,) € P(n) and writing £; = (¢;1, ..., {ss,) define the group

Theorem 5.11.11 (Classification of finite abelian groups). Let n > 1. Every abelian group
of order n is isomorphic to G, for exactly one me P(n).

Proof. Let n = p]fl---pff* be the prime factorization. We first show that the G are pairwise
non-isomorphic. Assume G 2 G for m,7" € P(n). Write m = ({1,...,4s), 7" = (6, ..., (%)
and ¢; = (i1, ..., lis;) and €, = (¢}, ..., 0] ). Abbreviate

i

b ro_ b
Q4ij =P; Q=P
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Let 1 <7 <r. We have to show s; = s, and 0; = [Z. The elements of G, whose order is a
power of p; is a subgroup (use Lemma 5.3.9 (4)) isomorphic to G; = Zy, & - & Zy,, . The
isomorphism from G, onto G+ maps this subgroup onto the elements of G- whose order is
a power of p;. This is isomorphic to G} :=Zy & ®Zy ,. Since l;;, j < s;, is nondecreasing,
exp(G;) = gis,- Similarly, exp(G}) = ¢;,,. By isomorpﬂism, lis; = U} ,. Thus, deleting the
last factors, the groups stay isomorphic. Continuing gives s; = s, and l; = Z;.

We now show every abelian group G of order n is isomorphic to G, for some 7 € P(n).
We know G = Zg, ® --- ® Z,, where the d; are the invariant factors. Write d; = pf” ~pt for
certain {5, ...,¢,; > 0 and primes py,...,p,. Set

7z £ if éij +0,
p,

FG@.J) ::{ (0} if ¢, =0.

By Corollary 2.5.11, Zg; 2 F(1,7j) ®--® F(r,j). Hence G is isomorphic to the direct sum
of the direct sums of the columns of

F(1,1) - F(1,s)
F(r1) — F(rs)

Shuffling factors, G is isomorphic to the direct sum of the direct sums of the rows. If we
omit factors {0} (namely F'(i,7) with ¢;; = 0) this product equals G, for some 7 € P(n).
Indeed: write 4; := (41, ..., l;s); since n = dy-+-ds we have k; = £; +---+£;5; further, £;; < - < {4,
because d | -+ | d,. Take 7 to be ({1, ..., ;) with all £;; = 0 deleted. O

Exercise 5.11.12 (Interpretation of the s;). Let G be an abelian group, additively written,
and p,n € N with p prime. Let F, := Z, denote the p-element field. Let pG := {px |z € G}.

G/pG is in a natural way a vector space over F,.
If G is finite and p + |G|, then G/pG is trivial.
If p | n, then Z, /[pZ,, is isomorphic to Z,.

=W D=

IfG=2, & ®Z,, for certain n; >0, then the dimension of the vector space G/pG
equals the number of n; that are divisible by p.

Corollary 5.11.13 (Primary decomposition). Let G be a finitely generated abelian group.
Then
G2Z"®©Zy @7y,

for unique naturals r,t € N and some sequence (qi,...,q;) of (not necessarily distinct) prime
powers; the sequence is unique up to re-indexing.

Proof. Replace in Theorem 5.11.4 the factor Z,, @ --- & Zy, by the isomorphic G,. This
has the required form. Any presentation of the desired form has Z, & --- ® Z,, isomorphic
to G, so the factors Z,, are those of G. O
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Exercise 5.11.14. Every simple finite abelian group is isomorphic to Z, for a prime p.

Corollary 5.11.15. Let n > 1 have prime factorization n = pi*--pkr. For k e N let p(k) be
the number of partitions of k. Then there are exactly p(k1)---p(k.) many abelian groups of
order n up to isomorphism.

Remark 5.11.16. It is known that the partition function p(k) satisfies

ko|1]2|3]4|5][6 |7 [8][9]10/15 |20 25 | 30 | 100
p(k) | 1]2]3]5]7[11|15[22]30 |42 176|627 | 1958 | 5604 | 190569292 |

1 /
p(1000) has 32 digits. Asymptotically we have p(k) ~ m LTV 2k[3,

Example 5.11.17. There are exactly p(3)p(5) = 3-7 = 21 pairwise non-isomorphic abelian
groups of order 25000 = 23 - 5% and p(5)p(5) =49 of order 100000 = 25 - 55.

Recall Example 5.6.19. We now complete the list of all 5 groups of order 8.
Example 5.11.18. List all abelian groups of order 8 (up to isomorphism).
Solution: 8 = 23. Partitions of 3: (3),(1,2),(1,1,1). This gives the groups

ZQS, Z21 @ ZQQ, Z21 @ Z21 @ ZQI.
Example 5.11.19. List all abelian groups of order 100 (up to isomorphism).
Solution: 100 = 22 - 52. Partitions of 2: (2),(1,1). This gives the groups
ZQQ @ Z52, ZQZ @ Z51 @ ZSI7 ZQ @ ZQ @ Z52, ZQl @ Zzl @ Z51 @ Zg’l,
that is, using COI"OH&I'y 2.5.11: Zngo, Zig ® Zing, Lo ® Zisy, Lo ® Zing.

Exercise 5.11.20. Find the smallest n € N such that there are exactly 6 abelian groups
of order n.

5.12 Group actions

Understanding a group requires understanding its subgroups. Given a finite group G, it
only has subgroups of order dividing |G| (Lagrange). For cyclic groups we find a unique
subgroup of order d for every d | n (Theorem 5.3.21). For abelian groups we find a not
necessarily unique one (Corollary 5.11.5, Example 5.11.6). In general, subgroups of order
d might not exist (Example 5.7.13). The following strengthens Proposition 5.6.13.

Theorem 5.12.1 (Cauchy). Let G be a finite group and p a prime diwvisor of |G|. Then G
contains a subgroup of order p.

The proof is based on a new perspective on groups:
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Definition 5.12.2. Let GG be a group and X # @ a set.

1.

SRR A A

An action of G on X is a map 7 : G x X - X such that 7,,(x) = 7,(m(z)) and
71(z) =z for all g,h e G,z € X; here, 7,(x) :=7(g,2). We say G acts on X by 7.

For x € X, the stabilizer of x € X (under 7)is G, := {ge G | 1y(2) = x}.

The orbit of x € X (under ) is G(z) = {r,(z) € X | g € G}.

The set of fired-points (of 7)is X := {z € X | 7,(z) =z for all g€ G}.

The action is faithful if for all g, h € G: if 7,(z) = 7,(z) for all x € X, then g = h.
The action is transitive if for all z,y € X there is g € G with 7,(z) = y.

Remark 5.12.3. Let 7 an action of G on X.

1.

2.

3.

For every g € G, 7, is a permutation of X because 7,1 07y = 7,0 7,1 = idx; e.g.,
Tg(Tg1(2)) = Tyg1 (2) = i (2) = 2.

The definition means that g ~ 7, is a homomorphism from G into Sym(X). Being
faithful means it is injective.

For every x € X, the stabilizer GG, is a subgroup of G.
Indeed: if g, h € G, then 7-1(x) = Typ-1 (7h(2))) = T4 (Th-1 (70 (2))) = 74(x) = .

Examples 5.12.4. Let n > 0.

1.

Exercise 5.12.5. (; and R,y act on C via

GL(n,R) acts on R™ via (A, z) — Az. This action is faithful (Ae; is the i-th column
of A) and not transitive (as 0 is a fixed-point).

I(n,R) acts on the power set of R® by (f,F) ~ f(F) (where f is an isometry and
F c R"). The stabilizer of F is the set of symmetries of F' (Definition 5.1.13).

Let n > 2. Each symmetry of the regular n-gon permutes the n vertices and is
determined by this permutation (cf. Example 5.1.21). Numbering the vertices 1,...,n
we get a faithful action of D,, on {1,...,n}. Remark 5.12.3 (2) shows D, is isomorphic
to a subgroup of S,,. Examples 5.2.6 and 5.6.15 spelled this out for D3 and Dj.

Let K be a field. Then (K[X],+) acts on K via (f,z) ~ f(x). If K is infinite, the
action is faithful (Exercise 3.3.5). If K =T, for a prime p, the action is not faithful
(Proposition 3.3.4).

Let K afield. The symmetric group S, acts faithfully on K[ Xy, ..., X,,] by (o, f) — f°
as of Definition 3.7.1. The fixed-points are the symmetric polynomials.

Let K be a group, ring or field. A subgroup ® of Aut(K) faithfully acts on K by
(¢, ) = p(x). The fixed-points are K® as of Definition 3.7.4.

A group G acts on G by left translation (g,x) — gx and also by right translation
(g,z) » xg~'. Both actions are faithful and transitive. Remark 5.12.3 (2) implies G
is isomorphic to a subgroup of Sym(G) — this is Proposition 5.2.3.

(1,2) » 2

(-1,2) » 2 and (r,z) = rz. Are these

faithful? What are the fixed-points? Find T ¢ C containing exactly one element per orbit.
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Exercise 5.12.6. Let 7 be an action of G on X. Define ~.¢ X? by
x e~y <= T7,(x) =y for some g € G.
Show this is an equivalence relation and the equivalence classes are the orbits.

Lemma 5.12.7 (Orbit-stabilizer lemma). Let 7 be an action of G on X and assume G is
finite. Then for every x € X:
G(2)] =[G : Ga].
Proof. Define f:G(x) - G/G, setting f(y) := gG, where g € G is such that 7,(x) = y.
Well-defined: if 7,(z) = 7,(x), then g7 th € G,, so gG, = hG,.
Injective: assume f(y) = f(2) for y, z € Gy, say, f(y) = 9G4, f(2) = hG, where 7,(2) = y

and 7,(x) = 2z; then g7'h e Gy, i.e., Tp1,(x) =, s0 7y(x) = (), i.e., y = 2.
Surjective: if g € G, then f(7,(x)) = gG.,. O

Lemma 5.12.8. Let 7 be an action of G on X and assume G, X are finite. Let T contain
exactly one element from each orbit.

1. (Bahngleichung) |X| =Y ,.7[G : G.].

2. (Burnside’s lemma) |[T'| = ¥ {2 € X | 74(z) = 2}|/|G].

3. (Fixed-point lemma) If |G| > 1 is a power of a prime p, then |X|=|X%| mod p.
Proof. (1): by the exercise the orbits partition X, so |X| = Y, |G(z)]. Then apply the

previous lemma. (2): note

Ygec [{w € X | 14(2) = 2} = [{(g, ) [ 74(2) = 2}| = Epex |Gl

By the previous lemma and Lagrange, |G(x)| = |G|/|Gz|, S0 Ypex |G| = |G| Xsex 1/|G(2)].
Since G(z),x € T, partitions X, this sum equals

|G| Zaer ey VG (@0)] = |G| Zaer 1= |G- [T,

(3): Let x € T* := T~ X%, By the orbit-stabilizer lemma, |G(z)| =[G : G.] > 1 and by
Lagrange [G : G.] | |G|, a power of p. Thus, p|[G: G,].

For x € T\ T* we have G, = G, so [G: G,] = 1. Thus p | |X|-|X%| because, by (1),
X[ =X+ Eper-[G: Ga]. 0

Remark 5.12.9. Burnsides lemma states that the the number of orbits equals the expected
value of the number of points fixed by g € G chosen uniformly at random.

Exercise 5.12.10. How many length 6 necklaces can you design with 10 beads? Cutting
the necklace gives a string, e.g., 122183, which is “the same” as 831221 (cut at a different
place). Formalize “the same” by an action of Cg on {1...,10}% and use Burnside’s lemma.

Exercise 5.12.11. If G acts on X, |G| = 55,|X| = 19, then there are at least 3 fixed points.
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Definition 5.12.12. G acts on G by conjugation (g,z) — gxg='. The orbit of x € G is
called conjugacy class of x, and the stabilizer of x is called centralizer of x and denoted Z(x).
The center of G is

Z(G) = Npec Z(x) = {g € G | gz = xg for all x € G}.
Theorem 5.12.13. Let G act on G by conjugation.

1. Z(G) 1is the set of fized-points.
2. Z(Q) is an abelian normal subgroup of G.

3. (Class equation) If G is finite and T' contains exactly one element from every orbit
of size > 2, then
|G| = |Z(G)| + Loer[G : Z(2)].

Proof. (1): g € Z(G) means g = zgz~' for all x € G. (2): Z(G) is a subgroup as an
intersection of subgroups. If g € Z(G) and = € G, then xgx~! = g € Z(G), so Z(G) is
normal. If g, h € Z(G), then hgh™! = g, so hg = gh; hence, Z(G) is abelian.

(3) follows from (1) and the Bahngleichung. O

Proof of Cauchy’s Theorem 5.12.1. Induction on |G|. Choose T as in the class equation.
By Lagrange, |G| = |Z(z)|-[G : Z(z)] for all = € T; since p is prime, p | |Z(x)|or p | [G : Z(z)].
Assume p | [G : Z(x)] for all x € T. By the class equation, p | |Z(G)|. As Z(G) is
abelian, Proposition 5.6.13 gives an order p subgroup of Z(G), hence of G.
Assume p | |Z(z)| for some x € T. By the orbit-stabilizer lemma, [G : Z(x)] = |G(x)] > 2.
By Lagrange, |Z(z)| < |G|. By induction, Z(z) and hence G has a subgroup of order p. [

Definition 5.12.14. G acts on the set of its subgroups U by conjugation: (x,U) — xUz!.
U,V elU are conjugate if they are in the same orbit, i.e., gUg™! =V for some g € G.
The stabilizer of U is called normalizer of U and denoted N(U), i.e.,

N(U)={geG|gUg™" =U}.

Proposition 5.12.15. Let U be a subgroup of G. N(U) is the largest subgroup V of G
such that U<V, i.e., it contains all such V. In particular, U< G if and only if N(U) = G.

Proof. N(U) is a subgroup of G by Remark 5.12.3 (4), and U < N(U) by definition. Let V'
be a subgroup of G with U < V. Then gUg ' =U for all ge V', so V c N(U). ]

Here is a more clever use of some group operation:

Proposition 5.12.16. Let G be a finite group, p be the smallest prime divisor of |G| and U
a subgroup of index p. Then U is normal.
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Proof. Let G act on G/U via (g,zU) = gzU. Remark 5.12.3 (1) gives an homomorphism
¢ : G - Sym(G/U), namely ¢(g) is the map aU ~ gaxU. Then N :=ker(p) c U: if g ¢ U,
then gU # U, so ¢(g) #idgyu. By Lemma 5.7.1 (1), N < G. By Exercise 5.7.16,

k:=[G:N]=[G:U]-[U:N]=p-[U:N],

By the 1st isomorphism theorem, G/N = ¢(G), so [o(G)| = k > p. But ¢(G) is a subgroup
of Sym(G/U) = S,, so k | p! by Lagrange. As k | |G| we have p = k by assumption on p.
Then [U:N]=1,s0U=N. Thus U< G. O

Exercise 5.12.17. Let 7 be a transitive operation of G on X. Assume G, X are finite,
|X|>1and {1} # N< G.

(a) There is g € G such that 7, has no fixed-points.

(b) The orbits under (the restriction of the operation to) N have all the same size.
Assume p :=|X| is prime and 7 is faithful.

(¢) G has an element of order p. Further, N operates transitively and faithfully.

(d) If G is solvable and Ny = {1} < N; < ---< Ni = G a subnormal series with factors of
prime order (cf. Theorem 5.8.17), then Ny = C,,.

Exercise 5.12.18. Let GG be a simple, non-abelian group with a subgroup of index n > 2.
Show G is isomorphic to a subgroup of A, and n > 5.

5.13 Sylow’s theorems

Definition 5.13.1. Let p be a prime. A group G is a p-group if for every x € G there is
n € N such that ord(z) = p™.

Lemma 5.13.2. Let p be prime. A finite group is a p-group if and only if its order is a
power of p.
Proof. < is clear by Lagrange. =: if |G| is not a power of p, then |G| has a prime divisor

g # p. Then Cauchy’s theorem 5.12.1 gives a subgroup of order q. By Proposition 5.3.18 it
is isomorphic to C,. Thus, G contains an element of order ¢, so is not a p-group. O

Example 5.13.3. Let p be prime. From the primary decomposition we see that a finite
abelian group G is a p-group if and only if G 2 Zx, & - @ Z,», for some s € N and k; € N.

Example 5.13.4 (Priifer p-group). Let p be prime. Let Z(p™) = Upeny Cpr.

1. Z(p™) is a subgroup of the circle group S'={zeC||z| =1}.
2. Z(p™) is a p-group with exp(Z(p>)) = .
3. Every proper subgroup U of Z(p>) equals C,» for some n € N.



CHAPTER 5. GROUP THEORY 132

4. Z(p>) is divisible (cf. Exercise 5.4.2).

Proof. (1) is clear. (2): the exponent is co because (,» has order p. Given x € Z(p*)
choose n € N minimal with z € Cpn; write = C]fn for some k € N. Then p + k, so
ged(k,p™) = 1. By Lemma 5.3.9 (5), = has order p".

(3): as just seen, for every x € U we have (z) = Cpn. € U for some n, € N. Since U is
proper, there is a maximal m € N among the n,’s. Then U = Cym.

(4): it suffices to find for every z € G and every prime g some y € G with y? = x.
Choose n,k € N such that = = C;fn. If g =p, sety:= ]'j,ﬁl. If ¢ # p, choose a,b € Z with
ap™ + bg = 1 by Bézout; then z = z%" 2% = 227 and we take y := 2. O

Lemma 5.13.5. Let p be prime. Finite non-trivial p-groups have non-trivial center.

Proof. Let G be a finite p-group. By Lemma 5.13.2) |G| = p" for some n € N. Then
n > 0 since G # {1}. Write p” = |Z(G)| + ¥,er[G : Z(x)] by the class equation (Theo-
rem 5.12.13 (3)). For z € T, [G : Z(x)] > 2 divides |G| = p* by Lagrange, so p | [G : Z(x)].
Hence, p | |Z(G)|, so Z(G) # {1}. O

As an application we generalize Proposition 5.3.19 and classify the groups of order p2.
In the end of this section we classify the groups of order pq with distinct primes p, q.

Example 5.13.6 (Groups of order p?). Let p be prime and G a group of order p?. Then
G is isomorphic to Z, ® Z, or to Zj:.

