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Menschen, die von der Algebra nichts wissen, können sich auch nicht die wun-
derbaren Dinge vorstellen, zu denen man mit Hilfe der genannten Wissenschaft
gelangen kann.

Gottfried Wilhelm Leibniz

They that are ignorant of Algebra cannot imagine the wonders in this kind are
to be done by it.

John Locke
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Preface

History

This course covers classical algebra as the theory of solving polynomial equations, a theory
that found its completion in the 19th century. Here, we give a brief historical overview.

An early and famous example is X2 = 2 for the length
√
2 of the diagonal in the unit

square. A Babylonian clay tablet dating c.1700 BCE gives a 6 digit approximation of
√
2.

The discovery that
√
2 is not rational is sometimes but uncertainly credited to Hippasus

(c.530- c.450 BCE). This shattered the numerological esoterics of pythagorean sects, and
legend has it that Hippasus was punished by the gods (read: pythagoreans) to drown.

Irrational numbers were hard to conceptualize by the Greeks, dubbed alogos, and later
‘irrational’ in Euclid’s Elements (c.300 BCE). This may be the most influential textbook
ever written. It established the axiomatic method itself and carried it out for geometry. It
also contains a basic development of number theory and proves the infinitude of primes.

Diophantus (c.250 BCE) was the first to accept positive rationals as numbers. His
book Arithmetica introduced the notation of variables and showed how to solve 130 specific
quadratic equations in several variables over the rationals or the integers – the latter being
known today as Diophantine equations. He rejected, however, negative numbers. These
first appeared in the Chinese anonymous book Nine Chapters on the Mathematical Art
(c.100 CE) and Liu Hui (c.350 CE) explained how to compute with them.

The first systematic approach treating equations as the objects of study was al-Kitabal-
Mukhtasar fi Hisab al-Jabr wal-Muqbalah (The Compendious Book on Calculation by Com-
pletion and Balancing) by the polymath al-Khwarizmi (c.780-c.850). Even the word ‘alge-
bra’ stems from this book – al-Jabr, originally meaning bone-setting. Its topic is how to find
positive solutions to quadratic equations. General formulas had been found already by the
Indian mathematician Brahmagupta (c.598-c.668) in the book Brahma-sphuta-siddhanta
(Correctly Established Doctrine of Brahma), notably using negative numbers which were
absent from al-Khwarizmi’s work. But already his successor, “the Egyptian calculator”
Abu Kamil (c.850-c.930) became the first mathematician to accept both negative and ir-
rational numbers. The first proof of the fundamental theorem of number theory (prime
factorization) also stems from the Golden Age of Islam, and is due to al-Farisi (1267-1319)
in his book Tadhkira al-ahbab fi bayan al-tahabb (Memorandum for Friends on the Proof
of Amicability), completing the steps taken in Euclid’s Elements.

The Indo-Arabic decimal notation was introduced to Europe, replacing the cumber-

iv
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some Roman notation, by Fibonacci (c.1170-c.1245) in his book Liber Abaci (The book of
Calculations), following Abu-Kamil. The book described the growth of rabbit populations
by what became known as the Fibbonaci sequence – known in India since the 6th century.

In Europe, negative numbers were first used in the book Ars magna of the Italian
polymath Cardano (1501-1576). He was a provocative, irascible gambler, chronically short
of money, who said to despise religion and ended up jailed by the inquisition for heresy.
Ars magna contained formulas solving cubic and quartic equations, namely expressions
built from the coefficients by arithmetical operations, divisions and roots. Formulas for
the quartic are due to his scholar Ferrari (1522-1565). Formulas for (a special case of)
the cubic are due to del Ferro (1465-1526) who kept them secret in order to maintain
advantage in public challenges lecturers posed each other at the time in order to win over
or defend their positions. On his deathbed he passed them to his scholar Fiore who went
on to challenge Tartaglia (the stammerer, c.1500-1557). Tartaglia won, figuring out the
formulas himself. He revealed them in the form of a cryptic poem to Cardano who had
pressured him with insults and sworn an oath of secrecy. After finding dead del Ferro’s
notebook, Cardano decided to publish them – and enraged Tartaglia.1

The formulas required computations with complex numbers, for Cardano a “mental
torture”. The imaginary unit i got its derogatively meant name from Descartes (1637).
Still in 1702, Leibniz called i a “feine und wunderbare Zuflucht des menschlichen Geistes,
beinahe ein Zwitterwesen zwischen Sein und Nichtsein.” Why the trouble? The first to
give calculation rules for complex numbers was Bombelli (1526-1572), crucially considering
them as neither negative nor positive – they cannot be organized on an line compatibly with
the arithmetical operations. Now, this is a conceptual leap: numbers are often vaguely
thought to represent ‘magnitudes’ or ‘quantities’. E.g., the opening sentence of Euler’s
book Algebra (1770) reads “Endlich wird alles dasjenige eine Größe genennt, welches einer
Vermehrung oder Verminderung fähig ist, oder wozu sich noch etwas hinzusetzen oder
davon wegnehmen läßt”. Whatever this means, if anything at all, it seems to imply a
linear order since for any two distinct ‘quantities’ one is smaller than the other.

Number theory gained unlikely momentum from a lawyer, namely Fermat (1607-1665).
He did, however, not prove his insights – famous is Fermat’s Last Theorem, annotated
around 1637 at the margin of Diophantus’ Arithmetica, and finally proved 1994 by Wiles.
Fermat’s work was continued by Euler (1707-1783). The first rigorous textbook on number
theory was Disquisitiones Arithmeticae published 1801 by Gauß (1777-1855). This work
also contains Gauß’ law of quadratic reciprocity, a suprising result that keeps facinating
mathematicians through the centuries – by today more than 300 proofs appeared.2

Another lawyer, d’Alembert, stated the fundamental theorem of algebra in in 1746: all
reasonable polynomial equations in one variable have complex solutions. Gauß corrected
an error and gave an own proof in 1799, also incomplete, later giving several others. The
first complete proof appeared 1813 by a mysterious amateur, named Argand – mysterious

1R. W. Feldmann Jr., The Cardano-Tartaglia dispute. The Mathematics Teacher 54 (3): 160-163, 1961.
2https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html

https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html
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because not much is known about him besides his surname.3

A central question that eluded all efforts for centuries was to find formulas a la Cardano
to solve quintic equations. Gauß conjectured, in the Disquisitiones, that such formulas
might not exist. 1799 appeared Ruffini’s book Teoria Generale delle Equazioni, in cui si
dimostra impossibile la soluzione algebraica delle equazioni generali di grado superiore al
quarto. The proof was largely ignored at the time (Cauchy being an exception), probably
due to its length (> 500 pages) and weird methods - today named group theory. Ruffini’s
proof was incomplete. A complete proof stems from a shy, modest teenager, named Abel
(1802-1829) and later also the “Mozart of mathematics” (Klein). He published Mémoire
sur les équations algébriques ou on démontre l’impossibilité de la résolution de l’équation
générale du cinquiéme degré 1824 at own costs, condensed to 6 pages to save money. Gauß
received a copy – and ignored it like everybody else. Abel died at age 26 from tuberculosis,
in abject poverty, buried under the debts of his alcoholic parents.

The Abel-Ruffini theorem states that there are no formulas a la Cardano that work
generally for all quintic equations. Might every quintic equation be solvable by formulas
specially designed for it? No. Concrete counterexamples came from another teenager,
namely Galois (1811-1832), not shy at all but a french republican revolutionary who died
at the age of 20 in a mysterious duel. His paper Mémoire sur les conditions de résolubilité
des équations par radicaux revolutionized algebra. It was first rejected as “incomprehen-
sible” (Poisson), published posthumously 1843 by Liouville, and only slowly understood
by the community. The revolutionary insight was that the existence of solving formulas
is determined by a property of the Galois group: those permutations of the roots of the
given polynomial that preserve all polynomial equations satisfied by these roots. By lack
of fantasy, this group property is called solvability.

People started to develop group theory. Poincaré’s statement “Les mathématiques
ne sont qu’une histoire des groupes” from 1881 underlines the enthusiam continuing all
through the 20th century. Feit and Thompson proved 1963 that every finite group of odd
order is solvable; the paper has more than 250 pages. The enormous theorem classifies
all finite so-called simple groups - in some sense, the building blocks of all finite groups.
The proof is ≈ 15000 pages long and scattered in hundreds of papers by about 100 au-
thors, mainly from the 2nd half of the 20th century. The “proof has never been written
down in its entirety, may never be written down, and as presently envisaged would not be
comprehensible to any single individual.” (E. B. Davies)

The 19th century also found answers to ancient Greek questions on ruler and compass
constructions. Wantzel (1814-1848) – also french and dying young and unrecognized –
proved 1837 the impossibility of trisecting angles and doubling cubes, working through
the nights “faisant alternativement abus de café et d’opium” (Saint-Venan). In 1882,
Lindemann proved that π is not a solution of any rational polynomial equation and, thus,
squaring the circle is impossible.

At the beginning of the 19th century new mysterious objects entered mathematical
practice with Newton and Leibniz’ calculus: infinitessimals, supposed to behave like pos-

3https://mathshistory.st-andrews.ac.uk/Biographies/Argand/

https://mathshistory.st-andrews.ac.uk/Biographies/Argand/
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itive reals but being smaller than all 1/2,1/3, ... Their geometric siblings indivisibles had
been used already by Archimedes (c.287-212 BCE) to calculate volumes. The Jesuate
Cavalieri (1598-1647) and others elaborated this method until the Jesuites, for some rea-
son, deemed indivisibles dangerous and banned talk about them in 1632.4 Dangerous or
not, infinitessimals lacked a definition. E.g., Abel said 1826 “the most important parts
of mathematics stand without foundation. It is true that most of it is valid, but that is
very surprising.” Cauchy and Weierstraß re-built calculus without infinitessimals, as it is
still taught today. Only much later in the 1960s, A. Robinson defined the hyperreals and
developed calculus rigorously just as originally envisioned.

This required basic methods of mathematical logic whose development was pushed
by Hilbert (1862-1943) during the so-called foundational crisis of mathematics. At the
time mathematics gained new levels of abstraction following Galois’ algebra and Cantor’s
(1845-1918) set theory. Paradoxes appeared and called for more rigor. Modern logic
had already been set up in an unreadable notation called Begriffsschrift 1879 by Frege
(1848-1925). He wanted to know what the natural numbers are and why 1 + 1 = 2 but
nobody paid attention at his time. Contrarily, the businessman and influential algebraist
Kronecker (1823-1891) said “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
ist Menschenwerk” and opposed Cantor’s infinities. He was sided by “the living brain of
the rational sciences”, the polymath Poincaré (1854-1912) who wrote in 1908 “Il n’y a
pas d’infinie actuel; les Cantoriens l’ont oublié, et ils sont tombés dans la contradiction.”
Cantor suffered from biploar disorder, severed ties with his disinterested or openly hostile
mathematical contemporaries and, himself deeply religious, wasted his time with worries
of catholic clerics that his discoveries might be a vessel for pantheism.5

Such were the foreshocks of the foundational crisis. It was mainly fought between
Hilbert’s formalism and Brower’s (1881-1966)) intuitionism which, in particular, rejected
non-constructive existence proofs – at the time a wide-spread source of uneasiness. E.g.,
Lindemann, Hilbert’s thesis advisor, found his (non-constructive) proof of the Basis Theo-
rem “unheimlich”, and Gordan said first “Das ist keine Mathematik; das ist Theologie” but
later conceded “Ich habe mich davon überzeugt, daß die Theologie auch nützlich sein kann.”
In Hilbert’s Göttingen, the “mecca of mathematics”, the new abstract, axiomatic approach
to algebra was developed by Gordan’s student Noether (1882-1935), the first women joining
a faculty with the support of Hilbert against sexist norms: “Eine Fakultät ist doch keine
Badeanstalt.” In 1921, E. Artin (1898-1961) nicknamed “Ma” (for Mathematik), arrived
in Göttingen. He and Noether are considered the founders of modern algebra.

The tone during the crisis sharpened 1921 with an article of Hilbert’s student Weyl
(1885-1955) who had temporarily changed camps. In Hilbert’s words the intuitionists
want “eine Verbotsdiktatur à la Kronecker errichten. Dies heißt aber unsere Wissenschaft
zerstückeln und verstümmeln” and sought a provably consistent axiomatization, like Eu-
clid’s of geometry, but of the whole of mathematics including Cantor’s infinities: “Aus dem

4Slava Gerovitch, Infinitesimal : How a Dangerous Mathematical Theory Shaped the Modern World:
A Book Review, in Notices of the AMS 63 (5): 571–574, 2016.

5J. W. Dauben, Georg Cantor and Pope Leo XIII: Mathematics, Theology, and the Infinite Dauben,
Journal of the History of Ideas 38 (1): 85–108,1977.
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Paradies, das Cantor uns geschaffen hat, soll uns niemand vertreiben können”. Hilbert’s
ambitious program was proved impossible 1931 by Gödel (1906-1978), chronically sick,
paranoid and according to his friend Einstein “the greatest logician since Ariostotle”.

Intuitionism found a degenerate heir in the national socialist “Deutsche Mathematik”
of Bieberach, Teichmüller and other nazis. At the university in Berlin, Bieberach was
nicknamed “Großinquisitor” for his activity in antisemite persecutions, and, in Göttingen,
Teichmüller organized nazi boycotts of Landau’s analysis courses. As part of the “Säube-
rung der Hochschulen von Gelehrten” Noether, a pacifist and former USPD member, got
suspended “bis zur endgültigen Entscheidung” (Arbeiterzeitung 26.4.1933) and left to the
US in 1933. Artin, then in Hamburg, fled to the US 1937 – while “arisch” his wife was
a “Mischling ersten Grades” and he had made no secret about his distaste for the nazis.
Asked by Kultusminister Rust (considered an idiot even among his nazi comrades) whether
his institute suffered “unter dem Weggang der Juden und Judenfreunde”, Hilbert replied
“Jelitten? Dat hat nich jelitten, Herr Minister. Dat jibt es doch janich mehr!”.

Luckily, Hilbert won the long run. Based on lectures of Noether and Artin “the most
influential text of algebra of the twentieth century” was van der Waerden’sModerne Algebra
(1930). It established for good the abstract, axiomatic approach to algebra via groups, rings
and fields and “dramatically changed the way algebra is now taught” (Mac Lane).

On an even larger scale, 20th century mathematics was heavily influenced by Hilbert’s
23 problems posed 1900 at the ICM in Paris – some unsolved to date. The 10th asked –
more than 2 millenia after Arithmetica – whether there exists an algorithm that decides the
solvability of Diophantine equations. The word ‘algorithm’ is coined after (the latin version
of) al-Khwarizmi’s name and was informal at the time. Church and Turing formalized the
concept in 1936, thereby establishing computer science. Matiyasevich answered “no” to
Hilbert’s 10th in 1975 (building on the work of Davis, Putnam and J. Robinson).

This course

This course covers most of the material mentioned in the historical survey above and is
written for readers with basic knowledge of linear algebra and analysis, like a typical 3rd
semester student. The material follows Fischer’s Lehrbuch der Algebra, a canon for german
Staatsexamen students, but gives an extra emphasis on number theory. These lecture notes
are much shorter mainly due to a concise writing style, and not lack of content.

The abstract axiomatic approach to algebra is now standard and this course makes
no exception. In Weyl’s words “We cannot help the feeling that certain mathematical
structures which have evolved through the combined efforts of the mathematical community
bear the stamp of a necessity not affected by the accidents of their historical birth.”

This course tries, however, a less standard presentation. We explain first why and then
how. Weyl still warned in 1939:

Important though the general concepts and propositions may be with which the
modern industrious passion for axiomatizing and generalizing has presented us,
in algebra perhaps more than anywhere else, nevertheless I am convinced that
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the special problems in all their complexity constitute the stock and core of
mathematics; and to master their difficulties requires on the whole the harder
labor.’

This is the motto of this course. Historically, the abstract concepts evolved from con-
crete problems as means to understand them. We claim that this is how they should be
taught. In slogan form: the art of mathematics is abstraction, not deduction. As an illus-
trating example, after the 1st world war a secretive, elitist group of french mathematicians
under the alias Bourbaki set out, in the words of its member Cartier (1997), “to submit all
mathematics to the scheme of Hilbert; what van der Waerden had done for algebra would
have to be done for the rest of mathematics.” He said “The misunderstanding was that
many people thought that it should be taught the way it was written in the books.[...] If
you consider it as a textbook, it’s a disaster.”

Schiller wrote to Goethe (1796) “wo es die Sache leidet, halte ich es immer für besser,
nicht mit dem Anfang anzufangen, der immer das schwerste und das leerste ist.”

Many courses take a merciless deductive top-down approach in the groups-rings-fields
structure. This is “leer” in that typical students lack non-trivial examples of these struc-
tures and can only see in the very end how the generality pays off. Good such books
counterbalance the general nonsense by extensive motivational discussions and/or arrays
of examples. However, Schiller suggests a development bottom-up, starting from familiar
structures and stepwise abstracting. This poses a didactical dilemma because it reverses
the logical structure. We thus have conflicting goals and leave it to the reader to judge
how well we manoeuvered the contradiction.

Exemplary models are M. Artin’s Algebra, or Borcherd’s online courses on elementary
number theory. We aim, however, at different material – visible from the fine-structured
table of contents. We make some brief comments concerning how we tried a bottom-up
approach. Often results are proved twice, with a second “more abstract proof” presented
once the appropriate portion of theory is at hand. We hope this helps appreciating that
and how the more abstract theory is indeed useful.

Chapter 1 gives set-theoretic constructions of N,Z,Q,R and C. This is non-canonical
and in this sense optional material that we think is valuable especially for ongoing school
teachers. The proper material starts in Chapter 2 with Z – as concrete as it can get. We
give special emphasis to applications in computer science: we explain central cryptographic
algorithms, namely RSA encryption, the Digital Signature Algorithm and also mention the
Diffie-Hellman protocol for key exchange and ElGama-encryption (Section 2.6.1 and 2.7.1).
More thoroughly, Sections 2.7.2 and 2.9.1 detail two famous algorithmically efficient prob-
abilistic primality tests, namely the Miller-Rabin test and the Solovay-Strassen test.

Polynomial rings are familiar from linear algebra. Chapter 3 gives material accessible
via direct combinatorial arguments and without ring theory. It puts some elementary
knowledge (e.g. polynomial division or discriminants) into the conceptually wider context
of algebraic field extensions. This aims to reveal the need for more theory. The chapter
also functions as a teaser by proving the fundamental theorem of algebra with only some
polynomial combinatorics assuming the existence of splitting fields (Chapter 6).
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Thus, abstract algebra starts quite late in Chapter 4 on rings. Here, our presentation
deviates most significantly from a more standard one – by turning it upside down. Having
seen quadratic number fields in Chapter 3, it starts with their rings of integers as first
examples of less well-behaved rings. This motivates the definition of factorial rings as
enjoying a good portion of the familiar divisibility theory. Principal ideal domains appear
as examples, easy in that arguments are just abstract versions of known ones. This makes
ideal theory well-motivated at the end of the chapter (often done in the beginning).

Chapter 5 on groups starts with symmetry groups in the plane, a concrete example
accessible with basic linear algebra. We then treat permutation groups as another concrete
example, also familiar from linear algera. We continue with three classes of groups that
are easily described: cyclic groups are accessible with divisibility theory in Z, finitely
generated free abelian groups are accessible with techniques familiar from linear algebra,
and finitely presentable groups are handled by direct computations. We define the latter
semantically instead of syntactically, thereby avoiding the usual definition based on normal
hulls. Normal subgroups are introduced afterwards, starting abstract group theory.

The crown of typical introductory algebra courses is Galois theory treated in Chapter 6
on fields. It starts with ruler and compass constructions as a motivating example. The
first theoretical steps elaborate preliminary material from Chapter 3 on algebraic extensions
and give quick and easy impossibility results for ruler and compass. We then pay back
our debt inherited from Chapter 3 and construct splitting fields and algebraic closures.
Back to more concrete structures we treat finite fields and describe Reed-Solomon error
correcting codes as an application in computer science (Section 6.5.1). The rest is devoted
to Galois theory, the most abstract part of this course. We treat many examples. This is
not easy and showcases our motto, Weyl’s warning.



Chapter 1

Logical foundations

In this chapter we recall some basic algebraic notions, characterize the natural numbers N
axiomatically and then construct Z,Q,R and C.

Set-theoretic notations

For sets X,Y we let X × Y denote the set of pairs (x, y) with x ∈ X,y ∈ Y . For n ∈ N we
write Xn ∶= X × ⋯ ×X (n times) for the set of n-tuples (x1, ..., xn) with x1, ..., xn ∈ X. A
(binary) relation f ⊆X × Y is a function or map if for all x ∈X there is at most one y ∈ Y
such that (x, y) ∈ f . Its domain is {x ∈X ∣ (x, y) ∈ f for some y ∈ Y }.

A function f is said to be from its domain D and into Y , symbolically f ∶ D → Y .
For x ∈ D we write f(x) for the unique y ∈ Y with (x, y) ∈ f and say f is defined on x.
If D is clear from context we often refer to f by x ↦ f(x). E.g., the usual addition
(x, y) ↦ x + y on the naturals N is the function + ∶ N2 → N which, as a set of pairs, equals
{((x, y), x + y) ∣ x, y ∈ N}; here we use infix notation and write x + y instead +(x, y).

For X ⊆D,Y0 ⊆ Y we write

f(X) ∶= {f(x) ∣ x ∈X}, f−1(Y0) ∶= {x ∈D ∣ f(x) ∈ Y0}.

The image of f is f(D). Similarly, for a binary function ○ ∶ X ×X → Y in infix notation
(i.e., x ○ y ∶= ○(x, y)) and for Z,Z ′ ⊆X we write

Z ○Z ′ ∶= {z ○ z′ ∣ z ∈ Z, z′ ∈ Z ′}.

For X ⊆ D, the restriction of f to X is g ∶= f↿X ∶= f ∩ (X × Y ) ∶ X → Y . Then f
extends g. f ∶ X → Y is injective if f(x) ≠ f(x′) for all x,x′ ∈ X with x ≠ x′. It is said to
be surjective or onto Y if its image is Y . It is bijective if it is both injective and surjective.
Then f−1 ∶= {(y, x) ∣ (x, y) ∈ f} ∶ Y → X is the inverse of f . A bijection from X onto X is
a permutation of X. E.g., the identity on X, namely x↦ x, i.e.,

idX ∶= {(x,x) ∣ x ∈X}.

If f ∶X → Y and g ∶ Y → Z, then the composition g○f ∶X → Z is the function x↦ g(f(x)),
i.e., g ○ f ∶= {(x, g(f(x))) ∣ x ∈X}.

1
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Exercise. f ∶X → Y is injective if and only if there exists g ∶ Y →X such that g ○f = idX .
f ∶X → Y is surjective if and only if there exists g ∶ Y →X such that f ○ g = idY .

R ⊆ X2 is reflexive if (x,x) ∈ R for all x ∈ X, and irreflexive if (x,x) /∈ R for all x ∈ X.
It is transitive if (x, y), (y, z) ∈ R implies (x, z) ∈ R for all x, y, z ∈ X. R is an equivalence
relation on X if it is reflexive, transitive and symmetric: (x, y) ∈ R implies (y, x) ∈ R for
all x, y ∈ R. Then the equivalence class of x is {y ∈ X ∣ (x, y) ∈ R}. The set of equivalence
classes partitions X, i.e., the classes are nonempty, pairwise disjoint and their union is X.

R is a partial order on X if it is irreflexive and transitive. It is a linear order if
additionally (x, y) ∈ R or (y, x) ∈ R or x = y for all x, y ∈ X. Typically linear orders are
denoted < with infix notation, i.e., we write x < y or y > x instead (x, y) ∈ <; then x ⩽ y
means x < y or x = y.

The 2nd statement in the exercise is (a version of) the axiom of choice in set theory. This
axiom was first formulated by Zermelo (1871-1953) who considered it unproblematic, even
‘logically true’. Nevertheless this axiom was a bone of contention during the foundational
crisis of mathematics – conceptually because it embodies a non-constructive existence
claim, and technically because it does have some counterintuitive consequences. It is
today commonly accepted. We shall occasionally use an equivalent statement, namely
Zorn’s lemma whose statement we recall here.

Let X be a set and R ⊆X2 a partial order on X. A chain is a linearly ordered subset,
i.e., a Y ⊆X such that R ∩ Y 2 is a linear order on Y . We call R inductive (on X) if every
chain Y ⊆ X has an upper bound, i.e., an x ∈ X such that (y, x) ∈ R or y = x for all y ∈ Y .
Call x ∈X maximal if (x,x′) ∉ R for all x′ ∈X.

Zorn’s Lemma. Inductive partial orders have maximal elements.

1.1 Basic algebraic notions

1.1.1 Monoids and groups

Definition 1.1.1. A monoid is a pair (G, ○) of a set G and a function ○ ∶ G2 → G that is
associative (i.e., (x○y)○z = x○(y ○z) for all x, y, z ∈ G) and such that there exists a neutral
element e ∈ G satisfying x = x ○ e = e ○ x. It is commutative if x ○ y = y ○ x for all x, y ∈ G.
(G, ○) is a group if every x ∈ G is invertible, i.e., x has an inverse x−1 ∈ G, i.e., x ○ x−1 =

x−1 ○ x = e. Commutative groups are also called abelian.

Remark 1.1.2. Let (G, ○) be a monoid and x, y ∈ G.

1. There cannot be another neutral element e′ ∈ G (since then e = e ○ e′ = e′).

2. The notation x−1 is justified because if y is another inverse of x then y = y ○ e =
y ○ (x ○ x−1) = (y ○ x) ○ x−1 = e ○ x−1 = x−1.

3. In particular, (x−1)−1 = x for all x ∈ G because x is an inverse of x−1.
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4. If for every x ∈ G there is y ∈ G with yx = e (omitting ○), then y is an inverse of x:
yx = e implies (yx)y = y; multiply from the left with z such that zy = e gives xy = e.

5. (x ○ y)−1 = y−1 ○ x−1, and similarly (y−1x−1)(xy) = e, because

(xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e.

Exercise 1.1.3. A group (G, ○) has cancellation: if x ○ z = y ○ z or z ○x = z ○ y, then x = y.
For all z ∈ G the left and right translation x↦ z ○ x and x↦ x ○ z are permutations of G.

Example 1.1.4. In this chapter we are going to explain what N,Q,Z,R,C are and how
+, ⋅ are defined on them. This gives commutative monoids in all cases. With +, the sets
Z,R,C are abelian groups but not with ⋅ because 0 does not have a multiplicative inverse
(and in Z only ±1 have); (Q ∖ {0}, ⋅), (R ∖ {0}, ⋅), (C ∖ {0}, ⋅) are abelian groups.

Example 1.1.5. For n > 0 let Rn×n be the set of n×n matrices with entries in R. With ma-
trix addition + it is an abelian group, with matrix multiplication ⋅ it is a non-commutative
monoid and not a group if n > 1. The set of invertible matrices GL(n,R) ⊆ Rn×n is a group
with ⋅: the general linear group over R; it is non-abelian if n > 1.

Definition 1.1.6. Let (G, ○) be a group. A set ∅ ≠ U ⊆ G is a subgroup of G if e ∈ G and
for all x, y ∈ U : x ○ y ∈ U and x−1 ∈ U .

Remark 1.1.7. Equivalently, x ○ y−1 ∈ U for all x, y ∈ U .
Clearly, this is implied by U being a subgroup; conversely, e = x ○ x−1 ∈ U and x, y ∈ U

implies y−1 = e ○ y−1 ∈ U , so also x ○ y = x ○ (y−1)−1 ∈ U .
Note that then (U, ○) is a group with the same neutral element – more, precisely we

should use the restriction ○ ↿ U ×U .

Definition 1.1.8. Let (G, ○), (H,∗) be monoids (groups) with neutral elements eG, eH .
A monoid (group) homomorphism from (G, ○) to (H,∗) is a function φ ∶ G → H that
preserves ○ and e, i.e., for all x, y ∈ G:

φ(x ○ y) = φ(x) ∗ φ(y), φ(eG) = eH .

The kernel of φ is
ker(φ) ∶= {x ∈ G ∣ φ(x) = eH}.

If φ is injective (surjective, bijective), then it is a monomorphism (epimorphism, isomor-
phism). (G, ○) and (H,∗) are isomorphic, symbolically (G, ○) ≅ (H,∗) if there exists an
isomorphism φ ∶ G→H; in case, they are isomorphic via φ.

An endomorphism of (G, ○) is a homomorphism from (G, ○) to itself. Aut(G, ○) is the
set of automorphisms of (G, ○), i.e., bijective endomorphisms.

Remark 1.1.9.

1. If ψ is a another monoid (group) homomorphism from (H,∗) to (H ′,∗′), then ψ ○φ
is a homomorphism from (G, ○) to (H ′,∗′).



CHAPTER 1. LOGICAL FOUNDATIONS 4

2. If (H,∗) is a group, preservation of e is automatic: multiply both sides of φ(eG) =
φ(eG ○ eG) = φ(eG) ∗ φ(eG) by φ(eG)−1 (inverse in H), and get eH = φ(eG);

3. φ preserves ⋅−1 if defined: assume x ∈ G has an inverse x−1. Then φ(x−1) is an
inverse of φ(x) in (H,∗) because eH = φ(eG) = φ(x ○ x−1) = φ(x) ∗ φ(x−1); similarly,
eH = φ(x−1) ∗ φ(x).

4. If (G, ○), (H.∗) are groups, then φ is injective if and only if ker(φ) = {eG}.

Indeed, ⇒ is clear; ⇐∶ if φ(x) = φ(y), then eH = φ(x) ∗ φ(y)−1 = φ(x ○ y−1), so
x ○ y−1 ∈ ker(φ), so x ○ y−1 = eG, so x = y.

5. If (G, ○), (H.∗) are groups and U a subgroup of G, then φ(U) is a subgroup of H.

Indeed, let y, y′ ∈ φ(U), say, φ(x) = x′, φ(x′) = y′ with x,x′ ∈ U ; then x′ ○x−1 ∈ U and
y′ ∗ y−1 = φ(x′) ∗ φ(x)−1 = φ(x′ ○ x−1) ∈ φ(U).

6. If (G, ○), (H.∗) are groups and V a subgroup of (H,∗), then φ−1(V ) is a subgroup
of (G, ○). In particular, ker(φ) = φ−1({eH}) is a subgroup of (G, ○).

Indeed, if x,x′ ∈ U ∶= φ−1(V ), then x′○x−1 ∈ U because φ(x′○x−1) = φ(x′)∗φ(x)−1 ∈ V
as a subgroup of H.

Exercise 1.1.10 (Subgroup correspondence). Let (G, ○), (H,∗) be groups and φ ∶ G→H
a (group) epimorphism. Then U ↦ φ(U) is a bijection from the set of subgroups U of G
with ker(φ) ⊆ U onto the set of subgroups V of H; its inverse is V ↦ φ−1(V ).

Exercise 1.1.11. If φ ∶ G→H is a group epimorphism and G is abelian, then so is H.

Examples 1.1.12.

1. The map x↦ ex is a group isomorphism from (R,+) onto (R+, ⋅); here, R+ is the set
of positive reals.

2. Preservation of e is not automatic in monoids: the map x↦ [
x 0
0 0 ] from R into R2×2

preserves ⋅ but not 1.

3. The determinant for invertible matrices satisfies det(AB) = det(A)det(B). This
means that det ∶ GL(n,R) → (R ∖ {0}, ⋅) is a group homomorphism. Since inverses
are preserved, it follows that det(A−1) = 1/det(A). We have ker(det) = SL(n,R) ∶=
{A ∈ Rn×n ∣ det(A) = 1}; this is the special linear group, a subgroup of (GL(n,R), ⋅).

4. z ↦ ∣z∣ is a homomorphism from (C∖ {0}, ⋅) into (R+, ⋅); its kernel is the circle group
S1 ∶= {z ∈ C ∣ ∣z∣ = 1}, a subgroup of (C ∖ {0}, ⋅).

Notation: we usually write groups G multiplicatively or additively, namely ⋅ or + for ○. In
the former case we write 1 for e, and often omit ⋅, i.e., write xy instead x ⋅ y. In the latter
case we write −x instead x−1 and 0 for e; we also write x − y instead x + (−y).
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1.1.2 Rings and fields

Definition 1.1.13. A (unitary) ring is a triple (R,+, ⋅) where +, ⋅ ∶ R2 → R are called
addition and multiplication (of R) and are such that (R,+) is an abelian group (with
neutral element 0), and (R, ⋅) is a monoid (with neutral element 1) and for all x, y, z ∈ R

x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z), (x + y) ⋅ z = (x ⋅ z) + (y ⋅ z)

It is commutative if x ⋅ y = y ⋅ x for all x, y ∈ R.
A commutative ring (R,+, ⋅) is an integral domain if 0 ≠ 1 and there is no zero-divisor

in R, i.e., an x ∈ R ∖ {0} such that x ⋅ y = 0 for some y ∈ R ∖ {0}.
An integral domain (R,+, ⋅) is a field if every x ∈ R ∖ {0} has a multiplicative inverse.

Notation: we omit parentheses and ⋅ as usual: e.g., xy+xz is understood as (x ⋅y)+(x ⋅z).
To emphasize the ring (group or field) we sometimes write indices +R, ⋅R,0R,1R. But we
usually omit listing +, ⋅ and simply say R is a ring (group, field).

Remark 1.1.14. Let R be a ring. For all x, y ∈ R:

1. A zero-divisor as defined above is often called a left zero-divisor; but we shall be
interested in this concept only in commutative rings.

2. 0x = 0 because 0x = (0 + 0)x = 0x + 0x; similarly, x0 = 0.

3. −(−x) = x by Remark 1.1.2 (2).

4. (−x)y = −(xy) because 0 = 0y = (x + (−x))y = xy + (−x)y. Similarly, x(−y) = −(xy).

5. (−x)(−y) = xy because (−x)(−y)
(3)
= −(x(−y))

(3)
= −(−(xy))

(2)
= xy.

Lemma 1.1.15. Let R be a commutative ring with 0 ≠ 1. Then R is an integral domain
if and only if it has cancellation for ⋅, i.e., for all x, y, z ∈ R, z ≠ 0: xz = yz implies x = y.

Proof. ⇒: if xz = yz, then z(x − y) = 0; as z ≠ 0 is not a zero-divisor, x − y = 0, i.e., x = y.
⇐: if xz = 0 for z ≠ 0, then xz = 0 ⋅ z, so x = 0 by cancellation.

Definition 1.1.16. Let R be a ring. Then x ∈ R is a unit if it has a multiplicative inverse,
i.e., there is x−1 ∈ R such that x ⋅ x−1 = x−1 ⋅ x = 1. The set of units of R is denoted R×.

Examples 1.1.17.

1. If R is a ring with 1 = 0, then 1x = 0x = 0 for all x ∈ R, so R = {0}. This is the trivial
ring. It is commutative and not a field.

2. Q,R,C are fields. Z is an integral domain (hence the name) with Z× = {±1}.
3. The set C(R) of continuous functions from R to R is a commutative ring with +, ⋅

defined pointwise, i.e., for f, g ∈ C(R) the sum f + g is defined as the function
x↦ f(x) + g(x); the product f ⋅ g is defined analogously.
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4. Let n > 1 and V be an n-dimensional vector space over R. The set of endomorphisms
of V (linear functions from V to V ) is a non-commutative ring with addition defined
pointwise and ○ as multiplication. It is isomorphic (see Definition 1.1.21 below) to
Rn×n with the usual matrix operations +, ⋅; its units are (Rn×n)× = GL(n,R).

5. F2 ∶= {0,1} is a field with
+ 0 1
0 0 1
1 1 0

and
⋅ 0 1
0 0 0
1 0 1

; note 1 = −1.

Remark 1.1.18. Let R be a ring.

1. (R×, ⋅) is a group.

Indeed: 1 ∈ R× is clear, and x, y ∈ R× implies xy ∈ R× and x−1 ∈ R×: (xy)(y−1x−1) =
(y−1x−1)xy = 1, so xy ∈ R×; and x−1 ∈ R× because it has inverse x.

2. If x ∈ R×, then −x ∈ R× and (−x)−1 = −x−1 (by Remark 1.1.14 (4)).

3. No zero-divisor is a unit: if xy = 0 and x ∈ R×, then x−1xy = y = 0.

4. If R is commutative and finite, every x ∈ R∖{0} is a zero-divisor or a unit (exercise).

5. Thus, every finite integral domain is a field.

6. R is a field if and only if (R ∖ {0}, ⋅) is an abelian group (exercise).

Definition 1.1.19. Let R be a ring (field). A subset S ⊆ R is a subring (subfield) of R if
0,1 ∈ S and for all x, y ∈ S we have x + y ∈ S,−x ∈ S,xy ∈ S (and x−1 ∈ S if x ≠ 0).

Remark 1.1.20. Then S is a ring (field) with ⋅,+ the operations of R (restricted to S2).

Definition 1.1.21. Let R,S be rings (fields). A ring (field) homomorphism from R to S
is a function φ ∶ R → S that preserves +, ⋅ and 1, i.e., for all x, y ∈ R

φ(x +R y) = φ(x) +S φ(y), φ(x ⋅R y) = φ(x) ⋅S φ(y), φ(1R) = 1S.

The kernel of φ is
ker(φ) ∶= {x ∈ R ∣ φ(x) = 0S}.

Injective, surjective, bijective homomorphisms are again called mono-, epi-, isomorphisms,
and R,S are isomorphic, symbolically R ≅ S, if there exists an isomorphism φ ∶ R → S.

For R = S, homo-, isomorphisms are endo-, automorphisms of R; the set of automor-
phisms of R is denoted Aut(R).

Remark 1.1.22.

1. φ preserves 0, and − and ⋅−1 if defined (Remark 1.1.9). Hence, φ(R×) ⊆ S×.

2. If R is a field and S not trivial, then φ is injective. In particular, field homomorphisms
are injective.

Indeed: if φ(x) = φ(y), then 0S = φ(x)−Sφ(y) = φ(z) for z ∶= x−Ru. Hence φ(z) ∉ S×

(here we use 0S ≠ 1S), so z ∉ R× = R ∖ {0R}, i.e., z = 0R, so x = y.
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Exercise 1.1.23. Let φ ∶ R → S be a (ring, field) homomorphism.

1. If U is a subring (-field) of R, then φ(U) is a subring (-field) of S.

2. If V is a subring (-field) of S, then φ−1(V ) is a subring (-field) of R.

3. φ is injective if and only if ker(φ) = {0R}.

4. If ψ is homomorphism from S to S′, then ψ ○ φ is one from R to S′.

Exercise 1.1.24. Let R be a group, ring or field. The set of endomorphisms of R together
with composition (φ,ψ) ↦ φ ○ ψ is a monoid with neutral element idR. The invertible
elements are exactly the automorphisms of R. (Aut(R), ○) is a group.

Definition 1.1.25. An ordered field is a tuple (K,+, ⋅,<) such that (K,+, ⋅) is a field and
< a linear order on K such that for all x, y, z ∈K:

1. compatible with +: if x < y, then x + z < x + z;

2. compatible with ⋅: if x < y and 0 < z, then x ⋅ z < y ⋅ z.

K is archimedian if for all x ∈ K there is n ∈ N such that x < n; here, for n ∈ N we set
0 ∶= 0K and n + 1 ∶= n +K 1K .

Exercise 1.1.26. Let K be an ordered field and x, y ∈K.

1. If x ≠ 0, then 0 < x2. Hence 0 < 1 and x2 ≠ −1. Further, 0 < 1 < 2 < 3 < ....

2. If 0 < x < y, then 0 < y−1 < x−1.

3. < is dense: for all x, y ∈K with x < y there is z ∈K such that x < z < y.

Example 1.1.27. Q,R with the usual order < are archimedian odered fields. By Exer-
cise 1.1.26 (1) there is no linear order < on C that would make C an ordered field.

Remark 1.1.28 (Nonstandard analysis). Basic methods of mathematical logic allow to
extend R to a non-archimedian ordered field R∗ that is in a precise sense very similar to R.
In R∗ there are infinitessimals, elements ∆ such that 0 <∆ < 1/n for all n ∈ N.

1.2 Naturals

We assume that there is a triple (N, s,0) with N a set, 0 ∈ N and s ∶ N→ N a function such
that the Peano axioms are satisfied:

(P0) s is injective;

(P1) s(n) ≠ 0 for all n ∈ N;
(P2) (induction) every X ⊆ N that contains 0 and is s-closed, equals N.

That X is s-closed means s(n) ∈X for all n ∈X. We write 1 ∶= s(0),2 ∶= s(1), ...
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Remark 1.2.1. The elements of N are natural numbers. A proof of the existence of such
a triple is given in any introductory course of set theory. This can be reasonably explained
only in an axiomatic framework and is thus omitted here. To spark some curiosity:

0 ∶= {}, 1 ∶= {0} = {{}}, 2 ∶= {0,1} = {{},{{}}}, 3 ∶= {0,1,2} = {{},{{}},{{},{{}}}}, ...

We are not interested in what the triple exactly is because they all look the same:

Theorem 1.2.2 (Categoricity). If (N,0′, s′) satisfies the Peano axioms, then there is a
unique π ∶ N → N that preserves 0 and s, that is, π(0) = 0′ and π(s(n)) = s′(π(n)) for all
n ∈ N; this π is bijective.

Proof. Uniqueness: if π′ is another such map, consider X ∶= {n ∈ N ∣ π(n) = π′(n)}. Then
0 ∈ X and if n ∈ X then π(s(n) = s′(π(n)) = s′(π′(n)) = π′(s(n)), so s(n) ∈ X. By
induction, X = N. Thus π = π′.

Existence: call a set F ⊆ N ×N good if (0,0′) ∈ F and for all n ∈ N: if (n, a) ∈ F , then
(s(n), s′(a)) ∈ F . E.g., N×N is good. The intersection π of all good sets, is good - so π is
the smallest good set.

π is a function on N: let X be the set of n ∈ N such that (n, a) ∈ π for exactly one a ∈ N .
We prove X = N be induction. Note 0 ∈ X: if (0, a) ∈ π for a ≠ 0′, then deleting (0, a)
from π is good – contradiction to π being smallest. We show X is s-closed: let n ∈X, say
(n, a) ∈ π; then (s(n), s′(a)) ∈ π being good; as before (s(n), b) ∉ π for b ≠ s′(a).

π is as desired: for n ∈ N we have (n,π(n)) ∈ π, so (s(n), s′(π(n))) ∈ π as π is good;
this means π(s(n)) = s′(π(n)).

π is injective: let X be the set of n ∈ N such that π(n) ≠ π(m) for all m ∈ N ∖ {n}. We
claim 0 ∈ X. To see this, let Y ∶= {m ∈ N ∣ π(0) ≠ π(m)} ∪ {0}. Then 0 ∈ Y and if m ∈ Y ,
then π(s(m)) = s′(π(m)) ≠ 0′ = π(0) (with ≠ by (P2)), so s(m) ∈ Y . By induction, Y = N.
Thus, 0 ∈X. By induction, it suffices to show s(n) ∈X for n ∈X. Let

Z ∶= {m ∈ N ∣ π(m) ≠ π(s(n))} ∪ {s(n)}.

We prove Z = N by induction. Note 0 ∈ Z because π(0) = 0′ ≠ s′(π(n)) = π(s(n)) (with ≠
by (P2)). Assume m ∈ Z. If s(m) = s(n), then s(m) ∈ Z. Otherwise n ≠m, so π(n) ≠ π(m)
as n ∈X; then π(s(m)) = s′(π(m)) ≠ s′(π(n)) = π(s(n)) (with ≠ by (P0)), so s(m) ∈ Z.

π is surjective: the image of π contains 0′. If it contains n′, say π(n) = n′, then also
s′(n′) because π(s(n)) = s′(π(n)) = s′(n′). By induction (in N ′), the image equals N ′.

Exercise 1.2.3. For every n ∈ N ∖ {0} there is a unique m ∈ N with s(m) = n.

Lemma 1.2.4. There is a unique function + ∶ N2 → N such that n + 0 = n and n + s(m) =
s(n +m) for all n,m ∈ N. It is called addition (on N).

Proof. It suffices to show for every n ∈ N that there is a unique function fn ∶ N → N with
fn(0) = n and fn(s(m)) = s(fn(m)) for all n ∈ N. Then the union of the fn’s is a function
+ as desired. Any +′ as desired equals fn when the first argument is fixed to n, so +′ = +.

Let n ∈ N. Existence is proved as in Theorem 1.2.2. Uniqueness: if f ′ is another such
function, then fn(0) = f ′(0) and, if f(m) = f ′(m), then fn(s(m)) = s(fn(m)) = s(f ′(m)) =
f ′(s(m)); hence, f = f ′ by induction .
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Proposition 1.2.5 (Properties of addition). (N,+) is a commutative monoid with neutral
element 0. Further, for all n,m, k ∈ N:

(cancelling) n + k =m + k implies n =m.

Proof. Associativity: let X be the set of k such that n + (m + k) = (n +m) + k for all
n,m ∈ N. We show X = N by induction. Clearly, 0 ∈ X. If k ∈ X, then n + (m + s(k)) =
n + s(m + k) = s(n + (m + k)) = s((n +m) + k) = (n +m) + s(k),so s(k) ∈X.