Proof. By the classification of finite abelian groups it suffices to show G is abelian. By the
lemma, Z(G) has order > 1 and devides p? by Lagrange. If |Z(G)| = p?, then G is abelian.
Hence, it suffices to show |Z(G)| # p. Otherwise, choose x € G\ Z(G). Then Z(x) contains
both Z(G) and x, so is larger than Z(G). Since |Z(x)| divides |G| = p?, we have |Z(z)| = p?,
so Z(x) = G and z € Z(G), a contradiction. O

Definition 5.13.7. Let p be prime and G a finite group of order pm with p + m where
¢,meN. A p-subgroup (of G) is a subgroup that is a p-group.
A p-Sylow subgroup is a p-subgroup of order p*.

Remark 5.13.8. Let GG, p, ¢, m be as above.

1. If £=0, then {1} is a p-Sylow subgroup.
2. By Lemma 5.13.2, p-subgroups have order p* for some k and k < ¢ (Lagrange).

3. For every z € G, if U is a p-(Sylow) subgroup, then so is xUz~! (conjugation is an
automorphism).

4. If q # p is prime, P a p-subgroup P and ) a g-subgroup, then Pn @ = {1}.

Indeed: if x € Pn @, then ord(z) divides |P|, a power of p, and |Q|, a power of ¢, so
ord(xz) =1. (Lemmas 5.3.15, 5.13.2).
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5. If £=1, then any p-Sylow subgroups P # P’ have trivial intersection P n P’ = {1}.

Indeed: P n P’ is a subgroup of P that is proper because |P| = |P’|. Its order divides
|P| = p (Lagrange), so equals 1.

Exercise 5.13.9. The case of abelian G is easy. Let p be a prime divisor of |G|. Show
there is exactly one p-Sylow subgroup of GG, namely the p-torsion subgroup:

T,(G) := {x € G | ord(x) is a power of p}.
Show G is the inner direct sum of its p-torsion subgroups.

Exercise 5.13.10. Let p,n,m € N with n > 0,m > 1 and p prime. Let F, be a finite field of
size ¢ := p". Show |GL(m,F,)| = ¢™(mD2[T" (¢*-1). Let G be the set of upper triangular
matrices over F, with 1’s on the diagonal. Show G is p-Sylow subgroup of GL(m,F,).

Recall the normalizer N(U) of a subgroup from Proposition 5.12.15.

Lemma 5.13.11. Let p be prime, G a finite group and U a non-trivial p-subgroup. Then
[N(U):U]=[G:U] mod p.

Proof. Let U act on G/U by left-translation, i.e., (u,gU) ~ ugU. By Lemma 5.13.2, |U]
is a power of p. By the fixed-point lemma [G : U] = |F| mod p where F' is the set of
fixed-points of the action. What does it mean to be a fixed-point? ugU = gU for all uw e U
is equivalent to g~lugU = U for all u € U, hence to g-'Ug = U, hence to g € N(U). Thus,
gU € F if and only if g e N(U). Thus |F| = [N(U) : U]. O

Theorem 5.13.12 (1st Sylow theorem). Let p be prime and G a finite group of order p‘m
with p + m where £,m € N. Then p-Sylow subgroups exist. In fact,

1. For all k < { there exist subgroups of G of order p*.

2. Every subgroup of order p* with k < £ is normal in some subgroup of order p*+1.

Proof. (1) is proved by induction on k. For k =0 take {1}. Assume k < ¢ and there is a
subgroup U of order pk. Then p | [G : U] = p**m. By the lemma, p | [N(U) : U]. By
Cauchy’s theorem, N(U)/U has a subgroup U of order p.

Let my : N(U) = N(U)/U be the canonical projection. Then U’ := W&I(U) is a subgroup
of N(U) and hence of G. Its order is |U|-|U] = pk+L.

(2): let U be a subgroup of order p*¥ with k < £. Define U’ as above. Then U c U’ € N(U)
and U < N(U). This implies U < U’. O

Corollary 5.13.13. Let p be prime. Finite p-groups are solvable.

Proof. A finite p-group G has order p’ for some ¢ € N by Lemma 5.13.2. Let Ny := {1} and
N; be a subgroup of order p. Then choose a N, of order p? with Ny <« Ny. Continuing ¢
times, gives a subnormal series of G. Then Nj.1/Ny has order p, so is isomorphic to C,
(Proposition 5.3.18), so abelian. O
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Theorem 5.13.14 (2nd Sylow theorem). Let p be prime and G a finite group.

1. For every p-subgroup U and every p-Sylow subgroup P there is g € G such that
gUgtcP.

2. Any two p-Sylow subgroups are conjugate.

3. A p-Sylow subgroup is normal if and only if it is the only p-Sylow subgroup.

Proof. (1): we can assume U is non-trivial. Let U act on G/P be left translation, i.e.,
(u,gP) » ugP. By Lemma 5.13.2, |U| is a power of p. By the fixed-point lemma, [G :
P] =|F| mod p where F is the set of fixed-points. Since P is p-Sylow, [G : P] =|G|/|P| # 0
mod p. Hence F + @. Let gP € F. Then g-tugP = P for all ue U, so g7'U(g7')~' ¢ P.

(2) follows from (1) because all p-Sylow subgroups have the same order.

(3): let P be a p-Sylow subgroup. Recall P<1 G means gPg~! = P for all g € G. But the
sets gPg~t, g € G, are precisely the p-Sylow subgroups (by (2) and Remark 5.13.8 (2)). O

Exercise 5.13.15. Let G be a finite group, U a subgroup, p prime and P a p-Sylow sub-
group of G. Show that for every p-Sylow subgroup @ of U there are a p-Sylow subgroup P
of G and x € G such that Q =U nzPz.

Theorem 5.13.16 (3rd Sylow theorem). Let p be prime and G a finite group of order p‘m
with p + m where £,m e N. Let s, denote the number of p-Sylow subgroups of G.
Then s, |m and s, =1 mod p.

Proof. Let G operate on the set of p-Sylow subgroups X by conjugation, i.e., (g, P) ~
gPg~'. Note X # @ by the 1st Sylow theorem, and the action is transitive by the 2nd
Sylow theorem, i.e., X equals the orbit GG (]5) — we fix P e X arbitrarily.

By definition, the stabilizer G5 is the normalizer N(P). By the orbit-stabilizer lemma,

sp= |X|=1G(P)| =[G : N(P)].
Recalling |P| = p we get s, | m using Lagrange as follows:
p'm=|G| =[G :N(P)]-[N(P)| = [G:N(P)]-[N(P): P]-|P| = s, [N(P): P]-p".

We now show s, =1 mod p. Let P act on X by conjugation. Let T'c X contain exactly
one P € X of each orbit. For the stabilizers Pp of P € X the Bahngleichung reads

sp= Y per[P: Pp].

Since [P : Pp]||P| = p* by Lagrange, we can write [P : Pp] = p*# for some kp < £. It now
suffices to show

kp=0 < P=P.
< is clear because P = P, so [P: P3] = 1. =: if kp = 0, then [P: Pp] =1, so P = Pp,
so gPg~! ¢ P for all g € P. By definition, P ¢ N(P). By Proposition 5.12.15, P < N(P).
Then both P and P are p-Sylow subgroups of N(P). By the 2nd Sylow theorem, they are
conjugate in N(P), i.e., P = gPg~! for some g € N(P). But gPg~! = P by normality. ]
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The Sylow theorems are our main tool for analyzing finite groups.

Example 5.13.17. There are no simple groups of order 10, 20, 30, 40, 50, 70, 80 or 90
(by Example 5.6.26, A is simple of order 60).

Proof. Let G be a group. Case |G| =20 =22-5: by the 3rd Sylow theorem s; |4 and s5 =1
mod 5, so s; = 1. By the 2nd Sylow theorem, the unique 5-Sylow subgrup is a normal
subgroup of G of order 5. Hence, G is not simple. Cases |G| = 10,40,50,70 are similar.

Case |G| =30=2-3-5: 3rd Sylow gives s5 | 6 and s; =1 mod 5, so s5 € {1,6}. Further,
s3] 10 and s3 =1 mod 3, so s3 € {1,10}. If s5 = 1 or s3 = 1, we are done as before. So
assume S5 = 6 and s3 = 10. Remark 5.13.8 (5) gives 10-(3—-1) = 20 elements of order 3 and
6-(5-1) =24 elements of order 5, contradicting |G| = 30.

The case |G| = 80 is similar (exercise). The case |G| =90=2-3%-5 is more complicated:
s3] 10 and s3 =1 mod 3 implies s3 € {1,10}. s5 | 18 and s5 =1 mod 5 implies s5 € {1,6}.
If one is = 1 we are done. So assume s3 = 10, s5 = 6.

Then there are 6- (5 - 1) = 24 elements of order 5, disjoint from all 3-Sylow subgroups
(Remark 5.13.8 (4), (5)). If the 3-Sylow subgroups intersect trivially, they comprise another
1+10-(9-1) =81 elements — too many.

Hence, there are distinct 3-Sylow subgroups P, @ with |[Pn Q| > 1, so [Pn Q| = 3 by
Lagrange. By Exercise 5.7.12, |PQ| = |P|-|Q|/|P n Q| = 27.

By Proposition 5.12.16, Pn( is normal in both P and ). Hence, P,Q ¢ N := N(PnQ),
the normalizer of PN @ in G. Thus, |[N| > 27. Further, |N|| 90 and 9 | |N| by Lagrange (P
is a subgroup of N). Thus, |N| e {45,90}. If [N| =45, then N < G (index 2) and we are
done. If |[N| =90, then N =G, so Pn@Q < G and we are done. ]

Exercise 5.13.18. In case |G| = 30 above, show G has a subgroup of order 15 and infer
that s3 = s5 = 1.

Example 5.13.19 (Groups of order pq). Let p < ¢ be primes. There is a homomorphism
® : C), » Aut(C,) such that every group of order pq is isomorphic to either C,, or C;»q C),.
Moreover, the 2nd case happes only if p | g - 1.

Proof. Let G have order pg. 3rd Sylow gives k,¢ € N such that s, | ¢ and s, = 1 + kp,
and s, | p and s, = 1+ ¢q. Then s, = 1: otherwise s, = p, so p—1 = {q, so £ + 0 and
q < p, a contradiction. Let P, be p-, resp., ¢-Sylow subgroups. Then @) < G by 2nd
Sylow. Moreover, Pn @ = {1} by Remark 5.13.8 (4). By the 2nd isomorphism theorem,
|PQ|=|P|Q|/IPn Q| = pg=I|G|. Thus, G = PQ.

By Theorem 5.10.13, G2 @ x P. As Q 2 C, and P = C,, we have ) x P =2 C, x4 C, for
some homomorphism @ : C}, » Aut(C,) (Exercise 5.10.12).

As ker(®) is a subgroup of C,, its order divides p by Langrange. If this order is p,
then @ is constant and G = C, x C,, = C,, (Remark 5.10.5).

Assume ker(®) has order 1. Then & is injective. By Exercise 5.10.11 it suffices to
show such @ have only one possible image. By Exercise 2.6.5, Aut(C,) = Zx. By Exam-
ple 5.3.14 (2), Zy is cyclic, so has at most one subgroup of order p (Theorem 5.3.21).

As |Z7| = ¢—1 (Remark 2.6.7), the 2nd case implies p | ¢ — 1 by Lagrange. ]
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Example 5.13.20. The 2nd case above happens for the dihedral group D, for a prime
q > 2. It has order 2¢ and is not cyclic (Example 5.3.14 (4)). In fact, we already saw in
Example 5.10.15 that D, 2 C,; xg Cy for a certain @ : Cy — Aut(C,).

Exercise 5.13.21. Let p # ¢ be prime. Groups of order p?q are inner semidirect products
of proper subgroups.

Exercise 5.13.22. Groups of order 922 or 2022 are solvable.
Exercise 5.13.23. Let p be prime and p < n < p?. Every p-Sylow subgroup of .S,, is abelian.

Example 5.13.24. We list all groups (up to ) of order < 10 using Proposition 5.3.19 for
order 4, the above for 6 and 10, Examples 5.11.18, 5.6.19 for 8, and Example 5.13.6 for 9:

3 2
{1}7 02) 037 047 K47 057 CG) D37 077 087 C’2><C(47 027 D47 Q87 097 C’37 C1107 D5‘
—— ——— —_— —
order 4=22 order 6 order 8=23 order 9=32 order 10

The numbers of groups of order 2" for n =4,...,9 are 14,51, 267, 2328, 56092, 10494213.
The numbers of groups of order 3" for n =3,...,7 are 5,15,67, 504, 9310.

For fixed prime p, no somehow explicit formula is known for the number of groups of
order p*. The Higman-Sims formula states the upper bound p2*/27+0(n*?),



Chapter 6

Field theory

6.1 Ruler and compass constructions

Definition 6.1.1. We refer to the elements of R? as points. A point p is constructible if
there are n € N and a sequence py, ..., p, of points with p, = p such that for all 1 <7< n
there are 1 < 11,19, 13,14, i5, ig < ¢ such that one of the following holds.

L. pi € {(07 0)7 (17 O)}>

2. p; is the intersection of the line through p;, # p;, and the line through p;, # pi,,

3. p; is an intersection of the line through p;, # p;, and the circle of radius |pi, — ps,||
around p;,,

4. p; is an intersection of the circle of radius |p;; — ps,| around ps and the circle with
radius |p;, — pi; | around p,.

The set of constructible points is denoted Con.

Notation: as usual we view the set R? as the set of complex numbers C and thereby
Con ¢ C. Accordingly, we write e.g. 0,1,4, €™ instead (0,0), (1,0), (0,1), (sin(«), cos(«))
and call a real r € R constructible if (r,0) is constructible. It is easy to see that z € C is
constructible if and only if both reals Re(z),Im(z) are constructible.

Remark 6.1.2. Every constructible point is determined by a sequence as above, so by
a number k € N and for each 1 < ¢ < k: a number 1-4 determining the rule, numbers
i1,...,16 < ¢ and a bit determining which of the < 2 intersections is taken. This way one sees
that Con is countable, so “most” points are not constructible.

Remark 6.1.3 (Classical Greek problems!').

1. Delian problem: is ¥/2 constructible?

Given a cube can you construct another of double volume?

https://mathshistory.st-andrews.ac.uk/HistTopics/category-greeks/
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“Eratosthenes, in his work entitled Platonicus relates that, when the god proclaimed
to the Delians through the oracle that, in order to get rid of a plague, they should
construct an altar double that of the existing one, their craftsmen fell into great
perplexity in their efforts to discover how a solid could be made the double of a
similar solid; they therefore went to ask Plato about it, and he replied that the oracle
meant, not that the god wanted an altar of double the size, but that he wished, in
setting them the task, to shame the Greeks for their neglect of mathematics and their
contempt of geometry.” (Theon of Smyrna)

2. Angle trisection: is ei®/3 constructible from « € [0,27)? from means that e is
allowed aside 0,1 in in Rule 1 of the definition above.

Given an angle o can you construct an angle a/3?
3. Squaring the circle: is \/m constructible?

Given a circle, can you construct a square of the same area?

The egyptian Rhind papyrus (c.1850 BCE) gives a geometric approximation of m by
3.1605. The first mathematician on record trying to square the circle was Anaxagoras
¢.450 BCE while in prison for heresy, namely for “teaching that the sun was a red-hot
stone and the moon was earth.” (Russell) The problem became popular in ancient
Greece. Remarkably, unlike in modern times, erroneous ‘proofs’ were scarce.

4. Construction of reqular n-gons: for which n > 2 is ¢, = e2™/" constructible?

Given a circle, can you inscribe a regular n-gon?

Lemma 6.1.4. Con is a subfield of C. It is closed under conjugation and square roots,
i.e., if z € Con, then z € Con and +/z € C.

Sketch of proof. Tt suffices to construct 0,1,z + 2/, -2,z 2,271, Z, +y/2 from z, 2" € C. This
is done by school geometry. We only explain how to construct \/z = \/re*/? from z = rei®
where 7, > 0. Bisect the angle of the x-axis and the line through z and 0 (the origin) and
intersect with a circle around 0 of radius /7. How to construct \/r from r? Construct —r
(i.e., (-r,0)), the midpoint between —r and 1 on the z-axis, and then a circle around it
that intersects the z-axis in —r and 1. Construct a line perpendicular to the z-axis and
passing through 0. Its intersection v with the circle gives a right triangle —r, 1, u by Thales’
theorem. Its height Im(u) is /1-7 by Euclid’s right triangle altitude theorem. O

Theorem 6.1.5. z € C is constructible if and only if there are n € N and fields
Q:K0§K1§"'§Kngc

with z € K,, and for all i <n, the extension K;,1 | K; results by adjunction of a square root,
ie., K1 = Ki(a) for some a € C with a® € K;.

Proof. «<: we show K; ¢ Con by induction on 7. For i = 0, note Ky = Q is the prime field of
Con. Assume K; € Con and K1 = K;(a) with a? € K; and a € C. Then K;u{a} € Con since
Con is closed under square roots. Then K;,; = K;(a) € Con since Con is a subfield of C.



CHAPTER 6. FIELD THEORY 139

=: let z1,..., 2, = z witness that z is constructible. We claim that for all 7 < n there are
Ko :=Q(i) € Ky ¢ ¢ K; such that z; € K; and for all j <7 we have Kj,; = K;(a) for some
root a € C of some f e K;[X] with deg(f) <2. This suffices by Lemma 3.5.11 (2).

Lemma 3.5.11 (3) implies Kj;1 = K; + K; - \/D_f, so K1 is closed under complex
conjugation if K is. By induction, all K; are closed under conjugation.

Observe: if z:=x+iye Kj then = (2 +2)/2€ Kj and y = (2 - 2)/(2i) € K; (as i € K;);
hence, if 2,2’ € K, then |z - 2/|? € K.

We proceed by induction on . Our claim is trivial for ¢ = 0. Assume it for ¢ < n and
distinguish cases on how z;,; is obtained.

Case: z;,1 €{0,1}. Set f:=X -1 (and K,y = K;).

Case: z;,1 is an intersection of two lines. A line through xq+1iyo, 1 +7y; € K; is the set of
(z,y) € R? satisfying (x1—x0)(y—yo) = (y1—yo)(x—x0). Here, zo,yo, z1,y1 € K;NnR. Hence
the intersection of two lines means solving a system of linear equations with coefficients
in K;. The solution is in K, so we can again take f:= X —1.

Case: z;,1 is the intersection of a circle and a line. A circle with radius r around
xo +1yo € K; is the set of (x,y) satisfying (z —x¢)? + (y —y0)? = r2. Here, zg,y0,7? € K; nR.
To find the intersection with a line, eliminate one variable given the linear equation for the
line and solve a quadratic equation in the other: this equation is f.

The field extension that contains a root of f contains one coordinate of z;,1, hence also
the other (due to the linear equation), and hence z;,; (since it contains 7).

Case: z;41 is the intersection of two circles. Given two circles (z —x0)? + (y —yo)? = 12
and (z - x1)%+ (y—y1)? = s% with r2, s%, 9, 21,90, 11 € K; N R, subtract the equations and
get a linear equation. Eliminate one variable and proceed as before. ]

Informally, z € C is constructible if and only if z equals some expression built from the
field operations, fractions and square roots. We illustrate this by a famous example:

Example 6.1.6 (Regular 17-gon). To construct (;7 it suffices to construct cos(27/17).
This is possible as noted by 18 year old Gauf3:

cos(2m/17) = —1—16 n %7 " %6\/34—2¢1_7+ é\/17+3\/1_7—\/34—2¢1_7—2\/34+2¢1_7.

We have a := 34-2y/17, b := 34+2/17 € Q(\/17), s0 ¢ := 17+3/17-/a-2vb € Q(17,\/a, /D).

Thus, cos(27/17) is captured by successively adjoining square roots, e.g. via

Q € Q(V17) € Q(V17,va) € Q(V17,v/a, Vb) € Q(V17,v/a, Vb, /¢).

This field tower is poorly motivated and all but unique. We need some theory.

6.2 Algebraic extensions

Let L | K be a field extension. By L as a K-vector space we mean: the vectors are L
with +, the scalar field is K" and the scalar multiplication is (a,b) = a1 b for a € K,be L.
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Examples 6.2.1. We know for C and quadratic number fields Q(v/d) (cf. Example 4.8.17):

R[X]/(X*+1)2R(i)=C={z+yi|z,yeR},
QX/(X?-d) 2 Q(Vd) = {z +yVd | z,y € Q}.

C as an R-vector space has basis 1,1, and, Q(\/E) as a Q-vector space has basis 1,/d.
Definition 6.2.2.

1. L| K is finitely generated if L = K(A) for some finite A c L.

2. L| K is simple if L = K(a) for some a € L, a primitive element of L | K.

3. The degree [L : K] of L | K is the dimension of L as a K-vector space; we write
[L: K] = oo if the degree is infinite.

4. L| K is finite if [L : K] is finite.

5. L| K is algebraic if every a € L is algebraic over K.

Remark 6.2.3.

1. If L | K is finite, then it is finitely generated.
Indeed: if z1,...,x, is a basis of L as a K-vector space, then L = K(x1,...,x,).

2. [L:K]=1if and only if L = K.
Indeed: if L = K, then 1 is a basis of L as a K-vector space; in particular, K is a
1-dimensional subspace of L; hence [L: K] =1 implies L = K.

3. If L| K is finite and a € L, then a is a root of some f € K[X] with deg(f) <[L: K].
In particular, a is algebraic over K.

Indeed: let n := [L : K]; then 1,a,a?,...,a™ are linearly dependent vectors, so xy +
x1a+ -+ x,a" = 0 for certain x; € K; then a is a root of 2, X" + -+ x5 € K[X].
Examples 6.2.4. Q(7) | Q is simple of infinite degree (by Remark 6.2.3 (3) and Linde-

mann’s theorem). R | Q is not finitely generated and hence [R: Q] = .
Indeed, assume R = Q(A) for A € R of size n € N; then there is a surjection from
Q[ X, ..., X, ] onto R; but Q[ X7, ..., X,,] is countable.

Recall minimal polynomials from Definition 3.5.2. The 2 below is Corollary 4.8.15.

Theorem 6.2.5. a € L is algebraic over K if and only if K(a) | K is finite. In case,
n:=deg(mi) =[K(a): K] and 1,a,...,a™' is a basis of K(a) as a K-vector space.
In particular, then

K[X]/(m) 2 K(a) = {900 + L1+ o+ Ty 0| Ty ey Ty € K}.
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Proof. < follows from Remark 6.2.3 (3). =: to show 1,a,...,a"! generate K(a) as a
K-vector space, we verify the displayed equality. By Theorem 3.5.8, K(a) = K[a] and
we have to show that every f(a) with f € K[X] equals r(a) for some g € K[X] with
deg(r) <n. Write f = ¢-mE +r with deg(r) < n by polynomial division; then f(a) =r(a).

Independent: assume xg + z1a + ---2,_1a™ ' =0 with x; € K not all 0; then a is a root of
Ty X" 42, 9 X2+ +19 € K[X] {0} of degree < n; we then also find a monic such f,
contradicting the definition of mX. O

Exercise 6.2.6. Recall Exercise 3.5.10. Let a € C be aroot of X3-X+1 € Q[X]. The basis
1,a, a? determines a vector space isomorphism ¢ : Q(a) = Q3. Compute p(a*), p(a’),(ab).
x ~ ar in Q(a) corresponds to an endomorphism of Q3 — what is its matrix?

Exercise 6.2.7. Let K be a field and f € K[X]\ {0}. View K[X]/(f) naturally as a
K-vector space and show its dimension is deg( f).

Example 6.2.8. Q(v2,v/3) = Q(v/2 +3) = {xl +29V2 + 23\/3 + 246 | 21, ..., 14 € Q}.
Proof. Compute powers of « := V2 +/3:
a?=5+2V6, a® =11V2+9V3, o' =49 + 20V/6.

We see, a is a root of f = X4 -10X2 +1 € Q[X]. Further, V2 = (3 - 90)/2,V3 =
—(a3 - 11a)/2 € Q(). Thus, Q(+v/2,v3) = Q(a).

By Example 4.5.5, f is irreducible, so f = mQ. By the theorem, 1,a, a2, a3 is a basis of
Q(a) as a Q-vector space. But then also 1,v/2,v/3,1/6 is a basis. ]

Such ad hoc argument won’t take us far. We need more theory.

Proposition 6.2.9. Assume K + L and char(K) # 2. Then [L: K] =2 if and only if L is
obtained from K by adjunction of a square root.

Proof. =: there is a € L ~ K such that 1,a is a basis of L as a K-vector space. Then
L = K(a) and [K(a) : K] = deg(m&) = 2. By Lemma 3.5.11, K(a) = K(v/D) for the
discriminant D € K of mX.

<: assume L = K(a) with a®> € K. Then a ¢ K as L # K. Then X2 -a? ¢ K[X] is
irreducible, so equals m&. Then [K(a): K] = deg(mX) = 2. O

Example 6.2.10. Let C | K | Q be field extensions. By Corollary 3.5.12, if [K : Q] = 2,
then K is a quadratic number field.

Definition 6.2.11. M is a (proper) intermediate field of L | K if M | K and L | M are
field extensions (and L # M # K).

We agree that n < oo=n-00=00-n=00-00 for all n e N,n > 0.
Theorem 6.2.12 (Degree formula). If M is an intermediate field of L | K, then

[L:K]=[L:M]-[M:K].
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Proof. If [L: M]=o00or [M:K]=o00,then [L:K]=o00. Assume [L: M]=n,[M:K]=m
for n,m e N. Let x1,...,x, be a basis of L as an M-vector space, and ¥, ..., y,, a basis of
M as a K-vector space. We claim the z;y; are a basis of L as a K-vector space.

Generating: let x € L; write x = ayxy + -+ + apx,, with a; € M and a; = bj1y; + -+ + bim¥Ym
with b;; € K. Then x = ¥, by,

Independent: assume ¥, a;jz;y; = 0 with a;; € K then byxy + -+ byx, = 0 for b; :=
>; aijy; € M. Then b; =0 for all ¢ because 1, ..., x,, are independent. Then a;; = 0 for all j
because yi, ..., Ym are independent. O

Remark 6.2.13. Together with Remark 6.2.3 (2) we see: field extensions of prime degree,
like C | R, do not have proper intermediate fields.

3rd proof of Example 4.5.5. By Example 6.2.8, f := X4 -10X2+1 € Q[X] has root a :=
V2 +3 eR. Tt suffices to show [Q(a) : Q] =4 — then f = mY is irreducible.
We know Q(a) = Q(v/2,v/3). By the degree formula

[Q(a): Q] = [Q(V2,V3) : Q(v2)] - [Q(V2) : Q].

Clearly, both factors are < 2. But then they are = 2 because v/2 ¢ Q and /3 ¢ Q(V/2).
Indeed: assume /3 € Q(v/2); then /3 =  + y/2 for certain z,y € Q; then y # 0 as /3 ¢ Q
and z #0 as 1/3/2 ¢ Q; then 3 = 22 + 22y\/2 + 2y2 implies v/2 € Q — contradiction. O

Theorem 6.2.14. For a € L the following are equivalent.

1. a is transcendental over K.

2. Kla] ¢ K(a).

3. [~ f(a) is an isomorphism from K[X] onto K[a].

4. [K(a):K]=o0.

5. There is an infinite sequence of fields K(a) 2 K1 2 Ky 22 K.

Proof. 1 < 2 follows from Theorem 3.5.8, and 1 < 4 from Theorem 6.2.5.

1 < 3: clearly, f ~ f(a) is an epimorphism, so (3) states it is injective, i.e., its kernel
is {0}; but this means a is transcendental over K.

1 = 5: clearly, with a also a? is transcendental over K. Further, K(a?) ¢ K(a):
otherwise a € K(a?),s0a = f(a?)/g(a?) for f,g € K[X]; then a is aroot of X g(X?)-f(X?),
a contradiction. This gives a chain K (a) 2 K(a2?) 2 K(a?*) 2 K(a%*) 2.

5 = 4: since [K;: K;.1] > 2 (Remark 6.2.3 (2)), Theorem 6.2.12 gives for all n > 0:

[K(a): K]2[K(a): K,]=[K(a): K] [K,1:K,]>2" O
Exercise 6.2.15. Every f e K(X) \ K is transcendental over K.

Corollary 6.2.16.

1. Letn>1 anday,...,a, € L such that a; is algebraic over K(ay,...,a;1) for all1 <i<n.
Then K(ay,...,a,) | K is finite.
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2. K| L is finite if and only if it is finitely generated and algebraic.
3. Let M be an intermediate field. Then L | K is algebraic if and only both L | M and
M| K are algebraic.

Proof. 1: write K; := K(ay,...,a;), so K1 = K;(a;;1) and K,y | K; is finite by Theo-
rem 6.2.5. By the degree formula, K, | K is finite:

[K,: K] =[K,: Ky1][Ke: Ky]-[K;: K]

(2 =) by Remark 6.2.3 (1) and (3) and (2 <) by (1).

(3 =) is trivial. (3 <): let a € L; say a is a root of b, X" +---+ by € M[X]. Then a is
algebraic over M := K (by, ...,b,) and by assumption, the b; are algebraic over K. By (1),
M(a) | K is finite. By Remark 6.2.3 (3), a is algebraic over K. O

Exercise 6.2.17. Let ag, a; € L algebraic over K and
ng == [K(ao)ZK], ny = [K(al):K]znl, n = [K(ao,al):K].

Then n < ngn; and ng,n; both divide n; in particular, n = ngn, if ng,ny are coprime. The
same holds more generally for finite tuples ag, a; of algebraic elements.

Examples 6.2.18.
1. The complex roots of X3 -2 e Q[X] are «a; := V2,00 = Gag,ag = (2o where
(3 =e?™/3. Then [Q(y) : Q] =3 and [Q(ay,a0) : Q] =6<3-3.

Indeed, note Q(aq,a2) = Q(ay,¢3) and (3 is a root of X2+ X +1 € Q[X] (Re-
mark 1.6.9). Hence, [Q((3) : Q] =2, so [Q(a1,(3) : Q] = 6 by the exercise.

2. [Q(i): Q] = [Q(/2):Q] =2 and [Q(4,v2) : Q] =2-2.
Indeed: i ¢ Q(v/2) € R, so [Q(4,v/2) : Q(+/2)] = 2.
Exercise 6.2.19. Let a € C be a root of X4 +2X +2eQ[X]. Show ¥/2 ¢ Q(a).

6.2.1 Relative algebraic closure

Theorem 6.2.20. The set K of a € L that are algebraic over K is an intermediate field
of L | K called the relative algebraic closure of K in L.

—L
It contains every a € L that is algebraic over K .

Proof. Given a,b € KL, say, roots of f,g € K[X], we have to find polynomials having
a—>b and ab™! (if b # 0) as roots. It is difficult to construct such polynomials from f,g.
Arguing abstractly is easier: K(a,b) | K is finite, hence algebraic by Corollary 6.2.16; thus,
a—0b,ab™! € K(a,b) are algebraic over K.

2nd statement: if a € L is algebraic over FL, then FL(CL) | K is finite (Theorem 6.2.5),
hence algebraic (Corollary 6.2.16 (2)). Since also K | K is algebraic, KL(CL) | K is algebraic

by Corollary 6.2.16 (3); hence, a is algebraic over K, i.e., a € K" ]
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Corollary 6.2.21. If Ac FL, then K(A)| K is algebraic.

Proof. Since A ¢ K and K is a field, we have K(A) ¢ K O

Example 6.2.22. @(C | Q is not finitely generated.

Proof. {/2 has minimal polynomial X" — 2 over Q (irreducible by Eisenstein). Hence,

[@C : Q] > [Q(Y/2) : Q] = n (Theorem 6.2.5), so [@C : Q] = 0. As @C | Q is algebraic,
Corollary 6.2.16 (2) gives the claim. O

6.2.2 TImpossibility for ruler and compass

Corollary 6.2.23. If z € C is constructible, then z is algebraic (over Q) and [Q(z) : Q] is
a power of 2.

Proof. Choose Q ¢ K1 ¢ --- ¢ K,, 3 z according Theorem 6.1.5. Then [K;,; : K;] = 2. Hence,
[K,:Q]=2" Since 2" =K, : K(2)]-[K(z):Q], also [K(z) : Q] is a power of 2. O

Example 6.2.24. The converse is false: it is known that f:= X4 -4X +2 € Q[ X] has a
non-constructible root z € C; but [Q(z) : Q] =4 since f is irreducible by Eisenstein.

Example 6.2.25 (Classical Greek problems, again).

1. The Delian problem is unsolvable: ¥/2 is not constructible because [Q(/2) : Q] = 3
is not a power of 2.

2. Squaring the circle is impossible: Lindemann’s theorem implies /7 is not algebraic.

3. Trisecting angles is not always impossible: e™/3 is constructible but e™/9 is not.
Indeed: let a:= 7/9 and z := € + e~ = 2cos(7/9) and 3@ + e=3@ = 2cos(7/3) = 1;
hence 23 = (i@ + e7i@)3 = 3@ 4 3ei@ + 3e7i@ + ¢73i@ = 1 + 32, Hence, z is a root of
X3-3X -1eQ[X]; this is irreducible because it has no root in Z (Exercise 3.1.15);
hence, [Q(z) : Q] = 3; hence neither z nor cos(a) = Re(e’®) nor e is constructible.

We do not have yet the theoretical means to understand the constructibility of regular
n-gons and delay an answer to Section 6.9.1.

6.3 Splitting fields

Lemma 6.3.1 (Kronecker). Let K be a field and f € K[X]\ K. Then there exists a field
extension L | K such that f has a root in L. Moreover, [L: K] < deg(f).

Proof. Let g be a monic irreducible factor of f and write g = X" + a,,_1 X" ' + -+ ag. By
Example 4.6.3 (3), K[X] is a principal ideal domain and by Remark 4.7.11 (3), (g) is a
maximal ideal in K[X]. By Lemma 4.8.9 (2), L:= K[X]/(g) is a field.
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Since the canonical projection 4 is a homomorphism,
O = W(g)(g) = X"+ dn_an_l + -+ Qg

where we write T := m(4)(2). Note m(,1K : K - L is injective as a field homomorphism.
Identifying a € K with a we sloppily view K as a subfield of L. Then 7(,(g) = g(X). Thus
a:= X € L is a root of g, hence also of f. Moreover: since g is irreducible and monic,
g =mE by Lemma 3.5.6. Then [K(«): K] =deg(g) <deg(f) (in fact, K(«) = L). O

Exercise 6.3.2. Let K be a field. Then f,g € K[X] are not coprime if and only if f, g
have a common root in some field extension L | K. In particular, f and f’ are not coprime
if and only if f has a multiple root in some field extension L | K.

Definition 6.3.3. Let K be a field and f € K[X] of degree n > 0. L is a splitting field of
f over K if L'| K is a field extension and

1. f splits in L: there are aq,...,a, € L and b€ K such that f=b(X —ay)-(X - a,);
2. if M is an intermediate field of L | K such that f splits in M, then M =L

Remark 6.3.4. Then:

1. L=K(ay,...,a,); in particular, L | K is finite (Corollary 6.2.16 (1)).

2. a € K is the lead coefficient of f, and {ay,...,a,} the set of roots of f in L.

3. Since L[X] is factorial: if g | f with g € L[X], then g = b(X - a;,)--+(X —a;,) for
certain 1 <1q,...,7, <n and b € K; in particular, ¢ splits in L.

Theorem 6.3.5 (Existence of splitting fields). Let K be a field. For every f e K[X] of
degree n > 0 there exists a splitting field L of f over K with [L: K] < n!.

Proof. We can assume f is monic. Choose L; | K of degree < n with a root a; € L; of f. In
L[ X] write f = (X —aq)fi with fi € L1[X] and deg(f;) =n -1 (Corollary 3.3.2). Choose
Lo | Ly of degree < n—1 with a root as € Lo of fi. In Lo[ X ] write f = (X —a1)(X —az) fo with
fo € Ly[ X ] and deg( f2) = n—-2. Continue and get L, | K such that f = (X —ay)-(X —ay,).
Note [Ly : K] =[Ly: Lya]-+[Lo: L1][Ly : K] <nl. Set L:= K(ay,...,a,). As this is an
intermediate field of L,, | K, its degree divides [L,, : K], so is < nl.

Let M be an intermediate field of L | K such that f splits in M, say f = (X=by)---(X=b,)
with b; € M. For every a; we have 0 = f(a) = (a; —b1)---(a; — b,), so a; equals some b; € M.
Thus, L = K(ay,...,a,) €M c L,so L=M. O

Example 6.3.6. Recall Example 6.2.18 (1). Q(~/2,(3) is a splitting field of X3 -2 e Q[X]
over Q and [Q(V/2,(3): Q] =6 =3\

Example 6.3.7. Q(~/2,1) is a splitting field of X8 -2 over Q, and [Q(V/2,7) : Q] = 16 < 8!.
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Proof. The complex roots are a = v/2, (sa, ..., (da. The splitting field contains (g = a7 -
(sr/2, so equals Q(a, (g). Note X8 -2 is irreducible (Eisenstein), so [Q(«) : Q] = 8.
Further, (s ¢ Q(a) € R, so [Q(«,(s) : Q(a)] > 1. Compute

G+ ()2 =CB+2+(3%=i+2-i=2.