Commutativity: let X be the set of n ∈ N such that n +m = m + n for all m ∈ N. To
see 0 ∈ X is suffices to show Y ∶= {m ∈ N ∣ 0 +m = m} equals N. But 0 ∈ Y and, if m ∈ Y ,
then 0+ s(m) = s(0+m) = s(m), so s(m) ∈ Y . We are left to show s(n) ∈X for n ∈X, i.e.,
Z ∶= {m ∈ N ∣ s(n) +m =m + s(n)} equals N. But 0 ∈ Z because 0 ∈X. If m ∈ Z, then

s(n) + s(m) = s(s(n) +m)
m∈Z
= s(m + s(n)) = s(s(m + n))

n∈X
= s(s(n +m))

= s(n + s(m))
n∈X
= s(s(m) + n) = s(m) + s(n).

0 is neutral because 0 + n = n + 0 by commutativity and n + 0 = n by definition of +.
Cancelling: let X be the set of k ∈ N such that the implication holds for all n,m ∈ N.

Clearly, 0 ∈ X. Assume k ∈ X and n + s(k) =m + s(k). Then s(n + k) = s(m + k). Since s
is injective, n + k =m + k. Since k ∈X this implies n =m.

Similarly as in Lemma 1.2.4 one verifies:

Lemma 1.2.6. There is a unique function ⋅ ∶ N2 → N such that n⋅0 = 0 and n⋅s(m) = n⋅m+n
for all n,m ∈ N. It is called multiplication (on N).

Example 1.2.7.
2 + 2 = 2 + s(s(0)) = s(2 + s(0)) = s(s(2 + 0)) = s(s(2)) = s(3) = 4,
2 ⋅ 2 = 2 ⋅ s(s(0)) = 2 ⋅ s(0) + 2 = (2 ⋅ 0 + 2) + 2 = (0 + 2) + 2 = 2 + 2 = 4.

Proposition 1.2.8 (Properties of multiplication). (N, ⋅) is a commutative monoid with
neutral element 1. Further, for all n,m, k ∈ N we have

1. (cancellation) n ⋅ k =m ⋅ k and k ≠ 0 implies n =m;

2. (distributivity) k ⋅ (n +m) = k ⋅ n + k ⋅m.

Proof. (Left-)distributivity: let X be the set of m ∈ N such that k(n+m) = kn+km for all
k,n ∈ N. Clearly, 0 ∈ X. Assume m ∈ X. Then k(n + s(m)) = ks(n +m) = k(n +m) + k =
(kn + km) + k = kn + (km + k) = kn + ks(m).

Associativity: let X be the set of k ∈ N such that (nm)k = n(mk). Clearly, 0 ∈ X.
Assume k ∈X. Then, using distributivity,

(nm)s(k) = (nm)k + nm
k∈X
= n(mk) + nm = n(mk +m) = n(ms(k)).

1 is neutral: note ns(0) = n0+n = 0+n = n. Let X be the set of n ∈ N such that 1n = n.

Then 0 ∈X. Assume n ∈X. Then 1 ⋅ s(n) = 1 ⋅ n + 1
n∈X
= n + s(0) = s(n).
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Right-distributivity: we show (n+m)k = nk+mk for all n,m, k ∈ N.Let X be the set of

k such that this holds for all n,m. Assume k ∈ X. Then ms(k) = mk +m
k∈X
= km +m

k∈X
=

(k + 1)m = s(k)m. Then (n +m)s(k) = (n +m)k + (n +m)
k∈X
= (nk +mk) + (n +m). Since

+ is commutative and associative, this equals (nk + n) + (mk +m) = ns(k) +ms(k).
Commutativity: let X be the set of all k such that nk = kn for all n ∈ N. To see

0 ∈ X note 0 ⋅ 0 = 0 and, assuming 0 ⋅ ℓ = 0 and using ℓ + 1 = s(ℓ + 0) = s(ℓ), we get
0 ⋅ s(ℓ) = 0(ℓ + 1) = 0 ⋅ ℓ + 0 ⋅ 1 = 0 + (0 ⋅ 0 + 0) = 0.

Now, if k ∈X, then ns(k) = nk+n = kn+n = (k+1)n = s(k)n using right-distributivity.
We leave the verification of cancellation as a (non-trivial) exercise.

Proposition 1.2.9 (Properties of order). For n,m ∈ N let n < m if n + k = m for some
k ∈ N∖{0}. Then < is a linear order on N that is compatible with +, ⋅ (see Definition 1.1.25)
and has minimal element 0.

Proof. That 0 < n for all n ≠ 0 is trivial. Irreflexivity: let X be the set of n ∈ N such that
n + k ≠ n for all k ≠ 0. We show X = N. Clearly, 0 ∈ X. Let n ∈ X and k ≠ 0. Then
s(n) + k = k + s(n) = s(k + n) = s(n + k) ≠ s(n) since n + k ≠ n by n ∈X and s is injective.

Transitivity: if n+k =m and m+k′ = ℓ for k, k′ ∈ N∖{0}, then n+(k+k′) = (n+k)+k′ =
m + k′ = ℓ. By Exercise 1.2.3, k′ = s(k′′) for some k′′ ∈ N, so k + k′ = s(k + k′′) ≠ 0 by (P2).

Linearity: by irreflexivity and transitivity at most one of n < m,n = m,m < n holds.
Let X be the set of n such that at least one holds for all m. Then 0 ∈ X being minimal.
Assume n ∈ X. We show s(n) ∈ X by induction on m. Let Y be the set of m ∈ N such
that s(n) < m,s(n) = m or m < s(n). Then 0 ∈ Y because 0 < s(n). Assume m ∈ Y . Note
n < m,n = m or m < n, since n ∈ X These cases imply respectively s(n) < s(m), s(n) =
s(m), s(m) < s(m); e.g., if n < m, say n + k = m with k ≠ 0, then s(n) + k = k + s(n) =
s(k + n) = s(n + k) = s(m). Hence s(m) ∈ Y .

Compatibility with +: let X be the set of ℓ ∈ N such that ℓ = 0 or m + ℓ < n + ℓ holds
for all n <m and ℓ ≠ 0. Then 0 ∈X. If ℓ ∈X, then n + s(ℓ) = s(n + ℓ) < s(m + ℓ) =m + s(ℓ)
is implied by n + ℓ <m + ℓ as above. Thus, < is compatible with +.

We leave compatibility with ⋅ as a (now easy) exercise.

Exercise 1.2.10. For all n,m ∈ N wer have: m < s(n) if and only if m = n or m < n.

Theorem 1.2.11 (Least number principle). Every nonempty X ⊆ N has a minimal element
n ∈X, i.e., n <m for all m ∈X ∖ {n}.

Proof. Let Y be the set of n ∈ N such that m ∉ X for all m < n. Then 0 ∈ Y by (4) above.
As X ≠ ∅, Y ≠ N. By induction, Y is not s-closed, i.e., there is n ∈ Y with s(n) ∉ Y .
Then there exists m < s(n) in X. Then m = n or m < n by Exercise 1.2.10. The latter is
impossible as n ∈ Y . Hence m = n ∈X. Then n is a minimal element of X: if m ∈X ∖ {n},
then m < n or n <m; the former is impossible, as n ∈ Y .

Remark 1.2.12. This section exemplifies what one does in mathematical logic: reducing
a given body of mathematics to fundamental reasoning principles. Here, the principle is
induction, or equivalently, the least number principle. As seen, the reduction often amounts
to tedious and somewhat boring work. One interest of mathematical logic is to compare
the relative logical strength of the various thereby identified reasoning principles.
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1.3 Integers

Idea: Z enlarges N by providing solutions of n +X = 0. We know z ∈ Z equals n −m for
some (n,m) ∈ N2. This pair is not unique, so z corresponds to the set of such pairs (n′,m′)
with the same “difference”, i.e., n′ −m′ = n −m. We can write this as n′ +m = n +m′,
avoiding the not yet explained −.

Lemma 1.3.1. Define ∼ ⊆ (N2)2 setting for n,m,n′,m′ ∈ N:

(n,m) ∼ (n′,m′) ⇐⇒ n +m′ = n′ +m.

Then ∼ is an equivalence relation on N2.

Proof. Reflexivity and symmetry are trivial. For transitivity let (n0,m0) ∼ (n1,m1) ∼
(n2,m2), i.e., n0 + m1 = n1 + m0 and n1 + m2 = n2 + m1. Then n0 + m1 + n1 + m2 =
n1 +m0 + n2 +m1. Cancellation (see Proposition 1.2.5) (n1 +m1) gives n0 +m2 = n2 +m0,
i.e., (n0,m0) ∼ (n1,m1).

Definition 1.3.2. Z is the set of equivalence classes [n,m] of (n,m) ∈ N2 under ∼. Its
elements are called integers.

Definition 1.3.3. For x, y ∈ Z, say x = [k, ℓ], y = [n,m] with (k, ℓ), (n,m) ∈ N, set

x + y ∶= [k + n, ℓ +m].

Remark 1.3.4. This is well-defined: assume [k, ℓ] = [k′, ℓ′] and [n,m] = [n′,m′]. Then
k + ℓ′ = k′ + ℓ and n + m′ = n′ + m. Then (k + n) + (m′ + ℓ′) = (m + ℓ) + (k′ + n′), so
[k + n,m + ℓ] = [k′ + n′,m′ + ℓ′].

Proposition 1.3.5. (Z,+) is an abelian group with neutral element [0,0].

Proof. Commutativity: [k, ℓ] + [n,m] = [k + n, ℓ + m] = [n + k,m + ℓ] = [n,m] + [k, ℓ].
Associativity is similar. [0,0] is neutral because [0,0] + [n,m] = [n + 0,m + 0] = [n,m] =
[0+n,0+m] = [0,0]+[m,n]. The inverse of [n,m] is [m,n] because [n+m,m+n] = [0,0].

Multiplication is straightforwardly defined: if we already knew what it is, then we could
note (k − ℓ)(n −m) = (kn + ℓm) − (km + ℓn). We use this equation as a definition:

Definition 1.3.6. For x, y ∈ Z, say x = [k, ℓ], y = [n,m] with (k, ℓ), (n,m) ∈ N, set

x ⋅ y ∶= [kn + ℓm, km + ℓn].

Remark 1.3.7. This is well-defined: let x = [k, ℓ] = [k′, ℓ′], y = [n,m] = [n′,m′], i.e.,

k + ℓ′ = k′ + ℓ, n +m′ = n′ +m.

We have to show [kn + ℓm, km + ℓn] = [k′n′ + ℓ′m′, k′m′ + ℓ′n′], i.e.,

kn + ℓm + k′m′ + ℓ′n′ = k′n′ + ℓ′m′ + km + ℓn.
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This follows by cancellation (see Proposition 1.2.5) from a simple tricky calculation:

(kn + ℓm + k′m′ + ℓ′n′) + (ℓ′n + k′m + k′n + ℓ′m)

= (k + ℓ′)n + (ℓ + k′)m + k′(m′ + n) + ℓ′(n′ +m)

= (ℓ + k′)n + (k + ℓ′)m + k′(n′ +m) + ℓ′(n +m′)

= (k′n′ + ℓ′m′ + km + ℓn) + (ℓ′n + k′m + k′n + ℓ′m).

Theorem 1.3.8. (Z,+, ⋅) is an integral domain.

Proof. We first show (Z, ⋅) is a commutative monoid with neutral element [1,0]. For
neutrality, note [1,0] ⋅ [k, ℓ] = [1 ⋅k+0 ⋅ ℓ,0 ⋅k+1 ⋅ ℓ] = [k, ℓ]. Commutativity: [k, ℓ] ⋅ [n,m] =
[kn+ ℓm, km+ ℓn] = [nk +mℓ,mk +nℓ] = [n,m] ⋅ [k, ℓ]. Associativity follows similarly from
properties of N. Distributivity:

([k, ℓ] + [n,m]) ⋅ [r, s] = [k + n, ℓ +m] ⋅ [r, s] = [rk + rn + sℓ + sm, rℓ + rn + sk + sn]

= [rk + sℓ, rℓ + sk] + [rn + sm, rn + sn] = [k, ℓ] ⋅ [r, s] + [n,m] ⋅ [r, s].

By Proposition 1.3.5, (Z,+, ⋅) is a commutative ring. We are left to show that x ⋅ y = [0,0]
implies x = [0,0] or y = [0,0]. Say, x = [k, ℓ], y = [n,m], and assume y ≠ [0,0], i.e., n ≠ m,
and [0,0] = [kn + ℓm, km + ℓn], i.e., kn + ℓm = km + ℓn.

By Proposition 1.2.9, n < m or m < n. We assume n < m (the other case is analogous)
and write n+r =m for some r ≠ 0. Plugging this in our assumption above gives kn+ℓ(n+r) =
k(n + r) + ℓn. Using commutativity and cancellation for + (in N), this implies ℓr = kr.
Cancellation for ⋅ (in N) gives ℓ = k. Thus, x = [k, ℓ] = [0,0].

Remark 1.3.9.

1. Consider the injection n↦ [n,0] from N into Z. Then + (on the image of this map)
as defined in Z extends + as defined in N. E.g., [4,0] + [5,0] = [4 + 5,0 + 0] = [9,0].

2. More precisely, n ↦ [n,0] is a monoid monomorphism both from (N,+) to (Z,+),
and from (N, ⋅) to (Z, ⋅).
Indeed: the map is clearly injective. As 0↦ [0,0] and 1↦ [1,0] the neutral elements
are preserved. We leave preservation of + to the reader. Preservation of ⋅: [k,0] ⋅
[n,0] = [k ⋅ n + 0 ⋅ 0,0 ⋅ n + k ⋅ 0] = [k ⋅ n,0].

3. We “identify” n with [n,0] and, somewhat sloppily, view N as a subset of Z.

Compatibility of order is explained as in Definition 1.1.25:

Proposition 1.3.10. For x, y ∈ Z let x < y if and only if there is n ∈ N ∖ {0} such that
x + n = y (i.e., a + [n,0] = b). Then < is a linear order on Z that is compatible with +, ⋅.

Proof. We only show compatibility. Assume x+n = y for n ∈ N∖{0}. Then y+z = x+z+n,
so x + z < y + z. Assume 0 < z, i.e., z ∈ N ∖ {0}. Then yz = xz + nz, so xz < yz as
nz ∈ N ∖ {0}.

Remark 1.3.11. Clearly, < as defined in Z extends < as defined in N. More precisely, the
monomorphism n↦ [n,0] preserves <: n <m in N ⇐⇒ [n,0] < [m,0] in Z.
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1.4 Rationals

Idea: we want to enlarge Z to add solutions of aX = 1 for a ≠ 0. We know every x ∈ Q
equals a/b for some (a, b) ∈ Z × (Z ∖ {0}). This pair is not unique, so z corresponds to the
set of such pairs (a′, b′) with the same “fraction”, i.e., a/b = a′/b′. We can write this as
ab′ = a′b, avoiding the not yet explained /.

Lemma 1.4.1. Define ∼ ⊆ (Z × (Z ∖ {0}))2 setting:

(a, b) ∼ (a′, b′) ⇐⇒ ab′ = a′b.

Then ∼ is an equivalence relation.

Proof. Reflexivity and symmetry are trivial. For transitivity, assume (a0, b0) ∼ (a1, b1) ∼
(a2, b2), i.e., a0b1 = a1b0 and a1b2 = a2b1.

Then a0b1a1b2 = a1b0a2b1, so (a0b2−b0a2) ⋅(a1b1) = 0. Assume first that a1 ≠ 0. As b1 ≠ 0
we have a1b1 ≠ 0 since Z is an integral domain. Then (a0b2−b0a2) = 0, i.e., (a0, b0) ∼ (a2, b2).

Now assume a1 = 0. Then a0b1 = 0 = a2b1. Since Z is an integral domain and b1, b2 ≠ 0
we get a0 = a2 = 0. Hence a0b2 = a2b0(= 0), so (a0, b0) ∼ (a2, b2).

Definition 1.4.2. Q is the set of equivalence classes a/b of (a, b) ∈ Z × (Z ∖ {0}) under ∼.
Its elements are called rationals.

Addition and multiplication are straightforwardly defined: if we already knew the ra-
tionals we could note a/b + c/d = (ad + cb)/bd and a/b ⋅ c/d = ac/bd (we read e.g. ac/bd as
(ac)/(bd)). We use these equations as definitions:

Definition 1.4.3. For x, y ∈ Q, say x = a/b, y = c/d with (a, b), (c, d) ∈ Z × (Z ∖ {0}), set

x + y ∶= (ad + cb)/bd, x ⋅ y ∶= ac/bd.

Further, set x < y if and only if x + z = y for some positive z ∈ Q, i.e., z = e/f for some
0 < e, f ∈ Z.

Remark 1.4.4. These are well-defined. Assume x = a/b = a′/b′ and c/d = c′/d′, i.e.,
y = ab′ = a′b and cd′ = c′d.

For + we have to show (ad + cb)/bd = (a′d′ + c′b′)/b′d′. This is true:

(ad + cb)b′d′ = ab′dd′ + bb′cd′ = a′bdd′ + bb′c′d = (a′d′ + b′c′)bd.

For ⋅ we have to show ac/bd = a′c′/b′d′. This is true: acb′d′ = ab′cd′ = a′bc′d.
For < assume x + e/f = y with 0 ⩽ e, f . Then a/b + e/f = (af + eb)/bf = c/d, i.e.,

afd + ebd = cbf . We claim a′/b′ + e/f = c′/d′, i.e., a′fd′ + eb′d′ = c′b′f . Argue

afd ⋅ a′b′c′d′ + ebd ⋅ a′b′c′d′ = cbf ⋅ a′b′c′d′

a′fd′ ⋅ ab′c′d + eb′d′ ⋅ a′bc′d = c′b′f ⋅ a′bcd′

a′fd ⋅ a′bc′d′ + eb′d′ ⋅ a′bc′d = c′b′f ⋅ a′bc′d.

The 2nd is only re-arranging the 1st, the 3rd uses ab′ = a′b on the left, and cd′ = c′d on the
right. It implies our claim by distributivity and cancellation in Z.
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Remark 1.4.5. x ∈ Q is positive if and only if 0 < x in Q.

Theorem 1.4.6. (Q,+, ⋅,<) is an archimedian ordered field.

Proof. It is easily checked that (Q,+) and (Q∖ {0/1}, ⋅) are associative and commutative.
The neutral elements are 0/1 and 1/1 respectively: a/b + 0/1 = (a ⋅ 1 + 0 ⋅ b)/b ⋅ 1 = a/b
and a/b ⋅ 1/1 = a ⋅ 1/b ⋅ 1 = a/b. The additive inverse −(a/b) of a/b is (−a)/b because
a/b + (−a)/b = (ab + −(ab))/b = 0/b = 0/1. The multiplicative inverse (a/b)−1 of a/b ≠ 0/1 is
b/a – note a ≠ 0 because otherwise a/b = 0/b = 0/1. Indeed, a/b ⋅ b/a = ab/ba = 1/1.

For distributivity we use a′/b′ = a′c′/b′c′ for c′ ≠ 0:

(a/b + c/d) ⋅ e/f = (ad + cb)/bd ⋅ e/f = (ade + cbe)/bdf = (ade bdf + cbe bdf)/(bdf bdf)

= ade/bdf + cbe/bdf = ae/bf + ce/df = a/b ⋅ e/f + c/d ⋅ e/f.

Concerning < we only verify compatibiliy: if x < y and z ∈ Q, then (y + z) − (x + z) = y − x
is positive, so y + z < y + z. Note a product of positive rationals is positive. Hence, if 0 < z,
then yz − xz = (y − x)z is positive, so xz < yz.

Archimedian: if x is not positive, then x < 1. Otherwise x = a/b with a, b ∈ Z and
a, b > 0. Then x < a/1 because a/1 − a/b = (ab − a)/ab with a(b − 1), ab > 0 in Z.

Proposition 1.4.7. The map a↦ a/1 is a ring monomorphism from Z into Q. Moreover,
it preserves < in the sense that for all a, b ∈ Z:

a < b in Z ⇐⇒ a/1 < b/1 in Q.

Proof. The map is clearly injective. It preserves 1 because 1↦ 1/1. It preserves + because
a/1 + b/1 = (a ⋅ 1 + b ⋅ 1)/1 ⋅ 1 = (a + b)/1. It preserves ⋅ because a/1 ⋅ b/1 = ab/1 ⋅ 1 = ab/1.
Finally, it preserves < because

b/1 − a/1 = (b ⋅ 1 + (−a) ⋅ 1)/1 ⋅ 1 is positive ⇐⇒ 0 < b − a in Z ⇐⇒ a < b in Z.

Notation: From now on we “identify” a with a/1 and, somewhat sloppily, view Z as a
subset of Q. By the above then Z is a subring of Q.

Definition 1.4.8. The absolute value of x ∈ Q is ∣x∣ ∶= {
x if x ⩾ 0
−x else.

Remark 1.4.9. For all x, y ∈ Q we have ∣xy∣ = ∣x∣ ⋅ ∣y∣, the triangle inequality ∣x+y∣ ⩽ ∣x∣+∣y∣,
and, ∣x∣ = 0 if and only if x = 0.

1.5 Reals

Write Q+ for the positive rationals and recall that a sequence (qn)n∈N of rationals has limit
q ∈ Q if and only if for all ϵ ∈ Q+ there is n0 ∈ N such that ∣qn − q∣ < ϵ for all n > n0. Each
sequence has at most one limit. If it exists, the sequence is Cauchy: for all ϵ ∈ Q+ there is
n0 ∈ N such that ∣qn − qm∣ < ϵ for all n,m > n0.
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Idea: e.g. X2 = 2 has no solution in Q but can be “approximated” by rationals. We
know every real x ∈ R is the limit of a Cauchy sequence of rationals. The sequence is not
unique, so every real corresponds to a set of Cauchy sequences, namely those with the
same limit. We can say two Cauchy sequences have the same limit, without referring to
this yet undefined limit, by stating that their difference has limit 0.

Lemma 1.5.1. Let C be the set of rational Cauchy sequences. For (qn)n, (pn)n ∈ C set

(qn)n ∼ (pn)n ⇐⇒ (qn − pn)n has limit 0.

Then ∼ is an equivalence relation on C.

Proof. Reflexivity and symmetry are trivial. For transitivity, assume (pn)n ∼ (qn)n ∼ (rn)n,
i.e., (pn − qn)n and (qn − rn)n have limit 0. Then ((pn − qn) − (qn − rn))n = (pn − rn)n has
limit 0.

Definition 1.5.2. R is the set of equivalence classes (qn)n of (qn)n ∈ C under ∼. Its

elements are called reals. For reals x = (qn)n and y = (pn)n set

x + y ∶= (qn + pn)n, x ⋅ y ∶= (qn ⋅ pn)n.

Further, define x < y if and only if there are ϵ ∈ Q+ and n0 ∈ N such that pn − qn > ϵ (in Q)
for all n > n0.

Remark 1.5.3. These are well-defined. We leave it as an exercise (in elementary analysis)
to verify this for + and ⋅.

For <, assume x = (qn)n = (q′n)n < y = (pn)n = (p
′

n)n. Choose ϵ ∈ Q+, n0 ∈ N such that
pn − qn > ϵ for all n > n0. We claim there is n1 ∈ N such that p′n − q

′

n > ϵ/2 for all n > n1.
Namely, choose n0 < n1 ∈ N such that ∣qn − q′n∣ < ϵ/4 and ∣pn − p′n∣ < ϵ/4 for all n > n1. Then
p′n − q

′

n = (p
′

n − pn) + (pn − qn) + (qn − q
′

n) > −ϵ/4 + ϵ − ϵ/4 = ϵ/2 for all n > n1.

Theorem 1.5.4. (R,+, ⋅,<) is an archimedian ordered field.

Proof. It is clear that +, ⋅ are associative and commutative with neutral elements (0,0, ...)

and (1,1, ...). Distributivity is also clear. The additive inverse of (qn)n is (−qn)n. For the

multiplicative inverse of (qn)n ≠ (0,0, ...), note (qn)n does not have limit 0. Being Cauchy,
there are ϵ ∈ Q+ and n0 ∈ N such that ∣qn∣ > ϵ for all n > n0; let (pn)n be defined by pn ∶= 1

if n ⩽ n0, and pn ∶= q−1n for n > n0. Then (qn)n ⋅ (pn)n = (q0, ..., qn0 ,1,1, ...) = (1,1, ...).

We only show compatibility of < with ⋅. Let x = (qn)n < y = (pn)n and z = (rn)n. Choose
ϵ ∈ Q+, n0 ∈ N such that pn − qn > ϵ for all n > n0. Then pn + rn − qn − rn > ϵ for all n > n0, so
x+ z < y + z. Assume z > 0, so there are δ ∈ Q+, n1 ∈ N such that rn > δ for all n > n1. Then
pnrn − qnrn ⩾ δ(pn − qn) > δϵ for all n > n1. Hence, xz < yz.

Archimedian: let x = (qn)n. Being Cauchy, there are q ∈ Q, n0 ∈ N such that qn < q for

all n > n0. By Theorem 1.4.6 there is m ∈ N such that q <m in Q. Then x < (m,m, ...).

Remark 1.5.5.
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1. q ↦ (q, q, ...) is a field monomorphism from Q to R; moreover, it preserves <. We

“identify” q with (q, q, ...) and, somewhat sloppily, view Q as a subset of R. Then Q
is a subfield of R.
Indeed, preservation of +, ⋅ is clear, e.g., (q, q, ...)⋅(p, p, ...) = (qp, qp, ...). It is injective
by Remark 1.1.22. It preserves < because

(q, q, ...) < (p, p, ...) ⇐⇒ p − q ∈ Q+ ⇐⇒ q < p in Q.

2. ∣x∣ is defined for x ∈ R as in Definition 1.4.8; it has the properties in Remark 1.4.9.

For sequences (xn)n in R we define limits in R and being Cauchy exactly as for Q (recall
the beginning of this section).

Theorem 1.5.6. R is complete: every Cauchy sequence in R has a limit in R.
Proof. Let (xn)n be Cauchy (in R). For n ∈ N write xn = (qnk)k for (qnk)k ∈ C. For n ∈ N
choose kn ∈ N such that ∣xn−qnkn ∣ < 1/n for all k ⩾ kn. Then (qnkn)n ∈ C and (xn)n has limit

x ∶= (qnkn)n: given ϵ ∈ Q+, choose n0 ∈ N such that n0 > 2/ϵ (archimedian), so 1/n < ϵ/2 for
all n > n0. Choose n0 < n1 ∈ N such that ∣qnkn − x∣ < ϵ/2 for all n > n1. Then for all n ⩾ n1:

∣xn − x∣ ⩽ ∣xn − qnkn ∣ + ∣qnkn − x∣ < 1/n + ϵ/2 < ϵ.

We now show that the order < on R is determined by its field structure:

Lemma 1.5.7. Every positive real is a square. Hence, for all x, y ∈ R, x < y if and only if
x + z2 = y for some z ∈ R ∖ {0}.
Proof. (Sketch) Given x > 0 define a sequence (qn, pn)n of pairs of rationals such that

p2n ⩽ x ⩽ q
2
n and pn − qn < 2−n. Then (qn)n

2
= x.

If x < y, then x + z2 = y where z ∈ R ∖ {0} is such that z2 = y − x > 0. Conversely,
y − x = z2 > 0 by by Exercise 1.1.26 (1), so x < y.

Corollary 1.5.8. The only automorphism of the field R is the identity idR.

Proof. Let φ be an automorphism. Then φ(1) = 1, φ(2) = φ(1) + φ(1) = 1 + 1 = 2..., so
φ(n) = n for all n ∈ N, so also φ(−n) = −n and φ(1/n) = 1/n. As every q ∈ Q equals ±n/m
for some n,m ∈ N we have φ(q) = q for all q ∈ Q.

It should be clear that φ preserves ∣ ⋅ ∣ (i.e., ∣x∣ = ∣φ(x)∣ for all x ∈ R). By Lemma 1.5.7,
φ preserves <: if x + z2 = y with z ≠ 0, then φ(x) + φ(z)2 = φ(y) and φ(z) ≠ 0.

Let x ∈ R, say x = (qn)n and set y ∶= φ(x). Given ϵ ∈ Q+ it suffices to show ∣x − y∣ < ϵ
(then ∣x − y∣ = 0, so x − y = 0). Choose n ∈ N such that ∣x − qn∣ < ϵ. Then

ϵ = φ(ϵ) > φ(∣x − qn∣) = ∣φ(x) − φ(qn)∣ = ∣y − qn∣.

Remark 1.5.9. We showed our construction of the reals has a series of fundamental
properties we expect the reals to have. The reader might still worry whether the “real”
reals are “the same” as our R. They are: every complete archimedian ordered field is
isomorphic to R (think about why, the argument is similar to Corollary 1.5.8). “Complete
archimedian” can be equivalently replaced by the statement that every non-empty upward
bounded subset has a supremum. This statement plus the axioms of ordered fields thus
constitute an elegant categorical axiomatization of the reals (as we had for N).
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1.6 Complex numbers

Idea: we intend to enlarge the field R to another C so that X2 = −1 has a solution (recall
Exercise 1.1.26), denoted i, so i2 = −1. Then, for x,x′, y, y′ ∈ R:

(x + iy) + (x′ + iy′) = (x + x′) + i(y + y′),

(x + iy) ⋅ (x′ + iy′) = (xx′ + ixy′ + iyx′ + i2yy′) = (xx′ − yy′) + i(xy′ + x′y).

To find such a field C we use these equations as a definition:

Definition 1.6.1. The set of complex numbers is C ∶= R2. For z = (x, y), z′ = (x′, y′) set

z + z′ ∶= (x + x′, y + y′), z ⋅ z′ ∶= (xx′ − yy′, xy′ + x′y).

For z = (x, y) we call Re(z) ∶= x and Im(z) ∶= y the real and imaginary part of z. The
(complex) conjugation is

z = (x, y) ↦ z̄ ∶= (x,−y).

The absolute value of z = (x, y) is ∣z∣ ∶=
√
zz̄ =

√
x2 + y2.

Remark 1.6.2. We write i ∶= (0,1). Then i2 = (0,1)⋅(0,1) = (0 ⋅0−1 ⋅1,0 ⋅1+0 ⋅1) = (−1,0).
This is −1 ∈ R after our “identification” of x ∈ R with (x,0) to be explained below.

Theorem 1.6.3. (C,+, ⋅) is a field and conjugation is an automorphism.

Proof. Associativity, commutativity and distributivity are clear. The additive and mul-
tiplicative neutral elements are (0,0) and (1,0). The additive inverse of z = (x, y) is
−z = (−x,−y). If z ≠ (0,0), then x2 + y2 ≠ 0, and its multiplicative inverse is

z−1 = (x/∣z∣2,−y/∣z∣2).

Indeed: (x, y)⋅(x/∣z∣2,−y/∣z∣2) = (xx/∣z∣2−y(−y)/∣z∣2, x(−y)/∣z∣2+yx/∣z∣2) = (1,0). We leave
the verification that conjugation is an automorphism to the reader.

Remark 1.6.4. x ↦ (x,0) is a field monomorphism from R to C. Indeed: recall Re-
mark 1.1.22 (3); the map preserves 1 and +, ⋅ because for all x,x′ ∈ R:

(x,0) + (x′,0) = (x + x′,0), (x,0) ⋅ (x′,0) = (x ⋅ x′ − 0 ⋅ 0, x ⋅ 0 + 0 ⋅ x′) = (x ⋅ x′,0).

We “identify” x ∈ R with (x,0) and, somewhat sloppily, view R as a subset of R. Then R
is a subfield of C. For z = (x, y) we have z = x + iy, or, more precisely,

z = (x, y) = (x,0) + (0,1) ⋅ (y,0).

Remark 1.6.5. The absolute value ∣z∣ satisfies the properties in Remark 1.4.9.

For sequences (zn)n∈N in C having a limit and being Cauchy is explained as for rationals
and reals (see beginning of Section 1.5). It has limit z if and only if both (Re(zn))n has
limit Re(z) and (Im(zn))n has limit Im(z). Further, (zn)n∈N is Cauchy if and only if both
(Re(zn))n and (Im(zn))n are. This implies:
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Theorem 1.6.6. Every Cauchy sequence in C has a limit in C.

We define exponentiation, sine and cosine on C via their power series. Convergence
and basic properties are verified as in R, known from calculus.

ez ∶= 1 + z + z2/2! + z3/3! +⋯ = ∑
∞

k=0 z
k/k!,

sin(z) ∶= z − z3/3! + z5/5! −⋯ = ∑
∞

k=0(−1)
kz2k+1/(2k + 1)!,

cos(z) ∶= 1 − z2/2! + z4/4! −⋯ = ∑
∞

k=0(−1)
kz2k/(2k)!.

Remark 1.6.7.

1. Euler’s identity eπi = −1 follows noting for α ∈ R:

eiα = 1 + iα − α2/2! − iα3/3! + α4/4! + iα5/5! −⋯ = cos(α) + i sin(α).

In particular, ∣eiα∣ =
√
cos(α)2 + sin(α)2 = 1, i.e., all eiα lie on the unit circle S1.

2. (Polar coordinates) Every z ∈ C equals ∣z∣(cos(α) + i sin(α)) for some unique α ∈
[0,2π), the argument of z. This becomes z = ∣z∣eiα. For z′ = ∣z′∣eiα

′
, complex multi-

plication becomes z ⋅ z′ = ∣z∣ ⋅ ∣z′∣ ⋅ ei(α+α
′
).

3. (De Moivre) For n > 1 and any z ∈ C with argument α we have wn = z for n distinct

w = ∣z∣1/neiα/n, ∣z∣1/neiα/ne2πi/n, ∣z∣1/neiα/ne2⋅2πi/n, ..., ∣z∣1/neiα/ne(n−1)2πi/n.

Definition 1.6.8 (Roots of unity). Let n > 1 the n-th roots of unity are

Cn ∶= {ζ
0
n, ..., ζ

n−1
n } where ζn ∶= e

2πi/n.

Remark 1.6.9. Cn is a subgroup of the circle group S1 (Example 1.1.12). Further,

1 + ζn + ζ2n +⋯ + ζ
n−1
n = (ζnn − 1)/(ζn − 1) = 0.

Example 1.6.10. ζ2, ..., ζ6 are −1, (−1+
√
−3)/2, i, cos(2π/5) + i sin(2π/5), (1+

√
−3)/2.

E.g., one easily computes ζ06 , ζ
1
6 , ζ

2
6 , ζ

3
6 , ζ

4
6 , ζ

5
6 as

1, (1 + i
√
3)/2, (−1 + i

√
3)/2, −1, (−1 − i

√
3)/2, (1 − i

√
3)/2.

Figure 1.1: For n = 4,5,6,7, Cn is marked red, the regular n-gon blue.



Chapter 2

Number theory

2.1 The Euclidian algorithm

Definition 2.1.1. Let x, y ∈ Z. Then x is a divisor or factor of y, and y a multiple of x,
symbolically x ∣ y, if x ⋅ z = y for some z ∈ Z. The negation is denoted x ∤ y.

Remark 2.1.2. For all x,x′, y, y′, z, u, u′ ∈ Z:

1. x ∣ 0,1 ∣ x,−1 ∣ x,x ∣ x,−x ∣ x,x ∣ −x.

2. ∣ is transitive: if x ∣ y and y ∣ z, then x ∣ z.

3. If x ∣ y and x ∣ y′, then x ∣ uy + u′y′.

4. If x ∣ y and x′ ∣ y′, then xx′ ∣ yy′;

5. If y ≠ 0 and x ∣ y, then 1 ⩽ ∣x∣ ⩽ ∣y∣;

Indeed: y = xu implies ∣y∣ = ∣x∣ ⋅ ∣u∣ and y ≠ 0 implies x ≠ 0, so ∣x∣ ≠ 0, so ∣x∣ ⩾ 1.

6. The divisors of 1 are ±1, i.e., Z× = {±1} (if x ∣ 1, then 1 ⩽ ∣x∣ ⩽ 1 by (5), so ∣x∣ = 1).

7. x ∣ y and y ∣ x, if and only if, x = y or x = −y.

Indeed: ⇐: by (1). ⇒∶ if y = 0, then x = 0 by y ∣ x; if y ≠ 0, then x ≠ 0 by x ∣ y;
by (5), ∣x∣ ⩽ ∣y∣ ⩽ ∣x∣, so ∣x∣ = ∣y∣.

Theorem 2.1.3 (Euclidian division). Let x, y ∈ Z and y ≠ 0. Then there is a unique pair
(q, r) ∈ Z2 with x = qy + r and 0 ⩽ r < ∣y∣. Moreover, if x ⩾ 0 and y > 0, then q ⩾ 0.

q is called the quotient and r the remainder of (x, y); we agree both are 0 if y = 0.

Proof. Uniqueness: assume qy + r = q′y + r′ with 0 ⩽ r, r′ < ∣y∣. Then (q − q′)y = r′ − r, so
y ∣ (r′ − r). If r ≠ r′, then by Remark 2.1.2 (5) ∣y∣ ⩽ ∣r′ − r∣ ⩽ max{r, r′} (since r, r′ ⩾ 0), a
contradiction. So r = r′. Then qy = q′y and q = q′ follow.

Existence: assume first y > 0. Let R be the set of r ∈ N such that r = x − qy for some
q ∈ Z. Then R ≠ ∅: if x ⩾ 0, then x = x − 0y, so x ∈ R; if x < 0, then x − xy ∈ R.

Let r be a minimal element of R. Then r ⩾ 0 and x = qy + r for some q ∈ Z. Further,
r < ∣y∣ = y because otherwise r − y = x − (q + 1)y ∈ R, contradicting the minimality of r.

19
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Now assume y < 0. Then there are q, r ∈ Z such that x = q′(−y) + r′ and 0 ⩽ r′ < ∣y∣ = −y
and we can set q ∶= −q′, r = r′.

Moreover: if y > 0 > q, then qy ⩽ −y, so x = qy + r ⩽ −y + r < 0 (as 0 ⩽ r < y).

Remark 2.1.4. Call x ∈ Z even if 2 ∣ x and otherwise odd. Since every x ∈ Z equals either
2q + 1 or 2q for some q ∈ Z, we see x is odd if and only if x = y + 1 for some even y.

Lemma 2.1.5. Every subgroup of (Z,+) equals nZ ∶= {nz ∣ z ∈ Z} for some n ∈ N.

Proof. Let U be a subgroup. If U = {0}, then U = 0Z. Otherwise there is x ∈ U ∖ {0}. As
−x ∈ U , U ∩N ∖ {0} ≠ ∅. Let n be the minimal element of U ∩ (N ∖ {0}).

We claim U = nZ. ⊇ is clear. ⊆: let x ∈ U . Write x = qn + r using Euclidian division, so
0 ⩽ r < n. Then qn ∈ U , so r = x − qn ∈ U . Then r = 0 by choice of n, so x = qn ∈ nZ.

Definition 2.1.6. Let n > 0 and x1, ..., xn ∈ Z not all 0. Then x ∈ Z is a common divisor
of x1, ..., xn if x ∣ xi for all 1 ⩽ i ⩽ n. The largest of them is the greatest common divisor of
x1, ..., xn, denoted gcd(x1, ..., xn). If it equals 1, then x1, ..., xn are coprime.

Remark 2.1.7. This is well-defined: the set of common divisors contains 1, so is non-
empty; it is finite because, if say xi ≠ 0, then all common divisors x satisfy 1 ⩽ ∣x∣ ⩽ ∣xi∣ by
Remark 2.1.2 (5).

Lemma 2.1.8 (Bézout). Let n > 0 and x1, ..., xn ∈ Z not all 0. Then there are c1, ..., cn ∈ Z
such that

gcd(x1, ..., xn) = c1x1 +⋯ + cnxn.

Proof. Let U be the set of all c1x1 +⋯+ cnxn with ci ∈ Z. Then U is a subgroup of (Z,+),
so U = dZ for some d ∈ N by Lemma 2.1.5. As d ∈ U it suffices to show d = gcd(x1, ..., xn).
As all xi ∈ U = dZ, d is a common divisor. As not all xi = 0, U ≠ {0} and d ≠ 0.
By Remark 2.1.2 (3), any common divisor c divides all elements of U , so also d. By
Remark 2.1.2 (5), c ⩽ ∣c∣ ⩽ ∣d∣ = d.

Remark 2.1.9. Let n > 0, x1, ..., xn ∈ Z not all 0, d ∶= gcd(x1, ..., xn) and x, y, z ∈ Z ∖ {0}.

1. Every common divisor of x1, ..., xn divides d (by Lemma 2.1.8 and Remark 2.1.2 (3)).

2. x1, ..., xn are coprime if and only if c1x1 + ... + cnxn = 1 for certain ci ∈ Z;
Indeed: ⇒ by Lemma 2.1.8, ⇐: d ∣ 1 by 2.1.2 (3), so d = 1 by Remark 2.1.2 (6).

3. x1/d, ..., xn/d are coprime (divide the equation of Lemma 2.1.8 by d and apply (2)).

4. gcd(x, y, z) = gcd(x,gcd(y, z)) (by (1), x, y, z and x,gcd(y, z) have the same divisors).

5. If x ∣ yz and x, y are coprime, then x ∣ z.

Indeed: by Lemma 2.1.8 write 1 = cx + c′y for certain c, c′ ∈ Z, so z = zcx + zc′y, so
x ∣ z (by x ∣ yz and Remark 2.1.2 (3)).

6. If x ∣ z and y ∣ z and x, y are coprime, then xy ∣ z.

Indeed: write z = cx, so y ∣ xc, so y ∣ c by (5), say c = c′y, then z = c′yx.



CHAPTER 2. NUMBER THEORY 21

Exercise 2.1.10. Let x, y, z ∈ Z ∖ {0}. Show that ggT(x, yz) ∣ ggT(x, y) ⋅ ggT(x, z). For
coprime y, z we have equality.

By (4), an algorithm for computing the gcd of two integers can be iterated to compute
the gcd of any finite number of integers.

Theorem 2.1.11 (Euclidian algorithm). For x, y ∈ Z ∖ {0} with y ∤ x let r0, r1, ... be the
sequence with r0 ∶= x, r1 ∶= y and, for i > 0,

ri+1 ∶= {
the remainder of (ri−1, ri) if ri ≠ 0
0 else.

Then rn+1 = 0 for some 0 < n < ∣y∣ and rn = gcd(x, y) for the minimal such n.
Moreover, for this n let s0, ..., sn and t0, ..., tn be the sequences with s0 ∶= 1, s1 ∶= 0 and

t0 ∶= 0, t1 ∶= 1 and for 0 < i < n, letting qi be the quotient of (ri−1, ri),

si+1 ∶= si−1 − qisi, ti+1 ∶= ti−1 − qiti.

Then gcd(x, y) = snx + tny.

Proof. Note ∣y∣ > r2 > 0 as y ∤ x, and r2 > r3 > ⋯ are all ⩾ 0, so n as claimed exists. Note

x = q1y + r2, y = q2r2 + r3, r2 = q3r3 + r4, ... rn−2 = qnrn−1 + rn, rn−1 = qnrn + 0.

Work the equations backwards: rn+1 = 0, so rn ∣ rn−1, so rn ∣ rn−2 by Remark 2.1.2 (3), etc.,
so rn ∣ r1 = y and rn ∣ r0 = x. Hence rn is a common divisor of x, y.

To see it is the largest, c be a common divisor of x, y. Work the equations forwards: as
r2 = x− q1y we have c ∣ r2 by Remark 2.1.2 (3); as r3 = y − q2r2 we have c ∣ r3, etc., so c ∣ rn.

Finally, we claim ri = six + tiy for all i ⩽ n. This is true for i = 0,1. Inductively,

ri+1 = ri−1 − qiri = (si−1x + ti−1y) − qi(six + tiy) = si+1x + ti+1y.

Example 2.1.12. We compute gcd(122,16) = 2 = r5 with r2, r3, r4, r5, r6 being 10,6,4,2,0:

122 = 7 ⋅ 16 + 10, 16 = 1 ⋅ 10 + 6, 10 = 1 ⋅ 6 + 4, 6 = 1 ⋅ 4 + 2, 4 = 2 ⋅ 2 + 0.

Note q0, q1, q2, q3, q4 are 7,1,1,1,2. Thus,

s2 = 1 − 7 ⋅ 0 s3 = 0 − 1 ⋅ 1 s4 = 1 − 1 ⋅ (−1) s5 = −1 − 1 ⋅ 2
t2 = 0 − 7 ⋅ 1 t3 = 1 − 1 ⋅ (−7) t4 = −7 − 1 ⋅ 8 t5 = 8 − 1 ⋅ (−15).

and rn = 2 = −3 ⋅ 122 + 23 ⋅ 16. Or look at the equations and substitute from right to left: 4
by 10 − 6, then 6 by 16 − 10, then 10 by 122 − 7 ⋅ 16:

2 = 6 − 4 = 6 − (10 − 6) = 2 ⋅ 6 − 10
= 2 ⋅ (16 − 10) − 10 = 2 ⋅ 16 − 3 ⋅ 10
= 2 ⋅ 16 − 3 ⋅ (122 − 7 ⋅ 16) = −3 ⋅ 122 + 23 ⋅ 16.
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Exercise 2.1.13. Recall Bézout’s lemma. Consider an equation a1X1 +⋯anXn = b where
a1, ..., an, b ∈ Z and X1, ...,Xn are variables ranging over Z. How do you decide whether
there is a solution and, in case, compute one?

Definition 2.1.14. Let n > 0. Then y ∈ Z is a common multiple of x1, ..., xn ∈ Z ∖ {0} if
xi ∣ y for all i. The minimal (least) common multiple in N ∖ {0} is denoted lcm(x1, ..., xn).

Exercise 2.1.15.

1. Show this is well-defined.

2. Show y is a common multiple of x1, ..., xn if and only if lcm(x1, ..., xm) ∣ y.

3. For x, y ∈ Z ∖ {0} show ∣xy∣ = gcd(x, y) ⋅ lcm(x, y).

2.2 The fundamental theorem of number theory

Definition 2.2.1. n > 1 is prime if only 1 and n are factors of n; otherwise it is composite.