Hence, (s + (g' equals one of the square roots +a? of 2 in Q(«); then (2 +1 = xat- (s, so
(s is a root of a quadratic polynomial in Q(«)[X]. Hence [Q(«,(s) : Q(a)] = 2. Thus,

[Q(a, ) : Q] = [Q(a, Gs) : Q)] [Q(a) : Q] =2 8.
Finally, [Q(«, (3) : Q(a,i)] = 1 because Q(«, 1) € Q(«v,(g) and

2=[Q(a, ) : Q(a)] = [Q(a, &) - Q(a, )][Q(e,7) : Q) ] = [Q(ev, Gs) : Q(ev,7) ] -2, O

Exercise 6.3.8. The splitting field of X4 - 4X2 + 2 over Q is Q(a) where a = \/2-+/2.
What is [Q(«) : Q]7

We now aim to show that splitting fields are unique in some sense.

Remark 6.3.9. Recall Remark 3.1.8: for commutative rings R, S, a homomorphism ¢ :
R— S and f=a, X"+ +ag€e R[X] we write

o(f) =p(a,) X"+ +p(ag).

If a e R is aroot of f, then p(a) €S is a root of ¢(f) because

o(f)(p(a)) = plan)p(a)™ + - +p(ag) = p(ana” + - +ag) = p(f(a)) = ¢(0r) = Os.

Theorem 6.3.10. Let L | K and L' | K’ be field extensions and ¢ : K - K' a homomor-
phism. Let f € K[X] be irreducible and a € L a root of f.

1. For every root a’ € L' of o(f) there is exactly one homomorphism 1 : K(a) - L' that
extends ¢ and maps a to a’.

2. If o(f) has n roots in L', then there are exactly n homomorphisms ¢ : K(a) - L'
that extend .

Proof. (2) follows from (1) and the previous remark. (1): uniqueness is easy. Assume 1), ¢’
are homomorphism as stated. We have K(a) = K[a] (Theorem 3.5.8). Let g(a) € K[a]
with g € K[X]. Then ¢(g(a)) = ¢(9)(¢(a)) = ¢(9)(¥'(a)) ='(g(a)).

For existence, let y : K[X] - L’ extend ¢ and map X to a’ (Theorem 3.1.7). Then
X(f) =@(f)(a") =0, so (f) € ker(x). But ker(x) # K[X] and (f) is a maximal ideal
in K[X] (Remark 4.7.11), so (f) = ker(). The isomorphism theorem for rings gives a
monomorphism x’ : K[X]/(f) = L' with x" o7y = x. Then x'(X + (f)) = x(X) = o
and x'(b+ (f)) = x(b) = ¢(b) for b e K. By Corollary 4.8.15 (and (f) = (m&)), there is
X" K(a) 2 K[X]/(f) mapping a to X + (f) and be K to b+ (f). Set ¢ := x" o x". O
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Definition 6.3.11. Let L | K and L' | K be field extensions. A K-homomorphism (K-
isomorphism) is a homomorphism (isomorphism) ¢ : L — L’ that fixes K, i.e., o1 K =id.
If L =L' we speak of a K-endomorphism (K -automorphism) of L.

Remark 6.3.12. Let L | K and L’ | K be field extensions and f e K[X]|\ K.

1. If f is irreducible, and a € L,a’ € L' are roots of f, then there is exactly one K-
isomorphism from K (a) onto K(a’) with p(a) =a'.

Indeed: apply the theorem with ¢ =id; clearly, ¢ is onto K(a’).

2. A K-homomorphism ¢ : L - L’ maps roots of f in L to roots of f in L’ (Re-
mark 6.3.9).

3. A K-automorphism ¢ of L permutes the roots of f in L.

Indeed by (2), ¢ maps roots to roots; there are < deg(f) many (Corollary 3.3.3); as
a field homomorphism ¢ is injective (Remark 1.1.22 (2)).

4. Let Ac L and p,9: K(A) — L’ are K-homomorphisms that agree on A, then ¢ =
(Lemma 3.6.10).

Corollary 6.3.13. Let L | K and L' | K be field extensions, and assume L | K is finite.
Then there are < [L: K| many K-homomorphisms from L to L'.

Proof. Let n := [L : K] and choose ay,...,a, € L with K(ay,...,a,) = L. Let K; :=
K(ay,...,a;) (and Ky = K). By the degree formula n = ngni---n, where ny := 1 and
n;:=[K;: Ki1]= deg(mﬁ?‘l) for 0 <7 <r. We proceed by induction on r.

For r = 0, our claim is trivial. For r > 0, we assume inductively that there are m <
ny...n,—; many K-homomorphisms ¢ from K,_; to L’. By Theorem 6.3.10 (2), every ¢ has
exactly m, many extensions to a homomorphism from K, to L’ where m, is the number
of roots of @(m&r=1) in L’. In total, there are m - m, homomorphisms from K, = L to L.
But m, < degp(m&r1) =n,. Our claim follows. O

Theorem 6.3.14 (Uniqueness of splitting fields). Let K be a field and f € K[X]\ K.
Then the splitting field of f over K is unique up to K-isomorphism.

In fact, if L, L' are splitting fields of f over K, and a € L,a’ € L' roots of some irreducible
factor g of f in K[X], then there is a K-isomorphism from L onto L' that maps a to a'.

Proof. Let L, L' be two splitting fields of f over K. Let ay,...,a, € L and af,...,a}, list
the (not necessarily distinct) roots of f in L,L’. Then L = K (a4, ...,a,), L = K(a},...,al,).
Since roots of g are roots of f, we can assume a = a;. Since g | f, it has some aj as
root in L’ (Remark 6.3.4), say, aj = aj. By Remark 6.3.12, there is a K-isomorphism
¢1: K(a1) - K(a}) that maps a; to aj.

Write f = (X —ay)f; where f; € K(a;)[X]. Its roots in L are ag, ...,a,. Let g, € K(ay)
be an irreducible factor of f;. Some a; for j > 1 is a root of g, in L (Remark 6.3.4 (3)). We
can assume j = 2. We have f = (X —a})pi(f1) where ¢1(f1) € K(a}) has roots al,...,al,

in L', ¢1(g2) € K(a}) is an irreducible factor of ¢(f;) and some aj, for £ > 1 is a root
of ¢(g2) in L'. We can assume k = 2.
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By Theorem 6.3.10, ¢; extends to a homomorphism ¢, : K(ay,as) - L' mapping as
to ab; clearly, o9 is a K-isomorphism from K (ay,as) onto K(a},a}). Continue. ]

Exercise 6.3.15. Let L | K be finite with [L: K] =n and a € L. Assume K-automorphisms
of L map a to > n many values. Show « is primitive, i.e., K(a) = L.

Example 6.3.16. Let L := Q(v/2,i), K := Q. Determine Aut(L) and infer L = Q(~/2 +1).

Solution. Write o := /2. We have m¥ = X4-2 (irreducible by Eisenstein) and m;@(a) = X2+
1 (irreducible as it has no root in Q(«) € R). The degree formula gives [L : K] = 8. Recall,
automorphisms are Q-automorphisms (Exercise 3.4.15), so there are < 8 automorphisms.
Theorem 6.3.10 gives 11, 1, 13,14 € Aut(Q(«)) mapping « to one of the 4 roots +«, +ia
of mZ. By the corollary above each v; extends to two automorphisms of L mapping i to +i.
This gives 4 -2 automorphisms, so all of them.
Hence, a + 1 is primitive by the previous exercise: 8 values +a + 7, +iav + 4. O

Exercise 6.3.17. Determine [Q(+/3, ¥/3) : Q] and find all homomorphisms from Q(/3, V/3)
into C. Which ones are automorphisms of Q(\/g, 3/3)‘7

Exercise 6.3.18. Let p; <--- <p, be prime and K := Q(\/p1, ..., \/Pn). Show /q ¢ K for ¢
a product of other primes (induction on n). Infer [K : Q] = 2" and K = Q(\/p1 + - ++/Pn)-

6.3.1 Normal extensions
Splitting fields have the following important property with a nonsensical name:

Lemma 6.3.19. Let L be the splitting field of f € K[X] N K over K. Then the field
extension L | K is normal: it is algebraic and for every irreducible g € K[X], if g has a
root in L, then g splits in L.

Proof. Let ay,...,a, be the roots of f in L. Then L = K(ay, ...,a,), so L | K is algebraic by
Corollary 6.2.16 (1). Let g € K[X] be irreducible and b € L a root. Let L’ be the splitting
field of g over L. We have to show that every root ¢’ € L’ of g is in L.

By the theorem there is a K-automorphism ¢ of L’ that maps b to b'. It suffices to
show (L) ¢ L. But for every 1<i < n, ¢(a;) is a root of ¢(f) = f, so ¢(a;) = aj € L for
some j. Then ¢(L) = (K (a1, ...,a,)) = K(¢({a1,...,a,})) € L by Lemma 3.6.10 (2). O

Exercise 6.3.20. A partial converse: if L | K is a finite and normal field extension with
L+ K, then L is a splitting field over K of some fe K[X]\ K.

Hint: f is the product of minimal polynomials of generators.
Remark 6.3.21.

1. If L| M | K are field extensions and L | K is normal, then so is L | M.

Indeed: let f e M[X] be irreducible with root a € L. We have to show f splits in L.
We can assume f is monic. Then f=m). By Lemma 3.5.6, f | m& in M[X] (note
a is algebraic over K). As mX splits in L, so does f (Remark 6.3.4).
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2. There exist field extensions L | M | K with L | K normal and M | K not normal.
E.g., for a := v/2 we have Q(o,(3) | Q(a) | Q (Example 6.3.6). Q(a) | Q is not

normal: X3 —2 does not split since Q(«) it does not contain the other two roots.
In fact, X3 -2 factors (X —a) - (X?+aX +a?) in Q(a).
3. There exist L | M | K with both M | K and L | M normal, and L | K not normal.

E.g., Q(~/2) | Q(v2) | Q: note that adjoining square roots gives normal extensions
and Q(~/2) | Q is not normal, e.g., it does not contain the root iv/2 of X4 - 2.

In fact, X4 -2 factors (X — v/2)(X + v2)(X2 +/2) in Q(V/2).
The reason why normality is important is the following:

Lemma 6.3.22. Let L | K be an algebraic field extension. Then L | K is normal if and
only if o(L) = L for all field extensions L' | L and K-homomorphisms ¢ : L — L'.

Proof. =: assume L | K is normal and let L/, ¢ be given. We show ¢(L) = L.

For a € L, normality gives m& = (X - a;)--«(X - a,) for certain a; € L. Note mX& =
e(mE) = (X -p(a1)) (X =-p(a,)). As p(a) is a root of mX we have ¢(a) = a; for some i.
Conversely, a is a root of p(mk) so equals ¢(a;) for some 7.

<: assume the r.h.s.. We have to show that every f € K[ X ]\ K with a root a € L splits
in L. We can assume f is irreducible. Let L’ be a splitting field of f over L and let a’ € L’
a root of f. We have to show o’ € L. By Theorem 6.3.10, there is a K-homomorphism
¢: K(a) - L' that maps a to a/. By assumption, ¢(L) € L, so a’ = p(a) € L. O

Remark 6.3.23. The same proof works also with the variant of the r.h.s. that has (L) ¢ L
instead p(L) = L.

In the next section we observe that one can make field extensions normal by making
them minimally larger:

Theorem 6.3.24 (Normal hull). Every algebraic field extension L | K has a normal hull N
N | L is a field extension and N | K is normal and, if N' is an intermediate field of N | L
such that N'| K is normal, then N = N'. Moreover, N is unique up to L-isomorphism.

6.4 Algebraic closure

Definition 6.4.1. Let K be a field. K is algebraically closed if every f e K[X]\ K has a
root in K. A field K is an algebraic closure of K if K is algebraically closed and K | K is
an algebraic field extension.

Remark 6.4.2. Let K be a field.
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1. K is algebraically closed if and only if the irreducible polynomials in K[X] are
precisely the linear ones.

=: if f € K[X] has degree > 1, then it has a root a € K and we can write f = (X -a)g;
then deg(g) =deg(f)-1>0 and f is reducible.

<: an irreducible factor of a given f € K[X]\ K is linear, say it equals aX + b for
a,be K,a+0; then -b/a € K is a root of f.

2. If K is algebraically closed if and only if every f e K[X]\ K splits in K.

< is clear and = follows from (1), since K[X] is factorial (this solves Exercise 3.8.4).
3. K is algebraically closed if and only if L = K for every algebraic field extension L | K.

=: if a € L, then the irreducible mX is linear and hence a € K.
<: if f e K[X]\ K does not have a root in K, then the splitting field of f is a proper
algebraic extension.

4. Let L | K be a field extension and L algebraically closed. Then K is an algebraic
closure of K (by Theorem 6.2.20).

5. If K is an algebraic closure of K, then K | K is normal. If f e K[X] and ay,...,a,
lists its roots in K, then K(ay,...,a,) is the splitting field of f over K

Examples 6.4.3. The fundamental theorem of algebra (Theorem 3.8.3) states that C is
algebraically closed, so C is an algebraic closure of R.

By (4) above, @C is an algebraic closure of Q.

Theorem 6.4.4 (Embedding theorem). Let L | K be an algebraic field extension, M an
intermediate field, K an algebraic closure of K and p: M - K a K-homomorphism.

Then there exists a K-homomorphism v : L - K that extends @. In particular, there
exists a K -homomorphism ¢: L - K.

Proof. Consider the set H of K-homomorphisms x : N - K whose domain N is an inter-
mediate field of L | M and that extend ¢.

View each x as a set of ordered pairs. Then H is partially ordered by ¢. Further, (H, %)
is inductive: every chain C'c H has upper bound x* :=UC = Uyc x € H.

By Zorn’s lemma, H contains a maximal element ). We claim N = L for its domain N.
Otherwise choose a € LNN. Then L | N is algebraic (Corollary 6.2.16) and mY’ € N[ X] irre-
ducible. Choose aroot a’ € K of p(md) e K[X]. Theorem 6.3.10 gives a K-homomorphism
X :N(a) > K (with x(a) = a’) that extends v, contradicting maximality. O

Theorem 6.4.5. Every field K has an algebraic closure K, unique up to K-isomorphism.

Proof. Uniqueness: for another algebraic closure K, the embedding theorem gives a K-
homomorphism ¢ : K - K. Then gp(K ) is an intermediate field of K | K and algebraically
closed. By Corollary 6.2.16 (3), K | p(K) is algebraic. By Remark 6.4.2 (3), o(K) = K.

Existence: write P:= K[X ]|\ K. For f € P let X be a variable and set R := K[Xy, f €
P]; note f(Xy) e R for all feP. Let

L= ({f(Xp) | feP}).
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We claim [ is a proper ideal of R. Otherwise 1 € I, so 1 = g1 f1(Xy,) + -+ g fn(Xy,) for
somen € N and f; € P and g; € R. Let L be the splitting field of f := f;---f, and a; € L a root
of fi(Xy,). Plug a; for Xy, and 0y, for all other variables X, (evaluation homomorphism).
Then 1 =0 in L, a contradiction.

By Theorem 4.7.15, I is contained in a maximal ideal I* of R. Then R/I* is a field
(Lemma 4.8.9). Identifying x € K with z+I* we view K as a subfield of R/I*. Every f e P
has root xy := Xy + I* € R/I* because f(X;+1*)= f(Xy)+I*=1*=0g/-. Set

Ky :=K({zs| feP}).

By Corollary 6.2.21, K; | K is algebraic. Repeat the construction with Kj in place
of K and get an algebraic field extension K, | K7 such that every f € Ki[X]\ K; has a
root in Ky. And so on: Ky:= K ¢ K; € Ky € ---. Define

F = UneN Kn

It is easy to see that K is a field. The field extension K | K is algebraic: if z € K, then
x € K,, for some n; but K, | K is algebraic by Corollary 6.2.16 (3).

K is algebraically closed: let f e K[X]\ K; choose n € N such that the finitely many
coefficients of f are in K, i.e., f € K,[X]; then f has a root in K,,;, hence in K. O

Remark 6.4.6. The existence of algebraically closed field extensions has deeper reasons.
They exemplify so-called existentially closed structures constructed in mathematical logic.

Lemma 6.4.7 (Homogeneity). Let K be a field and _a,b € K be roots of an irreducible
feK[X]. Then there exists a K-automorphism ¢ of K with ¢(a) =b.

Proof. By Theorem 6.3.10 there exists a K-homomorphism 1 : K (a) - K with t(a) = b.
By the embedding theorem there is a K-homomorphism ¢ : K — K extending v. Then
¢(K) is an intermediate field of K | K and algebraically closed. By Remark 6.4.2 (3),
o(K) = K, so ¢ is a K-automorphism of K. O

We now revisit the concept of normality.
Lemma 6.4.8. Let L be an intermediate field of K | K. Then the following are equivalent.

1. L| K is normal.
2. For every irreducible f € K[X], L contains either all or none of the roots of f in K.
3. (L) = L for every K-automorphisms ¢ of K.

Proof. By Corollary 6.2.16 (3), L | K is algebraic. 1 = 3 follows from Lemma 6.3.22.

3 = 2. assume f € K[X] is irreducible, a,b € K are roots and a € L and b ¢ L. By
homogeneity there is a K -automorphism ¢ of K with ¢(a) =b. Then ¢(L) # L.

2= 1: let f e K[X] be irreducible with a root in L. Write f = b(X —ay)---(X —a,) for
certain a; € K,be K (Remark 6.4.2 (2)). By (2), all a; € L, so f splits in L. O
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Proof of Theorem 6.3.2/. Existence: let A € L be the set of all roots of all irreducible
g € K[X] that have a root in L. Then N := L(A) is a normal hull of L | K.

Uniqueness: let N be a normal hull of L | K. By the embedding theorem, there is an
L-homomorphism ¢ : N - L. Then N is L- -isomorphic to ©(N), so gp(N ) is a normal hull
of L | K. Thus, ¢(N) = N. Indeed, as p(N) | K is normal, A € o(N), so N € p(N) and
N is an intermediate field of @(V) | L; since ¢(N) is a normal hull, N = o(N). O

6.5 Finite fields

Proposition 6.5.1. The cardinality of a finite field K is a power of char(K).

Proof. p := char(K) > 0 because K is finite. By Theorem 3.4.14, we can assume K has
prime field F,. As K is finite, n := [K : F,] is finite. Then K as an F,-vector space is
isomorphic to 7, so has cardinality p". O]

Especially important for computer science is the case char(K) = 2 and [K : Fy] = n:
this endows the set of binary strings of length n with the structure of a field or an Fy-vector
space. We now show such fields exist for all n > 0 and, in fact, classify all finite fields. The
proof is done by connecting the dots of many things we learned so far. It also exemplifies
how group theory is useful for field theory.

Theorem 6.5.2 (Classification of finite fields). Let p,n,k >0 with p prime and let q == p™.

1. There exists an up to isomorphism unique field F, with q elements, namely the split-
ting field of X1 - X over Fy,; it consists of the roots of this polynomial.

2. There exist irreducible f € F,[ X ] of degree n. For any such f we have Fy 2 F,[X]/(f)
and every root of f inF, is a primitive element of F, | F,.
3. F, has a subfield of cardinality p*, i.e., isomorphic to Fx, if and only if k | n.

Pk

Proof. (1): let L be the splitting field of X?- X over F,, and ay, ..., a, € L list the roots.

We claim the a; are pairwise distinct. Otherwise some a; is a multiple root of X7 - X.
By Lemma 3.3.13, a; is a root of (X9-X)"=¢X -1. But ga; =0 in L since char(L) =p| q.

We next claim {ay,...,a,} is a subfield of L — then L = {a4,...,a,} is a field of cardinal-
ity ¢. We have to show: if a,b € L are roots of X7 — X, then so are ab,a™',-1 and a + b.
That ab,a™! are roots is clear. —19=-1if ¢ is odd; if g is even, p=2 and 1 =-1. For a+b
we have to show (a+b)7=a+b, i.e., =a?+bi. By Lemma 3.4.16, this is true for ¢ = p, i.e.,
n=1. For n > 1 it follows by induction.

Uniqueness: if K is a field with ¢ elements, its characteristic is p by the proposition, so
we can assume K extends [F,,. Since K* has order ¢ — 1, every a € K is a root of X7 - X;
hence, K is also a splitting field, so K = L (Theorem 6.3.14).

(2): by Corollary 5.3.25, Fx is cyclic, say, generated by a € F,. Clearly, F, = F,(a). By
Theorem 6.2.5, n = [F,:F,] = deg(ma”), so my” is irreducible of degree n.

Let feF,[X] be such and b e F, a root. Then F,[X]/(f) 2 F,(b) and [F,(b):F,] =
so |[F,(b)| =g, s0 F,(b) =F
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(3): let K be a subfield of F,. Then K |F,, so |K| = p* for some k < n by the proposition.
Then k = [K : F,] divides n = [F, : F,] by the degree formula.
Conversely, assume k | n, say n = kf. Let ¢’ := p*. Then ¢’ — 1| ¢ -1 because

P -1="-1) - (") +-+p"+1).

As Fy is cyclic of order g -1, Theorem 5.3.21 gives a subgroup U ¢ F of order ¢'-1. Every
x € U has order dividing |U| = ¢’ - 1 by Lagrange, so 2% = x. Hence, U u {0} is a set of ¢
many roots of X4 - X in F,. We saw above that this set is a subfield. ]

Exercise 6.5.3. Let p,k,n >0, p prime and k | n. Show X?* - X | X?" - X and infer from
this that F,,» has a subfield = F .

Corollary 6.5.4. Let p,n,k >0 with p prime and q:=p". Let f e F,[X] be irreducible of
degree k. Then f is a factor of X9 — X if and only if k | n.

Proof. =: by Remark 6.3.4, f splits in F,, so has root a € F,. Then F,(a) ¢ FF, and
[F,(a):F,] =deg(f) =k divides [F,: F,] = n by the degree formula.

<:let a € F, be aroot of f. Then [F,(a):F,] =k and F, contains a field isomorphic
toF,(a). Then f hasaroot beF,. Asbisarootof X9-X, f | X?-X by Corollary 3.5.7. [

Theorem 6.5.5. Let p be a prime. Recursiely, let Fy := F, and choose Fp.1 as an
extension of Fy, and isomorphic to ¥ u.y. Then Fp 2 U, F,.

Proof. The F, are well-defined by (3) of the theorem. It is easy to see that U, F}, is a field.
By Theorem 6.4.5 it suffices to show U, F}, is an algebraic closure of [F,,.

To see U, F, | F, is algebraic, let x € U,, F;, and choose n € N with z € F,. As F,, | F, is
finite, it is algebraic, so z is algebraic over F,,.

To see U, F), is algebraically closed, are looking for a root of a given f € U, F,[X]~
U, . Choose n € N with f € F,[X]. We can assume f is irreducible in F,[X]. By
Kronecker’s lemma there is a finite field extension L | F,, where f has a root. By the
theorem, L = F . for some k (with n!| k). By Corollary 3.5.7, f | X" -~ X in F,[X]. Now,
L is isomorphic to a subfield F' of Fj, = F . The isomorphism maps F, onto F, (as the
set of roots of XP" — X ), so F extends F),. As F is the splitting field of XP" — X over F,
and f | X?" - X in F,[X], also f splits in F. O

Remark 6.5.6. The sequence F), above has a poorly motivated ad hoc definition; more
generically, one can define ), as a so-called direct limit of the fields Fpn.

Example 6.5.7. Fy: is the set of roots of X® — X which factors over Fo[ X] as
X (X-1)-(X3+X+1)-(X3+X2+1).

Then Fys 2 Fo[ X]/(f) for f one of the degree 3 factors, say, f = X3+ X +1. Let € Fy be
a root of f, so Fos 2 Fy(x). The elements of Fys are the Fao-linear combinations of 1,xz, x2.
Here is a vector space isomorphism from Fy(z) onto Fj :

0 | 1 | =z | 2% |2P=l+ax|at=a+2?|[a®=1+a+a?|a0=1+2a?
(0,0,0) | (1,0,0) [ (0,1,0) [ (0,0,1) | (1,1,0) | (1,0,1) | (0,1,1) | (1,1,1)
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Calculations use the rules 1+ 1 =0 and 23 = 1 + = (note z = -x). E.g., (1 +x)(x+22) =
r+x?+x?+3=v+23=x+(1+x)=1,s0 (1 +2)! =x+22 Such calculations verify the
stated equalities for the powers of z. We see x generates the group Fo(z)*.

Example 6.5.8. Both X2 +1 and X2 + X — 1 are irreducible over F3 = {0,+1}. For
respective roots r,y € Fy we have Fg = F3(z)  F3(y). Calculations use the rules 1+1 = —1
and 22 =-1,resp., > =1-y. Eg.,y3=y-y>=y—-vy?>=y-1+y=-1-y.

Then z* =1 in F3(z)* while y generates Fs(y)*:

L |y [wP=l-yly’=-l-yly'=-1]¢°=—y|yf=-l+y|yT=1+y

(170) ‘ (071) ‘ (1_7_1) ‘ (_17_1) ‘ (_1’0) ‘ (07_1) ‘ (_171) ‘ (171)

Example 6.5.9. Fjs is the set of roots of X6 — X which factors over Fo[ X] as

X (X-1)-(X2+X+1)- (X"+ X3+ X2+ X +1) (X' + X3+ 1) - (X' + X +1).

Then Fou = Fy(x) = Fy(y) for roots x,y € Fy of X4+ X +1 and X4+ X3 + 1. Calculations
use the rules z# = 1 + z, resp., y* = 1 + y3. Both z and y generate Fo(z)*, resp., Fo(y)*:

x4=1+x\x5:x+x2\x6=x2+m3‘x7=1+m+x3‘x8:1+x2
(1,1,0,0) | (0,1,1,0) | (0,0,1,1) | (1,1,0,1) | (1,0,1,0)

v =14yt [P =ty =Tyt Y =1y ry? P =gty y?
(Loon| @ron [ @LLy | (1LLLo) [ (0,1,11)

Exercise 6.5.10. Let 0, 1,a,b list ;. Determine the tables for +,-. Verify f:= X4+ X +1 =
(X?2+X +a)(X?+ X +b) in Fy[ X] and show f is irreducible in Fy[ X]. Determine the
degree of the splitting field of f over F,.

6.5.1 Reed-Solomon codes

Reed-Solomon codes are the key component of how data are stored on CDs or DVDs.
Instead of the given data x one stores an error-correcting code C(x) of x such that x can
be retrieved even after considerable parts of the code C'(x) are damaged.

Let ¢ > m > n with ¢ a power of a prime p and consider the data as a vector x =
(20, .oy Tpo1) € [y, that is, a length n word over an alphabet of size q. Fix pairwise distinct
ai, ..., Gy € F, — in practice, one often uses powers of a primitive element of F, | F,. Define

C(x) = (po(ar), ..., pe(am)) €F',  where py = 2,1 X"+ + 20 € F [ X].

Note C' : F2 — T is linear: C(z) = Az where A is the (m x n) Vandermonde matrix
with i-th row 1,a;,--,a’"*. The key observation is this: for distinct z,y € IF’;, the codes
C(z),C(y) have the same i-th entry if and only if a; is a root of p, — p,, a polynomial of
degree < n. Hence, C'(x) and C(y) differ in > m —n + 1 entries.

This means that < (m —n)/2 errors can be corrected: x is uniquely determined by any
tuple obtained by changing < (m —n)/2 entries of C'(x).
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Remark 6.5.11. We cheated by using many letters — if only bits are used, one additionally
codes the letters in F, by bit strings.

Sipser and Spielman’s expander codes (1996) code n bits by m < O(n) bits, correct a
constant fraction of errors and have very efficient encoding and decoding algorithms.

6.6 Separable extensions

Definition 6.6.1. Let K be a field. fe K[X]\ K is inseparable (over K ) if there exists
an irreducible factor g € K[X] of f that has a multiple root in K; otherwise, f is separable.

Lemma 6.6.2. Let K be a field and f € K[X] irreducible. The following are equivalent.

1. f is inseparable.

2. f has < deg(f) many roots in K.

3. f has < deg(f) many roots in some L | K such that f splits in L.
4. f has a multiple root in some field extension L | K.

5

. [ has formal derivative f' = 0.

Proof. 1= 2: the unique factorization of f in K[X] reads f = b(X - a;)--(X - a,) where
for n:=deg(f) >0, be K and a; € K (Remark 6.4.2 (1)). The a; are all roots of f in K. If
a € K is a multiple root of f, then a = a; = a; for some ¢ # j.

2 = 3 = 4 are trivial and 5 = 1 follows from Lemma 3.3.13 (1). 4 = 5: by Exer-
cise 6.3.2, f, f’ have a common divisor g of positive degree. Since f is irreducible, f,g are

associate, so deg(f) = deg(g). As deg(f") <deg(f), g| f" implies f’=0. ]

Remark 6.6.3. For monic f we defined the discriminant D; in Example 3.7.11 and noted
that Dy =0 is equivalent to (4).

Example 6.6.4. For an example of an irreducible inseparable f we need an infinite field
of positive characteristic p. Set K :=F,(7T"). By Eisenstein, f := X? —T is irreducible in
K[X] and Quot(F,[T])[X] = K[X]. f is inseparable since f’=pXP~!=0.

In fact, let a € K be a root of f; then a is a multiple root of f by Lemma 3.4.16:
(X -a)=XP-aP=XP-T.
This just plugs X? for X in the irreducible separable X —T'. All examples are like this:

Proposition 6.6.5. Let K be a field with p := char(K) >0 and f € K[X] be irreducible.
Then f is inseparable if and only if f = g(XP") for some n > 0 and some irreducible
separable g € K[ X].

Proof. <: clearly f' = 0. =: by Lemma 3.3.11 (3), f = ¢1(X?) for some ¢g; ¢ K[X].
With f also g; is irreducible. If g, is separable, we are done. Otherwise, repeat and write
g1 = g2(XP) for some gy € K[X]. And so on. As the degrees of the g;s decrease this process
stops with a separable g,,. Then f = g;(XP) = go((XP)P) = -+ = g, (XP"). O
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We now explain the mysterious Definition 3.4.17.
Proposition 6.6.6. A field K is perfect if and only if every f € K[X]\ K is separable.

Proof. Equivalently, in the r.h.s., require separability only for irreducible f. = if char(K) =
0, then Lemma 6.6.2 (5) is false by Lemma 3.3.11 (2). Assume char(K) =: p > 0 and the
Frobenius endomorphism is surjective. If f is inseparable, then f’ =0, so f = g(XP) for
some ¢ = a;, X™+ -+ ap € K[X] by Lemma 3.3.11 (3); but a; = b7 for certain b; € K; then
[ is reducible: f = (b, X)P"™ + (b1 X)POD o 4 00 = (b, X™ + -+ + bg )P

<: if K is not perfect, then p := char(K) > 0 and there is x € K ~ KP. Choose a root
a€ K of X?—x. Then mX | X? — 2 by Lemma 3.5.6. Then mX = (X —a) for some d € N
because XP—x = (X —a)P. As a ¢ K, Theorem 6.2.5 implies d = deg(m) = [K(a) : K] > 1.
Thus mX is irreducible and inseparable. O

Hence, separability is automatic in most cases of interest. In other words, it is annoying
because for a general theory we need to pay attention.

Definition 6.6.7. A field extension L | K is separable if all a € L are separable over K,
i.e., a is algebraic over K and mX is separable.

Remark 6.6.8. Let M be an intermediate field of L | K. If a € L is separable over K,
then a is also separable over M: a multiple root of m} would also be one of m% because
mM | mE by Lemma 3.5.6.

Exercise 6.6.9. Let L | K =: Kj be a field extension, r € N and ay, ..., a, € L such that for
all 1 <i<r, a; is separable over K; 1 := K(aq,...,a;_1). Let n; = [K;: K;_1]. Then there
are exactly ni---n, many K-homomorphisms from K, to K.

Hint: follow the proof of Corollary 6.3.13.

Theorem 6.6.10. Let L | K be a finite field extension and n:=[L: K]. Then L | K is
separable if and only if there are exactly n many K-homomorphisms from L to K.

Proof. =: write L = K(ay,...,a,) by Corollary 6.2.16 (2). Each a; is separable over K,
so also over K(ai,...,a;-1) (Remark 6.6.8). The exercise gives n = nj---n, many K-
homomorphisms. But n =[L: K] by the degree formula.

<: assume a € L is not separable over K. Let d := deg(m&) = [K(a) : K] and note
n =[L: K(a)]-d by the degree formula. By Lemma 6.6.2 (2), mX has < d many roots
in K. By Theorem 6.3.10 (2) there are < d many K-homomorphisms ¢ : K(a) - K. It
suffices to show that every such ¢ has < [L: K(a)] extensions to an homomorphism from
L to K. Identifying (K (a)) ¢ K with K(a), we count K (a)-homomorphisms from L

to K. Corollary 6.3.13 states there are < [L : K (a)] many. O
The exercise thus implies:

Corollary 6.6.11. Let L | K be a field extension, r € N and ay, ..., a, € L such that for all
1<i<r, a; is separable over K(ay,...,a;-1). Then K(ay,...,a,) | K is separable.
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Corollary 6.6.12. Let L | K be a field extension and M an intermediate field. Then L | K
is separable if and only if both L | M and M | K are separable.

Proof. =: by Corollary 6.2.16 (3) and Remark 6.6.8. <: by Corollary 6.2.16 (3), L | K is
algebraic. Let a € L. Since L | M is separable, mM is separable over M. Let ay, ..., a, € M be
the coefficients of mM, so mM € M'[X] for M" := K(ay, ...,a,). Then a is separable over M.
As M | K is separable, all a; are separable over K. By Remark 6.6.8, as is separable over
K(ay), ag over K(aj,ay) and so on. By the previous corollary, K(ay,...,a,,a) | K is
separable, so a is separable over K. O

Exercise 6.6.13. Let L | K be a field extension.

1. The set Lgep ik of a € L that are separable over K is an intermediate field.
2. If a € L is separable over Lge, i, then a € Lgep i
3. K(A)| K is separable for A C Ly, .

Remark 6.6.14. Some modes of speech thit we shall not employ: Lgep x is called the
relative separable closure of K in L. For L := K it is the separable closure of K. [Lsep k * K]
is the separable degree of L | K; one can prove the degree formula for it.

6.6.1 Primitive element theorem

Theorem 6.6.15 (Steinitz 1910). Every finite, separable field extension is simple.

Proof. Let L | K be a finite, separable field extension. If K is finite, then so is L and a
primitive element is a generator of L* (Corollary 5.3.25). Assume K is infinite.

Write L = K(aq,...,a,) for n € N and a; € L. If n < 2 there is nothing to show.
Inductively, L = K(ay,...,a,-1)(a,) = K(a)(a,) for some a € L — hence, we are left with
the case n =2, i.e., L = K(a1,a2). We can assume ay,as ¢ I, so mE mKE have degree > 1.

We are looking for b € L such that L = K(b). For ce K we try b:= a; + cay. Call ¢ bad
if K(b) % K(ay,az). It suffices to show that there are only finitely many bad c.

Assume ¢ is bad. Then ay ¢ K(b) as otherwise also a; € K(b) and K(b) = K(ay,az).

Hence, mff;(b) has degree > 1. By Remark 6.6.8, ay is separable over K(b). Hence, L

contains a root aj # ag of mE® By Theorem 6.3.10, there is a K (b)-homomorphism
¢ : K(byay) = L with ¢(as) = ay. Then b = p(b), i.e., a1 + cas = p(ay + caz) = ¢(ay) + ca,

so c=(plar)—a1)/(az —ay). dince p(ay ), a, are roots of mgy, ', mq, ~, they are also roots
). Si A £ me " may”, th 1

of mE mkE (Lemma 3.5.6).
We see that every bad c is of the form (af — a1)/(as - a}) for roots af,al, of m&

Thus, there are only finitely many bad c. ]

K
Mg -

Corollary 6.6.16. A separable field extension L | K is finite if and only if there is n € N
such that for all a € L we have [K(a): K] < n.
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Proof. =: by the degree formula, [K(a): K]|n:=[L: K].

<: assume [L: K] = oo and let n > 0; choose a3 € L~ Ko, Ky := K, ag € L~ Ky, K =
K(ay), and so on. This is possible because L = K(ay,...,a,) implies [L : K] < oo by
Corollary 6.2.16 (1). Then [K;1 : K;] 2 2, so [K, : K] = [K,, : K1) [K;y : Ko] 227 >
n. Each a;,1 is separable over K, hence K; (Corollary 6.6.12), so K, | K is separable
(Corollary 6.6.11) By the theorem, K, = K(a) for some a € L. O

Example 6.6.17. We look for primitive elements of Q(«,(3) | Q from Example 6.2.18
where o := ¥/2. We have mQ = X3 -2 with complex roots &, as, ac?, and mg =X?2+X+1
(Example 4.5.9 (2)) with roots (3,¢2. We want a primitive element of the form a + (3 and
see ¢ # 0 is bad in the sense of Steinitz’ theorem only for the values

als -« adi -«
(=G5 G- G5
So no rational ¢ # 0 is bad; e.g., Q(a, (3) = Q(a + (3).