Lemma 2.2.2. Every integer x ∈ Z with ∣x∣ > 1 has a prime factor.

Proof. As ∣x∣ ∣ x there exist a natural n > 1 dividing x. The smallest such n is prime.

Exercise 2.2.3. Every composite natural n has a prime factor ⩽
√
n.

Theorem 2.2.4 (Euclid). There are infinitely many primes.

Proof. Let p1, ..., pn be finitely many primes (n > 0). Then z ∶= p1⋯pn + 1 > 1. By the
lemma, z has a prime factor p. Then p is distinct from all pi: otherwise, p ∣ z − p1⋯pn = 1
by Remark 2.1.2 (3), a contradiction.

Exercise 2.2.5. Let n > 1.

1. Gaps: there are n consecutive naturals that are not prime.

2. There is a prime p with n < p ⩽ n!.

3. There are infinitely many primes of the form 4x + 3 with x ∈ N.
Hint: given finitely many primes 3 < p1, ..., pn of the form 4x+3, consider 4p1⋯pn+3.
Can all its prime factors have the form 4x + 1?

Theorem 2.2.6 (Wilson). A natural n > 1 is prime if and only if n ∣ (n − 1)! + 1.

We defer the proof to Section 2.5. The theorem was stated already by the medieval
polymath Ibn al-Haytham (c.965 – c.1040), sometimes called “the first true scientist”.

Lemma 2.2.7 (Euclid’s lemma). p ∈ N is prime if and only if for all x, y ∈ Z:

p ∣ xy implies p ∣ x or p ∣ y.
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Proof. ⇒: if p ∣ xy is prime and p ∤ x, then gcd(p, x) = 1, so p ∣ y by Remark 2.1.9 (5). ⇐:
if p is not prime, then p = nm for certain 1 ⩽ n,m < p; then p ∣ nm but p ∤ n and p ∤m.

Lemma 2.2.8. Let k, ℓ, n > 0 and p be prime.

1. If x1, ..., xn ∈ Z and p ∣ x1⋯xn, then p ∣ xi for some i.

2. If x1, ..., xn are prime and p ∣ x1⋯xn, then p = xi for some i.

3. If x, y ∈ Z and pkx = pℓy and p ∤ x and p ∤ y, then k = ℓ and x = y.

Proof. (1): for n = 1 there is nothing to show. Assume n > 1 and argue inductively: if
p ∣ (x1⋯xn−1)xn, then p ∣ xn or p ∣ x1⋯xn−1 by Lemma 2.2.8. In the 1st case we are done,
and in the 2nd too by induction.

(2) follows from (1) because p ∣ xi implies p = 1 or p = xi if xi is prime.
(3): by cancellation it suffices to show k = ℓ. Otherwise assume k < ℓ (the case ℓ < k is

analogous). Then p ∣ pℓ−ky = x as ℓ − k > 0, a contradiction.

Theorem 2.2.9 (Fundamental theorem of number theory). For every natural n > 1 there
are r ∈ N and primes p1 < ⋯ < pr and naturals k1, ..., kn > 0 such that

n = pk11 ⋯p
kr
r .

The numbers r, p1, ..., pr, k1, ..., kr are unique and called the prime factorization of n.

Proof. Existence: otherwise there is a minimal natural n > 1 that is not a product of
primes. Then n is not prime, say n = xy with 1 < x, y < n. By minimality of n, both x
and y are products of primes. Hence so is n, a contradiction.

Uniqueness: assume n = qℓ11 ⋯q
ℓs
s for s, ℓj > 0 and primes q1 < ⋯ < qs. We show by

induction that r = s and ki = ℓi and pi = qi. For n = 2 this is clear.
Assume n > 2. By Lemma 2.2.8 (2), p1 = qj and q1 = pi for some i, j. Then p1 ⩽ pi = q1 ⩽

qj = p1, so i = j = 1 and p1 = q1. Let x ∶= pk22 ⋯p
kr
r and y ∶= qℓ22 ⋯q

ℓs
s – we agree the empty

product is 1. By Lemma 2.2.8 (2), p1 ∤ x and p1 ∤ y. Since n = p
k1
1 x = q

ℓ1
1 y, Lemma 2.2.8 (3)

gives k1 = ℓ1 and x = y. Now, if x = 1, then r = s = 1 and we are done. If x > 1, then r, s ⩾ 2
and pk22 ⋯p

kr
r = q

ℓ2
2 ⋯q

ℓs
s > 1. By induction, r = s and ℓi = ki and pi = qi.

We introduce notation for the ki’s:

Definition 2.2.10. Let p be prime. The p-adic valuation νp ∶ N→ N is given by

νp(n) ∶=max{k ∈ N ∣ pk ∣ n}.

Remark 2.2.11. The fundamental theorem states n = ∏p p
νp(n) where p runs over all

primes. Note the product is finite in the sense that all but finitely many factors are 1.

Exercise 2.2.12. Let n,m ∈ N.

1. n ∣m if and only if νp(n) ⩽ νp(m) for all primes p.



CHAPTER 2. NUMBER THEORY 24

2. How many divisors does n have?

3. gcd(n,m) = ∏p p
min{νp(n),νp(m)}, lcm(n,m) = ∏p p

max{νp(n),νp(m)}.

Notation: for x ∈ R let ⌊x⌋ denote the largest integer ⩽ x.

Note the sum below is finite in that only finitely many terms are ≠ 0:

Lemma 2.2.13 (Legendre’s formula). Let n, p ∈ N, p prime. Then

νp(n!) = ∑k>0⌊n/p
k⌋.

Proof. Count occurrences of p as a prime factor of a number ⩽ n. One per multiple of p:
⌊n/p⌋ many. One additional occurrence per multiple of p2: ⌊n/p2⌋ many. And so on.

2.3 Chebychev’s prime number theorem

How many primes are there? We want to know the growth rate of:

Definition 2.3.1. For n ∈ N let π(n) be the number of primes p ⩽ n.

Landau notation: Let f, g ∶ N → R. Then both f ⩽ O(g) and g ⩾ Ω(f) mean: there is
c ∈ N such that f(n) ⩽ cg(n) + c for all n ∈ N; if additionally g ⩽ O(f), then f = Θ(g).

Remark 2.3.2. We need some simple bounds on binomial coefficients. For 0 < k ⩽ n:

(n/k)k ⩽ (
n

k
) =

n

k

n − 1

k − 1
⋯
n − k + 1

1
⩽ nk/k! < (e ⋅ n/k)k.

The final < is equivalent to kk/k! < ek which is clear from the power series of ek.

Theorem 2.3.3 (Chebychev 1850). π(n) = Θ(n/ lnn).

Proof. 1 Upper bound: let n > 0; a prime n < p ⩽ 2n divides (2n)! but not n!n!. Consider
the product ∏n<p⩽2n p, where p ranges over primes. It divides the binomial coefficient

(2n
n
) = (2n)!n!⋅n! ⩽ (2e)

n using Remark 2.3.2. It is ⩾ nπ(2n)−π(n). Thus, nπ(2n)−π(n) ⩽ (2e)n and

π(2n) − π(n) ⩽ 2n/ lnn,

Givenn > 2, choose ℓ ∈ N minimal such that 2ℓ ⩾ n. Note 2ℓ ⩽ 2n and ℓ ⩾ lnn/ ln 2. By the
above, π(2k) − π(2k−1) ⩽ 2k/ ln(2k−1) = 2k/((k − 1) ln 2) for all k > 0. Thus,

π(n) ⩽ π(2ℓ) = π(2ℓ) − π(2ℓ−1) + π(2ℓ−1) − π(2ℓ−2) + π(2ℓ−2) −⋯ + π(22) − π(21) + π(21)

⩽ (2ℓ/(ℓ − 1) + 2ℓ−1/(ℓ − 2) +⋯ + 22/1 + 1)/ ln 2 ⩽ (12 ⋅ 2ℓ/ℓ)/ ln 2 ⩽ 24 ⋅ n/ lnn,

where the penultimate step is an easy induction. Hence, π(n) ⩽ O(n/ lnn).

1I learned this proof from S. Glock.
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Lower bound: for a prime p we have νp((
2n
n
)) = νp((2n)!) − 2 ⋅ νp(n!). By Legendre,

νp((
2n
n
)) = ∑k>0 (⌊2n/p

k⌋ − 2 ⋅ ⌊n/pk⌋) ⩽max{k ∣ pk ⩽ 2n},

where the inequality follows from ⌊2x⌋ − 2⌊x⌋ ∈ {0,1} for all x ∈ R. Thus,

2n ⩽ (2nn ) = ∏p prime p
νp((

2n
n
)) ⩽ (2n)π(2n).

Thus, π(2n) ⩾ ln 2 ⋅ n/ ln(2n). This implies π(n) ⩾ Ω(n/ lnn).

Remark 2.3.4. Chebychev gave estimates close to 1 for the constants in Θ. The Prime
Number Theorem states that indeed π(n) lnn/n→n 1. It was conjectured by Legendre and
16 year old Gauß in the 1790s, and proved in 1896 independently by Hadamard and De La
Vallée-Poussin following Riemann’s seminal work from 1859.

Remark 2.3.5. More about primes.

1. A Fermat prime is a prime of the form 2n + 1. Then n is a power of 2: otherwise
write n = 2km for odd m > 1 and factor 2n + 1 = (x+ 1) ⋅ (xm−1 −xm−2 +⋯−x+ 1) with
x ∶= 22

k
. Fermat conjectured that all 22

k
+ 1 are prime, a surprising error revealed by

Euler: 22
5
+ 1 = 641 ⋅ 6700417. It is conjectured that

22
0

+ 1 = 3, 22
1

+ 1 = 5, 22
2

+ 1 = 17, 22
3

+ 1 = 257, 22
4

= 65537

lists all Fermat primes. The largest 22
k
+1 known to be composite is for k ∶= 18233954

with prime factor 7 ⋅ 218233956 + 1.

2. A Mersenne prime is a prime of the form 2n − 1. Then n is prime because 2kℓ − 1 =
(2k − 1)(1 + 2k + 22k⋯ + 2(ℓ−1)k). Cole refuted 1903, after “three years of sundays”,
Mersenne’s two centuries old conjecture showing 267 − 1 = 193707721 ⋅ 761838257287
is not prime. It is conjectured that there are infinitely many such non-primes. It is
also conjectured that there are infinitely many Mersenne primes. The largest known
is also the largest known prime: 2136279841 − 1; it has 41024320 digits.

3. It is unknown whether there are infinitely many twin primes: a prime p such that
p+ 2 is also prime. The largest currently known one has 388342 digits. Brun showed
1919 that there are much less twin primes than primes: if π2(n) is the number of
twin primes ⩽ n, then π2(n)/π(n) →n 0.

4. Goldbach’s conjecture (1742) is also open: is every even n > 2 the sum of two primes?
Computers verified this for all n ⩽ 4 ⋅ 1018.

5. Dirichlet’s theorem (1837) states that for all coprime a, b ∈ N there are infinitely many
primes of the form ax + b where x ∈ N. Theorem 6.9.15 proves this for b = 1.

6. Green and Tao proved 2004 that there are arbitrarily long arithmetic progressions of
primes: for every ℓ > 0 there are primes p1 < ⋯ < pℓ such that p2 − p1 = ⋯ = pℓ − pℓ−1.

Exercise 2.3.6. Let p > 3 be a twin prime and q ∶= p + 2 (prime). Show 12 ∣ p + q.
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2.4 The Chinese remainder theorem

Definition 2.4.1. For n ∈ Z call x, y ∈ Z congruent modulo n, symbolically x ≡ y mod n,
if n ∣ x − y. The equivalence class of x ∈ Z is the residue class of x modulo n and denoted
[x]n, or x̄ if n is clear from context. The set of equivalence classes is denoted Zn.

Remark 2.4.2. This is indeed an equivalence relation. It is reflexive because n ∣ x−x = 0,
symmetric because n ∣ x−y if and only if n ∣ −(x−y) = y−x, and transitive because n ∣ x−y
and n ∣ y − z implies n ∣ (x − y) + (y − z) = x − z.

We usually take n ∈ N; note n and −n define the same relation. Any two numbers are
congruent modulo n ∶= 1; only identical numbers are congruent modulo n ∶= 0. Ifm ∣ n, then
congruence modulo n refines congruence modulo m: x ≡ y mod n implies x ≡ y mod m.

Remark 2.4.3. Let n > 1 and x,x′, y, y′, z ∈ Z.

1. [x]n = x + nZ ∶= {x + nz ∣ z ∈ Z}.
Indeed: y ∈ [x]n⇔ n ∣ x − y⇔ nz = x − y for some z ∈ Z⇔ y ∈ x + nZ.

2. There are n residue classes modulo n,namely [0]n, ..., [n − 1]n.

Indeed: clearly, the listed classes are pairwise distinct; the list is complete: for x ∈ Z
write x = qn + r by Euclidian division, so 0 ⩽ r ⩽ n − 1 and r = x − qn ≡ x mod n.

3. If x ≡ x′ mod n and y ≡ y′ mod n, then

x + y ≡ x′ + y′ mod n, x − y ≡ x′ − y′ mod n, xy ≡ x′y′ mod n.

4. If x ≡ y mod n and k ∈ N, then xk ≡ yk mod n.

5. If z ≠ 0 and xz ≡ yz mod n, then x ≡ y mod n/d for d ∶= gcd(z, n).

Indeed: n ∣ (xz − yz) = z(x − y) implies n/d ∣ (z/d)(x − y). By Remark 2.1.9 (3),
n/d, z/d are coprime, so n/d ∣ (x − y) by Remark 2.1.9 (5).

E.g., 1 ⋅ 2 ≡ 4 ⋅ 2 mod 6 and 1 /≡ 4 mod 6 but 1 ≡ 4 mod 6/2.

Example 2.4.4. [0]5 = [2025]5, [1]5 = [66]5, [2]5 = [−33]5, [3]5 = [−102]5, [4]5 = [−1]5.

We sample some applications of reasoning with congruences.

Example 2.4.5. What is the last digit of n ∶= 1314?

Solution: that the digits are aℓaℓ−1⋯a0 with ai ⩽ 9 means n = aℓ10ℓ +⋯+ a110 + a0. Hence,
a0 is the unique natural ⩽ 9 with n ≡ a0 mod 10. We use the Russian peasant method,
i.e., repeated squaring: modulo 10 we have 13 ≡ 3, so 132 ≡ 9 ≡ −1, so 134 ≡ (−1)2 ≡ 1, so
138 ≡ 1; then 136 ≡ 134 ⋅ 132 ≡ −1 and 1314 ≡ 138 ⋅ 136 ≡ −1 ≡ 9. Hence, a0 = 9.

Exercise 2.4.6. A natural n is divisible by 9 (or 3) if and only if so is the sum of its digits.

Exercise 2.4.7. Consider an equation a1X1 + ⋯ + arXr ≡ b mod n where a1, ..., ar, b ∈ Z,
n > 0 and X1, ...,Xr are variables ranging over Z. Show it has a solution if and only if
gcd(a1, ..., ar, n) ∣ b. In case, how do you compute one?
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Example 2.4.8 (ISBN). Books are assigned an ISBN, a sequence of 11 digits (until 2007)
determining 10 naturals a1, ..., a9 ⩽ 9 and a10 ⩽ 10. The numbers a1, ..., a9 code information
about the book (editor etc.), and a10 is such that ∑

10
i=1 i ⋅ ai ≡ 0 mod 11.

Assume one of the first 9 numbers is corrupted, say ai0 . Then one can still compute
b ∶= ∑i≠i0 i ⋅ ai. Then i0 ⋅ ai0 + b ≡ 0 mod 11. Then ai0 is a solution of i0X ≡ −b mod 11 and
the unique one in {0, ...,9}. Thus ai0 can be computed as in the previous exercise.

Theorem 2.4.9 (Chinese remainder theorem). Let r > 0, a1, ..., ar ∈ Z and assume that
m1, ...,mr > 1 are pairwise coprime. Set m ∶=m1⋯mr.

1. The following system of equations has a solution in Z:

X ≡ a1 mod m1, ... X ≡ ar mod mr

2. For all 1 ⩽ i ⩽ r there is bi ∈ Z with
m

mi

⋅ bi ≡ 1 mod mi. Then a solution is

x ∶= a1
m

m1

b1 +⋯ + ar
m

mi

br.

3. If x0 is a solution, then the set of solutions is [x0]m.

Proof. (2) implies (1). (2): we claim mi and m/mi are coprime for all i. Otherwise there
is a common prime factor p of mi and m/mi. Then p ∣ m1⋯mi−1mi+1⋯mr and Euclid’s
lemma gives j ≠ i with p ∣mj. As also p ∣mi, this contradicts mi,mj being coprime.

Bézout gives y, z ∈ Z with 1 = ymi + z
m
mi
. Then 1 ≡ zm/mi mod mi so bi ∶= z is as

claimed. Let x be as in (2) and 1 ⩽ i ⩽ r. Note mi ∣
m
mj

for j ≠ i, so aj
m
mi
bj ≡ 0 mod mi.

Hence x ≡ ai
m
mi
bi ≡ ai ⋅ 1 mod mi.

(3): let S be set of solutions and x0 ∈ S. We show S = [x0]m. If x ∈ S, then x ≡ x0 ≡ aj
mod mj for all j, i.e., mj ∣ x0−x . Since m1,m2 are coprime, Remark 2.1.9 (6) gives m1m2 ∣
x0 − x. But also m1m2 and m3 are coprime (see the argument above), so m1m2m3 ∣ x0 − x,
etc. Hence m ∣ x0 − x, i.e., x0 ≡ x mod m. Conversely, if m ∣ x0 − x, so mi ∣ x0 − x for all i,
so x ≡ x0 ≡ ai mod mi for all i, i.e., x ∈ S.

Example 2.4.10. We compute all solutions (in Z) of

X ≡ 1 mod 2, X ≡ 2 mod 3, X ≡ 4 mod 5.

We copy the notation: a1, a2, a3 are 1,2,4 and m1,m2,m3 are 2,3,5 and m = 30.

– we want b1
m
m1
≡ 1 mod m1, i.e., 15 ⋅ b1 ≡ 1 mod 2 and take b1 ∶= 1;

– we want b2
m
m2
≡ 1 mod m2, i.e., 10 ⋅ b2 ≡ 1 mod 3 and take b2 ∶= 1;

– we want b3
m
m3
≡ 1 mod m3, i.e., 6 ⋅ b3 ≡ 1 mod 5 and take b3 ∶= 1;

– we get a solution x0 ∶= a1
m
m1
b1 + a2

m
m2
b2 + a3

m
m3
b3 = 1 ⋅ 15 ⋅ 1 + 2 ⋅ 10 ⋅ 1 + 4 ⋅ 6 ⋅ 1 = 59;

– the set of solutions is [59]30 = [−1]30.

Exercise 2.4.11. Find the smallest n ∈ N such that for all 2 ⩽ m ⩽ 7 the remainder of
(n,m) is m − 1.
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2.5 Residue class rings

Definition 2.5.1. Let n > 1. For x, y ∈ Z set

[x]n + [y]n ∶= [x + y]n, [x]n ⋅ [y]n ∶= [x ⋅ y]n.

Remark 2.5.2. These are well-defined by Remark 2.4.3 (2) and make (Zn,+, ⋅) a commu-
tative ring (exercise). Further, x↦ [x]n is a ring epimorphism from Z onto Zn.

Examples 2.5.3. Here are the tables for Z3 and Z4:

Z3 ∶

+ 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

⋅ 0̄ 1̄ 2̄
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄
2̄ 0̄ 2̄ 1̄

Z4 ∶

+ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 2̄ 3̄ 0̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 0̄ 1̄ 2̄

⋅ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄
2̄ 0̄ 2̄ 0̄ 2̄
3̄ 0̄ 3̄ 2̄ 1̄

In Z3 we have 2̄−1 = 2̄, so every x̄ ≠ 0̄ has a multiplicative inverse and Z3 is a field.
In Z4 we have 2̄ ≠ 0̄ and 2̄ ⋅ 2̄ = 0̄, so 2̄ is a zero-divisor and Z4 is not an integral domain;

its units are Z×4 = {1̄, 3̄} with 3̄−1 = 3̄.

Exercise 2.5.4. Let n > 1. Give an isomorphism from (Zn,+, ⋅) onto ({0, ..., n − 1},+′, ⋅′)
where i +′ j, i ⋅′ j are defined as the remainders of (i + j, n), (i ⋅ j, n).

Exercise 2.5.5. Recall Definition 1.6.8. Show (Zn,+) ≅ (Cn, ⋅).

Proposition 2.5.6. Let n > 1. Then Zn is a field if and only if n is prime.

Proof. ⇐: assume n is prime. We have to show that for every x̄ ∈ Zn ∖ {0̄} there is ȳ ∈ Zn
such that x̄ ⋅ ȳ = 1̄. Then n ∤ x, so gcd(x,n) = 1 as n is prime. By Bézout’s lemma there
are y, z ∈ Z such that 1 = yx + zn. Then 1̄ = ȳ ⋅ x̄ + z̄ ⋅ n̄. But n̄ = 0̄, so 1̄ = ȳ ⋅ x̄..
⇒: assume n is not prime, so there are 1 < x, y < n with n = xy. Then 0̄ = x̄ ⋅ ȳ and

x̄ ≠ 0̄ and ȳ ≠ 0̄. Hence, Zn is not an integral domain, so not a field.

Notation: for a prime p the field Zp is denoted Fp.
Using the field structure it is easy to prove:

Theorem 2.5.7 (Wilson). n > 1 is prime if and only if (n − 1)! ≡ −1 mod n. Moreover,
(n − 1)! ≡ 0 mod n if n is not prime and n ≠ 4.

Proof. Clear for n ⩽ 3. Assume n > 3. ⇐: if n > 1 is not a prime, let 1 < q < n be a prime
factor. If n/q ≠ q, then n = q ⋅ n/q ∣ (n − 1)!, so (n − 1)! ≡ 0 mod n. If n/q = q, then n = q2

and we have two subcases. If q = 2, then n = 4 and (4 − 1)! ≡ 2 mod 4; if q > 2, then
2q < q2 = n and 2n = q ⋅ 2q ∣ (n − 1)!, so (n − 1)! ≡ 0 mod n.
⇒: if n > 1 is prime, Zn is a field. Let f map 0 < i < n to the unique 0 < j < n such that

[i]n ⋅ [j]n = [1]n; note that then f(j) = i. We have f(1) = 1 and f(n − 1) = n − 1 but no
other fixed points: if 1 < i < n−1, then i2−1 = (i−1)(i+1) /≡ 0 mod n because i−1, i+1 /≡ 0
mod n (and Zn is an integral domain). Hence 2⋯(n − 2) ≡ 1 mod n – it is a product of
(n − 3)/2 many 1 modulo n. Then (n − 1)! ≡ 1 ⋅ (n − 1) ≡ −1 mod n.
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Another easy application is:

Theorem 2.5.8 (Fermat’s little theorem). If p is prime and x ∈ Z with p ∤ x, then

xp−1 ≡ 1 mod p.

Proof. ȳ ↦ x̄ ⋅ȳ permutes Zp∖{0̄}, so 2̄⋯p − 1 = x2⋯x(p − 1) = x̄p−1 ⋅2̄⋯p − 1, so x̄p−1 = 1̄.

Remark 2.5.9. There are infinitely many Carmichael numbers: composite n such that
xn−1 ≡ 1 mod n for all x coprime to n. Below 108 there are only 255 of them, the first
three are 561 = 3 ⋅ 11 ⋅ 7, 1105 = 5 ⋅ 13 ⋅ 17 and 1729 = 7 ⋅ 13 ⋅ 19.

What does the Chinese remainder theorem tell us about the ring Zn?

Lemma 2.5.10. Let r > 0 and (R1,+1, ⋅1), ..., (Rr,+r, ⋅r) be (commutative) rings. Then
their direct product R1×⋯×Rk is a (commutative) ring with +, ⋅ defined for all (x1, ..., xr),
(y1, ..., yr) ∈ R1 ×⋯ ×Rr as follows:

(x1, ..., xr) + (y1, ..., yr) ∶= (x1 +1 y1, ..., xr +r yr),

(x1, ..., xr) ⋅ (y1, ..., yr) ∶= (x1 ⋅1 y1, ..., xr ⋅r yr).

Further, (R1 ×⋯ ×Rr)× = R×1 ×⋯ ×R
×

r .

Proof. Associativity (commutativity) and distributivity of +, ⋅ are clear. The neutral el-
ements are (01, ...,0r), (11, ...,1r) with 0i,1i denoting the neutral elements of Ri. The
additive inverse of (x1, ..., xr) is (−1x1, ...,−rxr) with −i denoting additive inverse in Ri.

Further: (x1, ..., xr) ⋅ (y1, ..., yr) = (11, ...,1r) if and only if xi ⋅i yi = 1i for all i.

Corollary 2.5.11. Let r > 0 and m1, ...,mr > 1 be pairwise coprime, and m ∶= m1⋯mr.
Then Zm ≅ Zm1 ×⋯ ×Zmr via

[x]m ↦ ([x]m1 , ..., [x]mr)

Proof. The map is well-defined: if [x]m = [x′]m, then x′ ≡ x mod mi for all i (as mi ∣ m),
i.e., ([x]m1 , ..., [x]mr) = ([x

′]m1 , ..., [x
′]mr). It is clear that the map preserves +, ⋅ and 1. It

is surjective by Theorem 2.4.9 (1). Hence it is bijective (both rings have size m).

Example 2.5.12. Z4 /≅ Z2 × Z2: note x + x = 0 for all x on the right, but not on the left.
The additive group of Z2 ×Z2 is the Klein four-group and denoted

K4.

More generally, one easily sees that (the additive subgroups of) Zn × Zm and Znm are
not isomorphic if n,m are not coprime (exercise).
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2.6 Euler’s totient

By Proposition 2.5.6, if n is prime and x, y ∈ Zn ∖ {0}, the equation x̄ ⋅X = ȳ has exactly 1
solution in Zn, namely x̄−1ȳ. What about non-prime n > 1? We show there are either 0 or
“gcd(x̄, n)” many solutions. We avoid this notation but it makes sense – the reader might
verify as an exercise: if x̄ = x̄′, then gcd(x,n) = gcd(x′, n).

Lemma 2.6.1. Let n > 1 and x̄, ȳ ∈ Zn. Then x̄ ⋅X = ȳ has a solution in Zn if and only if

d ∶= gcd(x,n) ∣ y.

Moreover, if z̄ ∈ Zn is a solution, then there are exactly d solutions, namely

z̄, z + n/d, ..., z + (d − 1)n/d.

Proof. Assume there is z ∈ Z with x̄ ⋅ z̄ = ȳ, i.e., xz = ȳ; then n ∣ y − xz, so y = un + xz for
some u ∈ Z; then d ∣ y. Conversely, assume d ∣ y, say y = ud for some u ∈ Z; by Bézout,
y = uu0x + uu1n for some u0, u1 ∈ Z, so ȳ = uu0 ⋅ x̄ + 0̄ and uu0 is a solution.

Moreover, the listed classes are solutions: x̄ ⋅ z + in/d = xz + (x/d)in = ȳ + 0̄. They are

pairwise distinct: if i, j < d and z + in/d = z0 + jn/d, then n ∣ (z + jn/d) − (z + in/d) =
(j − i)n/d, i.e., un = (j − i)n/d for some u ∈ Z, so ud = (j − i). But i, j < d, so j = i.

No other solutions: assume x̄ ⋅ z̄′ = ȳ, so xz′ ≡ xz ≡ y mod n. Then z′ ≡ z mod n/d
by Remark 2.4.3 (4). Then z′ = z + u ⋅ n/d for some u ∈ Z. Write u = qd + r by Euclidian

division, so 0 ⩽ r < d. Then z′ = z + qn + rn/d, so z̄′ = z + rn/d.

We leave the verification of the following as an easy and recommended exercise.

Corollary 2.6.2. Let n > 1, and x̄ ∈ Zn ∖ {0̄}. The following are equivalent.

1. x̄ ∈ Z×n.
2. gcd(x,n) = 1.

3. For all ȳ ∈ Zn there is z̄ ∈ Zn such that x̄ ⋅ z̄ = ȳ.

4. For all ȳ ∈ Zn there is exactly one z̄ ∈ Zn such that x̄ ⋅ z̄ = ȳ.

5. x̄ is not a zero divisor in Zn.

Example 2.6.3. Is [109]341 ∈ Z×341? If so, find 0 < k < 341 with [k]341 = [109]−1341.

Solution. following Euclid’s algorithm write:

341 = 3 ⋅ 109 + 14, 109 = 7 ⋅ 14 + 11, 14 = 1 ⋅ 11 + 3, 11 = 3 ⋅ 3 + 2, 3 = 1 ⋅ 2 + 1.

So gcd(109,341) = 1 and the answer is yes. Then plugging in backwards:

1 = 3 − 2 = 3 − (11 − 3 ⋅ 3) = 4 ⋅ 3 − 11
= 4 ⋅ (14 − 11) − 11 = 4 ⋅ 14 − 5 ⋅ 11
= 4 ⋅ 14 − 5 ⋅ (109 − 7 ⋅ 14) = 39 ⋅ 14 − 5 ⋅ 109
= 39(341 − 3 ⋅ 109) − 5 ⋅ 109 = 39 ⋅ 341 − 122 ⋅ 109,

so 109 ⋅ (−122) ≡ 1 mod 341 and [109]−1341 = [−122]341 = [219]341.
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Remark 2.6.4. By Remark 1.1.18, Z×n is an abelian group (with ⋅).

Exercise 2.6.5 (Another view of Z×n). Let n > 1. If x̄ ∈ Z×n, then φx̄(ȳ) ∶= x̄ ⋅ ȳ defines an
automorphism of the group (Zn,+). Any automorphism has this form. Conclude x̄ ↦ φx̄
is a group isomorphism from (Z×n, ⋅) onto Aut(Zn,+).
Definition 2.6.6. Euler’s totient φ ∶ N ∖ {0} → N is defined by φ(1) = 1 and for n > 1:

φ(n) ∶= ∣Z×n∣.
Remark 2.6.7. By the previous corollary, for n > 1, φ(n) is the number of 1 ⩽ x < n with
gcd(x,n) = 1. In particular, φ(p) = p − 1 for a prime p. For composites, e.g.,

n 4 6 8 9 10 12 14 15 16 18 20 21 22 24 25 26 27 28 30
φ(n) 2 2 4 6 4 4 6 8 8 6 8 12 10 8 20 12 18 12 8

We now learn how to compute φ. First, we generalize Fermat’s little theorem:

Theorem 2.6.8 (Euler). Let n > 1 and x ∈ Z be coprime to n. Then

xφ(n) ≡ 1 mod n.

Proof. We have x̄ ∈ Z×n. Let x̄1, ..., x̄φ(n) list Z×n. Since Z×n is a group, ȳ ↦ x̄ ⋅ ȳ permutes Z×n
(cf. Exercise 1.1.3). Thus, x̄φ(n) = 1 follows by cancellation from

x̄1⋯x̄φ(n) = (x̄x̄1)⋯(x̄x̄φ(n)) = x̄
φ(n) ⋅ x̄1⋯x̄φ(n).

Lemma 2.6.9 (Multiplicativity). φ(nm) = φ(n)φ(m) for all coprime n,m > 0.

Proof. We can assume n,m > 1. By Corollary 2.5.11, Znm ≅ Zn × Zm. The isomorphism
maps units onto units, i.e., Z×nm onto (Zn×Zm)×. By Lemma 2.5.10, the latter is Z×n×Z×m.
Theorem 2.6.10. Let n > 1 have prime factorization n = pk11 ⋯p

kr
r . Then

φ(n) = pk1−1(p1 − 1)⋯p
kr−1(pr − 1) = n ⋅ (1 − 1/p1)⋯(1 − 1/pr).

Proof. By Lemma 2.6.9 it suffices to show φ(pk) = (pk − pk−1) for primes p and k > 0. For
this is suffices to show there are exactly pk−1 numbers 1 < x < pk which are not coprime
to pk. But gcd(x, pk) > 1 means p ∣ x, so x = pm for some 1 ⩽m ⩽ pk−1.

Exercise 2.6.11. How many 0 < n < 3000 are coprime to 3000? Show 2237800−1 is divisible
by 3000. Is 246 − 1 prime?

Theorem 2.6.12 (Totient sum formula). Let n > 0. Then ∑
d∣n

φ(d) = n.

Proof. We first treat the case n = pk for a prime p and k > 0. Then our sum is

φ(1) + φ(p) +⋯ + φ(pk) = 1 + (p − 1) + p(p − 1) +⋯ + pk−1(p − 1) = pk.

Now proceed by induction. For n = 1 our claim is trivial. Given n > 1 let write n = pkm
with p prime and p ∤m. The divisors of n are d, dp, ..., dpk where d ∣m. Hence our sum is

∑d∣mφ(d) +∑d∣mφ(dp) +⋯ +∑d∣mφ(dp
k) = (1 + φ(p) +⋯ + φ(pk)) ⋅ ∑d∣mφ(d).

The 1st factor is pk as seen above, the 2nd is m by induction.

We shall later see a more abstract proof (cf. Corollary 5.3.24).
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2.6.1 RSA encryption

Rivest, Shamir and Adleman suggested 1977 the following protocol of secret communication
that is widely in use today. The basic idea is as follows.

Alice wants to send a secret message to Bob, say of 100 bits, that is, she wants to send
a number m < 2100. She sends a ciphertext instead the message, a number c instead m.
Bob should be able to recover m from c but nobody else, so Bob should know something
nobody else does, not even Alice. Here is how it is done.

Bob chooses two primes q > p > 2100 and e(ncryption) coprime to φ(pq) = (q − 1)(p− 1).
The primes p, q are Bob’s secret. He sends n ∶= pq and e to Alice. Alice sends to Bob c ∶=
the remainder of (me, n). Bob computes d(ecryption) such that de ≡ 1 mod φ(n) (say, by
the Euclidian algorithm). He decrypts the message m as the remainder of (cd, n).

This works: for some k ∈ N this remainder is ≡ cd =med =m1+kφ(n) ≡m mod n by Euler
(m < p < q is coprime to n); both the remainder and m are < n, so equal.

Is this encryption secure? Can Eve, seeing c, n, e, compute m? The hope is that Eve
needs φ(n) to compute d and for that she needs p, q, i.e., to factor n. Many believe (or
hope) that factoring large integers cannot be done in reasonable time. There are, however,
no results in computational complexity theory that would support this belief.

2.7 Primitive roots

By Euler’s Theorem 2.6.8 the following is well-defined:

Definition 2.7.1. Let n > 1 and 0 < x < n be coprime to n. The order of x modulo n is
the minimal k > 0 such that xk ≡ 1 mod n. If this is φ(n), then x is a primitive root of n.

Remark 2.7.2. Let n > 1 and x coprime to n of order k modulo n.

1. For all ℓ > 0, xℓ ≡ 1 mod n if and only if k ∣ ℓ.

⇐: if ℓ = km, then xℓ ≡ (xk)m ≡ 1m ≡ 1 mod n.
⇒: write ℓ = qk + r with 0 ⩽ r < k and q ⩾ 0; then 1 ≡ (xℓ)q ⋅ xr ≡ xr mod n, so r = 0.

2. k ∣ φ(n) (by Euler’s theorem).

3. For all ℓ, ℓ′, xℓ ≡ xℓ
′
mod n if and only if k ∣ (ℓ − ℓ′).

Indeed: say, ℓ ⩽ ℓ′; then xℓ ≡ xℓ
′
mod n, xℓ−ℓ

′
≡ 1 mod n, k ∣ (ℓ − ℓ′) are equivalent.

4. For all ℓ ∈ N, xℓ has order k/gcd(k, ℓ) modulo n.

Indeed: (xℓ)j ≡ 1 mod n
(1)
⇔ k ∣ ℓj ⇔ k/gcd(k, ℓ) ∣ j ⋅ ℓ/gcd(k, ℓ) ⇔ k/gcd(k, ℓ) ∣ j

(by Remark 2.1.9 (3), (5)). The minimal such j > 0 is k/gcd(k, ℓ).

Examples 2.7.3. 2,3,4 have primitive roots 1,2,3. Z×6 = {1̄, 5̄} and 5 is a primitive root
of 6. The tables below show 5 has primitive roots 2,3 and 7 has primitive roots 3,5.
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8 does not have primitive roots: Z×8 = {1̄, 3̄, 5̄, 7̄} and 3̄2 = 5̄2 = 7̄2 = 1̄. Seeing Corol-
lary 2.7.5 below, note there are > 2 many 1 ⩽ x < 8 with x2 ≡ 1 mod 8.

Z×5 x2 x3 x4 order
2̄ 4̄ 3̄ 1̄ 4
3̄ 4̄ 2̄ 1̄ 4
4̄ 1̄ 2

Z×7 x2 x3 x4 x5 x6 order
2̄ 4̄ 1̄ 3
3̄ 2̄ 6̄ 4̄ 3̄ 1̄ 6
4̄ 2̄ 1̄ 3
5̄ 4̄ 6̄ 2̄ 3̄ 1̄ 6
6̄ 1̄ 2

Lemma 2.7.4. If n > 1 has a primitive root, then (Zφ(n),+) ≅ (Z×n, ⋅).

Proof. If x is a primitive root of n > 1, then [1]n, [x]n, [x2]n, ..., [xφ(n)−1]n lists Z×n and the
map [i]φ(n) ↦ [xi]n for 0 ⩽ i < φ(n) is an isomorphism.

This lemma turns multiplicative problems into additive ones. E.g.:

Corollary 2.7.5. Assume there exists a primitive root of n > 1 and let y ∈ Z be coprime
with n. Then there are 0 or 2 many 1 ⩽ x < n such that x2 ≡ y mod n.

Proof. Note no such x can be a zero-divisor in the ring Zn, so x ∈ Z×n. Write m ∶= φ(n).
By the isomorphism the number of such x is the same as the number of [z]m ∈ Zm such
that [z]m + [z]m = [2]m ⋅ [z]m = [u]m where [u]m ∈ Zm corresponds to [y]n ∈ Z×n under the
isomorphism. By Lemma 2.6.1, there are 0 or 2 of them.

We saw 2,3 have 1 = φ(2 − 1) = φ(3 − 1) primitive roots, and 5,7 have 2 = φ(5 − 1) =
φ(7 − 1) many. This is generally so:

Theorem 2.7.6. If p is prime and d ∣ p − 1, then there are exactly φ(d) many naturals
below p of order d modulo p. In particular, there are exactly φ(p − 1) primitive roots of p.

Proof. For d ∣ φ(p) = p− 1 let ψ(d) be the number of 0 < x < p that have order d modulo p.
Then ∑d∣p−1ψ(d) = p−1. By Theorem 2.6.12 it suffices to show ψ(d) ⩽ φ(d) for all d ∣ p−1.

Analogously to the corollary, one sees that there are ⩽ d many 0 < y < p such that yd ≡ 1
mod p (alternatively use Corollary 3.3.3 in the field Zp = Fp).

Assume ψ(d) > 0, so there exists x of order d modulo p. Choose 0 < x0, ..., xd−1 < p
with x0 = 1, x1 = x, [x2]p = [x2]p, ..., [xd−1]p = [xd−1]p. As the xi are pairwise distinct, all y
of order d modulo p appear. By Remark 2.7.2 (4), xi has order d modulo p if and only if
gcd(i, d) = 1. These are φ(d) many. Thus, ψ(d) ⩽ φ(d).

Exercise 2.7.7. Assume n > 1 has a primitive root and let d ∈ N. How many 0 < x < n
coprime to n have order d modulo n?

8 is the first natural without a primitive root. What’s so special about 8?

Theorem 2.7.8. Let n > 1. Then there exist primitive roots of n if and only if n equals 4
or pk or 2pk for a prime p > 2 and k ∈ N.
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Proof. ⇒: We first show 2k does not have a primitive root modulo for k > 2. Clearly, such
a root would be an odd x, say x = 2y + 1. Then x2 = 4y2 + 4y + 1 = 4y(y + 1) + 1 = 8z + 1 for
some z ∈ N. And x4 = 82z2 + 16z + 1 = 16u + 1 for some u ∈ N. And so on. By induction,
x2

k−2
= 2kv+1 for some v ∈ N. Hence, x2k−2 ≡ 1 mod 2k, so x has order ⩽ 2k−2 < 2k−1 = φ(2k).

Assume there is a primitive root of n > 1. By the above, it suffices to show that n cannot
be written n = n0n1 with coprime n0, n1 > 2. Otherwise, by Corollary 2.5.11, Zn ≅ Zn0 ×Zn1

as rings. By Corollary 2.7.5, Zn0 × Zn1 has ⩽ 2 elements x with x2 = 1. But it has ⩾ 4,
namely (±1,±1)– we have 1 ≠ −1 in both Zn0 and Zn1 since n0, n1 > 2.
⇐: we show pk has a primitive root. We can assume k > 1. Let x be a primitive root of p.

Set y ∶= x+p and note yp−1 = xp−1+(p−1)xp−2p+mp2 for some m ∈ Z; note p−2 makes sense
as p > 2. By Fermat xp−1 = 1 +m′p for some m′ ∈ Z, so yp−1 = 1 + (m′ + (p − 1)xp−2)p +mp2.
Note p ∤ (p − 1)xp−2. We can assume that p ∤ (m′ + (p − 1)xp−2): indeed, one easily checks
that otherwise this condition is ensured for y ∶= x + 2p.

Thus, yp−1 = 1+m0p and for some m0 ∈ Z with p ∤m0. Now (yp−1)p = 1+m0p2 +m′′p3 =
1+m1p2 for some m′′,m1 ∈ Z with p ∤m1. Then (yp(p−1))p = 1+m1p3+m′′′p4 = 1+m2p3 for
some m′′′,m2 ∈ Z with p ∤ m2. Continuing, we get for all ℓ ∈ N some mℓ ∈ Z with p ∤ mℓ

and yp
ℓ
(p−1) = 1 +mℓpℓ+1.

The order e of y modulo pk divides φ(pk) = pk−1(p−1), so e = pℓd for some ℓ ⩽ k−1 and
d ∣ (p− 1). Then e ∣ pℓ(p− 1), so yp

ℓ
(p−1) ≡ 1 mod pk, so 1+mℓpℓ+1 ≡ 1 mod pk, so ℓ+ 1 ⩾ k.

Thus ℓ = k − 1 and e = pk−1d.
By Fermat, yp

ℓ
≡ y ≡ x mod p, so yp

ℓ
has order p − 1 modulo p. Since (yp

ℓ
)d = ye ≡ 1

mod p we have p − 1 ∣ d. Hence, p − 1 = d. Thus, e = φ(pk) and y is a primitive root of pk.
Finally, we show 2pk has a primitive root: we want an element x of the ring Z2pk whose

powers are Z×
2pk

. By Corollary 2.5.11, we want a pair (x, y) whose powers in Z2 × Zpk are

Z×2 ×Z×pk . Easy: set x ∶= 1 and y ∶= a primitive root of pk.

Remark 2.7.9. No efficient algorithm is known for determining primitive roots.

Exercise 2.7.10. Carmichael numbers do not have primitive roots (cf. Remark 2.5.9).

Exercise 2.7.11. For every prime p there is n ∈ N such that np + 1 is prime.

Hint: Let q be a prime divisor of 2p − 1 and consider the order of 2 modulo q.

2.7.1 Digital Signature Algorithm

Alice wants to sign a message m to Bob. A signature should be a small amount of in-
formation allowing Bob to efficiently verify that indeed Alice was the sender. The public
information is p, q, g where p > q are primes such that p ≡ 1 mod q and g < p has order q
modulo p (by Theorem 2.7.6 there are φ(q) = q − 1 > 0 such gs).

Alice chooses the private key 0 < x < q at random and keeps it secret; she publishes
y ∶= gx mod p, the public key; here, we write z mod p for the remainder of (z, p).

Each time Alice wants to sign a message m < q, she chooses 0 < z < q at random and
computes 0 < z−1 < q with z ⋅ z−1 ≡ 1 mod q; she sends the signature (a, b) where

a ∶= (gz mod p) mod q, b ∶= z−1(m + xa) mod q.
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Bob, upon receiving a pair (a, b), checks that a equals

a′ ∶= (gmb
−1
⋅ yab

−1
mod p) mod q.

This check clears for (a, b) sent by Alice: since z ≡ (m + xa)b−1 mod q we have

gz ≡ g(m+xa)b
−1
≡ gmb

−1
⋅ yab

−1
mod p.

Can Eve fake Alice’s signature? One hopes, the only way to find (a, b) passing Bob’s
check is to compute x from p, q, g, y, i.e., to solve y = gX mod p – this is known as the
discrete log problem and believed or hoped to be computationally hard.

To sign large messages m > q one replaces m above by a so-called cryptographic hash
of m, a number < q. One chooses large p for security, and small q to get short signa-
tures. E.g., the U.S. Department of Commerce and National Institute of Standards and
Technology (1994) officially recommends 1024 bits for p, and 160 bits for q.

Remark 2.7.12 (Diffie-Hellman key exchange 1976). Alice and Bob can share a secret as
follows: Bob sets a private key x̃ and a public key ỹ ∶= gx̃ like Alice. The shared secret is yx̃

mod p = ỹx mod p computable by both but hopefully not by Eve: one hopes computing
gxx̃ mod p from gx, gx̃ requires x, x̃, so solving instances of the discrete log problem.

Exercise 2.7.13. Why should Alice avoid using the same z signing different messages?