- -ag?, = —a(1+¢}).

Example 6.6.18. We saw Q(v/2,v/3) = Q(v/2++/3) in Example 6.2.8 using some ad hoc

tricks. We can now argue as follows: note +1/3 are the roots of m%_ = X2-3 and +/2

are the roots of m = X2 - 2: then 1 is not bad in the sense of Steinitz’ theorem because

LE{(=v2- f)/(ﬁ+f)}

Example 6.6.19. For a = /2 we saw Q(a,4) = Q(a +1) in Example 6.3.16 using some ad
hoc tricks. We can now argue as follows: note +a, +iav are the roots of mg = X4-2and +i
are the roots of m;Q = X? +1; then 1 is not bad in the sense of Steinitz’ theorem because

Lé{(-~a—-af(2i),+ia—a)/(21)}.
The assumption of separability cannot be omitted:

Example 6.6.20. Let p be prime, K :=F,(X,Y) and L:= K(¥/X,¥/Y)| K. Then L | K

is finite and not simple.

Proof. To see L | K is finite, note L is the splitting field of f:= (ZP - X)(ZP -Y'). This is
because f = (Z - Y/ X)?-(Z - ¥/X)P by Frobenius.

We claim a? € K for all @ € L. We have L = K(¥YX)(¥Y) = K(¥X)[¥VY] =
K[¥X,¥Y] by Lemma 3.5.8, so a = g(¥/X, ¥/X) for some g € K[Zy,Z,]. With the
Frobenius endomorphism ¢ of K we have a? = p(¢)(X,Y) € K.

We show L # K(a) for every a € L. Note m&(Z) | Zr —a? € K[Z] by the claim, so
[K(a) : K] = deg(m&) <p. But [L: K] =[L:K(X)]-[K(¥X): K] > p because
[L:K(YX)]>1as {’/?¢K({J/_) and [K(¥/X): K] = deg(m[g/y) =deg(ZP-X) =p
since ZP — X is irreducible in (F,[X,Y])[Z] and K(Z) by Eisenstein (with prime X). O
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6.7 Galois extensions

Definition 6.7.1. A field extension L | K is Galois if it is separable and normal. The
Galois group G(L | K) of L | K is the set of K-automorphisms of L.

Remark 6.7.2.

1. If K is the prime field of G, then G(L | K) = Aut(L) (Exercise 3.4.15).

2. If K =L, then G(L| K) = {id.}.

3. If L| M| M'| K are field extensions, then G(L | M) is a subgroup of G(L | M").
4. If L | K is finite, then |G(L | K)| < [L: K] (Corollary 6.3.13).

Example 6.7.3. C | R is Galois, G(C | R) contains the identity and conjugation, so is
isomorphic to Cs. Similarly for quadratic number fields (Definition 4.1.1).

Lemma 6.7.4. Let L | K be Galois and M an intermediate field. Then L | M is Galois,
and M | K is Galois if and only if o(M) =M for all p € G(L| K).

Proof. L | M is separable by Corollary 6.6.12 and normal by Remark 6.3.21 (1), hence
Galois. M | K is separable by Corollary 6.6.12. We have to show M | K is normal if
and only if ¢(M) = M for all ¢ € G(L | K). = follows from Lemma 6.3.22. <: by the
embedding theorem we can assume that L is a subfield of K. By Lemma 6.4.8 we have to
show (M) = M for all K-automorphisms 1 of K. But since L | K is normal, this lemma
implies (L) = L, so Y1 L e G(L | K). Hence (M) = (1L)(M) = M by assumption. [

Recall Example 5.12.4 (4) and Definition 3.7.4: for G ¢ Aut(L), evaluation (¢, z) —
() defines an action of G on L and the fixed field is

L¢:={zeL|p(r) =z forall p e G}.

Lemma 6.7.5. Let L be a field, G a subgroup of Aut(L). Then a € L is algebraic over L
if and only if the orbit G(a) = {p(a) | p € G} is finite; in case,

mk = Mheaa (X = b)

Proof. =: if a is a root of f € LE[X], then every ¢ € G maps a to a root of f in L
(Remark 6.3.12 (2)); there are < deg(f) many.

< let by,...,b, list G(a). By Vieta’s formula, the coefficients of f = [Tjeqa) (X = 0)
are =8, (b1, ...,b,) for 1 <k <n. These are in LE: for ¢ € G we have ¢(s,,x(b1,...,b,)) =
Snk(@(b1), ... 0(bn)) = $pk(b1, ..., by) because ¢ permutes G(a) and s, is symmetric.

To show mE® = f we verify Lemma 3.5.6 (3): let g € LG[X] have a as a root. Let

be G(a) and choose ¢ € G with ¢(a) =b. Then b is a root of ¢(g) =g, so (X -b) | g. Since
this holds for all be G(a) we get f]g. O

Theorem 6.7.6. An algebraic field extension L | K is Galois if and only if LE(HK) = K.
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Proof. Write G := G(L | K). By the embedding theorem we can assume L € K.

=: assume there exists a € L ~ K. Then mX has degree > 2; as it is separable, there
exists a root b€ K with b # a; by homogeneity (Lemma 6.4.7) there is a K-automorphism
¢ of K with ¢(a) = b. But L | K is normal, so Lemma 6.4.8 implies ¢(L) = L. Then
©l1L e G and (p1L)(a) = b # a, contradicting a € LE.

«<: as every a € L is algebraic over K = LY, the lemma shows mkX is separable. For
normality, let f € K[X] be irreducible with a root a € L; we have to show f splits in L.
We can assume f is monic. By the lemma, f =mX splits in L. ]

Theorem 6.7.7. Let L be a field and G a finite subgroup of Aut(L). Then L | LC is a
finite Galois extension of degree [L : L] = |G| with Galois group G.

Proof. Let G’ := G(L | L%); then G € G’, so LY ¢ LY. The converse is trivial, so L& = LC.
Then L | LY is Galois by the previous theorem.

For a € L we have deg(ml®) =|G(a)| by the lemma. But |G| = [G : G,]|G4| = |G(a)||Gl
by the orbit-stabilizer lemma, so deg(mZ®) | |G|. By Corollary 6.6.16, L | LY is finite.

By the primitive element theorem, L = L%(a) for some a € L. Every ¢ € G that fixes a
equals id;, (Remark 6.3.12 (4)), so G, = {id;}. Then

G| = |G(a)| = deg(my”) = [L: L°].
G =G follows from G ¢ G’ and [L: L] = |G| <|G'| < [L: LY)] (Remark 6.7.2 (4)). O
Below, note (3) implies that L | K is finite.

Theorem 6.7.8 (Artin’s characterization). Let L | K be a finite field extension and G :=
G(L| K). The following are equivalent.

1. L| K is Galois.
3. L is the splitting field of some separable f e K[X]\ K.

Proof. Note L | K is algebraic by Corollary 6.2.16. Further, G < [L : K] is finite (Corol-
lary 6.3.13), so [L : L¢] = |G| by Theorem 6.7.7. Then [L : K] = |G|-[L% : K] by the
degree formula. Thus, [L : K] = |G| if and only if [LY : K] =1, if and only if L¢ = K
(Remark 6.2.3 (2)). Hence, 2 <> 1 by Theorem 6.7.6.

1 = 3: as L | K is finite and normal, by Exercise 6.3.20, L is the splitting field of
some f € K[X]~ K which is a product of certain minimal polynomials over K’; these are
separable since L | K is separable; hence f is separable (by definition).

3 = 1: L | K is normal by Lemma 6.3.19. Write L = K(ay,...,a,) for a; € L roots
of f. Each a; is a root of an irreducible factor of f, so separable over K and hence over
K(ay,...,a;-1) (Remark 6.6.8). Thus, L | K is separable by Corollary 6.6.11. O

Definition 6.7.9. If f ¢ K[X]\ K and L is the splitting field of f over K, then

G(f,K) = G(L| K).
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Remark 6.7.10 (Galois’ idea). Let f e K[X]\ K and A the set of roots of f in L, the
splitting field of f over K; let ay, ..., a, list A.

1. (¢, )~ p(x) is a faithful action of G(f, K') on A (Remark 6.3.12 (2), (4)).

2. Restriction ¢ — 1A is a group monomorphism from G(f, K) into Sym(A) = S,
(Remark 5.12.3 (2)). Hence, |G(f, K)|||S.| =n! (by Lagrange).

3. More concretely, for p € G(f, K) define ¢* € S,, setting

©* (i) =j = ¢(a;) = a;
for all 4,5 € {1,...,n}. Then ¢ = ©* is a group monomorphism from G(f,k) into S,,.
4. If f is irreducible, then the action is transitive (Theorem 6.3.14) and n | |G(f, K)|.

Indeed: write G := G(f, K) and let a € A; then |G| = [G : G,]|G.| = |G(a)||G.| by the
orbit-stabilizer lemma; by transitivity, G(a) = A has size n.

Galois’ revolutionary insight is that the finite group G(f, K)* € S, contains important
information about the polynomial equation f = 0.

Example 6.7.11. The splitting field of f = X3 -2 over Q is Q(a, (3) for a := V2 (Ex-
ample 6.3.6). By Artin’s characterization, Q(a,(3) | Q is Galois and the Galois group
G :=G(f,Q) has order [Q(«,(3) : Q] =6 (Examples 6.2.18 (1)). By Remark 6.7.10 (2), G
is isomorphic to a subgroup of S3. As [S3| =3! =6 we see G = S;.

Alternatively, use Corollary 6.7.17 below: G 2 S5 because Dy = —27-2? is not a square
in Q. Thus, G is non-abelian and solvable (Remark 5.8.11 (3)).

Example 6.7.12. The splitting field of f := X% -5X2+6 = (X% -2)(X?-3) € Q[X]
is Q(v/2,4/3). By Artin’s characterization, Q(v/2,v/3) | Q is Galois with Galois group
G = G(f,Q) of order [Q(v/2,V3) : Q] = 4 (Example 6.2.8). Hence, G = Cy or G = K,
(Proposition 5.3.19). G containes the identity and @1, 9, 3 determined by

V2,V30 —V2,V3, V2,V3V2,-V3, V2,V3--v2,-V3.

To see e.g. 3 exists, Remark 6.3.12 gives an (Q-)automorphism 1 of Q(v/2) with ¢(1/2) =
—/2; then Theorem 6.3.10 gives 3 as an extension to Q(v/2)(v/3).

Each of them has order 2 in G because ¢? fixes all roots /2,43, 50 @2 = idQ(ﬂﬁ\/g)
(Remark 6.7.10 (1)). Hence, G 2 K4 is abelian and not cyclic.

Exercise 6.7.13. Let f := X% -5 ¢ Q[X]. Describe the elements of G(f,Q). Show

Exercise 6.7.14. Let f := X% -4X? + 2 from Exercise 6.3.8. Its roots are +«,+f3 for

a=V2-2,6=v2+/2, and its splitting field over Q is Q(a). Show there is a unique
o e G(f,Q) with o(«) = 8 and compute o(+/2) and o(3). Infer that G(f,Q) is cyclic.

Exercise 6.7.15. In Exercise 6.3.18 show G(K | Q) =z Z}.
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We continue with some more abstract examples, and determine Galois groups in some
familiar settings. Recall the discriminant Dy of a monic polynomial f from Example 3.7.11.

Proposition 6.7.16. Let K be a field and f € K[X] be monic, separable of degree n > 1.
Then G(f, K)* ¢ A, if and only if \/Dy € K.

Proof. Let aq, ...,a, list the roots of f in L, the splitting field of f over K. Then

\V Dy = H1<i<jsn(ai - aj)-

This implies p(y/Dy) = sign(yp*)\/Dy for every p € G(L | K). Hence, G(L | K)* ¢ A, if
and only if every ¢ € G(L | K) fixes \/D;. This is equivalent to /D € K by Theorem 6.7.6
(note L | K is Galois by Artin). O

Corollary 6.7.17 (Galois theory of the cubic). Let K be a field and f e K[X] be monic,
cubic, separable and irreducible. If \/Dy € K, then G(f,K) = As; otherwise, G(f, K) = Ss.

Proof. By Remark 6.7.10 (4), the order of G := G(f,K)* ¢ Ss is divisible by 3. Since
|G| | |S5| = 6, we have |G| € {3,6}. Then, G = A3 = {1,(123),(321)} or G = S3. Apply the

proposition. O

Example 6.7.18. Consider f*:= X3+3X +1 € Q[X]. Using the formula in Example 3.7.11
compute D+ = -63 and Dy- =9. Hence, G(f*,Q) 2 S; and G(f~,Q) = A;.

Definition 6.7.19. A finite Galois extension L | K is cyclic, abelian or solvable if so is its
Galois group G(L | K).

Proposition 6.7.20. Let p,n € N, n > 0 and p prime. Then Fpn | F, is a finite cyclic
Galois extension; G(Fyn | Fp) is generated by the Frobenius endomorphism.

Proof. F,n | F), is obviously finite, and Galois by Artin because F,» is the splitting field of
X?" - X over F,, (Theorem 6.5.2) and F,, is perfect (Example 3.4.18). Then G := G(Fyn | F,)
has order [Fpn : Fy] =n by Artin. As F,» is perfect, the Frobenius endomorphism ¢ is an
automorphism of Fy». It fixes the prime field F,, so ¢ € G.

Let = generate F, (Corollary 5.3.25), i.e., x has order p” -1 in F¥.. Note p*(x) = P,
so the minimal & for which @*(z) =z is n. As Fp(2) = Fyn, this implies ¢ = idg , . Hence,
© has order n in G, so generates G. [
Exercise 6.7.21. Generalize to the case where p is a prime power.

Recall Exercise 3.7.8: K[s,1,...] is the subring of symmetric polynomials in K[X].
Proposition 6.7.22. Let K be a field, n>0 and M := K(Sp1, ..., Snn). Then

G(f,M)=zS,

where f:= (X - X7)(X - X,) e M[X].
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Proof. f € M[X] by Vieta’s formula, and L := M(X) = K(X) is the splitting field of f
over M. As f is separable, L | M is Galois by Artin. By Remark 6.7.10, G(f, K)* € S,. It
thus suffices to show |G(f, K)| > n!.

For o0 € S, let 6 : K[X] - K[X] be the ring automorphism f + f° (permute the
variables X; by o). Note ¢ fixes the subring K[sy1,...,Snn]. It uniquely extends to an
automorphism of the quotient field K (X) = L via f/g ~ 6(f)/6(g) — again denoted &.

Then ¢ fixes M, so 6 € G(L| M) =G(f,M). It is clear that o — & is injective. O

6.8 (alois theory

The application of group theoretic terminology to field extensions might appear strange.
The theorem below is maybe the most beautiful result of this course. Roughly speaking,
it equates the structure of a Galois extension with the structure of its Galois group.

Theorem 6.8.1 (Main theorem of Galois theory). Let L | K be a finite Galois extension
with Galois group G := G(L | K).

1. Uw LY is a bijection from the setU of subgroups of G onto the set M of intermediate
fields of L | K; its inverse is M — G(L | M); both maps reverse inclusions.

For all M e M: L| M is a Galois extension.

For allU eU: L|LY is a Galois extension with Galois group U.

For all M e M and all p € G: G(L|o(M)) =pG(L| M)pt.

For all M e M: [M:K]=[G:G(L|M)] and, M | K is a Galois extension if and
only if G(L| M) < G; in case, G(M | K) =2 G/G(L| M).

M Ao
AP VDL ¢

Figure 6.1: corresponding U, M with [M : K| =[G:U] =k, [L: K]=|G|=n

Proof. Note G is finite because |G| = [L : K] (by Artin). (2) follows from Lemma 6.7.4 and
(3) from Theorem 6.7.7.

(1): let ® denote U ~ LY and ¥ denote M ~ G(L | M). Then ¥V (®(U)) = G(L |
LY) = U by Theorem 6.7.7. Further, ®(¥(M)) = LELIM) By (2), L | M is Galois, so
LGLIM) = M by Theorem 6.7.6. Thus, ® is bijective and &1 = U,

Clearly, if U,U" eUd, M,M' € M with U c U’ M ¢ M’, then ®(U) = LY 2 LV" = &(U")
and U(M)=G(L|M)2G(L|M") =W (M.

(4) 2: let v e G(L | M) and x € p(M), say = = p(y) with y € M. Note ¢(y) =y. Then
(omitting o): @yo~!(z) = i (y) = ¢(y) = z. Hence, ot~ € G(L | p(M)).
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(4) c: using the inclusion already proved,
PG(L| M)p™ = pG(L ¢ (M) 2007 G(L | p(M))pp™ = G(L | p(M)).
(5): by the degree formula and Artin
[M:K]=[L:K]/[L: M]=|G|/|G(L|M)|=[G:G(L|M)].

Further, we have the equivalences:

M | K is Galois

<~ M=p(M) foral peG by Lemma 6.7.4

— G(L|M)=G(L|p(M)) for all pe G  since V¥ is injective by (1)
— G(L|M)=pG(L|M)p=tforal peG by (4)

— G(L| M)« G.

Assume M | K is Galois. For ¢ € G we have (M) = M by Lemma 6.7.4, so ¢ — @1 M
is a group homomorphism from G to G(M | K). Its kernel is G(L | M'). By Noether’s 1st
isomorphism theorem we are left to show that the map is surjective. Let ¢ € G(_]W | K).

The embedding theorem allows to assume L € K and gives an extension ¢ : L - K. Since
L| K is normal, Lemma 6.4.8 yields ¢(L) = L. Then ¢ € G and 1M = . O

A first application:

More abstract proof of the fundamental theorem 3.8.3 after Artin. By Remark 3.8.2 (2) it
suffices to show every f € R[X]\R has aroot in C. Let L be the splitting field of (X2+1)f
over R. Then L | C|R and we claim L = C. By Artin L | R is Galois and |G| = [L : R]
for G := G(L |R). As [C:R] =2 we have 2 | [L : R] be the degree formula. By the Ist
Sylow theorem, G has a 2-Sylow subgroup U. Set M := LV. Then [M :R] =[G : U] is odd.
By the primitive element theorem, M = R(a) for some a € C. Then deg(mk) = [M : R] is
odd, so m¥ has a root in R (Remark 3.8.2 (3)). Thus, deg(m®) =1 and a € R, so M =R.
Then G = U, so |G| = 2% for some k > 0. Then [L | C] = 2*=1 by the degree formula, so
G’ := G(L | C) has order 271, We claim k = 1: then [L:C] =1, so L =C and we are done.
Otherwise, by the 1st Sylow theorem, G’ has a subgroup U’ of order 2¥2. As L |C is
Galois with Galois group G/, [LV": C] =[G’ : U'] = 2 — impossible by Remark 3.8.2 (4). O
Which intermediate fields M does L | K have?
Corollary 6.8.2. Let L | K be a finite Galois extension.
1. If L| K is cyclic, then there is for every d | [L : K] exactly one intermediate field M
with [M : K] =d; then M | K is Galois and cyclic.
2. If L| K is abelian, then there is for every d | [L : K] at least one intermediate field M
with [M : K] =d and M | K is Galois and abelian.
3. If L| K is solvable and L # K, then there are £ >0 and intermediate fields K = My &
My ¢ My--- ¢ My = L such that for all i <{, M.y | M; is Galois of prime degree.

For every intermediate field M of L | K: the field extension L | M is Galois and
solvable and, if M | K is Galois, then M | K is solvable.
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Proof. Write G := G(L | K). (1): the intermediate fields M with [M : K] = d correspond
to subgroups U of G of index d. there is exactly one by Theorem 5.3.21. M | K is Galois
because all subgroups are normal since G is abelian. (2) is similar using Corollary 5.11.5.

(3): by Theorem 5.8.17 there is a subnormal series N, = {id.} <4 Nyoy <9 < Ng = G
with (abelian) factors N;/N;,; of prime order. For M; := LN we have My = L¢ = K by
Theorem 6.7.6, and My € --- € M, = L. Note N; = G(L | M;).

Since L | M; is finite Galois we can use (5) of the main theorem with M; in the
role of K: M;,, | M; is Galois because G(L | M;11) = Nijy1 < N; = G(L | M;); further,
[Miy1: M;] = [G(L| M;): G(L| Mi1)] =[N;: Nijq] is prime.

For M an intermediate field, note L | M is Galois and G(L | M) is solvable as a
subgroup of G(L | K) (Remark 5.8.11 (3)). If M | K is Galois, then G(L | M) < G and
G(M | K)zG/G(L| M) is solvable by Lemma 5.8.13. O

Exercise 6.8.3. Finite separable field extensions have finitely many intermediate fields.

Corollary 6.8.4. Let z € C be algebraic and L ¢ C the splitting field of m2 over Q. If
[L:Q)] is a power of 2, then z is constructible.

Proof. Say, [L : Q] = 2. By Artin, L | Q is Galois and |G(L | Q)| = 2». By Corol-
lary 5.13.13, G(L | Q) is solvable. Choose intermediate fields M; as in (3) above. As
[ My 2 M;] | 27 is prime, [ M, : M;] = 2. By Proposition 6.2.9, M;,; results from M; by
adjunction of a square root. By Theorem 6.1.5, z is constructible. O

Example 6.8.5. We continue Example 6.7.12 of the Galois extension L := Q(v/2,V3) | Q
with Galois group G := {idp, 1,2, p2}. The proper nontrivial subgroups are (p;) of
index 2. Thus their fixed fields have degree 2. E.g., ¢; fixes /3, so Q(v/3) € L{#1); since
both field extensions of Q have degree 2 we have Q(v/3) = L{¥1). Analogously, Q(v/2) =
L), Finally note ¢3(v/6) = ¢3(V2)¢(V3) = (+v/2) - (v/3) = VG, 50 Q(V/6) = 1%,

We display non-trivial subgroups and proper subfields fields with arrows indicating
subgroups of index 2, resp., field extensions of degree 2.

(1) (p2) (p3) Q(v2) Q(V3) Q(V6)

N v ~ 1t~

G Q

Example 6.8.6. We continue Example 6.7.11 of the Galois extension L = Q(«,(3) | Q
(where a = ¥/2) with Galois group G = G(X? -2,Q) = S3. Number the roots a; := a, ay =
aCs, as == aC?. Let us abuse our notation for Sy to denote elements of G, e.g., (12) denotes
the automorphism that swaps a;,a, and fixes az. Then the nontrivial proper subgroups
are Az 2 ((123)) of index 2, and ((12)),((13)),((23)) of index 3.

As (12) fixes a3, we have Q(a3z) € L{(2): since both fields are degree 3 extensions of Q
we have Q(az) = L), Similarly, Q(ay) = L{13) and Q(a;) = LI, For L{(123)) we know
it is the unique degree 2 extension, and we saw [Q((3) : Q] = 2; hence Q((3) = L{(123)),
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We display subgroups and intermediate fields with arrows indexed by the index of the
subgroup, resp., the degree of the field extension.

{1} Q(a,¢3)
¥ 9 2¥ N2 3N 72 27 N2 3N
((12))  ((23)) ((13)) ((123)) Qe)  Qaz) Q(acd) Q(G)
3\ 3N '3 e 3N s\ 3 79
G Q

Exercise 6.8.7. Continuing Exercises 6.3.8, 6.7.14, show Q(\/2 - \/§) | Q has exactly one
proper intermediate field, namely Q(v/2).

A more complicated example:

Example 6.8.8. One can show by elementary means that f := X4 - X2 -1 € Q[X] is
irreducible with roots /@, +i/\/é € C where ¢ := (1+1/5)/2 is the golden ratio. The roots
of f are the vertices of a square inscribed in a circle of radius /¢ and we now show the
automorphisms of its splitting field act on them like the symmetry group of this square.
The splitting field of f over Q is L := Q(\/9,1), so L | Q is Galois with Galois group
G := G(f,Q). Then |G| =[L: Q] = 8 because and [L : Q(+/#)] = 2 (as i £ Q(v/¢) € R)

and [Q(v/9) : Q] = deg(f) = 4. Since i/v/¢ ¢ Q(v/¢) € R we see Q(v/9) | Q is not normal,
hence not Galois, so G(L | Q(v/¢)) ¢ G. The only group of order 8 with a non-normal

subgroup is Dy (cf. Examples 5.6.19 and 5.5.19). Hence, G 2 Dj,.
We determine an isomorphism: every ¢ € G is determined by < 4 choices +v/¢, +i/\/¢
for o(\/¢) and < 2 choices +i for (i), so all choices are possible:

AUE) VB |5 18 | 5|5 15 |-
(i i i i i -1 | - —i —i
% id | r?

rs r3s S r2s r r3

where we introduce names r,s: mapping them to Ry./4, Sy determines an isomorphism
onto Dy (cf. Theorem 5.1.17). Note the isomorphism only equates the action on the roots,
not on all of L, e.g., (1) =1 is not a rotation by /2.

We display the nontrivial subgroups and the corresponding fixed fields. The arrows
indicate subgroups of index 2, resp., field extensions of degree 2:

(s) (r2s) () (rs)  (r’s)

N ! v LN ¥ 4
(r2,s) (r) (r?,rs)
Nl v
G
QW$) QGive)  Q(V5,i) Q(W1+2) Q(V1-2i)
N 0 A 1 N i 7

Q(V5))  Q(V-5) Q(4)
LN 1 i
Q
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To see e.g. Q(i) = L{r*s) note ¢ follows because both r2 and 7 fix i; for 2 note [Q(4) : Q]
has the required degree [L{*rs): Q] = [G : (r2,r5)] = 2.
How did we find, e.g., b = /1 +2i to see Q(b) = L{)? We want b € L fixed by rs but

not by r2. Since rs has order 2, a natural guess is b:= /¢ + (rs)(V/9) = Vo +i/+/é; indeed,
r2(b) = /& —in/¢ = =b # b and a direct computation shows b =1 + 2i.

Exercise 6.8.9. Let K be a field and f € K[X] irreducible and separable. Show: if
G(f, K) is abelian, then it has order deg(f).

6.9 Cyclotomic fields

Definition 6.9.1. Let K be a field and n > 0. An nth roots of unity (over K) is a root
of X" -1 in K; their set is denoted CK ¢ K. A primitive nth root of unity is one that

generates CK as a subgroup of K.
The nth cyclotomic field over K is K(CK), the splitting field of X”—-1¢€ K[X] over K.

Remark 6.9.2.

1. CR=C, ={1,(, 2, ....,¢n"1} € C as of Definition 1.6.8 with Q(¢,) as the nth cyclo-
tomic field over Q. (, is a primitive nth root of unity over Q.

=

2. CK is indeed a subgroup of FX, and hence cyclic (Corollary 5.3.25).
Indeed: if x,y € CK, then zy' e CK since (zy=1)" = 2" (y")™! = 1.

3. If ¢ € CK is primitive, then the nth cyclotomic field over K is K(().

4. For char(K) =p>0, write n = p*m with p 4+ m; then in K[X],

X" —1=(X"-1)",
so the nth roots of unity (over K') are the mth roots of unity.

Theorem 6.9.3. Let n >0, L be the nth cyclotomic field over K, and char(K) 4 n. Then
CE has order n and p(n) primitive elements (Euler’s totient). Moreover, L | K is a finite
Galois extension and G(L | K) is isomorphic to a subgroup of 7.

Proof. X™ —1 has derivative nX"!; for € CK we have na" ! # 0, so no root is multiple
(Lemma 3.3.13 (1)); hence, |CK| =n. If ( € CK is primitive, then CK = {1,(,...,("'} has
order n. Moreover, (¥ is primitive if and only if ged(k,n) =1 (Lemma 5.3.9 (5)).
Moreover: L | K is clearly finite (Remark 6.3.4), and by the above, X™ -1 is separable,
so L | K is Galois by Artin. ¢1CE permutes CK for ¢ € G(L | K) by Remark 6.3.12 (3).
Hence, ¢ » ¢1CK is a group homomorphism from G(L | K) into Aut(CKE). It is injective
by Remark 6.3.12 (4). But Aut(CK) = Z* by Exercise 2.6.5 — CK =7, via ¢~ k. O

Examples 6.9.4. For prime p we factor XP -1 = (X - 1)(XP1 + -+ X +1) (Exam-
ple 4.5.9 (2)), so the pth cyclotomic field over Q is a degree p — 1 extension.
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Recalling Example 1.6.10, we have Q(¢s) = Q(v/-3),Q(¢) = Q(1),Q(¢s) = Q(V-3)
are extensions of degree 2 = ¢(3) = p(4) = ¢(6). We have (5 = cos(27/5) + isin(27/5)

and cos(27/5) = (V5 - 1)/4,sin(27/5) = \/(v/5+5)/8, so Q(¢) = Q(V5)(v/=a) where
a=(v/5+5)/8 has degree 4 = ¢(6). We prove below that [Q((,) : Q] = ¢(n) for all n > 0.

Definition 6.9.5. Let n >0 and K a field with char(K) + n and let aj,...,au@my € K list
the primitive nth roots of unity. Then the nth cyclotomic polynomial over K is

OF =TI (X - ).
Lemma 6.9.6. Let n>0 and K a field with char(K) 4 n.

1 X7 =1 =]y, ®X.
2. If char(K) =0 and K extends Q, then ®K ¢ Z[X].
3. If char(K) =p>0 and K exstends F,,, then X eF,[X].

Proof. (1): as |C| = n we can write X" ~1 = [],ecx (X —a) in K[X]; as CK = 7, (additive)
there are exactly ¢(d) elements of order d | n (Corollary 5.3.24); these are the primitive
dth roots of unity; thus, (1) just groups the factors X —a according orders.

(2) is proved by induction on n. For n =1, & = X -1 € Z[X]. For n > 1, we have
Xn—1=0K. f with f = [Ign.ac, P5; by induction, f € Z[X]; hence, polynomial divison
of X7 —1 by f yields ®, when done in K[X]. But X" -1, f € Z[X] and f is monic, so
polynomial division runs in Z[X] (Theorem 3.2.1). Hence, ®X € Z[ X].

The proof of (3) is analogous. O

Remark 6.9.7. This gives a recursive procedure to compute oY

%=X -1

PY=(X2-1)/(X-1)=X+1

Y= (X3-1)/(X-1)=X2+X +1

Y= (X4-1)/(X-1)(X +1)) = (X2+1)(X2-1)/(X2-1)=X2+1
PL=(XP-1)/(X-1)=X++ X4+ X3+ X2+ X +1

P = (X6 -D)/(X-1)(X+1)(X2+ X +1))=X2-X +1

PY = X84+ XT- X5 - X4- X3+ X +1.

The first with a coefficient # 0,1 is %, which has degree 48.

Theorem 6.9.8 (GauB). Let n > 0. Then ®2 = mg. In particular, [Q((,) : Q] = ¢(n)
and G(Q(G,) | Q) = 2,

Proof. The 2nd sentence is clear by Theorem 6.9.3. We claim that for every primitive

¢ € C2 and prime p + n we have m(? = m?p.

Assume #. Both f := m?,g = m(?p | X" —1. Since f,g are monic, Lemma 4.4.15 shows
f,g€Z[X]. Since f,g are coprime, fg| X"—1,say fgh=X"-1. As fgis monic, h € Z[ X].
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Note ( is a root of g(X?), so g(X?) = fh’ by Lemma 3.5.6, and again h/ € Z[X]. Let f
be obtained by replacing coefficients © € Z by = [x],; i.e., this is the extension of the

canonical homomorphism from Z onto Z, = F, to Z[X]. Then f-h' = g(X?) = g# by the
Frobenius homomorphism. Let f be an irreducible factor of f in F,[X]. Then f | g, so
f2| X7 =1=X"-1. But then a root of f (in F,) is a multiple root of X" — 1. This
contradicts |Ci?| = n by Theorem 6.9.3. This proves the claim.

Let C € C2 be primitive. Then ¢ = ¢F with k,n coprime. Write k = p;---p, for primes
p; + n. Then m?; = mQ%l by the claim. As ¢}' is also a primitive nth root of unity, the

?%1 = m?ﬂ and so on. Hence, m? = mg

This implies that every primitive nth root of unity is a root of m?ﬂ and therefore

claim implies m%,,, =m
n

DY | mg. Since also mg | 2 (Lemma 3.5.6) and both are monic, mg - Y. O
Example 6.9.9. Consider 7th roots of unity over ;. We have the factorization
X' -1=(X-1D)(X3+X+1)(X3+ X% +1).

All roots of unity # 1 are primitive; 3 have the first cubic factor as minimal polynomial and
the other 3 the second; <I>]$2 is reducible; the 7th cyclotomic field over Fy is an extension
of degree 3 # p(7) = 6. Note 3 is the order of 2 modulo 7. We see in the proof below that
this is no coincidence.

Recall Definition 2.7.1 and Theorem 2.7.8.

Proposition 6.9.10. Let n> 0 and p + n prime. ®° is irreducible in F,[X] if and only
if p is a primitive root of n.

Proof. For ( € CEv primitive, m]gp | Pir Hence, ®°r is irreducible in F,[X] if and only if
m]g” = @f”, if and only if d := deg(mg”) = ¢(n), if and only if (by Artin) d = [F,(¢) : F,] =
¢(n). Now F,(¢) = F,, and we can assume =. By Proposition 6.7.20, d equals the order
of the Frobenius endomorphism ¢ in G = G(F,« | F,). The group monomorphism of G
into Zy from Theorem 6.9.3 (recall the proof) maps ¥ to p € ZX. Thus, d is the order of p
in Zx. This means that d = p(n) if and only if p is a primitive root of n. O

Exercise 6.9.11. Show f := X12-729 € Q[ X ] has splitting field Q(({12) over Q (use 729 = 36
and (3 = (V3 +14)/2). Determine all intermediate fields of Q(¢y2) | Q.

Exercise 6.9.12. n >0 is prime if and only if L= Xy b X 41,

6.9.1 Constructibility of regular n-gons

We are now equipped to address the last of the classical Greek problems on ruler and
compass constructions, the construction of regular n-gons.
Recall, Fermat primes are primes of the form 2% + 1 for k£ ¢ N (Remark 2.3.5 (1)).
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Theorem 6.9.13 (GauB, Wantzel). Let n > 2. Then (, is constructible if and only if
n =2Mpy---py for some €,m € N and pairwise distinct Fermat primes p;.

Proof. We claim (, is constructible if and only if ¢(n) is a power of 2. =: if (, is
constructible, then [Q((,) : Q] is a power of 2 by Corollary 6.2.23; but [Q((,) : Q] = ¢(n)
by Gaufl’ Theorem 6.9.8. <« follows from Corollary 6.8.4 because Q((,) is the splitting
field of m% over Q (Remark 6.9.2 (3)).

Let n = p’f1-~-p§‘Z be the prime factorization of n. By Theorem 2.6.10,

p(n) =~ tpf ™ (pr = 1) (pe = 1).
This is a power of 2 if and only if for all p; # 2 we have k; =1 and p; —1 is a power of 2. []

Remark 6.9.14. The ancient Greeks constructed regular n-gons for n = 2¥, 253, 285 where
k e N. Gauy’ 17-gon marked the first progress after 2 milennia (Example 6.1.6).
Since there are 5 known Fermat primes (see Remark 2.3.5 (1)), for odd n we know
25 — 1 = 33 constructible regular n-gons; the largest is n = 4294967295. Isn’t it remarkable
that we know this regular n-gon is constructible without ever possibly see a construction?
An explicit construction of a regular 26 + 1 = 65537-gon was worked out in more than
221 pages and 10 years by Hermes (1894); he believed “Geduld ist die Pforte der Freude.”

6.9.2 Dirichlet’s theorem
As a further application we prove a special case of Dirichlet’s theorem (cf. Remark 2.3.5 (5)).

Theorem 6.9.15 (Dirichlet). For every n > 1 there are infinitely many primes p with
p=1 mod n.

Proof. Let s €N and py, ..., ps be primes with p; =1 mod n. We have to find another such
prime. Let @ := npy---ps > 1, understanding « = n if s = 0. Note |®2(z)| = I ]x - Gl>1
where j ranges over 1 < j < n coprime to n; hence, ®2(x) ¢ {0,+1}. As 2 € Z[X], we
have ®2(x) € Z. Let p be a prime divisor of ®3(z).

By @9(3:) | 2" =1 we have 2" =1 mod p, so p + x, so p # p;. We are left to show p=1
mod n. As p + = we have 7 € Z; let k be its order. As 2" =1 mod p we have k | n. Since
2P~ =1 mod p by Fermat, also k| p - 1. It suffices to show k = n.