Exercise 2.7.14 (ElGamal encryption). Bob can encrypt a message m < p to Alice as
follows. He chooses secretly a random z < p and sends the ciphertext (c0, c1) where

c0 ∶= g
z mod p, c1 ∶=my

z mod p.

Show Alice (knowing x) can decode by computing cp−x−10 c1 mod p.

2.7.2 The Miller-Rabin primality test

How to decide whether a given number n is prime? A good “witness for compositionality”
of n is a prime factor of n. By Exercise 4.2.8, a composite n has a prime factor ⩽

√
n. We

can check whether one exists by first computing all primes ⩽
√
n.

The Sieve of Erathostenes does this as follows: start with a list of all numbers ⩽
√
n.

Mark 1 and all multiples of 2 except 2; mark all multiples of 3 except 3;...; choose the first
unmarked number p not yet considered and mark all its multiples except p. The finally
unmarked numbers are the primes ⩽

√
n. This method is unfeasible: for an input n of only

160 digits, the size of the list is about the number of atoms in the observable universe.
Another way to make the point: to decide whether an input n is prime, you run

a program that checks for each m ⩽
√
n whether m ∣ n; say n has 40 digits and your

computer does 1 billion checks per sec; then, if n is prime, you wait > 1000 years, and 55
digits make you wait more than the age of the universe.

We now design a fast probabilistic algorithm that your PC executes in only a split
second on much larger inputs – but has a 0.001% chance of error. The key is a concept of
“witness” with the property that most numbers < n are witnesses if n is composite.
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Definition 2.7.15. Let n > 1 be odd and write n − 1 = 2tm for odd m and t > 0. An
RM-witness for n is a number 1 ⩽ x ⩽ n such that

1. xn−1 /≡ 1 mod n, or,

2. there is j < t such that x2
jm /≡ ±1 and x2

j+1m ≡ 1 mod n.

Proposition 2.7.16. If n > 1 is prime, then there is no RM-witness for n.

Proof. xn−1 ≡ 1 mod n by Fermat. If x2
jm /≡ ±1 and x2

j+1m ≡ 1 mod n, then ±1 and the
remainder of (x2

jm, n) are 3 solutions of X2 ≡ 1 mod n, contradicting Corollary 2.7.5.

Exercise 2.7.17. A proper subgroup H of a finite group G has size ∣H ∣ ⩽ ∣G∣/2.

Hint: for x ∈ G ∖H consider the set of xh,h ∈H.

Theorem 2.7.18. Every odd composite n > 1 has > n/2 many RM-witnesses.

Proof. Write n − 1 = 2tm as above. Call x ∈ Z bad if it is not an RM-witness. Then
x̄ ∈ Z×n since x ⋅ xn−2 ≡ 1 mod n. By the exercise, it suffices to show that there is a proper
subgroup B of Z×n that contains x̄ for every bad x. This is clear in case there exists x̄ ∈ Z×n
such that xn−1 /≡ 1 mod n: take B to be the set of ȳ ∈ Z×n such that yn−1 ≡ 1 mod n.

So assume xn−1 ≡ 1 mod n for all x̄ ∈ Z×n, i.e., n is Carmichael. By Exercise 2.7.10 (and
Theorem 2.7.8), n is not a prime power, so n = n0n1 for odd coprime n0, n1 > 1.

Let j ⩽ t be maximal such that x2
jm ≡ −1 mod n for some x ∈ Z – such j exist, e.g.,

(−1)2
0m ≡ −1 mod n. Set

B ∶= {ȳ ∈ Z×n ∣ y2
jm ≡ ±1 mod n}.

Clearly, B is a subgroup and contains ȳ for every bad y: either all y2
im are ≡ 1 mod n,

or there is i < t such that y2
im /≡ 1 mod n and y2

i+1m ≡ 1 mod n; as y is bad, y2
im ≡ −1

mod n; by choice of j we have i ⩽ j, and hence ȳ ∈ B. We are left to show B ≠ Z×n.
The Chinese remainder theorem gives z with z ≡ x mod n0 and z ≡ 1 mod n1. Then

z2
jm ≡ x2

jm ≡ −1 mod n0, z2
jm ≡ 1 mod n1.

This means, the isomorphism of Corollary 2.5.11 maps z̄2
jm to (−1̄, 1̄). Note −1̄ ≠ 1̄ as

n0 > 2. Thus z̄2
jm ≠ ±1 in the ring Zn; hence, z̄ /∈ B.

The Miller-Rabin test The algorithm takes as input n > 1 odd and k ⩾ 1 and works as
follows: choose 1 ⩽ x1, ..., xk ⩽ n − 1 independently and uniformly at random and test for
each of them whether it is an RM-witness for n. If there is one, then answer “composite”,
otherwise answer “prime”.

If n is prime, the algorithm answers “prime” for sure (Proposition 2.7.16). If it is
composite, it errs and answers “prime” only with probability < 2−k (Theorem 2.7.18).

Some basic algorithmics give efficient RM-witness-checks.
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2.8 The law of quadratic reciprocity

This section studies the question whether X2 ≡ a mod n has a solution in Z. The Legendre
symbol is a cumbersome but established notation for the answer with a special treatment
of the case a ≡ 0 mod p:

Definition 2.8.1. Let n > 1 and x ∈ Z. Then x is a quadratic residue modulo n if y2 ≡ x
mod n for some y ∈ Z; otherwise it is a quadratic nonresidue modulo n.

For a prime p > 2, the Legendre symbol is

(
x

p
) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if p ∤ x and x is a quadratic residue modulo p,
−1 if p ∤ x and x is a quadratic nonresidue modulo p,
0 if p ∣ x.

Exercise 2.8.2. Let p > 2 be prime, a, b, c ∈ Z with a coprime to p. Then aX2 + bX + c ≡ 0
mod p has a solution if and only if (b2 − 4ac) is a quadratic residue modulo p.

Examples 2.8.3. Modulo 11 and 13 and 15 we have quadratic residues 1,3,4,5,9 and
1,3,4,9,10,12 and 1,4,6,9,10:

in Z11
x 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 8̄ 9̄ 1̄0
x2 1̄ 4̄ 9̄ 5̄ 3̄ 3̄ 5̄ 9̄ 4̄ 1̄

in Z13
x 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 8̄ 9̄ 1̄0 1̄1 1̄2
x2 1̄ 4̄ 9̄ 3̄ 1̄2 1̄0 1̄0 1̄2 3̄ 9̄ 4̄ 1̄

in Z15
x 1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄ 8̄ 9̄ 1̄0 1̄1 1̄2 1̄3 1̄4
x2 1̄ 4̄ 9̄ 1̄ 1̄0 6̄ 4̄ 4̄ 6̄ 1̄0 1̄ 9̄ 4̄ 1̄

Proposition 2.8.4. Let p > 2 be prime. Then exactly half of {1, ..., p − 1} are quadratic
residues modulo p.

Proof. By Theorem 2.7.8, p has a primitive root. Map 1 ⩽ x ⩽ p − 1 to the 1 ⩽ y ⩽ p − 1
such that x2 ≡ y mod p. By Corollary 2.7.5, each value has exactly 2 preimages.

Theorem 2.8.5 (Euler). Let p > 2 be prime and x ∈ Z. Then (x
p
) ≡ x

p−1
2 mod p.

First proof. We can assume x /≡ 0 mod p and write x ≡ gk mod p where k ∈ N and g is a
primitive root of p. Then g(p−1)/2 ≡ −1 mod p because it is not 1 and its square is 1 by
Fermat. Clearly, x is a quadratic residue modulo p if and only if k is even. But

x(p−1)/2 ≡ (g(p−1)/2)k ≡ (−1)k mod p.

Second proof. If (xp) = 0, then x(p−1)/2 ≡ 0 mod p. If (xp) = 1, say y2 ≡ x mod p, then

x(p−1)/2 ≡ yp−1 ≡ 1 mod p by Fermat (and y /≡ 0 mod p). If (xp) = −1, we argue as Wilson:
pair each 1 ⩽ y ⩽ p−1 with the 1 ⩽ z ⩽ p−1 such that yz ≡ x mod p; then z is paired with y,
and y ≠ z as x is a quadratic nonresidue. Thus (p − 1)! ≡ x(p−1)/2 mod p and (p − 1)! ≡ −1
mod p by Wilson.
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Corollary 2.8.6. Let p > 2 be prime and x, y ∈ Z.

1. (xyp ) = (
x
p) ⋅ (

y
p).

The product of two quadratic residues or nonresidues is a quadratic residue, and the
product of a quadratic residue with a quadratic nonresidue is a quadratic nonresidue.

2. (x
2

p
) = 1, (x

2y
p
) = (yp), (1

p
) = 1, (−1

p
) = (−1)(p−1)/2.

Lemma 2.8.7 (Gauß). Let p > 2 be prime and x coprime to p. Let k be the number of
remainders of (x, p), (2x, p), ..., (p−12 x, p) that are > p/2. Then

(
x

p
) = (−1)k.

Proof. Let r1, ..., rk list the remainders > p/2 and s1, ..., sℓ the remainders < p/2. Then
k + ℓ = (p − 1)/2. Further, the numbers p − ri are < p/2 and pairwise distinct, and distinct
from the sj: assume p − ri = sj, and, say, ri is the remainder for 1 ⩽ i∗ ⩽ p − 1/2 and sj
for 1 ⩽ j∗ ⩽ p − 1; then p − ri ≡ i∗x mod p and sj ≡ j∗x mod p, so i∗x ≡ j∗x mod p, so
p ∣ x(i∗ + j∗); since p ∤ x, this implies p ∣ i∗ + j∗ < p/2 + p/2, a contradiction.

It follows that the p − ri and sj list 1, ..., (p − 1)/2. Thus

p − 1

2
! ≡ (−1)kr1⋯rns1⋯sℓ ≡ (−1)

kx ⋅ 2x⋯
p − 1

2
x mod p,

so (−1)kx(p−1)/2 ≡ 1 mod p. Now apply the previous theorem.

Lemma 2.8.8. Let p > 2 be prime and x be odd and coprime to p. Then

(
x

p
) = (−1)t where t ∶=

(p−1)/2

∑
i=1

⌊ix/p⌋.

Proof. Define r1, ..., rk, s1, ..., sℓ as in the previous proof. E.g., if ri is the remainder of
(y, p), then y = p ⋅ ⌊y/p⌋ + ri. Observe

(p−1)/2

∑
i=1

ix =
(p−1)/2

∑
i=1

p ⋅ ⌊ix/p⌋ +
k

∑
i=1

ri +
ℓ

∑
j=1

sj,

(p−1)/2

∑
i=1

i =
k

∑
i=1

(p − ri) +
ℓ

∑
i=1

sj = kp −
k

∑
i=1

ri +
ℓ

∑
i=1

sj,

(x − 1)
(p−1)/2

∑
i=1

i = p ⋅ (
(p−1)/2

∑
i=1

⌊ix/p⌋ − k) + 2
k

∑
i=1

ri,

where the 3rd follows by subtracting the 2nd from the 1st. Its l.h.s. is even as x is odd, so

∑
(p−1)/2
i=1 ⌊ix/p⌋ − k ≡ 0 mod 2. The lemma follows.

Corollary 2.8.9. Let p > 2 be prime. Then (
2

p
) = (−1)(p

2
−1)/8.



CHAPTER 2. NUMBER THEORY 39

Proof. Note ∑
(p−1)/2
i=1 i = (p−1)/2 ⋅((p−1)+2)/2 ⋅1/2 = (p2−1)/8. The last displayed formula

above gives (p2 − 1)/8 ≡ ∑
(p−1)/2
i=1 ⌊i2/p⌋ − k mod 2 and all ⌊i2/p⌋ = 0.

Exercise 2.8.10. Let p > 2 be prime. Then X2 ≡ 2 mod p has a solution if and only if
p ≡ ±1 mod 8. And X2 ≡ −1 mod p has a solution if and only if p ≡ 1 mod 4.

The following result is very surprising. Gauß proved it 1801 and referred to it as the
“theorema aureum”.

Theorem 2.8.11 (Quadratic reciprocity). If p, q > 2 are distinct primes, then

(
p

q
) ⋅ (

q

p
) = (−1)

p−1
2
⋅
q−1
2 .

Proof. Let S be the set of pairs (x, y) with 1 ⩽ x ⩽ p − 1 and 1 ⩽ q ⩽ q − 1; it has size
(p − 1)(q − 1)/4. Partition S into S0, S1 where S0 contains the (x, y) with qx > py and
S1 the (x, y) with qx < py; note qx = py is impossible. Note (x, y) ∈ S0 if and only if

1 ⩽ x ⩽ p − 1 and 1 ⩽ y < qx/p, so ∣S0∣ = ∑
(p−1)/2
x=1 ⌊qx/p⌋. Similarly, ∣S1∣ = ∑

(q−1)/2
y=1 ⌊py/q⌋.

Now Lemma 2.8.8 implies the theorem:

(p−1)/2

∑
x=1

⌊qx/p⌋ +
(q−1)/2

∑
y=1

⌊py/q⌋ =
p − 1

2
⋅
q − 1

2
.

Remark 2.8.12. Note (p− 1)/2 is even if and only if p ≡ 1 mod 4. Hence another way to
phrase the reciprocity law is:

(pq) = (
q
p) if p or q is ≡ 1 mod 4,

(pq) = −(
q
p) if both p and q are ≡ 3 mod 4.

The reciprocity law enables very quick computations – if one has prime factorizations:

Example 2.8.13. Is 1001 a quadratic residue modulo the prime 99991? Write 1001 =
7 ⋅ 11 ⋅ 13 and (10019991

) = ( 7
99991
) ( 11

9991
) ( 13

99991
) and consider each factor in turn.

� ( 7
99991
) = −(999917

) since both numbers are 3 mod 4, = −(37) as 99991 ≡ 3 mod 7,

= (73) since both numbers are 3 mod 4, = (13) = 1 since 7 ≡ 1 mod 3.

� ( 11
99991
) = −(9999111

) = −( 1
11
) = −1 since 99991 ≡ 1 mod 11.

� ( 13
99991
) = (9999113

) since 13 ≡ 1 mod 4, = (2
2
⋅2

13 ) since 99991 ≡ 8 mod 13, = ( 2
13
) by

Corollary 2.8.6 (2), = (−1)(13
2
−1)/8 = (−1)21 = −1 by Corollary 2.8.9.

Thus the answer is yes. Indeed, one can verify 385212 ≡ 1001 mod 99991.

Example 2.8.14. Here is why the prime 773 is a quadratic residue modulo the prime

1373: since 773 ≡ 1 mod 4, we have ( 773
1373
) = (1373773

) = (600773
) = (2

3
⋅52⋅3
773 ) = (

2
773
) ⋅ ( 3

773
)

by Corollary 2.8.6 (2). Both factors are −1: ( 2
773
) = (−1)(773

2
−1)/8 = (−1)74691 = −1 by

Corollary 2.8.9; and ( 3
773
) = (7733 ) = (

2
3
) as 773 ≡ 2 mod 3, = (−1)(3

2
−1)/8 = −1.

Exercise 2.8.15. 9907 is prime. Compute (10019907
).
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2.9 The Jacobi symbol

Definition 2.9.1. The Jacobi symbol (
x

n
) extends the Legendre symbol to odd naturals

n > 1. If n = p1⋯pℓ for odd primes pi, then, using the Legendre symbol on the r.h.s.,

(
x

n
) ∶= (

x

p1
)⋯(

x

pℓ
) .

Lemma 2.9.2. Let x, y ∈ Z and n,m > 1 be odd.

1. (xyn ) = (
x
n
) ⋅ ( yn), ( x

nm
) = (xn) ⋅ (

x
m
).

2. If gcd(x,n) > 1, then (xn) = 0.

3. If gcd(x,n) = 1, then (x
2

n ) = (
x
n2 ) = 1.

4. If x ≡ y mod n, then (xn) = (
y
n
).

5. (−1n ) = (−1)
(n−1)/2, ( 2

n
) = (−1)(n

2
−1)/8.

6. If gcd(n,m) = 1, then ( nm) ⋅ (
m
n
) = (−1)

n−1
2
⋅
m−1
2 .

Proof. (1)-(4) are easy. For (5), let n = pk11 ⋯p
kr
r be the prime factorization. For the first

statement, recall Corollary 2.8.6 (2) and note

(
−1

n
) =

r

∏
i=1

(
−1

pi
)
ki

=
r

∏
i=1

((−1)(pi−1)/2)ki = (−1)k, where k ∶=
r

∑
i=1

ki(pi − 1)/2.

We claim (n − 1)/2 ≡ k mod 2. Since pi − 1 is even, the binomial formula implies

pkii = (1 + (pi − 1))
ki ≡ 1 + ki(pi − 1) mod 4.

Noting (pi − 1)(pj − 1) ≡ 0 mod 4 we get

n ≡
r

∏
i=1

(1 + ki(pi − 1) ≡ 1 +
r

∑
i=1

ki(pi − 1) ≡ 1 + 2k mod 4.

This implies (n − 1)/2 ≡ k mod 2 (by Remark 2.4.3 (4)), and thus our claim.
The 2nd statement of (5) is proved similarly using Corollary 2.8.9 and 8 ∣ n2 − 1. For

(6), let m = qℓ11 ⋯q
ℓs
s be the prime factorization and use the law of quadratic reciprocity:

(
n

m
) ⋅ (

m

n
) =∏

ij

((
pi
qj
) ⋅ (

qj
pi
))kiℓj = (−1)k⋅ℓ, where

k ∶= ∑i ki(pi − 1)/2
ℓ ∶= ∑j ℓj(qj − 1)/2.

Note pi ≠ qj as n,m are coprime. As seen above, kℓ ≡ (n − 1)/2 ⋅ (m − 1)/2 mod 2.

Proposition 2.9.3. Let n > 1 be odd and x ∈ Z coprime to n. If x is a quadratic residue

modulo n, then (
x

n
) = 1.
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Proof. Let n = p1⋯pℓ for odd primes pi. If y2 ≡ x mod n, then y2 = x mod pi. Since pi ∤ x,

( xpi) = 1. Hence, (
x
n
) = ( xp1)⋯(

x
pℓ
) = 1.

Example 2.9.4. The converse is false: ( 2
15
) = (23) (

2
5
) = (−1)(−1) = 1 and ( 8

15
) = ( 2

15
)
3
= 1

but 2,8 are quadratic nonresidues modulo 15 (Example 2.8.3).

Remark 2.9.5. One can show, using the lemma and some basic algorithmics, that the
Jacobi symbol can be efficiently computed. In contrast, computing the Legendre symbol
seems to require prime factorizations for which no efficient algorithm is known.

Example 2.9.6. We compute (10019907
) from Exercise 2.8.15 using the Jacobi instead of the

Legendre symbol: (10019907
) = (99071001

) since (1001 − 1)/2 is even (hence (−1)(1001−1)/2⋅(9907−1)/2 =

1), so = ( 898
1001
) as 9907 ≡ 898 mod 1001, so = ( 2

1001
) ( 449

1001
) = ( 449

1001
) since (−1)(1001

2
−1)/8 = 1,

so = (1001449
) as (1001 − 1)/2 is even, so = (103449

) as 1001 ≡ 103 mod 449, so = (449103
) as

(449 − 1)/2 is even, so = ( 37
103
) as 449 ≡ 37 mod 103, so = (10337

) as (37 − 1)/2 is even, so

= (2937) as 103 ≡ 29 mod 37, so = (3729) = (
8
29
) = ( 2

29
)
3
= (−1)3(29

2
−1)/8 = (−1)305 = −1.

Exercise 2.9.7. 511 = 7 ⋅ 73 is not prime. Compute (163511
).

2.9.1 The Solovay-Strassen primality test

Definition 2.9.8. Let n > 1 be odd. An Euler-Jacobi- or EJ-witness for n is a number

1 ⩽ x ⩽ n − 1 coprime to n such that (
x

n
) /≡ x(n−1)/2 mod n.

Theorem 2.9.9. An odd n > 1 is composite if and only if there is an EJ-witness for n.

Proof. ⇐ is clear by Euler’s theorem 2.8.5. ⇒: assume n is composite.
Case 1: n = p1⋯pr for distinct primes pi > 2 and r > 1. Choose 1 ⩽ y ⩽ p1 − 1 with

( yp1) = −1 (Proposition 2.8.4). By the Chinese remainder theorem choose 1 ⩽ x ⩽ n−1 such

that x ≡ y mod p1 and x ≡ 1 mod pi for i ≠ 1. Then no pj divides x, so x is coprime to n.

Then ( xp1) = (
x
p1
) = −1 and ( xpi) = (

1
pi
) = 1 for i ≠ 1, so (xn) = ∏j (

x
pj
) = −1. But −1 /≡ x(n−1)/2

mod n. Otherwise, as p2 ∣ n, also −1 ≡ x(n−1)/2 ≡ 1 mod p2, a contradiction as p2 > 2.
Case 2: n = pkm for some prime p > 2, k > 1 and m ∈ N with p ∤ m. The Chinese

remainder theorem gives 1 ⩽ x ⩽ n − 1 such that x ≡ (1 + p) mod p2 and x ≡ 1 mod m.
Then gcd(x,n) = 1. Indeed: p ∤ x (otherwise p ∤ x − (1 + p) but p2 ∣ x − (1 + p)) and no
divisor q of m divides x (otherwise q ∤ x− 1 but m ∣ x− 1). Assume x is not an EJ-witness
of n. Then

xn−1 = (x(n−1)/2)2 ≡ (
x

n
)
2

= 1 mod n,

Since p2 ∣ n we have 1 ≡ xn−1 ≡ (1 + p)n−1 mod p2 and this is ≡ 1 + (n − 1)p mod p2 by the
binomial theorem. Hence, 0 ≡ (n − 1)p mod p2. Then p ∣ n − 1, contradicting p ∣ n.
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Lemma 2.9.10. If n > 1 is odd and composite, then at least half of all 1 ⩽ m ⩽ n − 1
coprime to n are EJ-witnesses for n.

Proof. Call m ∈ Z bad if it is coprime to n and (mn ) ≡ m
(n−1)/2 mod n. Clearly, 1 is bad

and, by Lemma 2.9.2 (1), if m,m̃ are bad, then so is mm̃. Thus, the residue classes of bad
m ∈ Z form a subgroup of Z×n. It is proper by the previous theorem. By Exercise 2.7.17,
its size is ⩽ ∣Z×n∣/2. This is our claim.

The Solovay-Strassen test The algorithm takes as input n > 1 odd and k ⩾ 1 and
works as follows: choose 1 ⩽ x1, ..., xk ⩽ n − 1 independently and uniformly at random and
check for each of them whether gcd(n,xi) > 1 or (xin ) /≡ x

(n−1)/2
i mod n. If there is one,

then answer “composite”, otherwise answer “prime”.
If n is prime, then this algorithm answers “prime” for sure (Theorem 2.9.9). If n is

composite, then each choice of xi has probability ⩾ 1/2 to either have a nontrivial divisor

with n (and then n is not prime) or to satisfy (xin ) /≡ x
(n−1)/2
i mod n. Hence the algorithm

errs and answers “prime” only with probability < 2−k.
Each check is efficient: we already remarked that the Jacobi symbol can be efficiently

computed, and gcd(n,mi) can also be efficiently computed using Euclid’s algorithm.

Remark 2.9.11 (Computational complexity theory). The Cobham-Edmonds Thesis states
that a property P of (one or a tuple of) natural numbers is “efficiently decidable” (informal
concept) if and only if P is decidable in polynomial time – a formal concept. Decidability
means that there is an algorithm that given any input n ∈ N performs at most a finite
sequence of basic computational steps and halts with output 1 or 0 according to whether
n ∈ P or not. It is a matter of no consequence how one defines “basic computational step”.
Being polynomial time means that on an input of length ℓ the number of steps is O(ℓc) for
some constant c ∈ N (i.e., independent of the input). Here, the length of an input n ∈ N is
the length of the binary representation of n, so ℓ = ⌈log(n + 1)⌉.

E.g., primality is decided by an algorithm that on input n checks for allm ⩽
√
n whether

m ∣ n. This can take more than
√
n ≈ 2ℓ/2 steps, so is exponential time. In contrast, the

property of (x,n) that x is an RM-witness for n, or the property of (x,n) that gcd(x,n) > 1
or x is an EJ-witness of n are polynomial time decidable. The input length is ≈ logx+logn,
so this means the property is decidable in time O((logx+ logn)c) for some constant c ∈ N.

Probabilistic algorithms toss fair coins during their computations, so their output be-
comes a random variable. In the terminology of computational complexity theory, both
the Rabin-Miller test and the Solovay-Strassen test give probabilistic polynomial time al-
gorithms deciding primality with one-sided error (one-sided because they do not err when
the input is prime). In 2002, Agrawal, Kayal and Saxena found a deterministic polynomial
time algorithm for primality. This is outside the scope of this course.



Chapter 3

Polynomials

3.1 Univariate polynomials

In this section, let R,S be commutative rings. A polynomial over R is an expression of
the form anXn + ⋯ + a1X + a0 with n ∈ N, ai ∈ R. But what is an “expression”? In what
sense is e.g. 3X3 + 2X + 1 the same as 0 ⋅X2 + 1 + 2X + 3X3?

We are used to judge equality of polynomials by comparing coefficients. The idea is
thus to define a polynomial as a sequence of coefficients, one for each power of X and only
finitely many ≠ 0. E.g. the two “expressions” above become (1,2,0,3,0,0, ...).

Definition 3.1.1. Let R[X] be the set of (univariate) polynomials (over R): sequences
(ak)k∈N with ak ∈ R for all k ∈ N and ak ≠ 0 for only finitely many k ∈ N. Given another
polynomial (bk)k∈N define + componentwise and ⋅ as the Cauchy product:

(ak)k + (bk)k ∶= (ak + bk)k, (ak)k ⋅ (bk)k ∶= ( ∑
i+j=k

ai ⋅ bj )k.

Remark 3.1.2.

1. (R[X],+, ⋅) is a commutative ring with additive and multiplicative neutral elements
(0,0, ...), the zero polynomial, and (1,0, ...). The additive inverse of (ak)k ∈ R[X] is
−(ak)k = (−ak)k (additive inverse in R on the r.h.s.).

2. a↦ (a,0,0,⋯) is a ring monomorphism from R into R[X]. We “identify” a ∈ R with
(a,0,0,⋯) and view R as a subring of R[X].

3. Write X ∶= (0,1,0,0,⋯) and note Xk = (0, ...,0,1,0, ...) for k ∈ N (where the 1 is at
position k). Given (ak)k ∈ R[X] choose n with ak = 0 for all k > n; then

(ak)k = anX
n +⋯ + a1X + a0.

Formally, e.g., a1X stands for (a1,0,0, ...) ⋅ (0,1,0, ...).

Definition 3.1.3. Let f = anXn +⋯+ a0 ∈ R[X] with an ≠ 0. The ai are coefficients of f ,
an is the lead coefficient, and a0 the constant coefficient. The degree of f is deg(f) ∶= n.
The zero polynomial has degree −∞. Polynomials with lead coefficient 1 are monic.

43
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Remark 3.1.4. Understanding −∞ < n and −∞ = −∞ + n = −∞ + −∞ for all n ∈ N, we
have for f, g ∈ R[X]:

1. deg(f + g) ⩽max{deg(f),deg(g)};

2. deg(fg) ⩽ deg(f) + deg(g);

3. if R is an integral domain, then deg(fg) = deg(f) + deg(g) .

Indeed: if f = anXn +⋯ + a0, g = bmXm +⋯ + b0 with an, bm ≠ 0, then anbm ≠ 0 as R
is an integral domain, and fg has lead coefficient ∑i+j=m+n aibj = anbm.

Example 3.1.5. For f = 2̄X + 1̄ ∈ Z4[X] we have deg(f) = 1 and deg(f ⋅ f) = 0 since
f 2 = 4̄X2 + 2̄X + 2̄X + 1̄ = 1̄.

Lemma 3.1.6. If R is an integral domain, then so is R[X] and R[X]× = R×.

Proof. If f, g ∈ R[X]∖{0}, then their degree is ⩾ 0, so deg(fg) ⩾ 0 by the above, so fg ≠ 0.
To show R[X]× = R×, let f ∈ R[X]×. Then 0 = deg(1) = deg(ff−1) = deg(f) + deg(f−1)

by the above, so deg(f) = deg(f−1) = 0, i.e., f, f−1 ∈ R, so f ∈ R×. ⊇ is clear.

Theorem 3.1.7 (Universal property). Let φ ∶ R → S a (ring) homomorphism, and x ∈ S.
Then there is a unique homomorphism Φ ∶ R[X] → S that extends φ and satisfies Φ(X) = x.

Proof. For f = anXn +⋯ + a0 ∈ R[X] with an ≠ 0 define

Φ(f) = φ(an)x
n +⋯ + φ(a0).

Then Φ(X) = x and Φ extends φ. Uniqueness is clear as every such homomorphism
satisfies the equation above. We leave it to the reader to verify that Φ preserves +,1 and
treat ⋅. Let g ∶= bmXm +⋯ + b0 ∈ R[X]. Then by definition of ⋅ and Φ:

Φ(f ⋅ g) = Φ(
m+n

∑
k=0

( ∑
i+j=k

aibj) ⋅X
k ) =

m+n

∑
k=0

φ( ∑
i+j=k

aibj) ⋅ x
k.

Note ∑
m+n
k=0 denotes first a sum in R[X] and then in S; ∑i+j=k is a sum in R. Then

Φ(f ⋅ g) =
m+n

∑
k=0

( ∑
i+j=k

φ(ai)φ(bj)) ⋅ x
k = (

n

∑
i=0

φ(ai)x
i) ⋅ (

m

∑
j=0

φ(bj)x
j) = Φ(f) ⋅Φ(g).

Remark 3.1.8. There is a unique homomorphism Φ ∶ R[X] → S[X] that extends φ and
maps X to itself (view φ ∶ R → S[X] and apply the theorem with x ∶=X).

Abusing notation we write again φ for Φ. It just replaces coefficients by the φ-values;
more precisely, for f = anXn +⋯ + a0 ∈ R[X] we have

φ(f) = φ(an)X
n +⋯ + φ(a0) ∈ S[X].

Of course polynomials determine functions: we can plug for X a value from R and get
another value from R.
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Corollary 3.1.9 (Evaluation homomorphism).

1. Let a ∈ R. Then there is a unique ring homomorphism φa ∶ R[X] → R that is the
identity on R (i.e., φg↿R = idR) and satisfies φa(X) = a.

We write f(a) ∶= φa(f) for f ∈ R[X].

2. Let g ∈ R[X]. Then there is a unique ring homomorphism φg ∶ R[X] → R[X] that is
the identity on R and satisfies φg(X) = g.

We write f(g) ∶= φg(f) for f ∈ R[X].

It is important to distinguish a polynomial f from the function a↦ f(a):

Example 3.1.10. f ∶=X2 +X,g ∶= 0̄ ∈ Z2[X] both determine the function constantly 0̄.

Definition 3.1.11. Assume R is a subring of S and A ⊆ S. The ring generated by A
over R (in S) is the intersection of all subrings of S containing R ∪A; it is denoted R[A].
One says, R[A] results from R (in S) by adjunction of A.

If n ∈ N and A = {a1, ..., an} one writes R[a1, ..., an] ∶= R[A].

Remark 3.1.12.

1. This is well-defined because the intersection of a non-empty set of subrings is a
subring.

2. R[A] is the smallest subring of S containing R ∪ A, i.e., R[A] is contained in any
other such subring.

3. If a ∈ S, then R[a] = {f(a) ∈ S ∣ f ∈ R[X]} = {rnan +⋯ + r0 ∣ n ∈ N, r0, ..., rn ∈ R}.
Indeed: ⊆: the r.h.s. is a subring (Exercise 1.1.23) containing R∪{a}. ⊇: any subring
containing R ∪ {a} also contains any element of the form rnan +⋯ + r0.

Example 3.1.13. The subring Z[1/2,1/3] of Q contains precisely the rationals x2−n3−m

for x ∈ Z and n,m ∈ N.

Proof. The set of these numbers is easily seen to be a subring containing Z ∪ {1/2,1/3}
and hence contains Z[1/2,1/3]; conversely, these numbers are contained in any subring
containing Z ∪ {1/2,1/3}.

Proposition 3.1.14. Every subring R of Q equals Z[{1/p ∣ p ∈ P}] for P ⊆ N a set of
primes.

Proof. Clearly, R contains Z, so R ∪ Z, so Z[R] ⊆ R; since R ⊆ Z[R], we have Z[R] = R.
We claim R = Z[{1/p ∈ R ∣ p prime}]. ⊇ is clear. ⊆: if a/b ∈ R, assume a, b coprime and
b > 0; by Bézout xa + yb = 1 for certain x, y ∈ Z, so xa/b + y = 1/b ∈ R; if b = p1⋯pn for
primes pi, then Z[{1/p ∈ R ∣ p prime}] contains 1/b = 1/p1⋯1/pn, and hence a/b = a ⋅1/b.

Exercise 3.1.15 (Rational root theorem). Let f = anXn + ⋯ + a0 ∈ Z[X] ⊆ Q[X] with
an ≠ 0. Assume f(a/b) = 0 for a/b ∈ Q with coprime a, b ∈ Z. Show a ∣ a0 and b ∣ an. In
particular, a/b ∈ Z if f is monic. (Later we generalize this to other rings than Z.)

Exercise 3.1.16. Let K be a field and let g ∈K[X]. Show f ↦ f(g) is an automorphism
of K[X] if and only if g has degree 1.
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3.1.1 Formal power series

A good way to understand a definition is to slightly change it and see what happens.
Here, we drop the finiteness condition in the definition of R[X], so allow infinite sums of
monomials. The resulting formal power series cannot be evaluated like polynomials, so do
not determine functions on R. But we can manipulate them much like polynomials.

Definition 3.1.17. The set R[[X]] of formal power series (over R) is the set of sequences
(ak)k∈N with ak ∈ R. Addition + and multiplication ⋅ are defined as for R[X]. We write

∑k akX
k ∶= (ak)k.

The order of (ak)k ≠ (0,0, ...) is n ∶=min{k ∈ N ∣ ak ≠ 0}.

Remark 3.1.18.

1. R[[X]] is a commutative ring with subring R[X].

2. For f = (ak)k ∈ R[[X]], X ⋅ f = (0, a0, a1, ...),X2 ⋅ f = (0,0, a0, a1, ...) etc..

3. (1 −X)−1 = 1 +X +X2 +⋯, (1 +X)−1 = 1 −X +X2 −X3 +⋯ (exercise).

4. If R is an integral domain, then so is R[[X]].

Indeed: let f ∶= (ak)k, g ∶= (bk)k ∈ R[[X]] ∖ {0} have orders n,m; write fg = (ck)k;
then cn+m = anbm ≠ 0 as R is an integral domain.

Many polynomials have inverses in R[[X]]:

Lemma 3.1.19. Let R be a commutative ring and f = ∑k akX
k ∈ R[[X]]. Then

f ∈ R[[X]]× ⇐⇒ a0 ∈ R
×.

In case, f−1 = ∑k bkX
k where b0 = a−10 and for all k > 0:

bk = −a−10 ∑
k
i=1 aibk−i.

Proof. ⇒: if f ⋅ ∑k bkX
k = (1,0, ...), then a0b0 = 1. ⇐: assume the bk’s satisfy the recursive

equations and write f ⋅ ∑k bkX
k = ∑k ckX

k. Then c0 = a0b0 = 1. For k > 0,

ck = ∑
k
i=0 aibk−i = a0bk +∑

k
i=1 aibk−i = a0bk + (−a0)bk = 0.

For a field K already a slight extension of K[[X]] is a field:

Definition 3.1.20. Let R be a commutative ring. R((X)) is the set of formal Laurent
series: sequences (ak)k∈Z in R such that the are only finitely many k ∈ N such that a−k ≠ 0.
For another such sequence (bk)k set, as before (note the sums are finite sums in R),

(ak)k + (bk)k ∶= (ak + bk)k, (ak)k ⋅ (bk)k ∶= (∑i+j=k aibj)k.
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Example 3.1.21. Write X for the sequence (ck)k with c1 = 1 and ck = 0 for k ≠ 1. For
ℓ ∈ Z, then Xℓ = (c′k)k where c′ℓ = 1 and c′k = 0 for all k ≠ ℓ. E.g., underlining entry 0 of a
sequence, multiplying with X−2 or X2 looks as follows:

X−2 ⋅ (ak)k = (...,0,1,0,0,0, ...) ⋅ (..., a−1, a0, a1, ...) = (..., a0, a1, a2, a3, ...),

X2 ⋅ (ak)k = (...,0,0,0,1,0, ...) ⋅ (..., a−1, a0, a1, ...) = (..., a−1, a−2, a−1, a0, ...).

Remark 3.1.22. R((X)) is a commutative ring and there is a ring monomorphism from
R[[X]] into R((X)): it maps f = (a0, a1, ...) ∈ R[[X]] to f∗ = (...,0,0, a0, a1, ...) ∈K((X)).
We identify f and f∗ and view R[[X]] as a subring of R((X)).

Proposition 3.1.23. If K is a field, then K((X)) is a field.

Proof. Let f = (ak)k ∈K((X)) ∖ {0}. The order of f is

k0 ∶=min{k ∈ Z ∣ ak ≠ 0}.

Then g ∶= (ck)k ∶= X−k0 ⋅ f is in K[[X]] with c0 ≠ 0. By the lemma, g has an inverse
g−1 ∈K[[X]]. Then X−k0 ⋅ g−1 is an inverse of f in K((X)).

3.2 Polynomial division

We all learned how to do polynomial division in school. Here we prove that it is possible.

Theorem 3.2.1. Let R be a commutative ring and f, g ∈ R[X] with g ≠ 0. Let b ∈ R be
the leading coefficient of g. Then there are q, r ∈ R[X] and k ∈ N such that

bkf = qg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f), set q ∶= 0, r ∶= f, k ∶= 0. So we assume n ∶= deg(f) ⩾ deg(g) ⩾ 0
and proceed by induction on n.

If n = 0, then f, g ∈ R and g = b and we set q ∶= f, r ∶= 0, k ∶= 1. Assume n > 0 and
write f = anXn + ⋯ + a0 and g = bmXm + ⋯ + b0 with b = bm ≠ 0 for some m ⩽ n. Set
h ∶= bf − anXn−mg (understanding X0 = 1). Then deg(h) < n. By induction, there are
q′, r′ ∈ R[X] and k ∈ N such that bkh = q′g + r with deg(r) <m. Then

bk+1f = bkh + bkadX
n−mg = (q′ + bkadX

n−m)g + r.

Example 3.2.2. As is often the case, the above inductive proof describes a recursive
algorithm. Given f ∶= 3X3 +X + 1, g ∶= 2X + 1 ∈ Z[X] compute:

h1 ∶= 2f − 3X2g = (6X3 + 2X + 2) − (6X3 + 3X2) = −3X2 + 2X + 2

h2 ∶= 2h1 + 3X1g = (−6X2 + 4X + 4) + (6X2 + 3X) = 7X + 4

h3 ∶= 2h2 − 7X0g = (14X + 8) − (14X + 7) = 1

2h2 = h3 + 7g = 1 + 7g

4h1 = 2h2 − 6Xg = 1 + (7 − 6X)g

8f = 4h1 + 12X2g = 1 + (7 − 6X + 12X2)g
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Corollary 3.2.3 (Polynomial division). Let K be a field and f, g ∈K[X] with g ≠ 0. Then
there are unique q, r ∈K[X] such that f = qg + r and deg(r) < deg(g).

q and r are the quotient and remainder of (f, g).

Proof. Existence follows from the theorem: divide by bk ≠ 0. Uniqueness: assume f =
qg + r = q′g + r′ where r, r′ have degree < deg(g). Then (q − q′)g = r′ − r and

deg(g) > deg(r′ − r) = deg(q − q′) + deg(g),

so deg(q′ − q) = −∞, so q′ = q. This implies r = r′.

Exercise 3.2.4 (Remainder theorem). Let K be a field, f ∈K[X] and a ∈K. Show f(a)
is the remainder of (f,X − a). For K = R, assume 5 is the remainder of (f,X − 1), and −1
is the remainder of (f,X + 2). What is the remainder of (f, (X − 1)(X + 2))?

We next check the Euclidian algorithm works in K[X] the same way as in Z – with
deg(⋅) playing the role of ∣ ⋅ ∣. These functions are Euclidian valuations (cf. Definition 4.6.8).

Definition 3.2.5. Let K be a field and f, g ∈K[X]. g is a divisor of f , symbolically g ∣ f ,
if f = gh for some h ∈K[X]. For n > 0 and f1, ..., fn ∈K[X] not all zero, a common divisor
of f1, ..., fn is some g ∈K[X] such that g ∣ fi for all i.

A greatest common divisor of f1, ..., fn is a common divisor g that is monic and such
that every common divisor of f1, ..., fn is a divisor of g. We write g = gcd(f1, ..., fn). If
g = 1, f1, ..., fn are coprime.

Remark 3.2.6. There is at most one greatest common divisor g. If g′ is another, then
g ∣ g′ and g′ ∣ g. Then g, g′ have the same degree, so g = ag′ for some a ∈K. But g is monic,
so a = 1 and g = g′. The reason for requiring monic is just to ensure this uniqueness here.

We now verify existence, thereby justifying the functional notation gcd(f1, ..., fn).

Theorem 3.2.7 (Euclidian algorithm for polynomials). Let K be a field and f, g ∈ K[X]
with deg(f) ⩾ deg(g) ⩾ 0 and g ∤ f . Let r0, r1, ... be given by r0 ∶= f, r1 ∶= g and, for i > 0,

ri+1 ∶= {
the remainder of (ri−1, ri) if ri ≠ 0
0 else.

Then rn+1 = 0 for some 0 < n < deg(g) and a−1rn = gcd(f, g) for the minimal such n and a
the lead coefficient of rn.

Moreover, for this n let s0, ..., sn and t0, ..., tn be the sequences with s0 ∶= 1, s1 ∶= 0 and
t0 ∶= 0, t1 ∶= 1 and for 0 < i < n, letting qi be the quotient of (ri−1, ri),

si+1 ∶= si−1 − qisi, ti+1 ∶= ti−1 − qiti.

Then rn = snf + tng.
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Proof. Note deg(g) > r2 > 0 as g ∤ f , and r2 > r3 > ⋯ are ⩾ 0, so n as claimed exists. Note

f = q1g + r2, g = q2r2 + r3, r2 = q3r3 + r4, ... rn−2 = qnrn−1 + rn, rn−1 = qnrn + 0.

Work the equations backwards: rn+1 = 0, so rn ∣ rn−1, so rn ∣ rn−2, etc., so rn ∣ r1 = y and
rn ∣ r0 = x. Hence rn and a−1rn are common divisors of f, g.

Let h be a common divisor of f, g. Work the equations forwards: as r2 = f − q1g we
have h ∣ r2; as r3 = g − q2r2 we have h ∣ r3, etc., so h ∣ rn and h ∣ a−1rn.

Finally, we claim ri = sif + tig for all i ⩽ n. This is true for i = 0,1. Inductively,

ri+1 = ri−1 − qiri = (si−1f + ti−1g) − qi(sif + tig) = si+1f + ti+1g.

Example 3.2.8. In Q[X], we compute gcd(X6 + 1,X4 − 1) =X2 + 1: polynomial division
gives first X6 + 1 =X2 ⋅ (X4 − 1) + (X2 + 1), then X4 − 1 = (X2 − 1)(X2 + 1).

Exercise 3.2.9. For f ∶= X3 −X + 1, g ∶= 2X2 − 3X + 2 ∈ Q[X] find s, t ∈ Q[X] such that
1 = sf + tg.

Definition 3.2.5 is given with respect to a field K. We justify that the dependence on K
is not reflected in the notations, e.g., we just write g ∣ f and not, say, g ∣K f .

Remark 3.2.10. Let L ∣K be a field extension and f, g ∈K[X]. Slightly informally:

1. Since K[X] is a subring in L[X], polynomial equations are true in K[X] if and only
if they are true in L[X].

2. Division by remainder done in K[X] gives the same answer as done in L[X];

Indeed: if f = qg + r by Euclidian division in K[X], then this equation holds also
in L[X]; by uniqueness, Euclidian division in L[X] also yields f = qg + r.

3. g ∣ f in K[X] if and only if g ∣ f in L[X] (this is just (2) for the case that r = 0).

4. The greatest common divisor of f, g is the same, computed in K[X] or L[X] (by (2)
and the previous theorem).

The following construction is analogous to Zn. Section 4.8 gives a general construction.

Exercise 3.2.11 (Polynomial residue classes). Let K be a field and let g ∈K[X], g ≠ 0.

1. On K[X] define an equivalence relation setting f ∼g f ′⇔ g ∣ f −f ′. Show that every
f ∈ K[X] is equivalent to exactly one polynomial of degree < deg(g), namely the
remainder of (f, g).

2. Let K[X]/(g) be the set of equivalence classes [f]g, f ∈K[X]. Show

[f]g + [h]g ∶= [f + h]g, [f]g ⋅ [h]g ∶= [fh]g

are well-defined and makeK[X]/(g) a ring. Think about whether it has zero divisors.

3. Let K0 ⊆ K be a subfield and K0[X]/(g) be the set of [f]g with f ∈ K0[X]. Show
this is a subring of K[X]/(g). For a ∈K show K0[a] ≅K0[X]/(X − a).
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3.3 Roots

As in Z also here Euclidian division is highly consequential.

Definition 3.3.1. Let R be a commutative ring. a ∈ R is a root of f ∈ R[X] if f(a) = 0.