Otherwise, n = k¢ for some ¢ > 1. Now, the roots of

(X"-1)/(XF-1)=(XH)T ot X 1= f

in C are the nth roots of unity that are not kth roots of unity, in particular, they contain
the primitive nth roots of unity. Thus, ®2 | f in C[X], hence in Q[X]. Since both are
monic, ®Y | f in Z[X] (Lemma 4.4.15). Thus,

®L(z) | f(z)=¢ mod p.

As p| D2 we get p | ¢; as €| n |z we get p|x; but p + = was observed above. ]
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Remark 6.9.16 (Inverse Galois problem). It is unknown whether every finite group H
is the Galois group of some Galois extension of Q. Shafarevich (1958) verified this for all
solvable H. For illustration, we show:

Proposition 6.9.17. For every n > 1 there exists a Galois field extension L | Q with
G(L|Q) 27,

Proof. Dirichlet’s theorem gives a prime p with p =1 mod n. By Theorem 6.9.8, Q(¢,) | Q
is Galois of degree ¢(p) = p— 1 with Galois group G = Z5, cyclic of order p -1 (Theo-
rem 2.7.6). Asn|p-1, G has a cyclic subgroup U of order (p—-1)/n (Theorem 5.3.21), so
[G:U]=n. As G is abelian, U is normal. By (5) of the main theorem, L := Q((,)V | Q is

Galois with G(L | Q) 2 G/U. But G/U is cyclic of order [G: U] =n, so 2 Z,. O
Example 6.9.18. G(Q(cos(27/7)) | Q) = Zs.

Proof. Follow the proof above with n =3 and p =7. Then G(Q({7) | Q) = Z;. Indeed, it
contains the automorphisms ¢y, with ¢ (¢7) = ¢¥ for k < 7. Note ¢2 = id as ps(p6(¢7)) =
(36 = (7. Hence U := {id, ¢} is a subgroup of order 2 = 6/3. Then Q(¢7)V | Q is Galois
with group G(Q(G)Y | Q) = G(Q(&) | QYU = Zs.

To determine Q({7)Y it suffices to find o € Q({7)Y N Q: then [Q(«) : Q] > 1 and 3 =
[Q(G)Y Q] = [Q(G)Y : Q(a)] - [Qar) : Q] imply [Q(G)” : Q)] = 1, 50 QGr)? = Q(ar).

But ¢6(¢r+¢8) =8+ (30 =8+ (7 € LY and (P = ¢; (complex conjugation), so (7 + (¢ =
2Re((7) =2cos(2m/7) =: a. Tt is known that « ¢ Q. O

Exercise 6.9.19. For every finite group H there are field extensions L | M | Q with L | M
Galois and G(L | M) = H. (Hint: Proposition 6.7.22.)

6.10 Adjunctions of roots

Definition 6.10.1. Let n > 0. A field extension L | K results by adjunction of an nth root
if and only if L = K(b) for some b e L with b" € K.
L| K results by adjunction of a root if this happens for some n > 0.

Example 6.10.2. Q(v/2) | Q and Q(¥/2,¢s) | Q(¢3) and Q(¢s) | Q result by adjunction of
a root. The 1st is not Galois, the others are.

Theorem 6.10.3. Let L | K a field extension of degree n > 1 and assume K contains a
primitive nth root of unity and char(K) + n. Then L | K results by adjoining an nth root
if and only if L'| K is a cyclic Galois extension.

Lemma 6.10.4 (Pure equations). Let n > 1 and K be a field with char(K) 4+ n. Let

ae K*, and L € K be the splitting field of X™ —a over K.

1. L contains a primitive nth root of unity (.
2. Ifbe L is a root of X" —a, then L = K(b,().
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3. L|K and L| K(C) are Galois extensions.
4. G(L | K(C)) is isomorphic to a subgroup of Z,; it is isomorphic to Z, if X" —a is
irreducible in K(C)[X].

Proof. (1): no root of X" —a is a root of (X" —a)’ = nX"!, so has n pairwise distinct
roots by, ...,b, € L (Lemma 3.3.13). Then b;/b; are n pairwise distinct roots of unity. Thus,
L contains the nth cyclotomic field over K.

(2): b,¢b, b, ..., " 1b are pairwise distinct roots of X™ —a, so equal by, ...,b, above.
Then L = K (b1, ..., by) = K (b, ().

(3): X™ —a is separabel (having n roots), so L | K (clearly, finite) is Galois by Artin.
Then also L | K(¢) is Galois by Lemma 6.7.4.

(4): every ¢ € G(L | K(¢)) maps b to (kb for some k, < n; as L = K(¢)(b) this
determines ¢ (Remark 6.3.12). Thus, ¢ = k, defines a group monomorphism into Z,.
If X" - a is irreducible in K(¢)[X], the action of G(L | K({)) on the roots is transitive

(Remark 6.7.10 (3)), i.e., this monomorphism is surjective. O

Proof of = in Theorem 6.10.3. Assume L = K(b) with a :=b" € K and ( € K for an n-th
root of unity ¢. Apply Lemma 6.10.4: by (2), L is the splitting field of X" —a, L | K is
Galois by (3), and the Galois group is cyclic by (4) (and Corollary 5.3.23). O

For the case K = Q, we can additionally describe G(L | K). Recall Exercise 2.6.5.

Proposition 6.10.5. Let n > 1,a € Q and assume f = X" —a € Q[X] is irreducible in
Q(¢n)[X]. Let ©: 7 = Aut(Z,) be given by ®(k)(Z) := kx for all k € 2, % € Z,,. Then

G(f,Q) 2 Z, % L.

Proof. Let L < C be the splitting field of f over Q. Then (, € L. The roots are
b, Cub, ..., tb for some b e L. Let ¢ € G(f,Q) = G(L | Q). Then ¢((,) is a primitive
nth root of unity, ¢((,) = Che for some {, < n, coprime to n. Using the notation from the
previous proof, we define the desired isomorphism ¥ by

U(p):= (l;;@,ll,).

Then ¥ is injective: (k,,¢—¢) determine the values of ¢ on the roots. Surjectivity
follows using Artin, the degree formula and the lemma plus Theorem 6.9.8:

G(f,Q)=[L:Q]=[L:Q(¢)][Q(¢) : Q] = Zn| - |Z7).
To show ¥ is a homomorphism, let ¢, 9 € G(L|Q); then

P(1(5)) = 9(Cab) = P(Ca) e p(b) = G Greb = G eb,

P((G)) = p(Ga) = P

Thus, W(po1) = (kwgcp + k«m&o«%) - (/;;@ + (I)(Eso)(l_%)jso Zw) =U(p)- V(). 0
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Remark 6.10.6. Let K be a field, a € K and p prime. Then X? —a € K[X] is irreducible
if and only if it has no root in K.

Proof. = is clear. <: assume g | X?—a for some monic g € K[ X] of degree 0 < d < p. Write
XP—a=(X-ap) (X -a,) with a; € K and assume g = (X —a1)-(X - ay). As g has
coefficients in K we have b:= ay--aq € K. As of = a we have b = a?. By Bézout, 1 = zd+yp
for certain x,y € Z. Then a = a®@a¥? = bP*a¥?, so XP — a has root b?aV¥ € K. O

The following states that so-called characters of G in K are linearly independent.

Lemma 6.10.7 (Artin). Let n > 0, K a field, G a group, X1,...,xXn : G = K* pairwise
distinct group homomorphisms, and aq, ...,a, € K not all 0. Then there is g € G such that

ale(g) +oeet CLan(g) 0.

Proof. Otherwise there is a minimal n > 0 such that this fails. Then n # 1 since a;x1(1g) =
a; # 0. Let g € G. Choose ¢’ € G with x1(g') # xn(g’). Then ¥, a;,x:(g) = 0 implies
Yiaixn(9)xi(g) = 0. Further, 3%, aixi(9'g) = ¥, aixi(9')xi(g) = 0. Subtracting gives

Y ai(xi(9") = xn(9))xi(9) = Ti5' ai(xi(9") = xn(9"))xi(9).

As g is arbitrary, and n minimal, all a;(x;(g") = x(g")) = 0. But (x1(g9') — xn(g’)) #0, so
a; =0. But then ¥, a;x;(g) =0 for all g € G, so again by minimality of n, all a; =0. O

Proof of < in Theorem 6.10.5. Let ¢ € K be a primitive nth root of unity. Let ¢ generate
G :=G(L| K). Since |G| =n by Artin, id, ¢, ..., "1 lists G. Note xj = ¢*1L* for k <n
are pairwise distinct group homomorphisms from L* into L*. By Artin’s lemma above,
there is 2 € L* such that b:= Y725 (*xx(z) # 0. Then, as ( is fixed by ¢ and ¢"(x) = z,

(D) = p(x) + C*(x) + -+ (2" N (x) + ("l (x) = MO

Thus p(b") = (7" = b", so a:=b" is fixed by G(L | K'). Thus, a € K by Theorem 6.7.6.
We are left to show L = K(b). By the degree formula, it suffices to show [K(b) : K]
has degree > n. By Corollary 6.8.2 (1), K(b) | K is Galois, so [K(b) : K] = |G(K(b) : K)|
by Artin. Hence, it suffices to find n pairwise distinct K-automorphisms of K (b).
Easy: for k <n we have ©*(b) = (7*b and, as b # 0, these values are pairwise distinct;
hence, p*1 K (b) are pairwise distinct; they take values in K (b) by Lemma 6.7.4. O

6.11 Radical extensions

Definition 6.11.1. A field extension L | K is a radical extension if there are r > 0 and
Lo=KcLy<-cL,=Lsuch that L;; | L; results by adjunction of a root for all i < r.
f e K[X] is solvable with radicals (over K ) if f splits in some radical extension of K.

Intuitively, this means the roots of f can be computed from the coefficients using field
operations and n-th roots for various n > 1.
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Examples 6.11.2.

1. By Theorem 6.1.5, every constructible z € C is contained in a radical extension of Q,
namely one obtained by successive adjunctions of square roots.

2. Lemma 3.5.11 shows, if char(K') # 2, then a quadratic f € K[X] splits in K (y/Dy).

3. Cardano’s formulas (Proposition 3.5.15 and Remark 3.5.14) show that every cubic
f € Q[X] is solvable by radicals. In particular, f = X3 +aX?+be Q[X] splits in Ly:

LO = Q c Ll = Lo(Cg) c LQ = L1(5) c Lg = LQ(ZL’) c L4 = Lg(y),
where Cg’ =1e¢ Lo, 6% = —Df/27 € Ll, x3 = ((5— b)/2 € Lg, y3 = ((5+b)/2 € L3.
The following is the reason why solvable groups are called ‘solvable’.

Theorem 6.11.3. Let K be a field with char(K) =0 and f € K[X]. Then f is solvable
with radicals if and only if G(f, K) is solvable.

Of course, we intend to apply Galois theory. A difficulty is that radical extensions can
be non-Galois, even if all steps L;;1 | L; are Galois.

Example 6.11.4. Q ¢ Q(v2) ¢ Q(v/2) is a radical extension with Galois steps but

Q((‘/ﬁ) | Q is not Galois as it does not contain the complex roots +iv/2 of m%i =X4-2.

Lemma 6.11.5. Assume Lo= K € Ly €€ L, = L are fields with char(K) =0 such that
Li1 | Ly results by adjunction of a root for all i <r. Then there exist m € N such that for
all multiples n € N of m there exist s € N and fields

KcLjcLic--cLj

such that L ¢ L} and L} | K is finite Galois, Ly = K(C) for a primitive nth root of unity
CeK, Lj| K and L., | L for all i< s are cyclic Galois extensions.

Proof. Induction on r. For r =0 set m := 1 and let n > 0 be given. For a primitive n-th
root of unity ¢ € K, and K(¢) | K is a cyclic Galois extension (Theorem 6.9.3).

Let r >0 and L;s be given. Let L, = L,_;(b) with b¥ € L,_;. For the first r — 1 many L;s
choose m’ by induction and set m := km’. Let n be a multiple of m. Then m is a multiple
of m’ so induction gives L{, ..., L, in particular, L, | K is Galois and contains b*.

s’

Write G := G(L/, | K') and define

f = Mpea (XF = @(04)).

Then f e L,[X]. But o(f)=fforallpe G, so fe(L,)[X]=K[X] (Theorem 6.7.6).
By Artin, L/, is the splitting field of some g € K[X]. Let L’ be the splitting field of fg
over K, so L' | K is finite Galois by Artin. Then g splits over L', so L', < L'. As f(b) =0,
also be L' and hence L, = L,_;(b) c L’,(b) c L.

But L' is a radical extension of L,: successively adjoin the roots of f. These are kth
roots of certain ¢(b¥) € L!,. Since L, ¢ L, contains a primitive nth root of unity ¢, it
contains also a primitive kth root of unity, namely ("% (note k | n). Thus, each such
adjoinment produces a cyclic Galois extension by Theorem 6.10.3. O



CHAPTER 6. FIELD THEORY 175

Proof of Theorem 6.11.5. =: given a radical extension L | K where f splits, choose K <
L{c--c L= L"as in the lemma. By the main theorem,

(dpy = G(L' | L)< G(L' | L)< < G(L'| Lh) @ G(L' | K).

Moreover, for i < s, G(L' | L})/G(L" | L,,) = G(L},, | L}) is cyclic, so abelian. Also
G(L'|K)]G(L"| Lj) 2 G(Ly | K) = G(K(C) | K) is abelian by Theorem 6.9.3.

Thus, G(L' | K) is solvable (Theorem 5.8.15). Let L € L’ be the splitting field of f over
K. Then L | K is Galois by Artin. By the main theorem G(L' | L) < G(L'| K) and

G(L|K)=G(L' | K)/G(L'| L).

But factors of solvable groups are solvable (Lemma 5.8.13).

<: let G(f,K) =G(L | K) for L ¢ K the splitting field of f. Choose intermediate
fields K = My, My, ..., M, of L | K according to Corollary 6.8.2 (3).

Let n:=[L: K] and ¢ be a primitive nth root of unity. By Artin, M is the splitting
field of some f € K[X] over K. Then M;(() is the splitting field of (X" -1)f over M, = K,
so M1(¢) | K is Galois, so M;(¢) | K(¢) is Galois (Lemma 6.7.4).

Further, (M) = M; for every o € G(M1(¢) | K(¢)) € G(M1(¢) | K) (Lemma 6.7.4),
e, pIM; e G(M; | K). Thus, ¢ — ¢1M; is a group homomorphism from G(M;(¢) | K(¢))
into G(M; | K). It is injective: if ¢, 1) agree on M;, then also on M;(¢) (both fix ().

Thus, G(M1(¢) | K(¢)) is isomorphic to a subgroup of G(M; | K). But py := [M; :
K] =|G(M; | K)| is prime, so |G(My(¢) [ K(¢))| = [Mi(¢) : K(¢)] is py or 1.

Repeating this argument,

Mo = K € K(C) € Mi(¢) € -+ € My(C) = L(¢)

with M;(¢) | M;_1(¢) Galois of prime degree p; := [M; : M; 1] or 1. Consider an i with
M;(¢) +# M;—1(¢). By Artin, G(M;(¢) | M;-1(¢)) has order p;, so is cyclic. As p; | n, M;_1(¢)
contains a primitive p;th root of unity (namely, ¢"/?). By Theorem 6.10.3, M;(¢) | M;_1(¢)
results by adjoining a p;th root.

Since also the first step K(¢) | K results by adjoining a root, L(¢) | K is a radical
extension. Since f splits in L, it splits in L((). O

6.11.1 The Abel-Ruffini theorem

Recall Examples 6.11.2. The Mitternachtsformel is general in the sense that it is a sin-
gle formula where we plug the coefficients of a given quadratic polynomial to find roots.
Similarly, we saw general formulas for degree 3 and Cardano’s school also found general
formulas for degree 4. Other degrees cannot be handled this way:

Theorem 6.11.6 (Abel-Ruffini). Let n > 1 and Sy, ..., S, be variables and K be a field of
characteristic 0. The general degree n polynomial over K

Fom XT = 85X 4 X ey (<1)S, € K(Sh, ..., Su)[X]

1s solvable with radicals over K if and only if n <5.
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Proof. Let L be the splitting field of f over K(Si,...,S,). Then L | Lg:= K(S1,...,.S,) is
Galois by Artin (note f is separable since char(K(Si,...,5,)) =0). Let z1,...,x, € L be
the roots of f. Then L = K(xy,...,2,) because S; = s,,;(x1, ..., x,) by Vieta’s formula.

By Theorem 6.11.3 and Example 5.8.10 it suffices to show G(L | Ly) = S,,. By Propo-
sition 6.7.22 is suffices to show G(L | Lo) ¥ G(M | My) where M = K(Xy,...,X,,) and
My = K(Sp1s -y Snn). By Theorem 3.7.7, Ly = M via the K-homomorphism ¢ that maps
Si to s,;. We are left to show that ¢! extends to an isomorphism from M onto L.

We verify this for the homomorphism v : M — L determined by X; — x;. Since

D(8n) = Sni(T1; e 80) = Si = 97 (800),
1 extends ¢!, For surjectivity, note M is the splitting field of
(X = X1) (X =X,)= X" =5, 1 X" oot (=1) "5 = 0(f).
over My. Thus, ¢ (M) c L is a splitting field of 1)(¢(f)) = f over Ly. Thus, (M) =L. O

Can one find ‘special’ formulas? For each degree 5 equation an own one? No:

Corollary 6.11.7. Let f € Q[X] be irreducible of degree 5 and assume f has exactly 3
roots in R. Then f is not solvable with radicals over Q.

Proof. By Remark 6.7.10, ¢ — ¢* is a group monomorphism from G := G(f,Q) into Ss.
We claim it is surjective. We show that the ¢* generate Ss.

By Remark 6.7.10 (4), 5 ||G|. By Cauchy’s theorem 5.12.1, G contains an element ¢ of
order 5. Then ¢* € S5 has order 5, so must be a 5-cycle: write ¢* as a product of disjoint
cycles by Theorem 5.2.7 and use Example 5.3.14 (4). We can assume @* = (12345),
enumerating the 5 complex roots of f accordingly.

Letting ¢ € G be complex conjugation, 1* is a transposition, namely (z7) if the 2 roots
in C\ R are the ith and the jth. By Exercise 5.3.6, (¢*,¢*) = Ss. O

Example 6.11.8. f:= X°-4X +2¢eQ[X] cannot be
solved with radicals over Q.

Indeed, f is irreducible by Eisenstein and has exactly
3 real roots.
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