Corollary 3.3.2 (Factor theorem). Let R be a commutative ring, and f ∈ R[X]. Then
a ∈ R is a root of f if and only if f = (X − a)g for some g ∈ R[X].

Proof. ⇐ is clear. ⇒∶ by Theorem 3.2.1 write 1k ⋅ f = q(X − a) + r; then deg(r) < 1 and
0 = f(a) = r(a), so r = 0 (zero polynomial).

Corollary 3.3.3. Let R be an integral domain and f ∈ R[X] ∖ {0}. Then f has ⩽ deg(f)
many roots.

Proof. Induction on n ∶= deg(f). If n = 0, f ∈ R ∖ {0} has 0 roots. Assume n > 0. If
f has 0 roots, we are done. Otherwise, let a ∈ R be a root of f and write f = (X − a)g
by Corollary 3.3.2. As R is an integral domain, deg(g) = n − 1 by Remark 3.1.4 (3). By
induction it suffices to show that every root b ≠ a of f is a root of g. But 0 = f(b) = (b−a)g(b)
implies g(b) = 0 as b − a ≠ 0 and R is an integral domain.

We observed in Example 3.1.10 that distinct polynomials can determine the same func-
tion. We now get a better understanding. Recall Fp = Zp denotes the p-element field.

Proposition 3.3.4. Let p ∈ N be a prime number and let f, g ∈ Fp[X]. Then f(a) = g(a)
for all a ∈ Fp if and only if (Xp −X) ∣ f − g in Fp[X].

Proof. ⇐ by Fermat’s little theorem. ⇒: f −g = (X− 0̄)⋯(X−(p − 1))h for some h ∈ Fp[X]
(Corollary 3.3.2). But (X − 0̄)⋯(X − (p − 1)) equals Xp −X because their difference has
degree < p and p many roots, so equals 0.

Example 3.3.5. We saw in Example 2.7.3 (4) that X2 − 1 has roots 1̄, 3̄, 5̄, 7̄, i.e., ±1̄,±3̄
in Z8. In Z8[X] we factor X2 − 1 = (X − 1̄)(X + 1̄) = (X − 3̄)(X + 3̄).

Exercise 3.3.6. If R is an infinite integral domain, then distinct polynomials determine
distinct functions.

Corollary 3.3.7 (Interpolation). Let K be a field, n > 0 and a1, ..., an ∈K pairwise distinct
and b1, ..., bn ∈K. There is a unique f ∈K[X] of degree < n such that f(ai) = bi for all i.

First proof by Lagrange interpolation. Uniqueness: if f ′ is another such polynomial, then
f − f ′ has degree < n but n roots a1, ..., an, so f − f ′ = 0.

Existence: set f ∶= L1b1 +⋯+Lnbn where Lj ∈K[X] satisfies Li(aj) = {
1 i = j
0 i ≠ j. E.g.,

Li ∶=
(X − a1)⋯(X − ai−1)(X − ai+1)⋯(X − an)

(aia1)⋯(ai − ai−1)(ai − ai+1)⋯(ai − an)
.

Second proof by linear algebra. The coefficients x ∶= (x1, ..., xn) ∈ Kn of the wanted degree
⩽ n − 1 polynomial must satisfy Ax = b where A is the n × n matrix over K with i-th row
a0i , a

1
i , ..., a

n−1
i and b ∶= (b1, ..., bn) ∈Kn a column vector. This is a Vandermonde matrix, so

invertible, and hence Ax = b for a unique x (namely, x = A−1b).
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3.3.1 Multiple roots

Definition 3.3.8. Let K be a field. A a ∈ K a root of f ∈ K[X] ∖ K is multiple if
(X − a)k ∣ f for some k > 1; the maximal such k ⩾ 1 is the multiplicity of a wrt f .

Exercise 3.3.9. Show the multiplicity is well-defined, and k is the multiplicity if and only
if f = (X − a)kg for some g ∈K[X] with g(a) ≠ 0.

Definition 3.3.10. Let K be a field. The formal derivative of f = anXn+⋯+a0 ∈K[X] is

f ′ ∶= nanX
n−1 +⋯ + 2a2X + a1;

recall n = 1K +⋯ + 1K (n times). We define f (0) ∶= f and f (k+1) ∶= (f (k))′.

Lemma 3.3.11. Let K be a field and f, g ∈K[X] and a, b ∈K.

1. (af + bg)′ = af ′ + bg′ and (fg)′ = f ′g + fg′.

2. If char(K) = 0, then f ′ = 0 if and only if f ∈K.

3. If p ∶= char(K) > 0, then f ′ = 0 if and only if f = g(Xp) for some g ∈K[X].

Proof. (1): Linearity is easy to check. For i, j > 0 note

(X iXj)′ = (X i+j)′ = (i + j)X i+j−1 = iX i−1Xj +X ijXj−1 = (X i)′Xj +X i(Xj)′.

Let f = ∑
n
i=0 aiX

i, g = ∑
m
j=0 bjX

j. Then by linearity

(fg)′ = ∑ij aibj(X
iXj)′ = ∑ij aibj(X

i)′Xj +∑ij aibjX
i(Xj)′ = f ′g + fg′.

(2) and (3): f ′ = 0 if and only if nan = (n − 1)an−1 = ⋯ = 2a2 = a1 = 0. If char(K) = 0,

this means an = ⋯ = a1 = 0, i.e., f ∈ K. If p = char(K) > 0, this means ai = 0 for all i ⩽ n
with p ∤ i; this means f = aℓpXℓp + a(ℓ−1)pX(ℓ−1)p +⋯ + apXp + a0 where ℓ is maximal with
ℓp ⩽ n; set g ∶= aℓpXℓ + a(ℓ−1)pXℓ−1 +⋯ + apX + a0.

Example 3.3.12. In F5[X], e.g., (4̄X15 + 3̄X10 + 2̄X5 + 1̄)′ = 0.

Lemma 3.3.13. Let K be a field, f ∈K[X] ∖K and a ∈K a root of f .

1. a is a multiple root of f if and only if f ′(a) = 0.

2. If char(K) = 0, the multiplicity of a wrt f is the maximal k > 0 such that

f (0)(a) = f (1)(a) = ⋯ = f (k−1)(a) = 0.

Proof. (1): write f = (X−a)g for some g ∈K[X] (Corollary 3.3.2). Then f ′ = g+(X−a)g′,
so f ′(a) = g(a). Thus, f ′(a) = 0 implies (X − a) ∣ g, so (X − a)2 ∣ f and a is multiple.

Conversely, if a is multiple, then f = (X − a)((X − a)h) for some h ∈ K[X]; by the
product rule, f ′ = (X − a)h + (X − a)((X − a)h)′, so f ′(a) = 0.
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(2): let k be the multiplicity of a wrt f . Note deg(f) ⩾ k, so f (j) ≠ 0 for j ⩽ k – here
we use char(K) = 0. We prove that the multiplicity of a wrt f (j) is k − j.

If j = 0, this is trivial. Assume the claim for j < k, and write f (j) = (X − a)k−jg with
g(a) ≠ 0 by Exercise 3.3.9. An easy induction shows ((X − a)ℓ)′ = ℓ(X − a)ℓ−1. Thus,

f (j+1) = (k − j)(X − a)k−j−1g + (X − a)k−jg′ = (X − a)k−(j+1) ⋅ ((k − j)g + (X − a)g′).

Evaluating the r.h.s. factor on a gives (k − j)g(a). This is ≠ 0 since k − j ≠ 0 and g(a) ≠ 0 –

here we use char(K) = 0 again. This implies the multiplicity of a wrt f (j+1) is k−(j+1).

3.4 Quotient fields

Where are the roots? Consider the tower

Z ⊆ Q ⊆ R ⊆ C.

The polynomial 2X −1 ∈ Z[X] has a root in Q but not in Z; the polynomial X2 −2 ∈ Z[X]
has a root in R but not in Q, and X2 + 1 ∈ Z[X] has one in C but not in R.

Smallest subrings of C where these polynomials have a root are Z[1/2],Z[
√
2],Z[i].

What are the smallest fields?

Definition 3.4.1. L ∣K is a field extension if L is a field and K a subfield of L. Let A ⊆ L.
The field generated by A over K (in L) is the intersection of all subfields of L containing
K ∪A; it is denoted K(A). One says, K(A) results from K (in L) by adjunction of A.

If n ∈ N and A = {a1, ..., an} one writes K(a1, ..., an) ∶=K(A).

Remark 3.4.2. This is well-defined because the intersection of a set of subfields is a
subfield. Clearly, K(A) is the smallest subfield of L containing K ∪ A, i.e., K(A) is
contained in any other such subfield.

We generalize the construction of Q from Z in Section 1.4.

Definition 3.4.3. Let R be an integral domain. Quot(R) is the set of equivalence classes
a/b of (a, b) ∈ R × (R ∖ {0}) under the equivalence relation ∼ ⊆ (R × (R ∖ {0}))2 defined by

(a, b) ∼ (a′, b′) ⇐⇒ ab′ = a′b.

Quot(R) is quotient field of R with +, ⋅ defined for x = a/b, y = c/d ∈ Quot(R) by

x + y ∶= (ad + cb)/bd, x ⋅ y ∶= ac/bd.

Remark 3.4.4. Exactly as done in Section 1.4 for R = Z one verifies:

1. ∼ is an equivalence relation, +, ⋅ are well-defined and Quot(R) is a field.

2. a ↦ a/1 is a ring monomorphism from R into Quot(R). If R is a field, it is an
isomorphism (surjective because a/b = ab−1/1).
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3. We “identify” a with a/1 and view R as a subring of Quot(R).

Quot(R) is the smallest field extending R:

Theorem 3.4.5 (Universal property). Let R be an integral domain, K a field and φ ∶ R →
K a ring monomorphism. Then there is a unique field monomorphism Φ ∶ Quot(R) → K
that extends φ; for a, b ∈ R with b ≠ 0 we have

Φ(a/b) = φ(a) ⋅ φ(b)−1.

Proof. The equality follows from Φ(a/b) = Φ(a/1)Φ(1/b) = φ(a)φ(b)−1 since b−1 = 1/b
in Quot(R); note φ(b) ≠ 0 as b ≠ 0. Thus, uniqueness is clear. Well-defined: if a/b =
a′/b′ where a′, b′ ∈ R, b′ ≠ 0, i.e., ab′ = a′b, then φ(a)φ(b′) = φ(a′)φ(b), so φ(a′)φ(b)−1 =
φ(a′)φ(b′)−1, i.e., Φ(a/b) = Φ(a′/b′). Clearly, Φ(1/1) = 1.

Φ preserves +: Φ(a/b + c/d) = φ(ad + cb)φ(bd)−1 = φ(a)φ(d)φ(bd)−1 +φ(c)φ(b)φ(bd)−1.
But φ(bd)−1 = φ(b)−1φ(d)−1, so = φ(a)φ(b)−1 + φ(c)φ(d)−1 = Φ(a/b) +Φ(c/d).

Φ preserves ⋅: Φ(a/b⋅c/d) = φ(ac)φ(bd)−1 = φ(a)φ(c)φ(b)−1φ(d)−1 = Φ(a/b)⋅Φ(c/d).

Exercise 3.4.6. Let K be a field. Then K((X)) ≅ Quot(K[[X]]).

Definition 3.4.7. Assume R is a subring of the field K. The quotient field of R in K is

{ab−1 ∣ a, b ∈ R, b ≠ 0},

the image of the unique homomorphism Φ ∶ Quot(R) →K extending idR ∶ R →K.

Remark 3.4.8. It is not hard to see that this is the smallest subfield of K that contains R.
In particular, if L ∣ K is a field extension and A ⊆ L, then K(A) equals the quotient

field of the subring K[A] of L.
The quotient fields of Z,Z[1/2],Z[

√
2],Z[i] in C are Q,Q,Q(

√
2),Q(i). The subrings

Z[
√
2],Z[i] of Q(

√
2),Q(i) play a similar role as the subring Z of Q – see Section 4.1.

By Lemma 3.1.6, with R also R[X] is an integral domain. Hence we can define:

Definition 3.4.9. Let R be an integral domain. The field of rational functions over R is

R(X) ∶= Quot(R[X]).

Remark 3.4.10. Intuitively, a rational function over R is a fraction f/g of polynomials.
Despite the wording it does in general not determine a function on R, i.e., we do not have
an evaluation homomorphism (e.g., what should φ0(1/X) be?).

Exercise 3.4.11. Quot(R[X]) ≅ Quot(Quot(R)[X]).
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3.4.1 Prime fields

Definition 3.4.12. Let K be a field. The smallest k > 0 such that k = 0K is the charac-
teristic char(K) of K; if no such k > 0 exists, we set char(K) ∶= 0.

Remark 3.4.13. Let K be a field. Recall n = 1K + ⋯ + 1K for n ∈ N (Definition 1.1.25)
and extend this notation to Z setting −n ∶= −n (additive inverse in K in the r.h.s.).

1. char(K) is 0 or prime.

Indeed: 0 < char(K) =∶ n = kℓ with 1 ⩽ k, ℓ < n implies n = k ⋅ℓ = 0K but both k, ℓ ≠ 0K ,
so are zero-divisors, a contradiction.

2. If char(K) = 0, then a↦ a is a ring monomorphism from Z to K.

Indeed, it is clearly a homomorphism. It is injective: if a = b, then a − b = 0K , so
a − b = 0 and a = b.

3. If p ∶= char(K) > 0, then [a]p ↦ a is a ring monomorphism from Zp to K.

Indeed, this is well-defined: if [a]p = [b]p, then a − b = pc for some c ∈ Z, so a − b =
pc = 0K , so a = b. It is injective since these implications can be reversed.

Theorem 3.4.14. A field K has a smallest subfield, the prime field of K. If char(K) = 0,
it is isomorphic to Q. If p ∶= char(K) > 0, it is isomorphic to Fp.

Proof. Every subring of K contains the elements a, a ∈ Z. They form a subring R of K
(being the image of a ring homomorphism) isomorphic to Z (resp. to Zp = Fp). The quotient
field of R in K is the smallest subfield of K. It is isomorphic to Quot(Z) and thus to Q
(resp. equals R ≅ Fp being a field).

Exercise 3.4.15. Let K be a field. Every endomorphism φ of K is the identity on its
prime field P ⊆K, i.e., φ↿P = idP .

Lemma 3.4.16 (Frobenius). Let K be a field of characteristic p > 0. Then x ↦ xp is an
endomorphism of K, the Frobenius endomorphism (of K).

Proof. Clearly, the map preserves ⋅. For + note (x+ y)p = ∑
p
i=0 (

p
i
)xp−iyi and for 0 < i < p, p

divides (pi) = p(p−1)⋯(p−i+1)/i! because no factor in i! can cancel p; hence, (pi)x
p−iyi = 0K .

Thus (x + y)p = xp + yp (the so-called freshman’s dream).

It is natural to ask when the Frobenius endomorphism is surjective, and hence an
automorphism (Remark 1.1.22 (2)). This is going to play a role in the last chapter and
therefore earns a definition:

Definition 3.4.17. A field K is perfect either if char(K) = 0 or, if char(K) > 0 and the
Frobenius endomorphism of K is surjective.

Examples 3.4.18.
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1. Finite fields are perfect.

Indeed, the characteristic is positive, and the Frobenius homomorphism injective
(Remark 1.1.22 (3)), so surjective by finiteness.

2. Let p be prime. Then Fp(X), the field of rational functions over Fp, is not perfect.
Indeed: if (f/g)p = X for some f, g ∈ Fp[X] with g ≠ 0, then fp = gpX, so pdeg(f) =
pdeg(g) + 1. But this is nonsense because deg(f),deg(g) ⩾ 0.

3.5 Algebraicity

Let L ∣ K be a field extension. For a ∈ L, clearly K[a] ⊆ K(a) and, K[a] = K(a) if and
only if K[a] is a field. When does this happen?

Example 3.5.1. R[i] = R(i) = C because R[i] ⊆ R(i) ⊆ C = {x+ iy ∣ x, y ∈ R} ⊆ R[i]. Using
the notation below, we have mQ

i =m
R
i =X

2 + 1.

Definition 3.5.2. a ∈ L is algebraic over K if it is a root of some f ∈K[X]; otherwise a
is transcendental over K. For L = C,K = Q we omit “over Q”.

If a ∈ L is algebraic over K, then the minimal polynomial mK
a of a over K is a monic

f ∈K[X] ∖K of minimal degree with root a.

Remark 3.5.3. This is well-defined: let f ∈ K[X] ∖K be of minimal degree, say n, with
root a; we can take f to be monic by dividing by the lead coefficient. If g ∈ K[X] is
another such polynomial, then f − g has root a and degree < n; hence f − g = 0, i.e, f = g.

Remark 3.5.4 (Cantor). “Most” reals are transcendental since the set of algebraic num-
bers is countable.

Definition 3.5.5. f ∈ K[X] is reducible if f ∈ K or f is the product of two polynomials
in K[X] of positive degree; otherwise f is irreducible.

Lemma 3.5.6. Let a ∈ L be algebraic over K and f ∈ K[X] monic. The following are
equivalent.

1. f =mK
a .

2. a is a root of f and f is irreducible.

3. a is a root of f and f ∣ g for every g ∈K[X] with root a.

Proof. 1⇒ 3: assume g(a) = 0 and write g = qf + r with deg(r) < deg(f); then 0 = g(a) =
h(a)f(a) + r(a) = r(a); then r = 0, so f ∣ g.

3⇒ 1: f ∣ g implies deg(f) ⩽ deg(g), so f has minimal degree among the polynomials
with root a; as f is monic, f =mK

a .
1 ⇒ 2: clearly, deg(mK

a ) > 0; if m
K
a = gh for g, h ∈ K[X] of positive degree, then g, h

have degree < deg(mK
a ) by Remark 3.1.4 (3). Then 0 = f(a) = g(a)h(a), so at least one
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of g(a), h(a) ≠ 0. Divide by the lead coefficient to get a monic polyomial with root a and
degree < deg(mK

a ), a contradiction.
2⇒ 1: assume f(a) = 0 and f is irreducible. By 1⇒ 3, f = mK

a h for some h ∈ K[X];
by irreducibility, deg(h) = 0, so h ∈K; as f and mK

a are monic, h = 1 and f =mK
a .

Corollary 3.5.7. Let f, g ∈K[X]. If f is irreducible over K and f, g have a common root
in L, then f ∣ g.

Theorem 3.5.8. Let a ∈ L. Then K[a] is a field if and only if a is algebraic over K.

Proof. ⇒: a−1 = f(a) for some f ∈K[X], so a is a root of Xf − 1 ∈K[X].
⇐: given 0 ≠ b ∈ K[a] we look for an inverse in K[a]. Write b = f(a) for f ∈ K[X].

By irreducibility, gcd(f,mK
a ) is either 1 or mK

a . But it cannot be mK
a because mK

a ∤ f as
f(a) ≠ 0. Thus, the Euclidian algorithm for polynomials gives 1 = gf + hmK

a for certain
g, h ∈K[X]. Then g(a) ∈K[a] is an inverse of b:

1 = g(a)f(a) + h(a)mK
a (a) = g(a)b.

Exercise 3.5.9. If f ∈K[X] has degree 2 or 3, then f is irreducible if and only if f does
not have a root in K.

Exercise 3.5.10. Let a ∈ C be a root of f ∶= X3 −X + 1 ∈ Q[X]. Show f = mQ
a . Show

b ∶= 2a2 − 3a + 2 ≠ 0 and find h ∈ Q[X] with h(a) = 1/b in Q(a). (Hint: Exercise 3.2.9.)

Irreducibility for higher degrees is difficult to understand and studied in the next chap-
ter. Algebraicity is a central concept of algebra but we do not yet have the theoretical
means to understand it and defer a more serious study to the last chapter.

3.5.1 Quadratic and cubic equations

A description of the quadratic case is in reach of our currently available methods, in fact, we
learned in school how to solve quadratic equations. Landau said, however, “Bitte vergessen
Sie alles, was Sie in der Schule gelernt haben, denn Sie haben es nicht gelernt.”

Recall, in a ring or field K we write 2 ∶= 1K + 1K ,3 ∶= 2 + 1K etc.

Lemma 3.5.11. Let K be a field with char(K) ≠ 2 and f = aX2 + bX + c ∈ K[X] with
a ≠ 0. The discriminant of f is

Df ∶= b
2 − 4ac ∈K.

1. f is reducible if and only if Df is a square in K.

2. If L ∣K is a field extension with α ∈ L a root of f , then K(α) =K(δ) for some δ ∈ L
with δ2 =Df ; we write K(

√
Df) ∶=K(δ).

3. Then K(δ) =K +Kδ ∶= {x + yδ ∣ y, y ∈K}.
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Proof. (2): aα2+bα+c = 0 is equivalent to 4a2α2+4abα = −4ac (note 4ac ≠ 0 as char(K) ≠ 2),
hence to (2aα)2 + 2 ⋅ 2aαb + b2 = b2 − 4ac, so to (2aα + b)2 =Df . Set δ ∶= 2aα + b.

Clearly, K(α) = K(δ). The notation K(
√
Df) is justified because it does not matter

which square root δ we choose: the other one is −δ, and K(δ) =K(−δ).
(1): if f is reducible, it has a root α ∈ K, so, by the above, Df is a square in K.

Conversely, if δ2 = Df with δ ∈ K, the above shows (δ − b)/(2a) ∈ K is a root of f
(Mitternachtsformel), so f is reducible. Note division by 2 requires char(K) ≠ 2.

(3) is trivial if δ ∈ K. Assume δ /∈ K. ⊇ is trivial. For ⊆ it suffices to show K +Kδ is a
subfield of L. It clearly contains 0,1 and with α,β also α+β,α ⋅β,−β and, if α = x+yδ ≠ 0,
then α−1 = (x − yδ)/(x2 − y2Df) ∈K +Kδ: note x2 − y2δ ≠ 0 as δ /∈K.

For a real r > 0 we understand
√
r to be positive; further,

√
r = i
√
∣r∣ ∈ C for r < 0.

Corollary 3.5.12. Let α ∈ C ∖Q be a root of a quadratic polynomial over Q. Then Q(α)
is a quadratic number field, i.e.,

Q(α) = Q(
√
d) = Q +Q

√
d

for some d ∈ Z satisfying d = −1, or, ∣d∣ > 1 is square-free: m2 ∤ ∣d∣ for all m > 1.

Proof. Let f ∈ Q[X] be quadratic and α ∈ C a root. We can assume f ∈ Z[X] (otherwise
multiply with some large integer). Then Q(α) = Q(

√
Df) and, as α ∉ Q, Df ∈ Z is not

a square in Q. If ∣Df ∣ > 1 is not square-free, say, Df = m2D′ for D′ ∈ Z and m > 1, then√
Df =m

√
D′ and Q(

√
Df) = Q(

√
D′). Then ∣D′∣ < ∣Df ∣, so continuing like this for finitely

many steps we get Q(α) = Q(
√
d) for a square-free ∣d∣.

Remark 3.5.13. Read K(α) =K(
√
Df) as a statement about solvability of the equation

f = 0: that a solution α is in K(
√
Df) means that we can construct it by finitely many

applications of addition, subtraction, multiplication and division plus a single use of taking
some square root. Of course, we already know the formula from school.

As mentioned in the introduction, allowing more uses of taking (possibly non-square)
roots allows to construct roots of polynomials of degree 3 and 4. In the last chapter we
show this is not generally possible for degree 5. Here, we treat the cubic case.

Remark 3.5.14 (Tschirnhausen transformation). We want to solve a3X3+a2X2+a1X+a0 =
0 where ai ∈ C and a3 ≠ 0. We can assume a3 = 1 (otherwise divide by a3). Substitution of
X + a2/3 for X yields X3 + aX + b = 0 for certain a, b ∈ C.

Recall, ζ3 = e2πi/3 = (−1 +
√
−3)/2.

Proposition 3.5.15 (Cardano’s formulas). Let f ∶=X3 + aX + b ∈ C[X]. Let

Df = −4a
3 − 27b2

be the discriminant of f . Let δ, x, y ∈ C be such that

δ2 = −Df/27, x
3 = (δ − b)/2, y3 = (δ + b)/2.

Then the roots of f in C are x − y, ζ3x − ζ23y, ζ
2
3x − ζ3y.
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Proof. Since (x − y)3 = x3 − 3x2y + 3xy2 − y3 we have (x − y)3 + 3xy(x − y) − (x3 − y3) = 0.
Then x − y is a root if x, y are good: xy = a/3, x3 − y3 = −b. We solve for x, y.

Being good implies 4x3y3 = 4a3/27 and x6 − 2x3y3 + y6 = b2. Adding these gives

(x3 + y3)2 = b2 + 4a3/27

The r.h.s. is −Df/27. Hence, x3 + y3 = δ. Using x3 − y3 = −b gives the equations listed. The
roots of f are those choices of 3rd roots that give good x, y.

3.6 Multivariate polynomials

Multivariate polynomials are “expressions” like X2Y Z3+2XY 2−3Y and it should be clear
how to sum and multiply them. Formally, we proceed similarly as in Definition 3.1.1. There
we wrote sequences (ak)k assigning coefficients to powers Xk; now we assign coefficients
to primitive monomials, above X2Y Z3,XY 2 and Y .

Let R be a commutative ring and I ≠ ∅ a set – intuitively, we want variables Xi, i ∈ I.

Definition 3.6.1. Let M be the set of primitive monomials: functions m ∶ I → N such
that there are only finitely many i ∈ I with m(i) > 0.

Given m,m′ ∈M , define m⊙m′ ∈M setting for all i ∈ I:

(m⊙m′)(i) ∶=m(i) +m′(i).

R[Xi, i ∈ I] is the set of (multivariate) polynomials (over R in variables (Xi)i∈I): func-
tions f ∶M → R such that there are are only finitely many m ∈M with f(m) ≠ 0.

Given polynomials f, g define polynomials f + g and f ⋅ g setting for all m ∈M :

(f + g)(m) ∶= f(m) + g(m), (f ⋅ g)(m) ∶= ∑
m0⊙m1=m

f(m0)g(m1).

Observe that the sum above is a finite sum in R. As in the univariate case we now
introduce the familiar notation and do suitable identifications.

Remark 3.6.2.

1. (M,⊙) is a Monoid with neutral element 1M ∶= the function constantly 0. For m ∈M
let i1, ..., ik list the i ∈ I with m(i) > 0; we write

m =X
m(i1)
i1
⋯X

m(ik)
ik

.

2. For m ∈ M let gm ∈ R[Xi, i ∈ I] map m to 1 and m′ ≠ m to 0. Then m ↦ gm is a
monoid monomorphism from (M,⊙) to (R[Xi, i ∈ I], ⋅).

We “identify” m with gm and thereby view M as a subset of R[Xi, i ∈ I].

3. For m as above and i ∈ I, k ∈ N we have in R[Xi, i ∈ I]:

m =X
m(i1)
i1

⋅ ... ⋅X
m(ik)
ik

and Xk
i =Xi ⋅ ... ⋅Xi (k times).
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4. For a ∈ R let fa ∈ R[Xi, i ∈ I] map 1M to a and m ≠ 1M to 0. Then a ↦ fa is a ring
monomorphism from R into R[Xi, i ∈ I].

We “identify” a with fa and view R as a subring of R[Xi, i ∈ I].

Indeed, R[Xi, i ∈ I] is a commutative ring with neutral elements 0R[Xi,i∈I] ∶= f0
(zero polyomial) and 1R[Xi,i∈I] ∶= f1; additive inverses are given by (−f)(m) = −f(m)
(inverse in R on the r.h.s.).

5. Given f ∈ R[Xi, i ∈ I]∖{0} let m0, ...,ms ∈M for s ∈ N list the m ∈M with f(m) ≠ 0.
Writing aj ∶= f(mj) for j ⩽ s we have

f = a0m0 +⋯ + asms.

Definition 3.6.3. A monomial is a polynomial in R[Xi, i ∈ I] of the form am where
a ∈ R∖{0},m ∈M ; we say Xi occurs in am if m(i) > 0. A polynomial f ≠ 0 as in (5) above
has (total) degree

deg(f) ∶=maxj⩽s∑i∈Im(i);

note the sums are finite; the zero polynomial has degree −∞. Writing

f = f(Xi1 , ...,Xir)

means that the variables that occur in the ajmj are among Xi1 , ...,Xir .

Notation: We write e.g. R[X,Y,Z] instead of R[Xi, i ∈ {1,2,3}].

Exercise 3.6.4. Show R[X,Y ] ≅ R[X][Y ]. If R is an integral domain, so is R[Xi, i ∈ I].
If R is an integral domain, and f, g ∈ R[Xi, i ∈ I], then deg(fg) = deg(f) + deg(g).

Infer that R[Xi, i ∈ I]× = R×.

Hint: for the 2nd statement, assume f, g ∈ R[X1, ...,Xn]. Order monomials according to
the graded lexicographic order of exponent tuples in Nn: (e1, ..., en) <lex (d1, ..., dn) if ≠ and
either ∑i ei < ∑i di, or ∑i ei = ∑i di and ej < dj for the first j with ej ≠ dj.

Definition 3.6.5. Let R be an integral domain. R(Xi, i ∈ I) ∶= Quot(R[Xi, i ∈ I]) is the
field of multivariate rational functions over R in variables Xi, i ∈ I.

Of course, we write R(X,Y,Z) for Quot(R[X,Y,Z]) and the like. The following is
analogous to Theorem 3.1.7.

Theorem 3.6.6 (Universal property). Let I be a nonempty set, R,S be commutative rings,
φ ∶ R → S a ring homomorphism, and xi ∈ S for every i ∈ I. Then there exists a unique ring
homomorphism Φ ∶ R[Xi, i ∈ I] → S that extends φ and satisfies Φ(Xi) = xi for all i ∈ I.

Corollary 3.6.7 (Evaluation homomorphism).

1. For i ∈ I let gi ∈ R[Xi, i ∈ I]. There is a unique ring homomorphism φ(gi)i ∶ R[Xi, i ∈
I] → R[Xi, i ∈ I] that is the identity on R and satisfies φ(gi)i(Xi) = gi for all i ∈ I.

If f = f(Xi1 , ...,Xir), we write f(gi1 , ..., gir) ∶= φ(gi)i(f).
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2. For i ∈ I let ai ∈ R. There is a unique ring homomorphism φ(ai)i ∶ R[Xi, i ∈ I] → R
that is the identity on R and satisfies φ(ai)i(Xi) = ai for all i ∈ I.

If f = f(Xi1 , ...,Xir), we write f(ai1 , ..., air) ∶= φ(ai)i(f).

Exercise 3.6.8. Let f ∈ R[X,Y ] and a, b ∈ R. Formalize and prove: plugging a, b for X,Y
in f is the same as plugging first a for X and then b for Y .

The following generalizes Remark 3.1.12 (3). We leave the proof as an exercise.

Lemma 3.6.9. Let S be a commutative ring with subring R and A = {ai ∣ i ∈ I} ⊆ S. Then
R[A] is the image of φ(ai)i, i.e.,

R[A] = {f(ai1 , ..., ain) ∣ n ∈ N, i1, ..., in ∈ I, f(Xi1 , ...,Xin) ∈ R[Xi, i ∈ I]}.

In particular, for n > 0 and a1, ..., an ∈ S we have

R[a1, ..., an] = {f(a1, ..., an) ∣ f(X1, ...,Xn) ∈ R[X1, ...,Xn]}.

Lemma 3.6.10.

1. Let S,S′ be commutative rings and R be a subring of both S and S′, A ⊆ S and
φ ∶ S → S′ a ring homomorphism with φ↿R = idR. Then

φ(R[A]) = R[φ(A)].

Moreover, if a ring homomorphism ψ ∶ R → S′ agrees with φ on R ∪ A, then also
on R[A].

2. Let L ∣K and L′ ∣K be field extensions, A ⊆ L and φ ∶ L→ L′ a field homomorphism
with φ↿K = idK. Then

φ(K(A)) =K(φ(A)).

Moreover, if a field homomorphism ψ ∶ L → L′ agrees with φ on K ∪ A, then also
on K(A).

Proof. We can assume A ≠ ∅. (1) ⊇: φ(R[A]) is a subring of S′ that contains R ∪ φ(A).
⊆: write A = {ai ∣ i ∈ I} for a suitable set I and let x ∈ R[A], say x = f(ai1 , ..., ain) as in the
previous lemma; then φ(x) = f(φ(ai1), ..., φ(ain)) ∈ R[φ(A)].

Moreover: ψ(x) = f(ψ(ai1), ..., ψ(ain)) = f(φ(ai1), ..., φ(ain)) = φ(x).
(2) ⊇: φ(K[A]) is a subfield of L′ that contains K ∪φ(A). ⊆: let x ∈K(A), say x = y/z

for y, z ∈K[A] with z ≠ 0; then φ(x) = φ(y)/φ(z) ∈K(φ(A)) by (1).
Moreover: ψ(x) = ψ(y)/ψ(z) = φ(y)/φ(z) = φ(x) since φ,ψ agree on K[A] by (1).

Definition 3.6.11. Let n > 0 and f ∈ R[X1, ...,Xn]. Then ā = (a1, ..., an) ∈ Rn is a root
of f if and only if f(ā) = 0.

Exercise 3.6.12. ...if and only if there are g1, ..., gn ∈ R[X1, ...,Xn] such that

f = g1(X1 − a1) +⋯ + gn(Xn − an).
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Exercise 3.6.13. Let d,n > 0 and f, g ∈ R[X1, ...,Xn]. Then f = f(X1, ...,Xn) is homoge-
neous if all its monomials have the same degree. Equivalently, writing d ∶= deg(f),

f(Y X1, ..., Y Xn) = Y
df(X1, ...,Xn),

in R[X1, ...,Xn, Y ]. Further, fg is homogeneous if and only if both f and g are.

3.7 Symmetric polynomials

The polynomials X2Y 2+3XY +2X +2Y and X2+Y 2 are symmetric in the sense that they
do not change when X,Y are interchanged. E.g., X2Y +XY is not symmetric.

Definition 3.7.1. LetR be a commutative ring, n > 0 and f = f(X1, ...,Xn) ∈ R[X1, ...,Xn].
Then f is symmetric if f = fσ for all permutations σ ∶ {1, ..., n} → {1, ..., n}; here,

fσ ∶= f(Xσ(1), ...,Xσ(n)).

For 1 ⩽ k ⩽ n, the k-th elementary symmetric polynomial in n variables is

sn,k ∶= ∑
1⩽i1<⋯<ik⩽n

Xi1⋯Xik .

Example 3.7.2. s3,1 =X1 +X2 +X3, s3,2 =X1X2 +X1X3 +X2X3, s3,3 =X1X2X3.

Remark 3.7.3.

1. All sn,k are symmetric. In R[X1, ...,Xn][X], we have Vieta’s formula

(X −X1)⋯(X −Xn) =X
n − sn,1X

n−1 + sn,2X
n−1 −⋯ + (−1)nsn,n.

The coefficients of a monic degree n polynomial with n roots (not necessarily distinct)
are values of symmetric polynomials of these roots.

2. (f +g)σ = fσ+gσ and (f ⋅g)σ = fσ ⋅gσ, so f ↦ fσ is an automorphism of R[X1, ...,Xn].
The set of symmetric polynomials is the fixed ring (see below).

3. Hence, g(sn,1, ..., sn,n) is symmetric for every g ∈ R[X1, ...,Xn].

Definition 3.7.4. Let R be a group, ring or field, and Φ ⊆ Aut(R). The fixed group (ring,
field) of Φ is

RΦ ∶= {x ∈ R ∣ φ(x) = x for all φ ∈ Φ}.

Remark 3.7.5. RΦ is a subgroup (subring, subfield) of R.

Example 3.7.6. X2
1X

2
2 + 3X1X2 + 2X1 + 2X2 = s22,2 + 3s2,2 + 2s2,1 and X

2
1 +X

2
2 = s

2
2,1 − 2s2,2.

Theorem 3.7.7. Let R be a commutative ring and n > 0. For every symmetric f ∈
R[X1, ...,Xn] there is a unique g ∈ R[X1, ...,Xn] such that f = g(sn,1, ..., sn,n).

Hence, the evaluation homomorphism mapping Xk to sn,k, i.e., φ(sn,k)k , is an isomor-
phism from R[X1, ...,Xn] onto the subring of symmetric polynomials.
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Proof. The weighted degree of a monomial aXr1
1 ⋯X

rn
n with a ≠ 0 is 1 ⋅ r1 + ⋯ + n ⋅ rn. The

weighted degree wdeg(g) of g ∈ R[X1, ...,Xn] ∖ {0} is the maximum weighted degree of its
monomials; wdeg(0) ∶= −∞. One easily checks deg(φ(g)) = wdeg(g) where φ ∶= φ(sn,k)k .

We proceed by induction on n. For n = 1 our claim is trivial: X1 = s1,1, φ is the identity
and all polynomials in R[X1] are symmetric. Let n > 1 and assume our claim for n − 1.

We first show φ is surjective. Otherwise, choose f symmetric of minimal degree d
outside the image of φ. For a polynomial g(X1, ...,Xn) let g̃ ∶= g(X1, ...,Xn−1,0). Then f̃ is
symmetric with n−1 variables. Thus, f̃ = g(sn−1,1, ..., sn−1,n−1) for some g ∈ R[X1, ...,Xn−1].

Set h ∶= f − g(sn,1, ..., sn,n−1). Note h is symmetric of degree ⩽ d: indeed, d ⩾ deg(f̃) =
wdeg(g) = deg(g(sn,1, ..., sn,n−1)). Further, noting sn−1,k = s̃n,k for k < n,

h̃ = f̃ − g(s̃n,1, ..., s̃n,n−1) = f̃ − g(sn−1,1, ..., sn−1,n) = 0

It follows thatXn occurs (with positive exponent) in all monomials of h. As h is symmetric,
this holds for all Xk, and we can write h = sn,nh′ for some h′. This h′ is symmetric
since h is: sn,nh′ = h = hσ = sσn,nh

′σ implies h′ = h′σ since sσn,n = sn,n. But deg(h′) < d, so
h′ = g′(sn,1, ..., sn,n) for some g′. But then f is in the image of φ, a contradiction:

f = h + g(sn,1, ..., sn,n−1) = sn,ng
′(sn,1, ..., sn,n) + g(sn,1, ..., sn,n−1).

For injectivity, we show ker(φ) = {0}. Otherwise choose f of minimal degree d > 0 with
φ(f) = 0. Then, noting s̃n,n = 0,

0 = f(s̃n,1, ..., s̃n,n−1, s̃n,n) = f(sn−1,1, ..., sn−1,n−1,0)

By induction, f(X1, ...,Xn−1,0) = 0. Thus, f = Xnf ′ for some f ′ ≠ 0. Then 0 = φ(f) =
sn,nφ(f ′) implies φ(f ′) = 0. But deg(f ′) < deg(f), a contradiction.

Exercise 3.7.8. The ring of symmetric polynomials equals the subring R[sn,1, ..., sn,n] of
R[X1, ...,Xn]. (Notation check.)

Here is an important consequence:

Corollary 3.7.9. Let K be a field, R a subring and let f ∈ R[X] be monic of degree n > 0.
Assume f = (X−α1)⋯(X−αn) with αi ∈K. Let g(X1, ...,Xn) ∈ R[X1...,Xn] be symmetric.

Then g(α1, ..., αn) ∈ R.

Proof. Write X̄, ᾱ for the n-tuples of the Xi, αi and f =Xn−a1Xn−1+a2Xn−2−⋯+(−1)nan
with ai ∈ R. By the theorem, g(X̄) = G(sn,1, ..., sn,n) for some G ∈ R[X̄]. By Vieta’s
formula, sn,i(ᾱ) = ai. Then

g(ᾱ) = G(sn,1(ᾱ), ..., sn,n(ᾱ)) = G(a1, ..., an) ∈ R.

Exercise 3.7.10. Let K be a field, R a subring, f ∈ R[X], a ∈ R ∖ {0}, n > 0 and assume
that f = a(X − α1)⋯(X − αn) ∈ R[X] with αi ∈ K. Let g ∈ R[X1, ...,Xn] be symmetric of
(total) degree ⩽ n such that an divides all coefficients of g. Then g(ᾱ) ∈ R.

Hint: find a monic f∗ ∈ R[X] with roots aαi.
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Example 3.7.11 (Higher discriminants). Let R,f,K, ᾱ be as above. Then

D(X̄) ∶= ∏i<j(Xi −Xj)2

is symmetric, so equals ∆n(sn,1, ..., sn,n) for some ∆n ∈ R[X̄]. By Vieta’s formula,

D(ᾱ) =∆n(a1, ..., an) ∈ R,

where f =Xn − a1Xn−1 + a2Xn−2 −⋯+ (−1)nan with ai ∈ R. This is called the discriminant
of f and denoted Df . It can be computed without knowing K and roots ᾱ. It is 0 if and
only if f has a multiple root in K – in particular, this does not depend on the choice of K.

The above generalizes the familiar formula for n = 2:

f =X2 − s2,1(ᾱ)X + s2,2(ᾱ), Df = (X1 −X2)
2 = s22,1 − 4s2,2, ∆2 =X

2
1 − 4X2.

Unfortunately, ∆n is complicated for n > 2. E.g.,

∆3 = −4X
3
1X3 +X

2
1X

2
2 + 18X1X2X3 − 4X

3
2 − 27X

2
3 .

This matches the definition of Df in Proposition 3.5.15.

Exercise 3.7.12. Df = (−1)
(
n
2
)∏i≠j(αi − αj) = (−1)

(
n
2
) ⋅ f ′(α1)⋯f ′(αn).

Exercise 3.7.13. For R = R,K = C, n = 3 above, show Df = 0,< 0,> 0 if and only if f has
a multiple root, one real and two complex roots, resp., three real roots.

Remark 3.7.14. We defined Df for monic f , i.e., with lead coefficient a0 = 1. Definitions
for a0 ≠ 1 add a normalizing factor, e.g., often but not always a2n−20 is used. We omit this
in order not to spoil the elegance.

3.8 The fundamental theorem of algebra

In the last chapter we shall prove (Theorem 6.3.5):

Theorem 3.8.1. Let K be a field and let f ∈ K[X] have degree n > 0. Then there exists
a field extension L ∣K and a ∈K and a1, ..., an ∈ L such that f = a(X − a1)⋯(X − an).

Already in 1795 Laplace sketched a proof of the fundamental theorem of algebra that
in Lagrange’s words “ne laisse rien désirer comme simple démonstracion”. It is based on
the above, the theorem on symmetric polynomials, and the following basic facts:

Remark 3.8.2. Recall conjugation z ↦ z̄ is an automorphism of C.

1. For f = anXn +⋯ + a0 ∈ C[X] let f̄ ∶= ānXn +⋯ + ā0; then f(z) = f̄(z̄) for all z ∈ C.
2. For Theorem 3.8.3 it suffices to show that every g ∈ R[X] ∖R has a root in C.

Given f ∈ C[X], note ff̄ = f̄f , so ff̄ ∈ R[X]; a root a ∈ C of ff̄ is a root of f or of
f̄ ; in the 2nd case ā is a root of f .
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3. Every f ∈ R[X] of odd degree has a root in R.
Assume f is monic; then f(−n) < 0 and f(n) > 0 for large enough n ∈ N; apply the
mean value theorem.

4. Every quadratic f ∈ C[X] has a root in C (exercise).

Theorem 3.8.3 (Fundamental theorem of algebra). Every f ∈ C[X] ∖C has a root in C.

Proof. Given f ∈ R[X]∖R we look for a root of f in C (Remark 3.8.2 (2)). We can assume
f is monic, say of degree n > 0. Write n = 2km for k,m ∈ N and m odd. We proceed by
induction on k. For k = 0 apply Remark 3.8.2 (3). Assume k > 0.

By Theorem 3.8.1, f = (X−α1)⋯(X−αn) where the αi are in some field extension L ∣ C.
For t ∈ R set

ft ∶= ∏1⩽i<j⩽n(X − (αi + αj + tαiαj)).

By Vieta’s formula the coefficients of ft are sn(n−1)/2,k(...βij...) where 1 ⩽ k ⩽ n(n − 1)/2
and βij ∶= αi + αj + tαiαj for 1 ⩽ i < j ⩽ n. But these are symmetric polynomials in αi for
1 ⩽ i ⩽ n. By Corollary 3.7.9, ft ∈ R[X].

We have deg(ft) = n(n − 1)/2 = 2k−1m(2km − 1) = 2k−1m′ for m′ odd. By induction,
ft has a root in C. This root equals αi + αj + tαiαj for some i < j. This way each t
is mapped to a pair i < j and there are t ≠ s mapped to the same i < j. Then both
αi + αj + tαiαj, αi + αj + sαiαj ∈ C. As s ≠ t, z0 ∶= α1α2 ∈ C and z1 ∶= αi + αj ∈ C and
(X − αi)(X − αj) = X2 − z1X + z0 ∈ C[X]. Remark 3.8.2 (4) gives a root z ∈ C of this
polynomial, so z = αi or z = αj, so z is a root of f .

Exercise 3.8.4. For every f ∈ C[X] of degree n ∈ N there are a0, ..., an ∈ C such that
f = a0(X −a1)⋯(X −an). Infer that every f ∈ R[X]∖R is a product of linear and quadratic
polynomials in R[X].

3.9 Transcendence of π

Hermite showed 1873 that e is transcendental. He said “I shall risk nothing on an attempt
to prove the transcendence of π. If others undertake this enterprise, no one will be happier
than I in their success. But believe me, it will not fail to cost them some effort.” We give
Niven’s “relatively simple proof” (1939) based on “an ingenious device” of Hurwitz.

Theorem 3.9.1 (Lindemann 1882). π is transcendental.

Proof. For contradiction, assume π is a root of g ∈ Q[X]. Then iπ is a root of g(iX)g(−iX)
and it is straightforward to check g(iX)g(−iX) ∈ Q[X]. Hence, iπ is a root of some monic
f ∈ Q[X]. By Exercise 3.8.4, f = (X − α1)⋯(X − αn) for some n ∈ N and αi ∈ C and, say,
α1 = iπ. By Euler’s equality eiπ = −1, so

0 = (eα1 + 1)⋯(eαn + 1) = eβ1 +⋯ + eβ2n = eβ1 +⋯ + eβr + k.
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Here, the βj enumerate the sums ϵ1α1+⋯+ϵnαn with ϵ1, ..., ϵn ∈ {0,1}. For the 2nd equality
we assume β1, ..., βr list the βj ≠ 0 and set k ∶= 2n − r ∈ N.

By Vieta’s formula, ∏
2n

j=1(X − βj) = X
2n−r∏

r
j=1(X − βj) is a symmetric polynomial

whose coefficients are s2n,ℓ(β1, ..., β2r) for 1 ⩽ ℓ ⩽ 2n. But this is a symmetric polynomial in
α1, ..., αn, so the coefficients are in Q by Corollary 3.7.9. Thus, for a suitable a ∈ Z,

g ∶= a(X − β1)⋯(X − βr) ∈ Z[X].

For a prime p to be chosen later, set s ∶= rp − 1 and define h ∈ Z[X] of degree s + p by

h(X) ∶= asXp−1g(X)p.

Define ‘Hurwitz’s device’ H ∈ Z[X] using formal derivatives

H ∶= h + h(1) +⋯ + h(s+p).

Note H ′ = h(1) +⋯+ h(s+p). By evaluation, H,h determine functions from C to C, namely,
x↦H(x) and x↦ h(x). We denote these functions byH(x), h(x) for a complex variable x.
Using derivatives in the sense of calculus, we have (e−xH(x))′ = −e−xh(x) and hence

e−xH(x) − e0H(0) = ∫
x

0 −e
−zh(z)dz.

Substituting yx for z gives

H(x) − exH(0) = −x ∫
1

0 e
(1−y)xh(yx)dy.

Plug the βi’s for x and sum the equations:

∑
r
i=1H(βi) + kH(0) = −∑

r
i=1 βi ∫

1

0 e
(1−y)βih(yβi)dy.

Consider the r.h.s. as a function of the (not displayed) prime p. It is easy to check, that
the r.h.s. has absolute value ⩽ cp for some c ∈ N. Dividing the r.h.s. by p! gives a number
with absolute value < 1 for all sufficiently large primes p. We get the desired contradiction
by showing that the l.h.s. is an integer ≠ 0 for all sufficiently large primes p.

We first examine ∑
r
i=1H(βi). Let 1 ⩽ j ⩽ r. As βj is a root of g, we have h(t)(βj) = 0

for all t < p. Let t ⩾ p. Since products of any p consecutive integers is divisible by p!, the
coefficients of h(t) are divisible by as ⋅ p!; also note deg(h(t)) ⩽ s. Thus xt ∶= ∑

r
j=1 h

(t)(βj) =
ht(β1, ..., βr) for ht ∈ Z[X1, ...,Xr] symmetric of degree ⩽ s with coefficients divisible by p!as.
By Exercise 3.7.10, xt ∈ p!Z. We thus have

∑
r
j=1H(βj) ∈ p!Z.

Obviously, kH(0) ∈ Z, so it suffices to show p ∤ kH(0) for sufficiently large primes p.
Note h(t)(0) = 0 for t < p − 1 and h(t)(0) ∈ p!Z for t ⩾ p. Further,

h(p−1)(0) = as ⋅ (p − 1)! ⋅ g(0)p = as ⋅ (p − 1)! ⋅ aap0,

where a0 ∈ Z is the constant coefficient of g. But no prime p > k, a, a0 divides kh(p−1)(0).
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Ring theory

4.1 Quadratic integer rings

Let d ∈ Z be such that either d = −1, or, ∣d∣ > 1 is square free. Recall the quadratic number
field Q(

√
d) = Q +Q

√
d from Corollary 3.5.12.

Definition 4.1.1. For α = x + y
√
d ∈ Q(

√
d) with x, y ∈ Q let

ᾱ ∶= x − y
√
d

be the conjugation of α. The norm and trace of α are

N(α) ∶= α ⋅ ᾱ = x2 − y2d, T (α) ∶= α + ᾱ = 2x.

Remark 4.1.2.

1. Conjugation is an automorphism of Q(
√
d) that fixes Q. E.g., ⋅ is preserved:

(x + y
√
d)(u + v

√
d) = xu + yvd − xv

√
d − yu

√
d = (x − y

√
d)(u − v

√
d).

2. N(α ⋅ β) = αβᾱβ̄ = N(α) ⋅N(β) and T (α + β) = T (α) + T (β).

3. N(α) = 0 if and only if α = 0.

Indeed: N(α) = x2 − y2d = 0 clearly implies x, y = 0 in case d < 0. If d > 0, it suffices
to show y = 0: otherwise (x/y)2 = d, so

√
d ∈ Q, a contradiction.

Exercise 4.1.3. Q(
√
d) is a vector space over Q with basis 1,

√
d. For α ∈ Q(

√
d) let

Aα ∈ Q2×2 be the matrix representing the linear map β ↦ α ⋅ β on this vector space.
Show N(α) = det(Aα), and T (α) equals the trace of Aα in the sense of linear algebra.

Definition 4.1.4. Call α ∈ Q(
√
d) integral if N(α), T (α) ∈ Z. The set of integral elements

is Od. It is called a quadratic integer ring, and imaginary if d < 0 and real if d > 0.
O−1 are also called the Gaussian integers, and O−3 the Eisenstein integers.

66
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Figure 4.1: The Gaussian and Eisenstein integers

Lemma 4.1.5.

1. If d ≡ 2,3 mod 4, then Od = Z +Z
√
d ∶= {x + y

√
d ∣ x, y ∈ Z}.

2. If d ≡ 1 mod 4, then for ω ∶= (1 +
√
d)/2

Od = {(x + y
√
d)/2 ∣ x, y ∈ Z,2 ∣ x − y} = Z +Zω.

Proof. The 2nd equality in (2) is straightforward. ⊇ is trivial in (1); in (2) let x, y ∈ Z with
x− y even and α = (x+ y

√
d)/2. We show N(α) = (x2 − y2d)/4 ∈ Z: since also x+ y is even,

4 ∣ (x + y)(x − y) = x2 − y2; then 4 ∣ x2 − y2 − (d − 1)y2 = x2 − y2d.
⊆: let x, y ∈ Q and assume α ∶= x + y

√
d is integral, so T (α) = 2x ∈ Z and N(α) =

x2 − y2d ∈ Z. Say, x = r/2 for r ∈ Z. Then 4N(α) = (2x)2 − d(2y)2 ∈ Z and (2x)2 ∈ Z,
so d(2y)2 ∈ Z. Since d is square free, this implies 2y ∈ Z. Say, y = s/2 for s ∈ Z. Then
N(α) = r2/4 − ds2/4 ∈ Z, so

r2 − ds2 ≡ 0 mod 4.

Note all squares are 0 or 1 modulo 4. Hence, in (1) we get r2 ≡ s2 ≡ 0 mod 4. Then r, s
are even and x, y ∈ Z. In (2), write r2 − s2 = (r + s)(r − s) ≡ 0 mod 4. Then r ≡ s mod 2,
say r = s + 2t with t ∈ Z. Then α = (r/2) + (s/2)

√
d = t + sω.

Corollary 4.1.6. Od is a subring of Q(
√
d) and, in particular, an integral domain.

Proof. Clearly, 1,0 ∈ Od. Let α,β ∈ Od. By the lemma, α+β,−α ∈ Od and we have to show
α ⋅ β ∈ Od. This is obvious if d ≡ 2,3 mod 4. If d ≡ 1 mod 4, say d = 4r + 1 for r ∈ Z, note
α ⋅ β ∈ Z +Zω +Zω2 and ω2 = (1/4 +

√
d/2 + d/4) = ω + r, so Zω2 ⊆ Z +Zω.

Lemma 4.1.7 (Pell equalities).

1. O×d = {α ∈ Od ∣ N(α) = ±1}.

2. If d ≡ 2,3 mod 4, then for all x, y ∈ Z: x + y
√
d ∈ O×d ⇔ x2 − y2d = ±1.

3. If d ≡ 1 mod 4, then for all x, y ∈ Z: (x + y
√
d)/2 ∈ O×d ⇔ x2 − y2d = ±4.

Proof. (1) ⊆: 1 = N(αα−1) = N(α)N(α−1) and N(α) ∈ Z× = {±1}. ⊇∶ if ±1 = N(α) = αᾱ,
then ±ᾱ is an inverse of α.

(2) and (3) ⇒ follows from (1). (3)⇐: x2 − y2d ≡ (x− y)(x+ y) ≡ 0 mod 4 implies x− y
is even, so (x + y

√
d)/2 ∈ Od.
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This allows to determine the units in imaginary quadratic number rings. Recall Cn
denotes the group of n-th roots of unity (Definition 1.6.8).

Corollary 4.1.8. O×d =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

C2 = {±1} if d = −2 or d < −3
C4 = {±1,±i} if d = −1

C6 = {±1, (±1 ± i
√
3)/2} if d = −3.

Proof. For d ≡ 2,3 mod 4 and d ≠ −1, the Pell equation x2 + y2∣d∣ = 1 has only ‘trivial’
solutions(x, y) = (±1,0); for d = −1 we additionally have (x, y) = (0,±1), so get ±i ∈ O×

−1.
For d ≡ 1 mod 4 and d < −3 we have d ⩽ −7, and the Pell equation x2+y2∣d∣ = 4 has only

trivial solutions. For d = −3, we have additionally (±1,±1), so get (±1 ± i
√
3)/2 ∈ O×

−3.

Units in real quadratic number rings are more difficult to determine.

Example 4.1.9. O×2 is infinite: ϵ ∶= 1+
√
2 has norm −1 so is in O×2 . Also −ϵ = −1−

√
2, ϵ−1 =

−1 +
√
2,−ϵ−1 = 1 −

√
2 ∈ O×2 . The powers (1 +

√
2)k have norm (−1)k, so are in O×2 and

pairwise distinct (their absolute values in R grow).
Similarly, O×5 is infinite: it contains ϵ ∶= 1/2 +

√
5/2,−ϵ, ϵ−1,−ϵ−1 and powers.

Remark 4.1.10 (Integer rings). The following explains the wording “integral” and the
rationale behind its definition. (3) is used to define the integer ring of Q(α) for any
algebraic α ∈ C. Recall Definition 3.5.2.

Theorem 4.1.11. For α ∈ Q(
√
d) the following are equivalent.

1. α is integral.

2. mQ
α ∈ Z[X].

3. α is a root of a monic polynomial in Z[X].

Yet incomplete proof. 1⇔ 2: if α ∈ Q, it has minimal polynomialX−α and, by Lemma 4.1.5,
being integral means α ∈ Z. So assume α /∈ Q. Then deg(mQ

α) > 1. Hence,

mQ
α = (X − α)(X − ᾱ) =X

2 − T (α)X +N(α).

2⇒ 3 is trivial. For 3⇒ 2 choose a monic integer polynomial of minimal degree that
has α as a root. Is this the minimal polynomial? Or is it possible to find a monic rational
polynomial of smaller degree? We need a better understanding of divisibility in rings.

We shall complete the proof in Section 4.4 as follows. Assume α is a root of a monic
f ∈ Z[X]. Then f =mQ

α ⋅ g for some g ∈ Q[X] by Lemma 3.5.6. But f,mQ
α are monic, and

we shall prove in Lemma 4.4.15 that this implies mQ
α ∈ Z[X].
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4.2 Irreducible and prime elements

In this section we make the discomforting observation that there exist natural rings where
divisibility behaves quite differently from what we are used to from the integers or poly-
nomials, in particular, we face rings that violate Euclid’s lemma 2.2.7.

Let R be a commutative ring.

Definition 4.2.1. Let x, y ∈ R. Then x is a divisor of y (in R), and y a multiple of x
(in R), symbolically x ∣ y, if x ⋅ z = y for some z ∈ R. The set of multiples of x is

xR ∶= {xz ∣ z ∈ R}.

We say, x and y are associate (in R), symbolically x ∼ y, if both x ∣ y and y ∣ x.

Remark 4.2.2. For all x,x′, y, y′, z, u, u′ ∈ R:

1. x ∣ 0,1 ∣ x,−1 ∣ x,x ∣ x,−x ∣ x,x ∣ −x (recall Lemma 1.1.14 (3)).

2. ∣ is transitive: if x ∣ y and y ∣ z, then x ∣ z.

3. ∼ is an equivalence relation on R.

4. If x ∣ y and x ∣ y′, then x ∣ uy + u′y′.

5. If x ∣ y and x′ ∣ y′, then xx′ ∣ yy′.

6. If x ∣ y, then xε ∣ yε′ for all ε, ε′ ∈ R×. Indeed: if xz = y, then xε(ε−1zε′) = yε′.

7. If xε = y for some ε ∈ R×, then x = yε−1, so x ∼ y.

8. x ∣ y ⇔ x ∈ yR ⇔ yR ⊆ xR; in particular, x ∼ y ⇔ xR = yR.

9. x ∈ R× ⇔ x ∣ 1 ⇔ xR = R.

Definition 4.2.3. x ∈ R is irreducible (in R) if x ≠ 0, x /∈ R× and x is not the product of
two non-units, i.e., all divisors of x are units or ∼ x. Otherwise x is reducible (in R).

Lemma 4.2.4. Let R be an integral domain and x, y ∈ R.

1. x ∼ y if and only if xε = y for some ε ∈ R×.

2. If x is irreducible and associate to y, then y is irreducible.

3. x is irreducible if and only if x ≠ 0, xR ≠ R and for all y ∈ R: xR ⊊ yR implies yR = R.

Proof. (1) ⇒ is Remark 4.2.2 (7). (1) ⇐: assume xz = y, yz′ = x; if x = 0, then y = 0 and
x = 1y; if x ≠ 0, then xzz′ = x, so zz′ = 1 as R is an integral domain; thus, z, z′ ∈ R×.

(2): if x = εy for some ε ∈ R×, then y ≠ 0 and y /∈ R× (otherwise x = 0 or x ∈ R×); by
Remark 4.2.2 (6), x, y have the same divisors; hence, y is irreducible.

(3)⇒: xR ≠ R as x ∉ R× by Remark 4.2.2 (9); if xR ⊆ yR, then y ∣ x by Remark 4.2.2 (8),
so y is a unit or associate to x. Then yR = R or yR = xR by Remark 4.2.2 (9), (8).

(3) ⇐: x /∈ R× by Remark 4.2.2 (9); assume y ∣ x; then xR ⊆ yR by Remark 4.2.2 (8),
so xR = yR or yR = R; this implies x ∼ y or y ∈ R× by Remark 4.2.2 (9), (8).
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Examples 4.2.5.

1. Recall Z× = {±1}. Remark 2.1.2 (6) becomes (1) above. By definition, the irreducible
elements of Z are ±p for prime numbers p ∈ N.

2. Let K be a field. Then f ∈ K[X] ∖ {0} is irreducible by the above definition if and
only if it is irreducible by Definition 3.5.5 (recall K[X]× =K× by Lemma 3.1.6).

3. 2X ∈ Z[X] is not the product of two polynomials of positive degree but reducible as
2,X ∉ Z[X]× = Z× = {±1}.

4. 2 = (1 + i) ⋅ (1 − i) is reducible in O−1 – note 2,1 ± i are not units by Corollary 4.1.8.

5. 2 =
√
2 ⋅
√
2 is reducible in O2 – note 2,

√
2 are not units by Lemma 4.1.7 (1).

6. 2,3,1 ± i
√
5,2 ± i

√
5 are irreducible in O−5.

Indeed: assume α is one of these and α = βγ. Then N(α) = N(β)N(γ) ∈ {4,6,9}.
Assume β, γ are not units, so have norm ≠ ±1. Then N(β) ∈ {±2,±3}. But ±2,±3
are not of the form x2 + y25 for x, y ∈ Z.

Exercise 4.2.6. Let Od be a quadratic integer ring.

1. If α ∈ Od and N(α) is prime, then α is irreducible in Od.

2. A prime p ∈ N ⊆ Od is reducible if and only if there exists α ∈ Od with N(α) = p.

Euclid’s lemma 2.2.7 states that in Z irreducible elements are prime:

Definition 4.2.7. p ∈ R is prime (in R) if p ≠ 0, p ∉ R× and for all x, y ∈ R:

p ∣ xy implies p ∣ x or p ∣ y.

Exercise 4.2.8. Let R be an integral domain, p ∈ R be prime and x, y, q, x1, ..., xn ∈ R.

1. If p ∣ x1⋯xn, then p ∣ xi for some i (by induction on n).

2. If q ∼ p, then q is prime.

3. If R is an integral domain and q is prime and p ∣ q, then p ∼ q.

Lemma 4.2.9. Let R be an integral domain. If p ∈ R is prime, then p is irreducible.

Proof. If x ∣ p, say p = xy for some y ∈ R, then p ∣ x or p ∣ y. In the 1st case, p ∼ x. In the
2nd, xpz = p for some z ∈ R, so xz = 1 (as R is an integral domain), so x is a unit.

Example 4.2.10. 3̄ is prime in Z6 but not irreducible as 3̄ = 3̄ ⋅ 3̄.

Recall, in Z, the converse is stated as Euclid’s lemma 2.2.7. Recall also that, in K[X],
we copied Euclid’s algorithm. We can also copy the proof of Euclid’s lemma:

Lemma 4.2.11. Let K be a field. In K[X] irreducibles are prime.

Proof. Assume f, g, h ∈ K[X], f is irreducible, f ∣ gh. Let d = gcd(f, g). Since f is
irreducible, d ∼ f or d ∈ K[X]× = K ∖ {0}. In the 1st case, f ∣ g. In the 2nd, d = 1. By
Theorem 3.2.7, 1 = sf + tg for certain s, t ∈K[X]. Then h = sfh + tgh, so f ∣ h.
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Example 4.2.12. Euclid’s lemma fails in some integral domains:

1. Let R ⊆ R[X] contain the polynomials a0 + a1X + ⋯ with a0 ∈ Q. It is easy to
check that R is a subring. In R, X is irreducible (having degree 1) but not prime:
X ∣ (

√
2X)2 but X ∤

√
2X since

√
2 ∉ R.

2. 2 is irreducible in O−5 (by Example 4.2.5) but not prime: 2 ∣ 6 = (1 + i
√
5)(1 − i

√
5)

but 2 ∤ 1 ± i
√
5: if 1 ± i

√
5 = 2α, then 6 = 4N(α), contradicting N(α) ∈ Z.

Exercise 4.2.13. Let K be a field and R ⊆ K[X] be the set of anXn + ⋯ + a0 with
n ∈ N, ai ∈K and a1 = 0. Show R is a subring. Show X3 is irreducible and not prime in R.

Exercise 4.2.14. Let Od be a quadratic integer ring and π be prime in Od. Then there
is a unique prime number p ∈ N such that π ∣ p; moreover, ∣N(π)∣ ∈ {p, p2}. If ∣N(π)∣ = p2,
then π ∼ p (in Od).

Lemma 4.2.15. Let R be an integral domain and x, y ∈ R.

1. x ∣ y in R if and only if x ∣ y in R[X].

2. x ∼ y in R if and only if x ∼ y in R[X].

3. x is irreducible in R if and only if x is irreducible in R[X].

4. x is prime in R if and only if x is prime in R[X].

Proof. We leave (1)-(3) as an exercise. (4) ⇐: assume x ∣ yz for y, z ∈ R, so x ∣ yz in R[X].
Then x ∣ y or x ∣ z in R[X] (x being prime in R[X]), so x ∣ y or x ∣ z in R by (1).

(4) ⇒: assume x is not prime in R[X]. Choose f, g ∈ R[X] such that x ∣ fg, x ∤ f and
x ∤ g in R[X]. We claim x is not prime in R. Write f = anXn+⋯+a0 and g = bmXm+⋯+b0.

Let k be the minimal i ⩽ n such that x ∤ ai, and ℓ be the minimal j ⩽ m such
that x ∤ bj. Write f = f0 + f1 with f0 ∶= ak−1Xk−1 + ⋯ + a0 (the empty sum is 0) and
f1 = anXn +⋯ + akXk. Analogously write g = g0 + g1. Then x divides f0g0, f0g1, f1, g0 and
fg = f0g0 + f1g0 + f0g1 + f1g1, so x ∣ f1g1. Say xh = f1g1 and let h have coefficients ci. Then
xck+ℓ = akbℓ. Hence x ∣ akbℓ, x ∤ ak, x ∤ bℓ and x is not prime.

4.3 Factorial rings

In this section we shall see that reasoning about divisibility follows familiar lines in rings
that allow prime factorizations:

Definition 4.3.1. A ring is factorial if it is an integral domain such that every nonzero
non-unit is a (finite) product of prime elements.

A more honest generalization of prime factorization in Z is (2) below.

Theorem 4.3.2. Let R be an integral domain. The following are equivalent.

1. R is factorial.
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2. Every nonzero non-unit of R is a product of irreducible elements that is essentially
unique: if n,m > 1 and q1⋯qn = q′1⋯q

′

m for irreducible q1, ..., qn, q′1, ..., q
′

m ∈ R, then
n =m and, after a possible re-enumeration, qi ∼ q′i for all 1 ⩽ i ⩽ n.

3. Irreducibles are prime and every nonzero non-unit of R is a product of irreducibles.

Proof. 1⇒ 3: by Lemma 4.2.9, a decomposition into primes is one into irreducibles. Every
irreducible q ∈ R is prime: write q = p1...pn for primes pi ∈ R; then n = 1 and q = p1.

3 ⇒ 2: it suffices to verify essential uniqueness for prime elements qi, q′j. If q1⋯qn =
q′1⋯q

′

m, then q1 ∼ q′j for some j by Exercise 4.2.8 (1) and (3). We can assume i = 1.
Then q1 = εq′1 by Lemma 4.2.4 (1) and εq′1q2⋯qn = q

′

1⋯q
′

m. Since R is an integral domain,
q̃2q3⋯qn = q′2⋯qm for q̃2 ∶= εq2, prime by Exercise 4.2.8 (2). Continuing yields the claim.

2⇒ 1: it suffices to show every irreducible q ∈ R is prime. Let q ∣ xy, say qz = xy. Write
x = q1⋯qn, y = q′1⋯q

′

m, z = q
′′

1⋯q
′′

ℓ for irreducibles qi, q′j, q
′′

k . Then qq
′′

1⋯q
′′

ℓ = q1⋯qnq
′

1⋯q
′

m. By
essential uniqueness, q is associate to some qi or some q′k. Then q = εqi or q = εq

′′

k for some
ε ∈ R× by Lemma 4.2.4 (1). As qi ∣ x, q′′k ∣ y we get q ∣ x or q ∣ y by Remark 4.2.2 (6).

Remark 4.3.3. Let R be a factorial ring and let P ⊆ R represent the primes in R: it
contains exactly one element of every ∼-equivalence class of a prime element of R. Then
for every nonzero non-unit x ∈ R there are unique n, e1, ..., en > 0, p1, ..., pn ∈ P and ε ∈ R×

such that
x = εpe11 ⋯p

en
n .

For R = Z and P the set of prime numbers, this is the fundamental theorem.

Example 4.3.4. O−5 is not factorial by Example 4.2.12. By Example 4.2.5 (6) we have de-
compositions into pairwise not associate irreducibles (recall O×

−5 = {±1} by Corollary 4.1.8):

6 = 2 ⋅ 3 = (1 + i
√
5)(1 − i

√
5), 9 = 3 ⋅ 3 = (2 + i

√
5)(2 − i

√
5).

Exercise 4.3.5. The subring Z +Z
√
−3 ⊆ O−3 is not factorial.

Lacking a notion of size like ∣ ⋅ ∣, it is not obvious how to generalize gcd and lcm to an
integral domain R. But we can use Remark 2.1.9 (1) and Exercise 2.1.15 (2):

Definition 4.3.6. Let R be an integral domain, n > 0 and x1, ..., xn ∈ R not all zero. A
common divisor of x1, ..., xn is an x ∈ R such that x ∣ xi for all i; it is greatest if additionally
all common divisors divide x. If 1 is a greatest common divisor, then x1, ..., xn are coprime.

A common multiple of x1, ..., xn is an x ∈ R such that xi ∣ x for all i; it is least if
additionally x divides all common multiples.

Remark 4.3.7. In case greatest common divisors or least common multiples exist at all,
we avoid the functional notations gcd, lcm because we only have ‘almost’ uniqueness: any
two greatest common divisors are associate, any two least common multiples are associate.
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Proposition 4.3.8. Let R be a factorial ring and n > 0 and x1, ..., xn ∈ R ∖ {0}. Let P
represent the primes in R. Let m > 0 and p1, ..., pm ∈ P and eij ∈ N for 1 ⩽ i ⩽ n,1 ⩽ j ⩽m,
and ε1..., εn ∈ R× such that for all 1 ⩽ i ⩽ n:

xi = εip
ei1
1 ⋯p

eim
m .

Then x1, ..., xn have greatest common divisor and least common multiple

pmini ei1
1 ⋯pmini eim

m and pmaxi ei1
1 ⋯pmaxi eim

m .

Proof. We treat gcd (lcm is similar). It is clear that d ∶= pmini ei1
1 ⋯pmini eim

m is a common
divisor. Let c be a common divisor and write c = εqe11 ⋯q

eℓ
ℓ according Remark 4.3.3, in

particular with ej > 0. Fix 1 ⩽ i ⩽ n. Then every qj divides xi and hence some peiki , so

qj = pi by Exercise 4.2.8 (3). Thus {q1, ..., qℓ} ⊆ {p1, ..., pn} and c = εp
e′1
1 ⋯p

e′m
m for certain

e′j ∈ N. Write cy = xi for some y ∈ R. As y ∣ xi we similarly write y = ε′p
e′′1
1 ⋯p

e′′m
m for certain

e′′j ∈ N. Then xi = εε′p
e′1+e

′′
1

1 ⋯p
e′m+e′′m
m . It follows eij = e′j + e

′′

j by uniqueness Remark 4.3.3.
Hence e′j ⩽ eij for all i, j. As 1 ⩽ i ⩽ n was arbitrary, e′j ⩽mini eij. It follows that c ∣ d.

Exercise 4.3.9. Let R be a factorial ring, y, z ∈ R, n > 0 and x1, ..., xn ∈ R not all zero.

1. x1, ..., xn are coprime if and only if there does not exists a prime element p ∈ R that
divides all xi.

2. If y is a greatest common divisor of x1, ..., xn and y1y = x1, ..., yny = xn, then y1, ..., yn
are coprime.

3. If y is a greatest common divisor of x1, ..., xn, then zy is a greatest common divisor
of zx1, ..., zxn.

4. If x, y are coprime and x ∣ yz, then x ∣ z.

Lemma 4.3.10. Let R be a factorial ring.

1. For all x ∈ R,y ∈ R ∖ {0} there are coprime x′ ∈ R,y′ ∈ R ∖ {0} such that x/y = x′/y′

in Quot(R); such x′, y′ are unique up to ∼.

2. For all n > 0 and x1, ..., xn, y1, ..., yn ∈ R ∖ {0} there exists z ∈ R such that zx1/y1, ...,
zxn/yn ∈ R and have the same greatest common divisors as x1, ..., xn.

Proof. (1): write x = zx′, y = zy′ for a greatest common divisor z of x, y. Then x/y = x′/y′

in Quot(R) and x′, y′ are coprime by Exercise 4.3.9 (2).
(2): write xi = εip

ei1
1 ⋯p

eim
m and yi = δiq

di1
1 ⋯q

dim
m according Proposition 4.3.8 for suitable

primes pi, qi and units εi, δi. We can assume {p1, ..., pm} ∩ {q1, ..., qm} = ∅.
Let z ∶= qmaxi di1

1 ⋯qmaxi dim
m be a least common multiple of the yi. Then

zxj/yj = δ
−1
j εjq

maxi di1−dj1
1 ⋯q

maxi qim−djm
m p

ej1
1 ⋯p

ejm
m

for all 1 ⩽ j ⩽ n. By Proposition 4.3.8 a greatest common divisor of the zxj/yj is

q
minj(maxi di1−dj1)
1 ⋯q

minj(maxi dim−djm)
m pmini ei1

1 ⋯pmini eim
m = pmini ei1

1 ⋯pmini eim
m .

This is a greatest common divisor of the xj’s. This is enough by Remark 4.3.7.
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4.4 Polynomial factorization

Recall our main interest are polynomial rings. This section gives good news showing they
are well-behaved:

Theorem 4.4.1 (Gauß). If R is a factorial ring, then so is R[X].

Z[X1] is factorial. Then Z[X1,X2] ≅ Z[X1][X2] is factorial. And so on. Thus:

Corollary 4.4.2. Let n > 0 and K be a field. Then Z[X1, ...,Xn] and K[X1, ...,Xn] are
factorial.

We aim to verify Theorem 4.3.2 (3) and first ask for decompositions into irreducibles.
We explore the straightforward idea to repeatedly replace reducible factors by products.

Definition 4.4.3. Let R be an integral domain. A proper divisor chain in R is a sequence
(xn)n∈N of elements of R such that xn+1 ∣ xn and xn+1 /∼ xn for all n ∈ N.

Example 4.4.4. Z does not have proper divisor chains. Indeed: if y ∣ x, then ∣y∣ ⩽ ∣x∣ and
∣y∣ = ∣x∣ means y ∼ x. Hence, a proper divisor chain satisfies ∣x0∣ > ∣x1∣ > ⋯, impossible.

Lemma 4.4.5. A factorial ring R does not have proper divisor chains.

Proof. Assume (xn)n is a proper divisor chain. Let P represent primes in R and write

x0 = ε0p
e1
1 ⋯p

em
m according Remark 4.3.3. Then x1 = ε1p

e′1
1 ⋯p

e′m
m with ε2 ∈ R× and e′i ⩽ ei for

all i and e′i < ei for at least one i. Continuing gives xn ∈ R× for n ∶= ∑i ei. Then xn+1 ∈ R
×

and xn+1 ∼ xn, a contradiction.

Lemma 4.4.6. In an integral domain R without proper divisor chains, every nonzero
non-unit is a product of irreducibles.

Proof. Assume x0 ∈ R is a nonzero non-unit that is not a product of irreducibles. Then
x0 is reducible, so x0 = y1y2 where y1, y2 are nonzero non-units. Then y1, y2 /∼ x0: if, say,
y1 ∼ x, i.e., y1 = εx for ε ∈ R×, then x = εxy2, so 1 = εy2 (R is an integral domain) and
y2 ∈ R×, contradiction. At least one of y1, y2 is not a product of irreducibles. Call it x1.
Continuing gives a proper divisor chain.

Lemma 4.4.7. If R is an integral domain without proper divisor chains, so is R[X].

Proof. Let (fn)n be a proper divisor chain in R[X]. Then all fn are nonzero, so have
degree ⩾ 0. Then deg(f0) ⩾ deg(f1) ⩾ ⋯ so there are d,n0 ∈ N such that deg(fn) = d
for all n ⩾ n0. Let an be the lead coefficient of fn. For n ⩾ n0 write fn+1gn = fn and note
d = deg(fn) = deg(fn+1)+deg(gn) = d+deg(gn), so deg(gn) = 0, so gn ∈ R. Then an = an+1gn,
so an+1 ∣ an in R[X] and hence in R by Lemma 4.2.15 (1). Since R does not have a proper
divisor chain, there is m ⩾ n0 such that am+1 = εam for some ε ∈ R×. But am = am+1gm, so
gm ∈ R× = R[X]× by Lemma 3.1.6. Thus, fm+1 ∼ fm in R[X].
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Corollary 4.4.8. If R is a factorial ring, then every nonzero non-unit in R[X] is a finite
product of irreducibles.

Corollary 4.4.9. Let K be a field. Then K[X] is factorial.

Proof. K is factorial, so in K[X] nonzero non-units are finite products of irreducibles. But
irreducibles are prime by Lemma 4.2.11. By Theorem 4.3.2, K[X] is factorial.

We shall re-prove this in the next section by more abstract means.

Exercise 4.4.10. In F5[X] we have 3̄X2 + 4̄X + 3̄ = (3̄X + 2̄)(X + 4̄) = (4̄X + 1̄)(2̄X + 3̄).
Why does this not contradict the uniqueness of factorizations? (Hint: 2̄ ⋅ 3̄ = 1̄)

We next aim to show that irreducibels are prime in Z[X1, ...,Xn] and K[X1, ...,Xn].

Definition 4.4.11. Let R be a factorial ring, and f ∈ R[X] ∖ {0}. A content of f is a
greatest common divisor of the coefficients of f . f is primitive if 1 is a content of f .

Example 4.4.12. In Z[X], the contents of 12X3 + 16X + 8 are ±4. E.g., 49X5 + 10X and
3X + 4 are primitive.

Remark 4.4.13. Let R be a factorial ring and f ∈ R[X] ∖ {0} with content a ∈ R.

1. If b ∈ R is a content of f , then a ∼ b (by Remark 4.3.7).

2. There is a primitive g ∈ R[X] such that f = ag.

Indeed: define g from f replacing every coefficient c by some b with ba = c; these b
are coprime by Exercise 4.3.9 (2).

3. If b ∈ R ∖ {0}, then bf has content ba (by Exercise 4.3.9 (3)).

Lemma 4.4.14 (Gauß). Let R be a factorial ring. If f, g ∈ R[X] have contents a, b, then
fg has content ab.

Proof. By Remark 4.4.13 (2) write f = af ′, g = bg′ with primitive f ′, g′. By Remark 4.4.13 (3),
a content of fg is abc with c a content of f ′g′. We claim that we can take c = 1, i.e., that
f ′g′ is primitive. Write f ′ = anXn+⋯+a0, g′ = bmXm+⋯+b0 and f ′g′ = cm+nXn+m+⋯+c0.

Assume f ′g′ is not primitive, say p is a prime divisor of the cj’s. Let r be the minimal
i ⩽ n such that p ∤ ai. Let s be the minimal j ⩽m such that p ∤ bj. Note cr+s = ∑i+j=r+s aibj.
If (i, j) ≠ (r, s), then i < r or j < s, so p ∣ aibj. Thus, p divides all aibj ≠ arbs. As p ∣ cr+s,
we get p ∣ arbs. As p is prime, p ∣ ar or p ∣ bs, a contradiction.

Lemma 4.4.15. Let R be a factorial ring, f ∈ R[X] ∖ {0}, g, h ∈ Quot(R)[X] and f = gh.

1. There are ĝ, ĥ ∈ R[X] of the same degree as g, h such that f = ĝĥ.

2. If g ∈ R[X] is primitive, then h ∈ R[X].

3. If f, g are monic, then g, h ∈ R[X].
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Proof. (1): by Lemma 4.3.10 (2) there are a, b ∈ R such that ag, bh ∈ R[X]. By Re-
mark 4.4.13 (3) there are a′, b′ ∈ R and primitive g′, h′ ∈ R[X] such that ag = a′g′, bh = b′h′.
Then abf = a′b′g′h′. Let c be a content of f . By Remark 4.4.13 (4), abc is a content of
abf . By Gauß’ Lemma, a′b′ ⋅ 1 ⋅ 1 is also a content of abf , so abcε = a′b′ for some ε ∈ R× by
Remark 4.4.13 (1). Hence, abf = abcε ⋅ g′h′, so f = cεg′h′. Set ĝ ∶= g′, ĥ ∶= cεh′.

(2): if g ∈ R[X] is primitive, we can choose a = a′ = 1 above. Then g = g′ = ĝ, so
gh = f = ĝĥ = gĥ and hence h = ĥ ∈ R[X].

(3): if f, g are monic, so is h. By Lemma 4.3.10 (2), ag, bh are primitive (their coeffi-
cients’ gcd equals that of nominators in g, h). Hence we can choose a′ = b′ = 1 and c = 1.
Then abcε = a′b′ gives ab ∈ R×. Since abg, abh ∈ R[X], also g, h ∈ R[X].

Exercise 4.4.16 (General rational root theorem). Let R be a factorial ring. If f ∈ R[X]
is monic and x ∈ Quot(R) a root, then x ∈ R.

Theorem 4.4.17. Let R be a factorial ring and f ∈ R[X] ∖R. Then f is irreducible in
R[X] if and only if f is primitive and irreducible in Quot(R)[X].

Proof. ⇒: if f is not primitive, then f = pg for some prime p ∈ R (Exercise 4.3.9 (1)) and
g ∈ R[X] ∖R. Then p, g ∉ R[X]× = R× (Lemma 3.1.6), so f is reducible.

If f is reducible in Quot(R)[X], then f = gh for certain g, h ∈ Quot(R)[X] with positive
degree. But then ĝ, ĥ from the lemma have positive degree, so f is reducible in R[X].
⇐: assume f = gh for g, h ∈ R[X]∖R[X]×. Then g, h ∉ R as f is primitive, so g, h have

positive degree, so g, h ∉ Quot(R)[X]×, so f is reducible in Quot(R)[X].

Proof of Gauß’ theorem 4.4.1. By Corollary 4.4.8 and Theorem 4.3.2 (3) we are left to
show that every irreducible f ∈ R[X] is prime.

Case f ∈ R. Then f is irreducible in R by Lemma 4.2.15 (3), so prime in R by
Theorem 4.3.2, so prime in R[X] by Lemma 4.2.15 (4).

Case f ∉ R. Then deg(f) > 0, so, by Theorem 4.4.17, f is primitive and irreducible in
Quot(R)[X]. Now, Quot(R)[X] is factorial by Lemma 4.2.11, so, by Theorem 4.3.2, f is
prime in Quot(R)[X]. Assume f ∣ gh for g, h ∈ R[X]. Then f ∣ g or f ∣ h in Quot(R)[X].
As f is primitive, Lemma 4.4.15 (2) implies f ∣ g or f ∣ h in R[X].

4.5 Eisenstein’s irreducibility criterion

No efficient algorithm to test irreducibility of a given polynomial in Z[X] is known, exam-
ples are treated by ad hoc arguments and tricks. In slogan form: irreducibility is an art,
not a technique. In this section we learn some tricks. We start generalizing Exercise 3.5.9:

Corollary 4.5.1. Let R be a factorial ring and f ∈ R[X] have degree 2 or 3. Then f is
irreducible if and only if f is primitive and has no root in Quot(R).

If additionally f is monic, then f is irreducible if and only if it has no root in R.
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Proof. f has a root a ∈ Quot(R) if and only if (X −a) ∣ f in Quot(R) (by Corollary 3.3.2),
equivalently f is reducible in Quot(R)[X]. Now apply Theorem 4.4.17. The 2nd statement
follows from Exercise 4.4.16.

Example 4.5.2. f ∶=X2 + 3X + 1 is irreducible in Z[X] and Q[X].

Proof. For a ∈ Z with ∣a∣ ⩾ 3 we have ∣f(a)∣ ⩾ ∣a∣2 − 3∣a∣ + 1 ⩾ ∣a∣(∣a∣ − 3) + 1 > 0, so f(a) ≠ 0.
Further, none of ±2,±1,0 is a root.

Example 4.5.3. f ∶=X2 + Y 2 + 1 is irreducible in Z[X,Y ].

Proof. We view f = X2 + a ∈ Z[Y ][X] with a ∶= Y 2 + 1 and show f has no root in Z[Y ].
Otherwise g2 = −Y 2−1 for some g ∈ Z[Y ]. Then −1 is the square of the constant term of g,
contradiction.

Exercise 4.5.4. To show f ∶= X4 − 2X3 +X + 1 ∈ Z[X] is irreducible, first note it has no
linear factors, then show f = (X2 + aX + b)(X2 + cX + d) for a, b, c, d ∈ Z is impossible by
comparing coefficients.

Example 4.5.5. f ∶=X4 − 10X2 + 1 is irreducible in Z[X] and Q[X].

1st proof. In Z[X], f does not have a linear factor: such a factor would have the form X−a
(as f is monic) but f does not have a root in Z. Since f is primitive it suffices to show f is
irreducible in Z[X]. Assume otherwise. Writing f as a product of irreducibles thus reads
f = g0g1 with g0, g1 of degree 2; say g0 ∶=X2 + bX + c. One easily checks X2 + c ∤ f for all c,
so b ≠ 0. The evaluation homomorphism mapping X to −X is an automorphism of Z[X].
Hence, g0(−X) ∣ f(−X) = f . Since g0(−X) ≠ g0, we have g0(−X) = g1 = X2 − bX + c. We
get c2 = 1, b2 − 2c = 10. But there are no such b, c ∈ Z.

2nd proof. Assume f = gh for g, h ∈ Z[X] of degree 2. Note ∣f(a)∣ is 1 or a prime in N for
a = 0,±2,±4,±6,±8 which are 9 values. For each of them g(a) or h(a) is ±1. But g, h take
each value ⩽ 2 times (by interpolation), a contradiction.

We shall see a third proof in Section 6.2.

Exercise 4.5.6. If f ∈ Z[X] and ∣f(a)∣ is 1 or a prime in N for > 2deg(f) many a ∈ Z,
then f is irreducible in Z[X].

Theorem 4.5.7 (Eisenstein). Let R be a factorial ring, n > 0 and f = anXn+⋯+a0 ∈ R[X]
be primitive with an ≠ 0. Then f is irreducible in both R[X] and Quot(R)[X] if there exists
a prime p ∈ R such that:

p ∣ a0, ..., p ∣ an−1, p ∤ an and p2 ∤ a0.

Proof. Assume there is such a p. By Theorem 4.4.17 it suffices to show f is irreducible
in R[X]. Assume f = gh for f, g ∈ R[X], say g = bkXk + ⋯ + b0, h = cℓXℓ + ⋯ + c0 with
bk, cℓ ≠ 0 and ℓ + k = n. We claim g ∈ R× or h ∈ R×.
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Since p ∣ a0 = b0c0 and p2 ∤ a0, p divides exactly one of b0, c0. Say, p ∣ b0, p ∤ c0. As
p ∤ an = bkcℓ there is 0 < i ⩽ k such that p ∣ b0, ..., p ∣ bi−1, p ∤ bi. Then p ∤ bic0 and hence

p ∤ ai = bic0 + bi−1c1 +⋯ + b0ci,

setting cj ∶= 0 for j > ℓ. Thus i = n = k, so ℓ = 0 and h ∈ R. As f is primitive, h ∈ R×.

Example 4.5.8. f ∶= 16X5 −9X4 +3X2 +6X −21 ∈ Z[X] is irreducible in Z[X] and Q[X]
(Eisenstein with p = 3).

Examples 4.5.9. Let n > 0 and p ∈ N a prime number.

1. f ∶=Xn − p is irreducible in Z[X] and Q[X].
2. f ∶=Xp−1 +⋯ +X + 1 is irreducible in Z[X] and Q[X].
3. f ∶=Xn + Y n − 1 is irreducible in Z[X,Y ].

Proof. (1): by Eisenstein. (2): let φ be the evaluation homomorphism mapping X to X +1
(Corollary 3.1.9 (1)). This is an automorphism of Z[X]. It thus suffices to show φ(f) is
irreducible. Since f ⋅ (X − 1) =Xp − 1, we have φ(f) ⋅X = (X + 1)p − 1, so

φ(f) =Xp−1 + ( p
p−1
)Xp−2 +⋯ + (p1).

Apply Eisenstein: primitive and (p1) = p and p ∣ (pi) = p ⋅ (
p−1
i
) for all 1 ⩽ i ⩽ p − 1.

(3): view f in Z[Y ][X] and write f =Xn+a with a ∶= Y n−1 ∈ Z[Y ]. Then a = (Y −1)g
for g ∶= (Y n−1 + ⋯ + Y + 1). Note Y − 1 is prime in Z[Y ] and Y − 1 ∤ g since g(1) ≠ 0, so
(Y − 1)2 ∤ a. Since f is primitive, Eisenstein applies.

Exercise 4.5.10.

1. X9 + 10X5 + 15X3 + a is irreducible in Z[X] and Q[X] for infinitely many a ∈ Z.
2. X3 + 3X + 2 and X4 + 1 are irreducible in Z[X] and Q[X] (Hint: plug X + 1 for X).

3. Y 2 +XY +X is irreducible in Z[X,Y ].
4. Z2 + Y 2 −XY +X is irreducible in Q(X,Y )[Z].

4.6 Principal ideal domains

Definition 4.6.1. Let R be a commutative ring. I ⊆ R is an ideal (of R) if I is a subgroup
of (R,+) and xr ∈ I for all x ∈ I, r ∈ R. It is proper if I ≠ R. It is trivial if I = {0} or I = R.
It is principal if I = xR for some x ∈ R.

R is a principal ideal domain if R is an integral domain such that all ideals of R are
principal, i.e., for every ideal I of R there is x ∈ R such that I = xR.

Remark 4.6.2. Let R ≠ {0} be a commutative ring.
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1. An ideal I of R is proper if and only if I ∩R× = ∅.

Indeed: if ε ∈ I ∩R× and x ∈ R, then x = ε(ε−1x) ∈ I.

2. R is a field if and only if all ideals are trivial.

⇒ by (1). ⇐: if 0 ≠ x ∈ R, then xR ≠ {0}, so xR = R ∋ 1, so x ∈ R×.

Examples 4.6.3.

1. Z is a principal ideal domain by Lemma 2.1.5.

2. Z[X] is not a principal ideal domain.

Indeed: let I be the set of polynomials in Z[X] with an even constant term. This
is an ideal but not principal. Otherwise I = fZ[X] for some f ∈ Z[X]. Then there
are g, h ∈ Z[X] with 2 = fg and X = fh. The former implies f, g ∈ Z. Then the
latter implies h = yX for some y ∈ Z with yf = 1, so f = ±1. Then fZ[X] = Z[X], so
I = Z[X]. But 1 ∉ I, contradiction.

3. For a field K, K[X] is a principal ideal domain (see Example 4.6.10 and Lemma 4.6.9
below) but K[X,Y ] is not (exercise).

Exercise 4.6.4. For a field K, K[[X]] is a principal ideal domain.

Lemma 4.6.5. In a principal ideal domain, irreducibles are prime.

Proof. Let R be a principal ideal domain, q, x, y ∈ R and assume q ∣ xy and q is irreducible.
Consider J ∶= xR+qR = {xr+qs ∣ r, s ∈ R}. This is an ideal, so principal, say J = zR. Then
qR ⊆ J = zR and, since q is irreducible, Lemma 4.2.4 (2) gives qR = zR or zR = R.

In case qR = zR, we have xR ⊆ qR, so q ∣ x by Remark 4.2.2 (8). In case J = zR = R,
choose r0, s0 ∈ R with xr0 + qs0 = 1, and note q ∣ xr0y + qs0y = y by Remark 4.2.2 (4).

Theorem 4.6.6. Principal ideal domains are factorial.

Proof. By Theorem 4.3.2 (3) and Lemmas 4.4.6, 4.6.5 it suffices to show that a principal
ideal domain R does not have proper divisor chains. Assume (xn)n is one. Then

x0R ⊊ x1R ⊊ x2R ⊊ ⋯,

by Remark 4.2.2 (8). Let I ∶= ⋃n xnR and observe I is an ideal. Choose x ∈ R with I = xR.
As x ∈ I, there is n ∈ N such that x ∈ xnR. Then xn+1R ⊆ I = xR ⊆ xnR, contradiction.

Exercise 4.6.7. Principal ideal domains R satisfy Bézout’s lemma: for x1, ..., xn ∈ R not
all zero, there are r1, ..., rn ∈ R such that r1x1 +⋯ + rnxn is a gcd of x1, ..., xn.
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4.6.1 Euclidian domains

Which integral domains are principal ideal domains? Beginning number theory, our main
tool was Euclidian division:

Definition 4.6.8. R is an Euclidian domain if R is an integral domain and there is a
Euclidian valuation

δ ∶ R ∖ {0} → N,

i.e., for all x, y ∈ R ∖ {0} there are q, r ∈ R such that x = qy + r and, r = 0 or δ(r) < δ(x).

Lemma 4.6.9. Euclidian domains are principal ideal domains.

Proof. Let R be a Euclidian domain with valuation δ, and I ⊆ R an ideal. If I = {0}, then
I = 0R is principal. Assume I ≠ {0}. Choose x ∈ I with minimal δ-value. We claim I = xR.
⊇ is clear. ⊆∶ given y ∈ I, write y = qx + r with q, r ∈ R and, r = 0 or δ(r) < δ(x); then

r = y − qx ∈ I, so r = 0 by choice of x; then y = qx ∈ xR.

Examples 4.6.10.

1. Z has Euclidian valuation x↦ ∣x∣ (by Euclidian division).

2. A field K has Euclidian valuation x↦ 0.

3. K[X] has Euclidian valuation f ↦ deg(f) (by Theorem 3.2.1).

4. The Gaussian integers O−1 = Z +Zi have Euclidian valuation α ↦ N(α).

Indeed: note N(x+ iy) = x2+y2 = ∣x+ iy∣2 extends to Q(i). We want for all α,β ∈ O−1
some q, r ∈ O−1 such that α = βq + r with r = 0 or N(r) < N(β). Working in Q(i),
this means N(r/β) = N(α/β − q) < 1. So we ask for q ∈ Z+Zi with ∣ ⋅ ∣-distance < 1 to
a given point (namely α/β). The maximal distance to grid points is realized by the
midpoints of the squares of the grid. This is ∣(1 + i)/2∣ = 1/

√
2 < 1.

5. Similarly, O−2 = Z +Z
√
2 has Euclidian valuation α ↦ N(α).

More abstract proof of Corollary 4.4.9. By (3) above, K[X] is a Euclidian domain, so a
principal ideal domain by Lemma 4.6.9, so factorial by Theorem 4.6.6.

Remark 4.6.11. It is known that α ↦ ∣N(α)∣ is a Euclidian valuation in Od for exactly 21
values of d, namely −1,−2,−3,−7,−11,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73. It is
conjectured that there are infinitely many d > 0 such that Od is Euclidian. E.g., O14 is
known to be Euclidian but not by its norm. Heegner proved 1952 that there are exactly 9
values of d < 0 such that Od is a principal ideal domain, namely −1,−2,−3,−7,−11,−19,−43,
−67,−163. E.g., O−19 is known to be a principal ideal domain that is not Euclidian.

Remark 4.6.12. What if we require (q, r) in Definition 4.6.8 to be unique? It was observed
by Jodeit (1967) that then K ∶= R× ∪ {0} is a field and, R =K or R ≅K[X].

Exercise 4.6.13. Give a version of the Euclidian algorithm for a Euclidian ring.
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Exercise 4.6.14. Are subrings of Euclidian rings also Euclidian?

Exercise 4.6.15 (Euclidian valuations). Let R be a Euclidian domain.

1. R has a Euclidian valuation δ satisfying δ(x) ⩽ δ(xy) for all x, y ∈ R ∖ {0}.

Hint: given an arbitrary valuation δ′, set δ(x) ∶=min{δ′(xy) ∣ y ∈ R ∖ {0}}.

2. For all x ∈ R ∖ {0}, ε ∈ R×, y ∉ R× ∪ {0}:

δ(1) ⩽ δ(x), δ(εx) = δ(x), δ(x) < δ(xy).

3. x ∈ R ∖ {0} is a unit if and only if δ(x) = δ(1).

4.7 Ideals

Let R,S be a commutative rings. Ideals are ‘ideal numbers’ and we compute with them:

Lemma 4.7.1. Let I be the set of ideals of R. Then (I,+) and (I, ⋅) are commutative
monoids with neutral elements {0} and R. Here, for I, J ∈ I:

I + J ∶= {x + y ∣ x ∈ I, y ∈ J},

I ⋅ J ∶= {x1y1 +⋯ + xnyn ∣ n ∈ N, x1, ..., xn ∈ I, y1, ..., yn ∈ J}.

Moreover, I + I = I and (I + I ′) ⋅ J = I ⋅ J + I ′ ⋅ J for all I, I ′, J ∈ I.

Proof. We only verify distributivity: if z ∈ (I + I ′) ⋅J , then z = (x1 +x′1)y1 +⋯+(xn +x
′

n)yn
for some n ∈ N, xi ∈ I, x′i ∈ I ′, yi ∈ J . Then z = (x1y1+⋯+xnyn)+(x′1y1+⋯x′nyn) ∈ I ⋅J +I ′ ⋅J .

Conversely, (I + I ′)J contains IJ and I ′J and is closed under +.

Remark 4.7.2. Let I, J be ideals of R. Then

I ⋅ J ⊆ I ∩ J ⊆ I ∪ J ⊆ I + J.

Clearly, I+J is the smallest ideal containing both I and J (every such ideal contains I+J).
I ∩J is an ideal, and clearly the largest one contained in both I and J . I ∪J is not always
an ideal, e.g. in Z, 21 = 6 + 15 ∉ 6Z ∪ 15Z.

Definition 4.7.3. The ideal generated by X ⊆ R is (X) ∶= ⋂
I ideal,X⊆I

I.

Remark 4.7.4. Intersections of nonempty sets of ideals are ideals; in particular, (X) is
an ideal. It is the smallest ideal that contains X. For x1, ..., xn ∈ R we have

(x1, ..., xn) ∶= ({x1, ..., xn}) = x1R +⋯ + xnR.

For x, y ∈ R, note xR = (x) and (∅) = (0) = {0}, and (x) ⋅ (y) = (xy). Using distributivity,

(x1, x2, x3) ⋅ (y) = ((x1) + (x2) + (x3)) ⋅ (y) = (x1y) + (x2y) + (x3y) = (x1y, x2y, x3y).
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Exercise 4.7.5. Let R be a principal ideal domain, n > 0 and x1, ..., xn ∈ R not all zero.
Show x ∈ R is a greatest common divisor of x1, ..., xn if and only if (x) = (x1, ..., xn). Show
x ∈ R is a least common multiple of x1, ..., xn if and only if ⋂ni=1(xi) = (x).

Example 4.7.6. In Z, (6) ⋅ (15) = (90) ⊊ (30) = (6) ∩ (15) ⊊ (6) ∪ (15) ⊊ (6) + (15) = (3).

Why are the finite sums needed in the definition of the ideal product?

Example 4.7.7. In Z[X], consider the ideals I ∶= (2,X), J ∶= (3,X) and note

I ⋅ J = ((2) + (X)) ⋅ ((3) + (X)) = (2 ⋅ 3) + (2X) + (3X) + (X2) = (6) + (X).

The last equality follows from I ′ ∶= (2X) + (3X) + (X2) = (X); indeed, ⊆ as X divides all
elements of I ′, and ⊇ as X = 2X ⋅ (−1)+3X ⋅1+X2 ⋅0 ∈ I ′. Less formally, note I, J and I ⋅J
are the ideals of polynomials with constant term divisible by 2,3 and 6.

But X ∈ I ⋅ J cannot be written X = fg with f ∈ I, g ∈ J because X is irreducible and
I, J (are non-trivial, so) do not contain units ±1.

Exercise 4.7.8. {f(X,Y ) ∈ R[X,Y ] ∣ f(x,x2) = 0 for all x ∈ R} ⊆ R[X,Y ] is the ideal of
real polynomials vanishing on the parabola. Show it equals (Y −X2).

The ideal of real polynomials vanishing on (a, b) ∈ R2 is (X − a, Y − b). Verify (X −
2, Y − 4) ⊇ (Y −X2) algebraically.

Definition 4.7.9. Let I, J be ideals of R.

1. I, J are coprime if I + J = R.

2. I is prime if I is proper and for all x, y ∈ R: xy ∈ I implies x ∈ I or y ∈ I.

3. I is maximal if I is proper and for every ideal J : I ⊆ J implies I = J or J = R.

Exercise 4.7.10. Maximal ideals are prime.

Remark 4.7.11. Assume R is a principal ideal domain and let x, y, z ∈ R ∖ {0}.

1. The ideals xR, yR are coprime if and only if x, y are coprime (in R, cf. Exercise 4.3.9).

⇒: if xR + yR = R choose r, s ∈ R such that xr + ys = 1. Let d ≠ 0 be a common
divisor of x, y. Then d ∣ xr + sy = 1. Hence, 1 is a greatest common divisor.
⇐: Exercise 4.6.7 gives 1 ∈ xR + yR, so xR + yR = R.

2. xR is a prime ideal if and only if x is prime. (Holds in any commutative ring.)

⇒: if x ∣ yz, then yz ∈ xR, so y ∈ xR or z ∈ xR, so x ∣ y or x ∣ z.
⇐: if yz ∈ xR, then x ∣ yz, so x ∣ y or x ∣ z, so y ∈ xR or z ∈ xR.

3. xR is a maximal ideal if and only if x is irreducible (by Lemma 4.2.4).

4. An ideal ≠ {0} ofR is maximal if and only if it is prime (Exercise 4.7.10, Lemma 4.2.9).

Example 4.7.12. The maximal ideals of Z are pZ for a prime number p. The prime ideals
of Z are these plus 0Z = {0}.
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Example 4.7.13. Let K be a field. In K[X,Y ], the ideal (X) is prime because X is
prime in K[X,Y ] (Remark 4.7.11 (3)). (X) is not maximal as (X) ⊊ (X,Y ). (X,Y ) is
maximal: the elements of K[X,Y ] ∖ (X,Y ) are the polynomials with non-zero constant
term; any such f can be written f = g + a with g ∈ (X,Y ) and a ∈K×, so 1 ∈ (X,Y, f).

Example 4.7.14. Let L ∣ K be a field extension, and a ∈ L be algebraic over K. The set
Ia of f ∈K[X] with f(a) = 0 is an ideal. That a is algebraic over K means that Ia ≠ {0}.

By Lemma 3.5.6 (1⇒ 3), Ia =mK
a K[X]. By Lemma 3.5.6 (1⇒ 2) , mK

a is irreducible,
so Ia is maximal.

Conversely, Ia = gK[X] for some g ∈ K[X] (Example 4.6.3). Then g ≠ 0, so we can
choose g monic. Then f ∈ Ia if and only if g ∣ f and Lemma 3.5.6 (3⇒ 1) shows g =mK

a .

Theorem 4.7.15. Every proper ideal of R is contained in a maximal one.

Proof. Let I be the set of proper ideals, partially ordered by ⊊. Let C be a chain. Then
I ∶= ⋃C ∈ I. Indeed, I is clearly an ideal and it is proper: otherwise 1 ∈ I, so 1 ∈ J for some
J ∈ C, so J = R ∉ I, contradiction. Hence, the partial order is inductive. By Zorn’s lemma
it contains a maximal element. This is a maximal ideal.

Remark 4.7.16. Let φ ∶ R → S be a ring homomorphism.

1. If J is an ideal of S, then φ−1(J) = {x ∈ R ∣ φ(x) ∈ J} is an ideal of R that contains
ker(φ). In particular, ker(φ) = φ−1({0}) is an ideal of R.

Indeed: φ−1(J) ⊇ ker(φ) because 0 ∈ J . We show φ−1(J) is an ideal. Let x, y ∈
φ−1(J) and r ∈ R; then φ(x − y) = φ(x) − φ(y) ∈ J , so x − y ∈ φ−1(J); further,
φ(xr) = φ(x)φ(r) ∈ J , so xr ∈ φ−1(J).

2. If J is a prime ideal of S, then φ−1(J) is a prime ideal of R.

Indeed: I ∶= φ−1(J) is an ideal by (1) and proper as 1 ∉ I since φ(1) = 1 ∉ J . If xy ∈ I,
then φ(xy) = φ(x)φ(y) ∈ J . As J is prime, φ(x) ∈ J or φ(y) ∈ J , so x ∈ I or y ∈ I.

3. If S is an integral domain, then ker(φ) is a prime ideal of R.

Indeed: if xy ∈ ker(φ), then φ(x)φ(y) = 0. Since S is an integral domain, φ(x) = 0
or φ(y) = 0, i.e., x ∈ ker(φ) or y ∈ ker(φ).

4. If φ is surjective and I is an ideal of R, then φ(I) is an ideal of S.

Indeed: let y, y′ ∈ φ(I), say φ(x) = y,φ(x) = y′ for x,x′ ∈ I; then y−y′ = φ(x)−φ(x′) =
φ(x − x′) ∈ φ(I). Given s ∈ S, choose r ∈ R with φ(r) = s by surjectivity; then
ys = φ(x)φ(r) = φ(xr) ∈ φ(I).

5. In (4) surjectivity cannot be omitted: e.g., the identity idZ is a ring monomorphism
from Z into Q and idZ(2Z) = 2Z is not an ideal of Q.

Proposition 4.7.17 (Ideal correspondence). Let φ ∶ R → S be a ring epimorphism. Then
I ↦ φ(I) is a bijection from the set of ideals I of R with ker(φ) ⊆ I onto the set of all
ideals of S; its inverse is J ↦ φ−1(J) for ideals J of S.
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Proof. We show I∗ ∶= φ−1(φ(I)) = I for every ideal I of R with ker(φ) ⊆ I. ⊇ is clear.
⊆: let x∗ ∈ I∗, so φ(x∗) ∈ φ(I), so φ(x∗) = φ(x) for some x ∈ I. Then φ(x∗ − x) = 0, so
x∗ − x ∈ ker(φ) ⊆ I. Then x∗ = (x∗ − x) + x ∈ I.

We show J∗ ∶= φ(φ−1(J)) = J for every ideal J of S. ⊆ is clear. ⊇∶ let y ∈ J ; by
surjectivity, there is x ∈ R such that φ(x) = y; then x ∈ φ−1(J), so y ∈ J∗.

4.7.1 Noetherian rings

We saw Z and K[X] are principal ideal domains, but Z[X] and K[X][Y ] are not. A
weaker property is preserved moving to the polynomial rings:

Definition 4.7.18. R is noetherian if every ideal I of R is finitely generated, i.e., I = (X)
for some finite X ⊆ R.

Proposition 4.7.19. The following are equivalent.

1. R is noetherian.

2. Ascending chain condition: if I0 ⊆ I1 ⊆ ⋯ are ideals of R, then there is n ∈ N such
hat In = Im for all m ⩾ n.

3. Noetherian recursion: every nonempty set I of ideals of R contains a ⊆-maximal
element I ∈ I, i.e., for all J ∈ I: I ⊆ J implies I = J .

Proof. 1 ⇒ 2: given I0 ⊆ I1 ⊆ ⋯, set I ∶= ⋃n In and note this is an ideal. Choose r > 0
and x1, ..., xr ∈ R such that I = (x1, ..., xr). Choose n ∈ N such that x1, ..., xr ∈ In. Then
In ⊆ Im ⊆ I ⊆ In, so In = Im for all m ⩾ n.

2 ⇒ 3: assume I ≠ ∅ does not have a maximal element. Choose I0 ∈ I. As I0 is not
maximal, there is I1 ∈ I with I0 ⊊ I1. Continuing gives a chain violating (2).

3 ⇒ 1: given an ideal I of R let I be the set of ideals (X) for X ⊆ I finite. Then a
maximal (X) ∈ I equals I: if x ∈ I ∖ (X), then (X) ⊊ (X ∪ {x}) ∈ I is not maximal.

Exercise 4.7.20. The ascending chain condition restricted to principal ideals is equivalent
to not having proper divisor chains.

Theorem 4.7.21 (Hilbert’s basis theorem). If R is noetherian, then so is R[X].

Proof. Assume I is an ideal of R[X] that is not finitely generated. Clearly, I ≠ {0}. Choose
f0 ∈ I ∖ {0} of minimal degree n0. As I ≠ (f0), choose f1 ∈ I ∖ (f0) of minimal degree n1.
As I ≠ (f0, f1), choose f2 ∈ I ∖ (f0, f1) of minimal degree n2. And so on.

Then n0 ⩽ n1 ⩽ n2 ⩽ ⋯. Let an be the lead coefficient of fn. Then (a0) ⊆ (a0, a1) ⊆ ⋯ is
a chain of ideals in R. As R is noetherian, (a0, ..., ak) = (a0, ..., ak+1) for some k ∈ N. Then
ak+1 = r0a0 +⋯ + rkak for certain ri ∈ R. Set

g ∶= ∑i⩽k riX
nk+1−nifi.

Then g ∈ (f0, ..., fk) has degree nk+1 and lead coefficient ak+1. Then fk+1−g ∈ I ∖(f0, ..., fk).
But fk+1 − g has degree < nk+1, in contradiction to the choice of fk+1.

Corollary 4.7.22. If K is a field and n > 0, then K[X1, ...,Xn] is noetherian.



CHAPTER 4. RING THEORY 85

4.8 Residue class rings

We defined Zn from Z by identifying two integers that differ only by multiples of n, i.e., an
element of the principal ideal nZ. In the notation below this becomes Zn = Z/nZ = Z/(n).
In Exercise 3.2.11 we defined K[X]/(g) by identifying two polynomials that differ only by
multiples of g, i.e., an element of the principal ideal (g).

We now give a general definition. Let R,S be commutative rings.

Definition 4.8.1. Let I be an ideal of R. Call x, y ∈ R congruent modulo I, symbolically
x ≡ y mod I, if x − y ∈ I. The equivalence class of x is x + I ∶= {x + y ∣ y ∈ I}.

The set of equivalence classes is R/I. Define +, ⋅ on R/I setting

(x + I) + (y + I) ∶= (x + y) + I, (x + I) ⋅ (y + I) ∶= xy + I,

for all x, y ∈ R. For X ⊆ R we let X/I ∶= {x + I ∣ x ∈X}.

Example 4.8.2. The set C of rational Cauchy sequences are a ring with componentwise
addition and multiplication. Those with limit 0 form an ideal N . We defined R as C/N .

Theorem 4.8.3. Let I be an ideal in R. Then (R/I,+, ⋅) is a commutative ring, the
residue class ring modulo I. The canonical projection πI given by

πI(x) ∶= x + I

for x ∈ R is a ring epimorphism from R onto R/I with kernel I.

Proof. It is easy to check that congruence is an equivalence relation with classes x+ I. We
show +, ⋅ are well-defined: assume u ∶= x−x′, v ∶= y−y′ ∈ I. Then (x+y)+I = (u+x′+v+y′)+I =
(x+ y) + I as u+ v ∈ I, and xy + I = (u+ x′)(v + y′) + I = x′y′ + (uv + uy′ + vx′) + I = x′y′ + I
as (uv + uy′ + vx′) ∈ I.

It is easy to see that +, ⋅ are associative and commutative with neutral elements 0+I = I
and 1 + I. The additive inverse of x + I is (−x) + I. Distributivity is also clear.

The canonical projection is obviously surjective, preserves 1 and also +, ⋅ by definition
of +, ⋅ in R/I. For the kernel, note x + I = 0 + I if and only if x ∈ I.

Exercise 4.8.4. Let x ∈ R and I be an ideal of R. Then x + I ∈ (R/I)× if and only if xR
is coprime to I.

Ideal correspondence for the epimorphism πI ∶ R → R/I gives:

Corollary 4.8.5. Let I be an ideal in R. The ideals of R/I are exactly the sets J/I for J
an ideal of R with I ⊆ J .

Exercise 4.8.6. Iterating factoring does not yield anything new: let I, J be ideals of R
with I ⊆ J . Then (R/I)/(J/I) ≅ R/J via (x + I) + J/I ↦ x + J.

Exercise 4.8.7. Let I, J be ideals of R. Then the map x + (I ∩ J) ↦ x + J is a bijection
from I/(I ∩ J) onto (I + J)/J that preserves + and ⋅.
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Exercise 4.8.8. Show Z10/([5]10) ≅ Z5. For ideals of Z show (3)/(15) is isomorphic to
((3) + (5))/(5) and Z5.

Lemma 4.8.9. Let I be an ideal of R.

1. I is a prime ideal if and only if R/I is an integral domain.

2. I is maximal if and only if R/I is a field.

Proof. (1) ⇒: since I is proper, R/I satisfies 0 ≠ 1. If (x+ I)(y + I) = 0+ I, then xy ∈ I, so
x ∈ I or y ∈ I, so x + I = I or y + I = I.

(1) ⇐: since R/I satisfies 0 ≠ 1, I is proper. If xy ∈ I, then I = xy + I = (x + I)(y + I),
so x + I = I or y + I = I, i.e., x ∈ I or y ∈ I.

(2) ⇒: as I is proper, R/I satisfies 0 ≠ 1. If R/I is not a field, it has a non-trivial ideal
by Remark 4.6.2. By Corollary 4.8.5 we can write it as J/I for some ideal J of R with
I ⊆ J . Being nontrivial means I ⊊ J ⊊ R. Hence, I is not maximal.

(2)⇐: as R/I satisfies 0 ≠ 1, I is proper. If I is not maximal, there is an ideal I ⊊ J ⊊ R.
By Corollary 4.8.5, J/I is a nontrivial ideal of R/I, so R/I is not a field.

More abstract proof of Lemma 4.6.5. If x ∈ R is irreducible, then xR is maximal by Re-
mark 4.7.11 (3). By (2) above, R/xR is a field, hence an integral domain, so xR is a prime
ideal by (3) above, so x is prime by Remark 4.7.11 (2).

Remark 4.8.10. Proposition 2.5.6 observed Zp = Z/pZ is a field if and only if p is a prime
number. By Example 4.7.12, these pZ are precisely the maximal ideals of Z.

Theorem 4.8.11 (Universal property). Let I be an ideal in R and φ ∶ R → S a ring
homomorphism with I ⊆ ker(φ). There is a unique ring homomorphism φ̄ ∶ R/I → S with

φ = φ̄ ○ πI .

Proof. φ = φ̄○πI forces the definition φ̄(x+I) ∶= φ(x), so uniqueness is clear. Well-defined:
if x + I = x′ + I, then x − x′ ∈ I ⊆ ker(φ), so 0 = φ(x − x′) = φ(x) − φ(x′), so φ(x) = φ(x′).

It is clear that φ̄ is a homomorphism. E.g., it preserves ⋅:

φ̄((x + I) ⋅ (y + I)) = φ̄(xy + I) = φ(xy) = φ(x)φ(y) = φ̄(x + I) ⋅ φ̄(y + I).

Corollary 4.8.12 (Isomorphism theorem for rings). Let φ ∶ R → S be a ring epimorphism.
Then φ̄ ∶ R/ker(φ) ≅ S.

Proof. Write I ∶= ker(φ). φ̄ is surjective: if y ∈ S, say φ(x) = y, then φ̄(x+I) = y. Injective:
φ̄(x + I) = 0 implies φ(x) = φ̄(πI(x)) = 0, so x ∈ I, so x + I = I is the 0 of R/I.

Exercise 4.8.13. Recall the ring C(R) from Example 1.1.17 (5). For a ∈ R show that
Ia ∶= {f ∈ C(R) ∣ f(a) = 0} is an ideal of C(R) and C(R)/Ia ≅ R.

Example 4.8.14. Let K be a field, n > 0 and a1, ..., an ∈K. Then (X1 − a1, ...,Xn − an) is
a maximal ideal of K[X1, ...,Xn].
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Proof. Let φā be the evaluation homomorphism (cf. Corollary 3.6.7 (2)) that maps Xi to ai.
It is onto K. Then K[X1, ...,Xn]/ker(φā) ≅K is a field, so ker(φā) is a maximal ideal by
Lemma 4.8.9 (2). But ker(φā) = (X1 − a1, ...,Xn − an). This has been shown “by hand” in
Exercise 3.6.12. More abstractly we can now argue as follows: let I denote the r.h.s. ideal
and argue: Xi ≡ ai mod I for all i, so for any f(X̄) ∈K[X̄] we have f(X̄) ≡ f(ā) mod I;
hence, f(ā) = 0 if and only if f(X̄) ≡ 0 mod I, i.e., f(X̄) ∈ I.

Corollary 4.8.15. Let L ∣K be a field extension and a ∈ L. Then

1. If a is algebraic over K, then K(a) = K[a] ≅ K[X]/(mK
a ) via an isomorphism that

maps x ∈K to x + (mK
a ) and a to X + (mK

a ).

2. If a is transcendent over K, then K(a) ≅ K(X) via an isomorphism that fixes each
x ∈K (maps it to itself) and maps a to X + (mK

a )

Proof. (1): = by Theorem 3.5.8 and ≅ by ker(φa) = Ia = (mK
a ) as noted in Example 4.7.14.

(2): ker(φa) = {0}, so K[a] ≅K[X], so K(a) ≅K(X).

Remark 4.8.16.

1. Recall Exercise 3.2.11 showed K[a] ≅ K[X]/(X − a) (as defined there). The advan-
tage of the description K[X]/(mK

a ) is that it uses only data from K.

2. In Theorem 3.5.8 we showed, assuming a is algebraic over K, that K[a] is a field
using the Euclidian algorithm for polynomials. More abstractly we can now argue as
follows: mK

a is irreducible (Lemma 3.5.6), so (mK
a ) is a maximal ideal in K[X], so

K[X]/(mK
a ) is a field, hence the isomorphic K[a] is a field.

Examples 4.8.17. R[X]/(X2 + 1) ≅ R[i] = C. Similarly, for a quadratic number field,
Q(
√
d) ≅ Q[X]/(X2 − d). By Lindemann, Q(π) ≅ Q(X).

Theorem 4.8.18 (General Chinese remainder theorem). Let n > 1 and I1, ..., In pairwise
coprime ideals of R. Then

R/I1⋯In ≅ R/I1 ×⋯ ×R/In.

Proof. We first show for every 1 ⩽ i ⩽ n that Ii is coprime to I∗i ∶= ⋂i≠j Ij. For each j ≠ i
choose xj ∈ Ii and yj ∈ Ij such that 1 = xj + yj. Then 1 = ∏i≠j(xj + yj) = ∏i≠j yj + z for some
z ∈ Ii and ∏i≠j yj ∈ I

∗

i . Hence, 1 ∈ I
∗

i + Ii.

Second we show ⋂ki=1 Ii = ∏
k
i=1 Ii for all 2 ⩽ k ⩽ n. k = 2: ⊇ is clear; ⊆: let z ∈ I1 ∩ I2;

since I1, I2 are coprime, there are x ∈ I1, y ∈ I2 such that x + y = 1; then z = zx + zy ∈ I1 ⋅ I2.
Assuming inductively J ∶= ⋂ki=1 Ii = ∏

k
i=1 Ii, we show J ∩ Ik+1 = J ⋅ Ik+1. This follows as

in the case k = 2 since J, Ik+1 are coprime (J ⊇ I∗k+1 and Ik+1, I∗k+1 are coprime).
The map x ↦ (x + I1, ..., x + In) is clearly a homomorphism from R to the product. It

has kernel ⋂ni=1 Ii = I1⋯In. By the isomorphism theorem we are left to show surjectivity.
Given (z1, ..., zn) ∈ Rn we want z ∈ R with z ≡ zi mod Ii for all i. For every i choose

xi ∈ Ii, yi ∈ I∗i with xi + yi = 1. Then yi ≡ 1 and yj ≡ 0 mod Ii for every j ≠ i. Thus,

z ∶= ∑
n
j=1 zjyj ≡ ziyi ≡ zi mod Ii.
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4.8.1 An irreducibility criterion

Exercise 4.8.19 (Generalized Eisenstein criterion). Let R be a factorial ring, n > 0 and
f = anXn +⋯+ a0 ∈ R[X] be primitive with an ≠ 0. Let P be a prime ideal of R such that
an ∉ P , ai ∈ P for all i ≠ n, a0 ∉ P ⋅ P . Then f is irreducible in R[X] and Quot(R)[X].

Recall the notation from Remark 3.1.8.

Theorem 4.8.20. Let R be a factorial ring, and f ∈ R[X]∖R primitive with lead coefficient
a ∈ R. Let P be a prime ideal of R with a /∈ P .

If πP (f) is irreducible in (R/P )[X], then f is irreducible in R[X] and Quot(R)[X].

Proof. Write x̄ ∶= πP (x), ḡ ∶= πP (g) for x ∈ R,g ∈ R[X]. By Theorem 4.4.17 it suffices
to show f is irreducible in R[X]. Otherwise f = gh for non-units g, h ∈ R[X]. As f is
primitive, g, h ∉ R, so have positive degree.

We have f̄ = ḡh̄ and show ḡ, h̄ are not units. But (R/P )[X]× = (R/P )× by Lemma 3.1.6
because R/P is an integral domain by Lemma 4.8.9. It thus suffices to show ḡ, h̄ have
positive degree. Then 0 ≠ ā = b̄c̄ in R/P where b, c ∈ R are the lead coefficients of g, h.
Then both b̄, c̄ ≠ 0, so ḡ, h̄ have the same degrees as g, h.

Let us spell out what this means for R = Z. Recall, the nontrivial prime ideals of Z are
pZ for prime p ∈ N (Example 4.7.12) and Z/pZ = Fp.
Corollary 4.8.21. Let f ∈ Z[X]∖Z be primitive with lead coefficient a and p ∈ N prime with
p ∤ a. Let f̄ ∈ Fp[X] be obtained from f by replacing each coefficient b of f by b̄ ∶= [b]p ∈ Fp.

If f̄ is irreducible in Fp[X], then f is irreducible in Z[X] and Q[X].
Example 4.8.22. f ∶= 5X3 + 6X2 − 7X + 3 is irreducible in Z[X] and Q[X]. Note Eisen-
stein’s criterion does not apply.

Proof. f is primitive and for p = 2 we have f̄ =X3 −X + 1̄ ∈ F2[X] is irreducible in F2[X]:
it has degree 3 and no root in F2.

Example 4.8.23. The converse fails: f ∶=X2 + 1 is primitive and irreducible in Z[X] but
for p = 2 we have f̄ =X2 + 1̄ = (X + 1̄)2 in F2[X].

Example 4.8.24. The converse fails badly: f ∶=X4+1 is primitive and irreducible in Z[X]
(Exercise 4.5.10) but f̄ is reducible in Fp[X] for every prime p ∈ N.
Proof. If −1̄ is a square in Fp (e.g., for p = 2), say ā2 = −1̄, then X4 + 1̄ = (X2 + ā)(X2 − ā)
is reducible in Fp[X]. If p > 2 and 2̄ is a square in Fp, say 2̄ = b̄2, then factor

X4 + 1̄ = (X2 + b̄X + 1̄)(X2 − b̄X + 1̄).

Assume p > 2 and −1̄, 2̄ are not squares in Fp. Then −2̄ is a square in Fp by Corol-
lary 2.8.6 (1). More directly: let x be a primitive root of p and write −1̄ = x̄r, 2̄ = x̄s for
r, s ∈ N; then r, s are odd, so −2̄ = c̄2 for c̄ ∶= x̄(r+s)/2 in Fp. Then factor

X4 + 1̄ = (X2 − c̄X − 1̄)(X2 + c̄X − 1̄).

Exercise 4.8.25. For R = Z2,Z3,Z5,Z,Q,R,C, consider f ∶= X3 + X2 + X + 2 ∈ R[X]
(where 2 ∶= 1R + 1R). For which of these R is f irreducible?
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Group theory

5.1 Isometries

We recall some linear algebra. For n > 0 consider the vector space Rn with the standard
basis e1, ..., en where ei = (0, ...,0,1,0, ...,0) with 1 at the i-th component. The inner product
is ⟨x, y⟩ = ∑

n
i=1 xiyi where x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn. If ⟨x, y⟩ = 0, then x, y are

orthogonal. The (Euclidian) norm or length of x is ∥x∥ ∶=
√
⟨x,x⟩.

For a matrix A ∈ Rn×n we have ⟨Ax, y⟩ = ⟨x,A⊺y⟩ where ⋅⊺ denotes matrix transpose
and x, y are viewed as column vectors. The matrix A ∈ Rn×nof a linear map φ ∶ Rn → Rn

has i-th column φ(ei); then φ(x) = Ax. We call φ orthogonal if its matrix A is orthogonal,
i.e., A⊺A = In where In ∈ Rn is the matrix of the identity idRn .

Exercise 5.1.1. For all x, y ∈ Rn: if ⟨x, y⟩ = ⟨x,x⟩ = ⟨y, y⟩, then x = y.

Remark 5.1.2. Let n > 0.

1. Every orthogonal A ∈ Rn×n has determinant det(A) = ±1.

Indeed: 1 = det(In) = det(A⊺A) = det(A)det(A⊺) = det(A)2.

2. The set of orthogonal matrices O(n,R) is a subgroup of the general linear group
GL(n,R), namely the orthogonal group.

Indeed: O(n,R) ⊆ GL(n,R) is clear, and if A,B ∈ O(n,R), then AB−1 ∈ O(n,R):

AB−1(AB−1)⊺ = AB⊺(AB⊺)⊺ = AB⊺B⊺⊺A⊺ = AB−1BA⊺ = AA⊺ = In.

3. The A ∈ O(n,R) with det(A) = 1 form a subgroup of O(n,R), the special orthogonal
group SO(n,R). Indeed: if A,B ∈ SO(n,R), then det(AB−1) = det(A)/det(B) = 1.

Orthogonal matrices are important for group theory – in the next section we prove:

Theorem 5.1.3. Every finite group of order n ∈ N is isomorphic to a subgroup of O(n,R).

89
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Example 5.1.4 (Orthogonal group of the plane). Basic linear algebra shows that

Rα ∶= [
cos(α) − sin(α)
sin(α) cos(α)

] and Sα ∶= [
cos(α) sin(α)
sin(α) − cos(α)

]

for α ∈ R have determinants 1 and −1, respectively, and every A ∈ O(2,R) has one of these
forms. Rα is the matrix of a rotation ρα ∶ R2 → R2, counterclockwise with angle α. Sα is
the matrix of a reflection σα ∶ R2 → R2 of the plane about the line with angle α/2 with the
e1-axis. In particular,

S0 = [
1 0
0 −1

]

describes the reflection σ0 about the e1-axis and Sα = RαS0, i.e., σα = ρα ○ σ0 .

Proposition 5.1.5. Let n > 0. A linear map φ ∶ Rn → Rn is orthogonal if and only if it
preserves lengths, i.e., ∥φ(x)∥ = ∥x∥ for all x ∈ Rn.

Proof. Let A be the matrix of φ. ⇒∶ if A is orthogonal, then ∥φ(x)∥2 = ⟨Ax,Ax⟩ =
⟨x,A⊺Ax⟩ = ⟨x, Inx⟩ = ∥x∥2. ⇐∶ assume ∥Ax∥ = ∥x∥ for all x ∈ Rn. Then ⟨Ax,Ay⟩ = ⟨x, y⟩
for all x, y ∈ Rn. Indeed: by ∥x+y∥ = ∥A(x+y)∥ we have ∥x2∥+2⟨x, y⟩+∥y∥2 = ⟨x+y, x+y⟩ =
⟨Ax +Ay,Ax +Ay⟩ = ∥Ax∥2 + 2⟨Ax,Ay⟩ + ∥Ay∥2 = ∥x∥2 + 2⟨Ax,Ay⟩ + ∥y∥2.

Thus, ⟨Ax,Ay⟩ = x⊺A⊺Ay = x⊺y, so x⊺(AA⊺ − In)y = 0 for all x, y ∈ Rn. This implies
A⊺A = In, i.e., A is orthogonal. Indeed: if B ∈ Rn×n satisfies x⊺By = 0 for all x, y ∈ Rn, then
all entries of B are 0 (the ij-th entry is e⊺iBej).

Definition 5.1.6. Let n > 0. A function f ∶ Rn → Rn is an isometry of Rn if it is distance
preserving: ∥f(x) − f(y)∥ = ∥x − y∥ for all x, y ∈ Rn. The set of isometries of Rn is I(n,R).
Example 5.1.7. Orthogonal linear maps φ are isometries: ∥φ(x) − φ(y)∥ = ∥φ(x − y)∥ =
∥x − y∥. For a ∈ Rn the translation

ta(x) ∶= x + a

is an isometry which is not linear (unless a = 0). Note φ ○ ta = tφ(a) ○ φ.

Lemma 5.1.8. Let n > 0 and f ∶ Rn → Rn. The following are equivalent.

1. f is an isometry with f(0) = 0.

2. f preserves the inner product, i.e., ⟨f(x), f(y)⟩ = ⟨x, y⟩ for all x, y ∈ Rn.

3. f is an orthogonal linear map.

Proof. 3⇒ 1 is noted above. Write x′ ∶= f(x). 1⇒ 2: let f accord (1). Then ⟨x′ − y′, x′ −
y′⟩ = ⟨x−y, x−y⟩. For y = 0, noting 0′ = 0, we get ⟨x′, x′⟩ = ⟨x,x⟩. Similarly, ⟨y′, y′⟩ = ⟨y, y⟩.
Then ⟨x′, x′⟩ − 2⟨x′, y′⟩ + ⟨y′, y′⟩ = ⟨x,x⟩ − 2⟨x, y⟩ + ⟨y, y⟩ implies ⟨x′, y′⟩ = ⟨x, y⟩.

2 ⇒ 3: let f accord (2). By Proposition 5.1.5, it suffices to show f is linear, i.e.,
x′ + y′ = z′ where z ∶= x + y and (rx)′ = rx′ for r ∈ R. The latter being analogous, we show
the former. By Exercise 5.1.1, it suffices to show ⟨z′, z′⟩ = ⟨x′ + y′, x′ + y′⟩ = ⟨z′, x′ + y′⟩, i.e.,

⟨z′, z′⟩ = ⟨x′, x′⟩ + 2⟨x′, y′⟩ + ⟨y′, y′⟩ = ⟨z′, x′⟩ + ⟨z′, y′⟩.

We drop primes using assumption (2), so this is true by z = x + y.
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Theorem 5.1.9. Let n > 0. For every isometry f of Rn there is a unique orthogonal linear
map φ ∶ Rn → Rn such that f = ta ○ φ for a ∶= f(0).

Proof. We have to show that φ ∶= t−a ○ f is a linear orthogonal map. But as a composition
of isometries, it is an isometry and clearly φ(0) = 0. Apply the lemma.

Remark 5.1.10. Here is how isometries compose. Let a, b ∈ Rn and φ,ψ be orthogonal
linear maps. Then (ta ○ φ) ○ (tb ○ ψ) = ta ○ tφ(b) ○ φ ○ ψ = ta+φ(b) ○ (φ ○ ψ).

Corollary 5.1.11. Let n > 0. I(n,R) is a group (with composition ○).

Proof. The composition of isometries is an isometry and the neutral element is idRn . The
inverse of ta ○ φ is φ−1 ○ t−a – an isometry.

Example 5.1.12 (Plane isometries). Every isometry of R2 is of the form ta○ρα or ta○ρα○σ0
where α ∈ R and a ∈ R2. Compositions are computed by the rules (omitting ○):

ραta = tρα(a)ρα, σ0ta = tσ0(a)σ0, σ0ρα = ρ−ασ0, tatb = ta+b, ραρβ = ρα+β.

E.g., (t(1,1)ρπ/2) ○ (t(1,0)ππ/2σ0) = t(1,1)t(0,1)ρπ/2ρπ/2σ0 = t(1,2)ρπσ0 is (x, y) ↦ (−x + 1, y + 2).
One can show that every plane isometry is a translation, or a rotation about some point,

or a reflection about some line, or a glide reflection (reflection followed by a translation).

Definition 5.1.13 (Symmetries of figures). Let n > 0 and F ⊆ Rn (read “figure”). A
symmetry of F is an isometry f of Rn with f(F ) = F .

Exercise 5.1.14. Show the set of symmetries of F is a subgroup of I(n,R). Let F ∶=
{(x, y) ∈ R2 ∣ x = ±1 or y = ±1} be the square centered at (0,0) with side length 2. List the
8 symmetries of F . Show they are ‘generated’ by ρπ/2 and σ0.

Exercise 5.1.15. The symmetries of the unit circle are O(2,R). SO(2,R) is isomorphic
to the circle group S1 (Example 1.1.12).

5.1.1 Dihedral groups

Lemma 5.1.16. Let G be a nontrivial subgroup of (R,+) that is discrete, i.e., there is
ϵ > 0 such that ∣g∣ > ϵ for all g ∈ G. Then G = Za for some real a > 0.

Proof. Let g0 ≠ 0 in G. We can assume g0 > 0 (otherwise use −g0 ∈ G). If g, g′ ∈ G are
distinct, they have distance ∣g−g′∣ > ϵ. Hence, G∩(0, g0] is nonempty and finite, so contains
a minimal element a. Then Za ⊆ G. Conversely, let g ∈ G and write g = (z + δ)a for z ∈ Z
and 0 ⩽ δ < 1. Then g′ ∶= g− za = δa ∈ G satisfies 0 ⩽ g′ < a, so g′ = 0, so δ = 0, so g ∈ Za.

Theorem 5.1.17. For every finite subgroup G of O(2,R) there is n > 0 such that either
the elements of G are

R2π/n,R2⋅2π/n, ...,Rn⋅2π/n = I2,

or G is isomorphic to the dihedral group Dn whose elements are

R2π/n,R2⋅2π/n, ...,Rn⋅2π/n = I2, Rn⋅2π/nS0,R2⋅2π/nS0, ...,Rn⋅2π/nS0 = S0.
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Proof. First case: G contains only rotations Rα. Then G′ ∶= {α ∣ Rα ∈ G} is a discrete
subgroup of (R,+) (as G is finite). Choose a > 0 with G′ = Za. As I2 = R2π ∈ G, G′

contains 2π, so a = 2π/n for some n ∈ N. Then

G = {Rz⋅2π/n ∣ z ∈ Z} = {R2π/n, ...,Rn⋅2π/n}.

Second case: G contains some reflection Sα. By linear algebra one sees that Sα has
orthogonal eigenvectors with eigenvalues 1 and −1, so there is C ∈ O(2,R) such that
C−1SαC = S0. Replacing G by the isomorphic subgroup C−1GC = {C−1AC ∣ A ∈ G} (see
below), we can assume S0 ∈ G. Let H be the subgroup of G containing all rotations in G.
Choose R2π/n for H according to the 1st case. Then Dn ⊆ G. We claim =. Let A ∈ G.
If A ∈ H, then A ∈ Dn. Otherwise, A = RαS0 describes a reflection. Then G contains
AS0 = RαS2

0 = Rα, so Rα ∈H is a power of R2π/n. Again, A ∈Dn.

The argument concerning C−1GC is a general one:

Definition 5.1.18. Let (G, ⋅) be a group and g ∈ G. The map x ↦ gxg−1 is conjugation
by g. Such maps are inner automorphisms of G.

Exercise 5.1.19. Check that inner automorphisms are automorphisms. If α is an auto-
morphism of G and H ⊆ G a subgroup, then α(H) is a subgroup of G isomorphic to H.

Exercise 5.1.20. D2 ≅K4, the Klein four-group (cf. Example 2.5.12).

Example 5.1.21. Let n > 2 and Pn ⊆ R2 be the regular n-gon: it contains

vk ∶= ( cos(k2π/n), sin(k2π/n))

for k = 0, ..., n − 1 and line segments connecting consecutive ones. Then Dn is isomorphic
to the symmetries of Pn.

Proof. Symmetries of Pn permute the vk’s (since they preserve lengths) and this permuta-
tion determines the map on all other points – hence there are finitely many such symmetries.
We claim they are represented by matrices in O(2,R). Then we are done by the theorem:
the symmetries contain σ0 and ρ2π/n but no rotation ρα with 0 < α < 2π/n.

To prove the claim, write a symmetry f as x ↦ Ax + a with A ∈ O(2,R) and a ∈ R2.
We have to show a = 0. Recalling Definition 1.6.8, the vk’s are the n-th roots of unity
(viewing R2 as C). By Remark 1.6.9, we have ∑

n−1
k=0 vk = 0 in R2. As f permutes the vk’s,

0 = ∑
n−1
k=0(Avk + a) = A(∑

n−1
k=1 vk) + na = na.

5.2 Permutations

Definition 5.2.1. For a setX let Sym(X) be the set of permutations ofX. The symmetric
group over X is (Sym(X), ○) where ○ denotes composition. We often write στ instead σ○τ .

For n ∈ N write
Sn ∶= Sym({1, ..., n}).
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Remark 5.2.2.

1. The neutral element of Sym(X) is the identity idX on X; the group inverse of σ ∈
Sym(X) is the inverse function σ−1.

2. The set X plays no role: if Y is a set and B ∶ X → Y a bijection, then Sym(X) ≅
Sym(Y ) via σ ↦ B ○ σ ○B−1 (exercise).

3. Sn has order ∣Sn∣ = n!. If n > 2, then Sn is not abelian.

Proposition 5.2.3 (Cayley). Every group G is isomorphic to a subgroup of Sym(G).

Proof. It suffices to define a group monomorphism from G into Sym(G). For x ∈ G let λx
be the map y ↦ xy. By Exercise 1.1.3, λx ∈ Sym(G). Define φ ∶ G→ Sym(G) by

φ(x) ∶= λx.

Homomorphism: we have to show that φ(xy) = φ(x) ○ φ(y), i.e., λxy = λx ○ λy. But for all
z ∈ G, λxy(z) = xyz = λx(yz) = λx(λy(z)).

Injective: if φ(x) = φ(y), then λx = λy, so xz = yz for all z ∈ G, so x = y.

Proof of Theorem 5.1.3. It suffices to find a monomorphism ψ from Sn into O(n,R). Let ψ
map σ ∈ Sn to the permutation matrix Pσ with i-th column eσ(i) (from the standard basis).
Then ψ is clearly injective and a homomorphism: Pστ = PσPτ because for all i:

PσPτei = Pσeτ(i) = eσ(τ(i)) = Pστei.

Definition 5.2.4. Let n > 1. σ ∈ Sn is a cycle if it is a k-cycle for some k > 1, that is, if
there are pairwise distinct i1, ..., ik ∈ {1, ..., n} such that σ(i1) = i2, σ(i2) = i3, ..., σ(ik−1) =
ik, σ(ik) = i1 and σ(i) = i for all i ∈ {1, ..., n} ∖ {i1, ..., ik}. We write

σ = (i1i2⋯ik).

Two cycles (i1⋯ik) and (j1⋯jℓ) are disjoint if {i1, ..., ik} ∩ {j1, ..., jℓ} = ∅. 2-cycles (ij)
(with ∣i − j∣ = 1) are (neighbor) transpositions.

Remark 5.2.5. Let k > 1 and consider Sn.

1. The inverse of a k-cycle is a k-cycle: (i1i2⋯ik)−1 = (ikik−1⋯i1).

2. (i1i2⋯ik) = (iki1i2⋯ik−1) = (ik−1iki1i2⋯ik−1) = ⋯.

3. Write σ2 = σσ,σ3 = σσ2, .... For a k-cycle σ we have σk = id{1,...,n} and σℓ ≠ σℓ
′
for all

ℓ < ℓ′ < k (exercise). E.g., (123)((123)(123)) = (123)(132) = id{1,2,3}.

4. Disjoint cycles σ, τ commute: στ = τσ.

Example 5.2.6. Consider the symmetries of the regular 3-gon P3 (the triangle). There is
exactly one symmetry for every permutation of the 3 vertices. So D3 ≅ S3.

In more detail, the elements ofD3 ⊆ O(2,R) are the identity I2, reflections S0, S2π/3, S4π/3

and rotations R2π/3,R4π/3. S3 has 3! = 6 elements, namely the identity id{1,2,3}, transposi-
tions τ1 ∶= (23), τ2 ∶= (12), τ3 ∶= (13), and 3-cycles σ1 = (123), σ2 ∶= (132).

The order of the lists show the isomorphism fromD3 onto S3, namely: I2 ↦ id{1,2,3}, S0 ↦
τ1, S2π/3 ↦ τ2 etc.. The vertices of P3 are 1, e2πi/3, e4πi/3. E.g., S0 is the reflection about the
x-axis; it behaves like τ1 in that it fixes vertex 1 and swaps vertices 2 and 3.
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Theorem 5.2.7 (Cycle decomposition). Let n > 1. Every σ ∈ Sn is a product of disjoint
cycles. The set of these cycles is unique.

Proof. By convention we understand the identity id{1,...,n} equals the empty product.
Existence: let id{1,...,n} ≠ σ ∈ Sn. Consider ‘fixed’ and ‘moved’ points: F ∶= {i ∣ σ(i) = i}

and M1 ∶= {1, ..., n} ∖ F ≠ ∅. Choose i1 ∈M1 and consider σ(i1), σ2(i1), .... Choose d1 < d2
with σd1(i1) = σd2(i1). Then σd2−d1(i1) = i1. Hence there is a minimal k1 with σk1+1(i1) = i1.
Then we have a k1-cycle σ1 ∶= (i1 σ(i1)⋯σk1(i1)) in M1. Note k1 > 0 as i1 ∉ F .

Let M2 ∶=M1 ∖ {i1, σ(i1), ..., σk1(i1)}. If M2 = ∅, then σ = σ1 and we are done. Other-
wise, choose i2 ∈ M2 and find a cycle σ2 = (i2 σ(i1)⋯σk2(i2)) as before. We observe that
σ1, σ2 are disjoint: every element of C1 ∶= {i1, σ(i1), ..., σk1(i1)} equals σ(x) for another
x ∈ C1; as i2 ∉ C1, by injectivity σ(i2) ∉ C1; for the same reason σ2(i2) ∉ C1 and so on.

Continue.
Uniqueness: assume σ = σ1⋯σk = τ1⋯τℓ for disjoint cycles σi and disjoint cycles τj. Let

i ∉ F . Since disjoint cycles commute, we can assume i appears in σ1 and τ1. Let d > 1 be
minimal with σd(i) = i. Then σ1 = τ1 = (i σ(i)⋯σd−1(i)). Hence σ2⋯σk = τ2⋯τℓ.

Continue.

Corollary 5.2.8. Let n > 1. Every σ ∈ Sn is a product of neighbor transpositions.

Proof. A cycle is a product of transpositions: (i1i2⋯ik) = (i1ik)⋯(i1i3)(i1i2). A transposi-
tion (ij),with i < j, is a product of neighbor transpositions: move j stepwise to position i,
and then i from position i + 1 stepwise to position j:

(j − 1 j) (j − 1 j − 2) ⋯ (i + 1 i + 2) (i i + 1) (i + 1 i + 2) ⋯ (j − 2 j − 1) (j − 1 j).

Example 5.2.9. In S4: (14) = (34)(23)(12)(23)(34).

Below we understand {±1} as a group with multiplication, i.e., C2 (Definition 1.6.8).

Theorem 5.2.10. Let n > 1. There exists a group homomorphism

sign ∶ Sn → {±1}

mapping transpositions to −1. In particular, it maps σ ∈ Sn to 1 if and only if σ is a
product of an even number of transpositions.

Proof. Define sign ∶= det ○ψ where ψ is the homomorphism from Theorem 5.1.3, i.e.,

sign(σ) ∶= det(Pσ).

Note P(i i+1) results from In by swapping row i and row i+1. Hence, neighbor transpo-
sitions have sign −1. We just saw that (ij) with i < j is a product of 2(j − i) − 1 neighbor
transpositions, so sign((ij)) = (−1)2(j−1)−1 = −1. The 2nd sentence follows.

Definition 5.2.11. Let n > 1. A permutation σ ∈ Sn is even if sign(σ) = 1, and otherwise
odd. The set of even permutations is denoted An and called alternating group.
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Remark 5.2.12. An is a subgroup of Sn of order n!/2

Proof. Subgroup: σ, τ ∈ An, then στ−1 ∈ An since sign(στ−1) = sign(σ)sign(τ)−1 = 1. For
the order, one easily checks that σ ↦ (12)σ is a bijection from An onto Sn ∖An.

Exercise 5.2.13. Let n > 1 and 1 ⩽ k ⩽ n. k-cycles in Sn have sign (−1)k−1.

Example 5.2.14. Writing σ ∈ S4 as a product of disjoint cycles, we see σ is a 4-cycle, a
3-cycle or a product of at most 2 transpositions. If σ is even, it is a 3-cycle or a product
of 2 disjoint transpositions (not disjoint would give a 3-cyle or 1 = id{1,2,3,4}). Hence, the
4!/2 = 12 elements of A4 are

(123), (132), (234), (243), (134), (143), (142), (124)

(12)(34), (13)(24), (14)(23),1.

The second row forms a subgroup K ′4 of A4 consisting of all x with x2 = 1. It is isomorphic
to Klein’s four-group K4 (write down an isomorphism or apply Proposition 5.3.19).

5.3 Cyclic groups

Notation: if not stated otherwise we write groups G in multiplicative notation. The
neutral element is denoted 1 or 1G. Given x ∈ G we write x0 ∶= 1 and for k ∈ N ∖ {0}:

xk ∶= x⋯x (k times), x−k ∶= x−1⋯x−1 (k times)

In additive notation (G,+), the neutral element is 0 and x±k becomes ±kx.

Definition 5.3.1. For a group G and X ⊆ G the subgroup of G generated by X is

⟨X⟩ ∶= {xϵ11 ⋯x
ϵn
n ∣ n ∈ N ∖ {0}, xi ∈X, ϵi ∈ {±1} for all 1 ⩽ i ⩽ n}.

Exercise 5.3.2. ⟨X⟩ is a subgroup of G that contains X and it is the smallest such
subgroup (i.e., is contained in any other such subgroup).

Definition 5.3.3. Let G be a group and X ⊆ G. If G = ⟨X⟩, then G is generated by X. G
is finitely generated if G is generated by some finite X ⊆ G. We write

⟨x1, ..., xn⟩ ∶= ⟨X⟩,

if X = {x1, ..., xn} for some n ∈ N. G is cyclic if G = ⟨x⟩ for some generator x ∈ G.

Remark 5.3.4. Let G be a group and x ∈ G.

1. ⟨x⟩ = {xk ∣ k ∈ Z}. In particular, x↦ xk is an epimorphism from (Z,+) onto ⟨x⟩.
2. If G is abelian and x1, ..., xn ∈ G, then ⟨x1, ..., xn⟩ = {x

k1
1 ⋯x

kn
n ∣ k1, ..., kn ∈ Z}. In

particular, (k1, ..., kn) ↦ xk11 ⋯x
kn
n is an epimorphism from (Zn,+) onto ⟨x1, ..., xn⟩;

here, (Zn,+) is the additive group of the ring Zn.
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3. Cyclic groups are abelian. Indeed, xkxk
′
= xk+k

′
= xk

′
xk.

Example 5.3.5. Let n > 1.

1. (Z,+) and (Zn,+) are cyclic, (Zn,+) is not.
2. In O(2,R), ⟨R2π/n, S0⟩ =Dn.

3. By Theorems 5.2.7, 5.2.8: Sn = ⟨cycles⟩ = ⟨transpositions⟩ = ⟨neighbor transpositions⟩.

4. Sn = ⟨(12⋯n), (12)⟩. This follows from Corollary 5.2.8 noting for σ ∶= (12⋯n)

(23) = σ(12)σ−1, (34) = σ(23)σ−1, ..., (n − 1 n) = σ(n − 2 n − 1)σ−1.

5. (Q,+) is not finitely generated.

Indeed: given finitely many a1/b1, ..., an/bn with ai, bi ∈ Z choose a prime p ∤ b1⋯bn;
then 1/p ≠ ∑i ci ⋅ ai/bi for all ci ∈ Z, so 1/p ∉ ⟨a1/b1, ..., an/bn⟩.

6. Similarly, the additive group (Q/Z,+) of the ring Q/Z is not finitely generated.

Exercise 5.3.6. Let 1 ⩽ i < j ⩽ n and gcd(j − i, n) = 1. Then Sn = ⟨(12⋯n), (ij)⟩.

Example 5.3.7. Let n > 2. The alternating group An is generated by the 3-cycles.

Proof. Clearly, 3-cycles are in An (Exercise 5.2.13). By Theorem 5.2.10, every σ ∈ An is
a product of an even number of transpositions. It thus suffices to write a product of 2
transpositions (ij), (kℓ) as a product of 3-cycles.

If (ij), (kℓ) are disjoint, then (ij)(kℓ) = (kji)(kℓi). Otherwise we can assume i = k. If
j = ℓ, then (ij)(kℓ) is the identity, so assume j ≠ ℓ. Then (ij)(kℓ) = (ij)(iℓ) = (iℓj).

Definition 5.3.8. Let G be a group, and x ∈ G. The order ord(x) of x (in G) is the order
(i.e., cardinality) of ⟨x⟩; we write ord(x) ∶= ∞, if ⟨x⟩ is infinite.

The following lemma gathers all you have to know about orders.

Lemma 5.3.9. Let G be a group and x ∈ G have finite order n.

1. E ∶= {k > 0 ∣ xk = 1} ≠ ∅,

2. n =minE,

3. ⟨x⟩ = {1, x, ..., xn−1},

4. for every k ∈ Z: xk = 1⇐⇒ n ∣ k.

5. for every k ∈ Z: ord(xk) = n/gcd(k,n).

Proof. (1): as ⟨x⟩ is finite and x,x2, x3, ... ∈ ⟨x⟩ there are 0 < k < ℓ with xk = xℓ, so xℓ−k = 1,
so k − ℓ ∈ E ≠ ∅. Let t ∶=minE.

(2,3): the elements 1, x, ..., xt−1 are pairwise distinct (otherwise there are 0 < k < ℓ < t
with ℓ − k ∈ E, a contradiction to the choice of t). We claim these elements list ⟨x⟩. They
are clearly contained in ⟨x⟩. We show they contain xk for all k ∈ Z. Write k = qt + r by
Euclidian division, so 0 ⩽ r < t. Then xk = (xt)qxr = xr.
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(4): if n ∣ k, say nℓ = k, then xk = (xn)ℓ = 1. Conversely, assume xk = 1 and write
k = qn + r with 0 ⩽ r < n by Euclidian division; then 1 = xk = (xn)qxr = xr, so r = 0 by (2).

(5): argue as in Remark 2.7.2 (4): (xk)j = 1 ⇔ n ∣ kj ⇔ n/gcd(k,n) ∣ kj/gcd(k,n)
⇔ n/gcd(k,n) ∣ j (by Remark 2.1.9 (3), (5)). The minimal such j > 0 is n/gcd(k,n).

Definition 5.3.10. The exponent exp(G) of a group G is the minimal n > 0 such that
xn = 1 for all x ∈ G; if no such n exists, then exp(G) ∶= ∞.

Remark 5.3.11. If exp(G) ≠ ∞, then ord(x) ∣ exp(G) for all x ∈ G (by the lemma (4)).

Exercise 5.3.12. Groups with exponent 2 are abelian.

Remark 5.3.13 (Boolean rings). One easily (but tediously) checks that (P (N),+) is an
uncountable group whereX+Y ∶= (X∖Y )∪(Y ∖X) is the symmetric difference ofX,Y ⊆ N.
The neutral element is 0 ∶= ∅ and the inverse is −X =X. Then X +X = 0, so the exponent
is 2. If we set X ⋅ Y ∶=X ∩ Y we get a commutative ring with 1 ∶= N satisfying X2 =X for
all X ⊆ N. Such rings are called Boolean and are “the same” as so-called Boolean algebras
studied in mathematical logic.

Examples 5.3.14. Let n > 1.

1. In (Z6,+), list ‘powers’ 1x = x,2x = x + x,3x = x + x + x, ...:

1x 2x 3x 4x 5x 6x ord(x)
0̄ 0̄ 0̄ 0̄ 0̄ 0̄ 1
1̄ 2̄ 3̄ 4̄ 5̄ 0̄ 6
2̄ 4̄ 0̄ 0̄ 0̄ 0̄ 3
3̄ 0̄ 0̄ 0̄ 0̄ 0̄ 2
4̄ 2̄ 0̄ 0̄ 0̄ 0̄ 3
5̄ 4̄ 3̄ 2̄ 1̄ 0̄ 6

2. In (Z×n, ⋅), the order of [x]n is the order of x modulo n as defined in 2.7.1. x̄ is
a generator if and only if x is a primitive root modulo n. Thus, Theorem 2.7.8
determines the n for which Z×n is cyclic.

3. In O(2,R), R2π/n has order n, Rk2π/n has order n/gcd(nk,n) and Rk2π/nS0 has order 2
(because it is a reflection – or compute Rk⋅2π/nS0Rk⋅2π/nS0 = Rk⋅2π/nS0S0R−k⋅2π/n = I2).

4. In σ ∈ Sn, if σ = τ1⋯τr for disjoint ki-cycles τi, then σ has order lcm(k1, ..., kr).

Indeed, σℓ = τ ℓ1⋯τ
ℓ
r is the identity if and only if ki ∣ ℓ for all i (Remark 5.2.5 (3), (4)).

Note that all orders of elements above divide the group order (if finite). This always
happens and follows from Lagrange’s Theorem 5.6.4 proved in the next section.

Lemma 5.3.15. Let G be a finite group and x ∈ G. Then ord(x) ∣ ∣G∣.

Exercise 5.3.16. Prove this for abelian groups (Hint: cf. Theorem 2.6.8).
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Theorem 5.3.17 (Classification of cyclic groups). A group is cyclic if and only if it is
isomorphic to either (Z,+) or (Zn,+) for some n > 0.

Proof. Let G be cyclic, say with generator x, so G = {xk ∣ k ∈ Z}. Define φ ∶ Z → G by
φ(k) ∶= xk. Note φ(k+ ℓ) = φ(k)φ(ℓ), so φ is a group homomorphism from (Z,+) to (G, ⋅).
It is clearly surjective. If it is injective, we are done. Otherwise, say xk = xℓ for k < ℓ
implies xℓ−k = 1, so n ∶= ord(x) is finite and G = {1, x, ..., xn−1}. We claim ψ(k̄) ∶= xk defines
an isomorphism from (Zn,+) onto (G, ⋅).

Well-defined: if k̄ = ℓ̄, write k = ℓ + nm for some m ∈ Z and note

ψ(k̄) = xk = xℓ(xn)m = xℓ = ψ(ℓ̄).

That ψ is a homomorphism and surjective is clear. Injective: if ψ(k̄) = ψ(ℓ̄) with 0 ⩽ k <
ℓ < n, then xℓ−k = 1 and ℓ − k < n, contradicting ord(x) = n.

Recall Zn ≅ Cn, a group in multiplicative notation (Exercise 2.5.5).

Proposition 5.3.18. Every group of prime order p is isomorphic to Cp.

Proof. Let G be a group of order p and x ∈ G∖ {1}. Then 1 < ord(x) ∣ p by Lemma 5.3.15,
so ord(x) = p, so G = ⟨x⟩ ≅ Cp.

Recall the Klein four-group K4 from Example 2.5.12.

Proposition 5.3.19. Every group of order 4 is isomorphic to either C4 or K4.

Proof. Let G be a group order 4. If there is an element of order 4, then G ≅ C4. Otherwise
all elements ≠ 1 have order 2 by Lemma 5.3.15. Let 1, x, y, z list the elements. Then
z = xy because: xy ≠ x as otherwise y = 1; xy ≠ y as otherwise x = 1; xy ≠ 1 as otherwise
x = x2y = y (since x2 = 1). Similarly, yx = z. So we know the left partial table:

⋅ 1 x y z
1 1 x y z
x x 1 z
y y z 1
z z 1

⋅ 1 x y z
1 1 x y z
x x 1 z y
y y z 1 x
z z y x 1

+ (0̄, 0̄) (0̄, 1̄) (1̄, 0̄) (1̄, 1̄)
(0̄, 0̄) (0̄, 0̄) (0̄, 1̄) (1̄, 0̄) (1̄, 1̄)
(0̄, 1̄) (0̄, 1̄) (0̄, 0̄) (1̄, 1̄) (1̄, 0̄)
(1̄, 0̄) (1̄, 0̄) (1̄, 1̄) (0̄, 0̄) (0̄, 1̄)
(1̄, 1̄) (1̄, 1̄) (1̄, 0̄) (0̄, 1̄) (0̄, 0̄)

This determines G as the 2nd table because every column and every row must list G. The
3rd table is K4 and we see G ≅K4 via x, y, z ↦ (0̄, 1̄), (1̄, 0̄), (1̄, 1̄).

What subgroups can cyclic groups have?

Example 5.3.20. (Z6,+) has subgroups ⟨0̄⟩ = {0̄} and ⟨2̄⟩ = ⟨4̄⟩ = {4̄, 2̄, 0̄} and ⟨3̄⟩ = {3̄, 0̄}
and ⟨1̄⟩ = ⟨5̄⟩ = Z6. By the corollary below these are all subgroups.

Theorem 5.3.21. Let n, k > 0 and G be a finite cyclic group of order n with generator x.

1. If k ∣ n, then ⟨xn/k⟩ is a subgroup of G of order k.
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2. If U is a subgroup of G of order k, then k ∣ n and U = ⟨xn/k⟩.

Proof. (1): by Lemma 5.3.9 (5), ord(xn/k) = n/gcd(n/k,n) = k. The proof of (2) is
tricky: the case k = 1 is trivial, so assume k > 1. Write U = {xe1 , ..., xek} for ei ∈ Z. Let
d ∶= gcd(e1, ..., ek) and write d = c1e1 + ⋯ + ckek with ci ∈ Z by Bézout. Then ⟨xd⟩ ⊆ U
because xd = (xe1)c1⋯(xek)ck ∈ U. Clearly, xei = (xd)ei/d ∈ ⟨xd⟩, so U = ⟨xd⟩. Then k = ∣U ∣ =
ord(xd) = n/gcd(d,n) by Lemma 5.3.9 (5). Hence, n/k ∣ d, so U = ⟨xd⟩ ⊆ ⟨xn/k⟩. By (1),
ord(xn/k) = k = ∣U ∣, so U = ⟨xn/k⟩.

Exercise 5.3.22. If a group has an element of finite order, then also one of prime order.

Corollary 5.3.23. Subgroups of cyclic groups are cyclic.

Proof. For finite cyclic groups the claim follows from the theorem. Infinite cyclic groups
are isomorphic to (Z,+) by Theorem 5.3.17. Their subgroups are isomorphic to Z or nZ
for some n ∈ N by Lemma 2.1.5, so cyclic.

The following gives a more abstract proof of Theorem 2.6.12 on Euler’s totient.

Corollary 5.3.24. Let n > 1 and d ∣ n. In (Zn,+) there are exactly φ(d) many elements
of order d. In particular, n = ∑d∣nφ(d).

Proof. In Zn, k̄ = k ⋅ 1̄ has order n, i.e., generates Zn, if and only if gcd(n, k) = 1: this
follows from Lemma 5.3.9 (5) or Corollary 2.6.2. Thus, Zn has φ(n) many generators. For
d ∣ n, there is exactly one subgroup Ud of Zn of order d. The elements of order d in Zn are
the generators of Ud. Since Ud ≅ Zd, there are exactly φ(d) many. 2nd statement: the sets
{x ∈ Zn ∣ ord(x) = d} with d ∣ n partition Zn (Lemma 5.3.15).

We gain an important insight:

Corollary 5.3.25. Let K be a field and G be a finite subgroup of its multiplicative group.
Then G is cyclic. In fact, for every d ∣ ∣G∣ there are exactly φ(d) elements of order d.

Proof. For d ∣ ∣G∣ =∶ n let ψ(d) be the number of elements of order d in G. Then

∑d∣nψ(d) = n = ∑d∣nφ(n).

Thus it suffices to show ψ(d) ⩽ φ(d) for all d ∣ n. Assume ψ(d) ≠ 0 and choose x ∈ G of
order d. Every y ∈ ⟨x⟩ satisfies yd = 1. Hence, ⟨x⟩ contains d many such y and thus all
such y: the polynomial Y d − 1 has ⩽ d roots in K. Thus, the elements of order d are the
generators of ⟨x⟩. As ⟨x⟩ ≅ Zd it has φ(d) many generators. Thus, ψ(d) = φ(d).

Exercise 5.3.26. List all subgroups of (Z15,+).

Exercise 5.3.27. Let G be abelian.

1. If x, y ∈ G have orders n,m ∈ N and n,m are coprime, then xy has order nm.

2. If x, y ∈ G have orders n,m ∈ N, then there exists z ∈ G of order lcm(n,m).

Hint: Induction on n. For n > 1 write n = pcn′,m = pdm′ for a suitable prime p.

3. If G is finite, then exp(G) =maxx∈G ord(x).
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5.4 Finitely generated free abelian groups

In this section we write groups G additively, with neutral element 0 or 0G. We use the
notation ax for x ∈ G and a ∈ Z from the previous section. We also write Zx ∶= {ax ∣ x ∈ Z}.

Remark 5.4.1. This notation allows to view an abelian group G as a so-called Z-module:
the map (a, x) ↦ ax from Z×G to G satisfies the vectorspace axioms of scalar multiplication
(but Z is not a field), namely, for all a, b ∈ Z and x, y ∈ G:

1x = x, (ab)x = a(bx), (a + b)x = ax + bx, a(x + y) = ax + by.

Exercise 5.4.2 (Divisible torsion-free abelian groups). An abelian group G is divisible if
for every x ∈ G and n > 0 there is y ∈ G with ny = x. It is torsion-free if nx ≠ 0 for all
x ∈ G ∖ {0G} and n > 0. Torsion-free divisible abelian groups “are” Q-vectorspaces. Why?

Recall Remark 5.3.4 (2) in additive notation: if G is abelian and x1, ..., xn ∈ G, then

⟨x1, ..., xn⟩ = {a1x1 +⋯ + anxn ∣ a1, ..., an ∈ Z}.

Definition 5.4.3. A finitely generated abelian group G is free if it has a Z-basis: a tuple
x̄ = (x1, ..., xr) ∈ Gr for some r ∈ N such that for all y ∈ G there is a unique (a1, ..., ar) ∈ Zr
such that y = a1x1 +⋯ + arxr. We call (a1, ..., an) the coordinates of y wrt x̄, and

a1x1 +⋯ + anxn ↦ (a1, ..., ar)

the coordinate map wrt x̄.

Remark 5.4.4. The coordinate map is a group isomorphism from G onto Zr.

Example 5.4.5.

1. {0} has the empty tuple as Z-basis: by convention, the empty sum is 0.

2. Z has the Z-bases (1) and (−1); for n > 0, nZ has Z-bases (n) and (−n).
3. Let r > 0. Then (Zr,+) has the standard Z-basis (e1, ..., er) where ei has 1 at the i-th

component and 0 elsewhere.

4. Abelian groups with an element x ≠ 0 of finite order do not have a Z-basis.
This follows from Remark 5.4.4. More concretely, given x̄ = (x1, ..., xr) ∈ Gr and
ord(x) = n ≠ ∞ write x = a1x1 + ⋯ + arxr for certain ai ∈ Z, not all 0. Then
0G = 0x1 +⋯ + 0xr = nx = na1xr +⋯ + narxr and the nai are not all 0.

Exercise 5.4.6. Let G be an abelian group. Show (x1, ..., xr) ∈ Gr is a Z-basis of G if
and only if for every y ∈ G there is (a1, ..., ar) ∈ Zr with y = a1x1 + ⋯ + arxr, and, for all
(a1, ..., ar) ∈ Zr: a1x1 +⋯ + arxr = 0G implies ai = 0 for all i.

In case, for every a ∈ Z and i ≠ 1 also (x1 + axi, x2, ..., xr) is a Z-basis.
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Exercise 5.4.7 (Universal Property). LetG be an abelian group with Z-basis x̄ = (x1, ..., xr).
Let H be an arbitrary abelian group and y1, ..., yr ∈H. Then the map xi ↦ yi has a unique
extension to a homomorphism from G into H.

We have an analogue of the notion of vector space dimension:

Theorem 5.4.8. All Z-bases of a finitely generated free abelian group G have the same
length, called the rank of G.

Proof. Let x̄ ∶= (x1, ..., xr) and ȳ ∶= (y1, ..., ys) be Z-bases of G, and φ the coordinate map
wrt x̄. We have to show r = s. Note φ(x1) = e1, ..., φ(xr) = er is the standard basis of the
vector space Qr. It suffices to show that the φ(yi)’s form a basis of Qr.

Linearly independent: assume 0 = (a1/b1)φ(y1) +⋯ + (as/bs)φ(ys) for certain ai, bi ∈ Z.
Set b ∶= b1⋯bs. Then, since φ is a homomorphism, we have with ci ∶= bai/bi ∈ Z:

0 = c1φ(y1) +⋯ + csφ(ys) = φ(c1y1 +⋯ + csys)

But ker(φ) = {0G}, so c1y1 + ⋯ + csys = 0G. Since (y1, ..., ys) is a Z-basis, all ci = 0. But
then all ai/bi = 0.

Generating: given v ∶= (a1/b1, ..., ar/br) ∈ Qr with ai, bi ∈ Z, set b ∶= b1⋯br and note
bv = (c1, ..., cr) ∈ Zr where ci ∶= bai/bi ∈ Z. As φ is surjective, there is x ∈ G with φ(x) = bv.
Since ȳ is a Z-basis, there are d1, ..., ds ∈ Z such that x = d1y1 +⋯+ dsys. Then bv = φ(x) =
d1φ(y1) +⋯ + dsφ(ys). Hence, v is a linear combination of the φ(yi)’s.

Theorem 5.4.9. Let G be a finitely generated free abelian group of rank r and U a subgroup
of G. Then U is a finitely generated free abelian group of some rank s ⩽ r.

Moreover, there exists a Z-basis (x1, ..., xr) of G and d1, ..., ds > 0 such that (d1x1, ..., dsxs)
is a Z-basis of U and

d1 ∣ d2, d2 ∣ d3, ... ds−1 ∣ ds.

Proof. Induction on r. If r ⩽ 1, the claim follows easily from Example 5.4.5. Let r > 1. If
U = {0G}, the claim is trivial (s ∶= 0), so assume U ≠ {0G}.

Wrt to some Z-basis any u ∈ U ∖{0G} has at least one coordinate ≠ 0, so u or −u has at
least one positive coordinate. Let d1 ∈ N ∖ {0} be minimal such that there exist a Z-basis
x̄ ∶= (x1, ..., xr), an u1 ∈ U and 1 ⩽ i ⩽ n such that u1 has i-th coordinate d1 wrt x̄. We can
assume i = 1 (otherwise re-index). Let u1 have coordinates (d1, a2, ..., ar) wrt x̄.

We claim d1 ∣ ai for all 2 ⩽ i ⩽ n. Write ai = qid1 + ri with 0 ⩽ ri < d1 by Euclidian
division. By Exercise 5.4.6 (x1 + qixi, x2, ..., xr) is a Z-basis. The i-th coordinate of u1 wrt
this basis is ri. Then ri = 0 by choice of d1.

Thus, u1 has coordinates (d1, q2d1, ..., qrd1) wrt x̄, so u1 = d1y1 for

y1 ∶= x1 + q2x2 +⋯ + qrxr.

Then x̄′ ∶= (y1, x2, ..., xr) is a Z-basis (apply r−1 times Exercise 5.4.6). Since u1 = d1y1, the
coordinates of u1 wrt x̄′ are (d1,0, ...,0). Let G0 be the subgroup of G with 1st coordinate
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0 wrt x̄′. Let U0 be the subgroup of G0 of elements u0 obtained from u ∈ U by changing
the 1st coordinate of u wrt x̄′ to 0.

Since G0 has rank r−1, induction gives a Z-basis (y2, ..., yr) of G0 and s ⩽ r and positive
d2, ..., ds ∈ N such that (d2y2, ..., dsys) is a Z-basis of U0 and d2 ∣ d3 ∣ ⋯ ∣ ds.

Every x ∈ G can be uniquely written x = ay1 + y0 with y0 ∈ G0, a ∈ Z. Hence, ȳ ∶=
(y1, y2, ..., yr) is a Z-basis of G. We claim that (d1y1, d2y2, ..., dsys) is a Z-basis of U .

We have to show for every u ∈ U that d1 divides the 1st coordinate b1 of u wrt ȳ. Write
u = b1y1 + u0 for u0 ∈ U0 and write b1 = qd1 + r with 0 ⩽ r < d1.Then u − qu1 = ry1 + u0 has
1st coordinate r wrt ȳ; hence, r = 0 by choice of d1.

In case, U0 has the empty tuple as basis, then all u ∈ U have wrt ȳ all coordinates 0
except possibly the 1st which is divided by d1. Hence (d1y1) is a basis of U .

Otherwise we are left to show that d1 ∣ d2: write d2 = qd1 + r with 0 ⩽ r < d1; then
ȳ′ ∶= (y1 + qy2, y2, ..., yr) is a Z-basis of G. Let u2 ∶= d2y2 ∈ U and consider u1 +u2 ∈ U . Note
u1 + u2 = d1(y1 + qy2) + ry2 has 2nd coordinate r wrt ȳ′. Hence, r = 0 by choice of d1.

Exercise 5.4.10. Let G,H be finitely generated free abelian groups with ranks r, s. Make
precise and prove: homomorphisms from G to H are given by r × s-matrices over Z.

Corollary 5.4.11. Subgroups of finitely generated abelian groups are finitely generated.

Proof. Let G be an abelian group generated by x1, ..., xr ∈ G. Let H be a subgroup of G.
By Remark 5.3.4 (2) there is an epimorphism φ ∶ Zr → G. Then φ−1(H) is a subgroup
of Zr. By the theorem it is generated by a finite set Y ⊆ Zr. Then φ(Y ) generates H.

Remark 5.4.12. There are non-abelian finitely generated groups with subgroups that are
not finitely generated. We shall see an example in Exercise 5.5.12.

5.5 Finitely presentable groups

Recall, the dihedral group G ∶=Dn is generated in O(2,R) by R2π/n, S0. Forget everything
about G except that it is generated by elements r, s satisfying the relations

rn = 1, s2 = 1, sr = r−1s.

Write elements as a words like srsrr−1rs−1rrr. The relations allow computations, e.g.:

srsrr−1rs−1rrr = r−1ssrr−1rs−1r3 = r−1rs−1r3 = s−1r3 = sr3 = (r−1)3s = (rn−1)3s = rn−3s.

The 1st = follows using sr = r−1s on the first 2 letters; the 2nd uses rr−1 = 1 and s2 = 1; the
3rd uses r−1r = 1; the 4th uses s−1 = s implied by s2 = 1; the 5th uses 3 times sr = r−1s; the
6th uses r−1 = rn−1 implied by rn = 1; the 7th uses rn = 1 twice.

It is clear that such computations allow to re-write every word into one of 1, r, ..., rn−1,
s, rs, ..., rn−1s. Easy computations show these 2n elements have Dn’s truth table. If no
more equalities hold, besides the implied ones, we see G ≅Dn.
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The above is highly informal, politely said. E.g., the stated equalities are plainly false
because the words are distinct – what is equal is their ‘meaning’. Also the words ‘imply’
and ‘computation’ are unclear. General definitions are given in mathematical logic. Here,
we only give some simplified ad hoc definitions.

Definition 5.5.1. An alphabet is a non-empty set of letters. For a set X ≠ ∅ we consider
the alphabet A(X) that has two letters x,x−1 for every x ∈ X. A word (over A(X)) is a
finite tuple of letters. The set of words is A(X)∗. We write w = x1⋯xn for w = (x1, ..., xn) ∈
A(X)n (where n ∈ N). If v = y1⋯ym ∈ A(X)m then

wv ∶= x1⋯xny1⋯ym ∈ A(X)
n+m.

We write 1 for the empty word, the unique word of length 0. Abbreviations:

(x−1)−1 ∶= x for x ∈X and w−1 ∶= x−1n ⋯x
−1
1 , w

2 = ww, w3 = w2w, ...

Remark 5.5.2. A(X)∗ with (w, v) ↦ wv is a monoid with neutral element 1.

Definition 5.5.3. Let X ≠ ∅ and G a group. A valuation (of X) in G is a map V ∶X → G.
We extend V to V ∗ ∶ A(X)∗ → G setting first V ∗(x−1) ∶= V (x)−1 for x ∈ X and then for
w = x1⋯xn ∈ A(X)n:

V ∗(w) ∶= V ∗(x1)⋯V
∗(xn);

the r.h.s. is a product in G; as usual, we agree the empty product is 1G, so V ∗(1) = 1G.
We abuse notation and just write V instead of V ∗.

A relation (over X) is a pair (w, v) ∈ (A(X)∗)2. It is true under V if V (w) = V (v). A
set of relations R (logically) implies (w, v) if for all groups G and all valuations V in G:

if every relation in R is true under V , then (w, v) is true under V .

We leave it as an exercise to verify:

Remark 5.5.4. Let u, v,w ∈ A(X)∗.

1. ∅ implies (w,w), (w−1w,1), (ww−1,1).

2. {(u, v)} implies (v, u), (uw, vw), (wu,wv).

3. {(u, v), (v,w)} implies (u,w).

4. By these rules alone, each of (u, v), (v−1u,1), (uv−1,1) implies every other.

Intuitively, (w, v) stands for the assertion w = v. By (2), {(u, v)} implies (w,w′) where
w is obtained from w′ by substituting a subword u by v. We refrain from a formal definition,
but such substitutions are what a ‘computation with R’ does; it consists in a sequence of
‘equalities’ w = v with (w, v) implied by R.

Example 5.5.5. ForX = {r, s} our ‘computations’ used the relations (s, s−1) and (r−1, rn−1).
These are implied by the given R = {(rn,1), (s2,1), (sr, r−1s)}. Our ‘computations’ show
that for every word w there is k < n such that (w, rk) or (w, rks) is implied by R.
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Definition 5.5.6. Let X ≠ ∅ be a set and R a set of relations over X. Consider the
equivalence relation ∼R on A(X)∗ given by:

w ∼R w
′ ⇐⇒ R implies (w,w′).

⟨X ∣ R⟩ is the set of equivalence classes [w]R ∶= {w′ ∣ w ∼R w′} for w ∈ A(X)∗; we often
omit index R. For w, v ∈ A(X)∗ set

[w]R ⋅ [v]R ∶= [wv]R.

For X = {x, y, ...},R = {(v,w), (v′,w′), ...} write ⟨x, y, ... ∣ v = w, v′ = w′, ...⟩ for ⟨X ∣ R⟩.

Lemma 5.5.7. Let X,R be as above. Then ⟨X ∣ R⟩ is a group with neutral element [1]R
and inverses [w]−1R = [w

−1]R for all w ∈ A(X)∗.

Proof. ⋅ is well-defined: given [w] = [w′] and [v] = [v′] we have to show [wv] = [w′v′]. LetG
be a group and V a valuation of X in G such that every relation in R is true under V . Then
V (w) = V (w′) and V (v) = V (v′). Thus, V (wv) = V (w)V (v) = V (w′)V (v′) = V (w′v′).
[1] is neutral (recall 1 is the empty word): [w] ⋅ [1] = [w1] = [w] = [1w] = [1] ⋅ [w].
Inverse: [w] ⋅ [w−1] = [w−1] ⋅ [w] = [1] means [w−1w] = [ww−1] = [1] and holds by

Remark 5.5.4 (1).

Definition 5.5.8. A group G is finitely presentable if G ≅ ⟨X ∣ R⟩ for some finite set X ≠ ∅
and a finite set of relations R over X.

For a set X ≠ ∅ the free group generated by X is F (X) ∶= ⟨X ∣ ∅⟩.

Finitely generated free abelian groups are finitely presentable (recall Remark 5.4.4).
They are called “free” because, intuitively, they are obtained from the free group by re-
quiring commutativity and nothing else:

Example 5.5.9. Z ≅ ⟨x ∣ ∅⟩ = F ({x}) and, for n > 1,

Zn ≅ ⟨x1, ..., xn ∣ {(xixj, xjxi) ∣ 1 ⩽ i < j ⩽ n}⟩.

Proof. The 1st statement is clear. For the 2nd, assume n = 2 for notational simplicity
and write x, y for x1, x2. Let w ∈ A({x, y})∗. Then R ∶= {(xy, yx)} implies the relation
(w,xawybw) where aw is the number of occurrences x in w minus the number of occurrences
of x−1 in w, and bw is similarly defined. Hence, R implies (wv,xaw+avybw+bv) for any word v.

Define φ ∶ ⟨{x, y} ∣ R⟩ → Z2 by φ([w]) ∶= (aw, bw) (omitting index R). This is well-
defined: assume [w] = [v]; then R implies (xawybw , xavybv); consider the valuation V of
{x, y} in Z2 mapping x, y to (1,0), (0,1); as R is true under V , so is (xawybw , xavybv), that
is, (aw, bw) = V (xawybw) = V (xavybv) = (av, bv) in Z2.

Surjectivity is trivial and injectivity is easy: if φ([w]) = φ([v]), then [w] = [xawybw] =
[xavybv] = [v]. To see φ is an homomorphism, recall we observed above that (awv, bwv) =
(aw + av, bw + bv); the l.h.s. is φ([wv]) = φ([w][v]), the r.h.s. is φ([w])φ([v]).
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Exercise 5.5.10. Let n > 1. Then Cn ≅ ⟨x ∣ xn = 1⟩.

Finite groups are finitely presentable:

Exercise 5.5.11. Show G ≅ ⟨G ∣ R⟩ where R ‘is’ the computation table of G.

Exercise 5.5.12. In F ({0,1}), the subgroup generated by [0n10n]∅, n ∈ N, is isomorphic
to F (N) and hence not finitely generated.

Remark 5.5.13 (Word problem for groups). In 1911 Dehn, a student of Hilbert, intro-
duced the word problem for a finitely presented group ⟨X ∣ R⟩, namely to decide for a given
word w ∈ A(X)∗ whether R implies (w,1). In 1955 the soviet mathematician Novikov
found a finitely presented group with undecidable word problem. Beyond the iron curtain,
Boone gave 1958 a different proof.

Theorem 5.5.14 (Universal property). Let X ≠ ∅, R a set of relations over X. Further,
let V be a valuation of X in a group G such that every relation in R is true under V .

Then there is exactly one homomorphism φV ∶ ⟨X ∣ R⟩ → G with φV ([x]R) = V (x) for
all x ∈X. Moreover, a relation (w′,w) is true under V if and only if [w−1w′]R ∈ ker(φV ).

Proof. Assume φV is such an homomorphism. Then φV ([x−1]) = φV ([x]−1) = φV ([x])−1 =
V (x)−1, so φ([y]) = V (y) for all y ∈ A(X). Then for all w = x1⋯xn ∈ A(X)n:

φV ([w]) = φV ([x1]⋯[xn]) = φV ([x1])⋯φV ([xn]) = V (x1)⋯V (xn) = V (w).

Thus, the only possibility is to define φV ([w]) ∶= V (w). It is easy to check that this is
a well-defined homomorphism.

For the moreover-part note the equivalences: (w′,w) is true under V , V (w′) = V (w),
φV ([w′]) = φV ([w]), φV ([w])−1φV ([w′]) = 1G, φV ([w−1w′]) = 1G.

Exercise 5.5.15 (Universality of free groups). A groupG generated byX ≠ ∅ is isomorphic
to F (X)/N for some N . Make precise: every at most countable group is a factor of F (N).

In the terminology of mathematical logic, the question of finite presentability is the
same as the question for the finite axiomatizability of a certain equational theory:

Theorem 5.5.16. A group G is finitely presentable if and only if G is generated by a
finite set ∅ ≠ X ⊆ G such that there exists a finite set R of relations over X that implies
all relations over X that are true under the valuation idX in G.

Proof. ⇒: assume φ ∶ ⟨X ∣ R⟩ ≅ G for finite X,R, write x′ ∶= φ([x]R) for x ∈ X and set
X ′ ∶= {x′ ∣ x ∈ X}. Clearly, G = ⟨X ′⟩. For a word w over X let w′ be obtained by priming
all letters, and set R′ ∶= {(u′, v′) ∣ (u, v) ∈ R}. We claim R′ implies all relations over X ′ true
under idX′ : if (u′, v′) is true under idX′ , then (u, v) is true under the valuation x↦ [x]R in
⟨X ∣ R⟩; this means [u]R = [v]R, i.e., (u, v) is implied by R; then (u′, v′) is implied by R′.
⇐: choose φV ∶ ⟨X ∣ R⟩ → G for the valuation V ∶= idX in G according to Theo-

rem 5.5.14. Then φV is surjective because its image contains X. We show it is injective: if
[w]R ∈ ker(φV ), then (w,1) is true under V = idX , so implied by R, hence [w]R = [1]R.
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Remark 5.5.17. The so-called lamplighter group is an example of a finitely generated
group that is not finitely presentable (Baumslag 1961).

Example 5.5.18. Let n > 1. Dn ≅ ⟨r, s ∣ rn = s2 = 1, sr = r−1s⟩.

Proof. Theorem 5.5.14 with the valuation r, s ↦ R2π/n, S0 of {r, s} in Dn gives an homo-
morphism from the r.h.s. into Dn. It is surjective because its image contains R2π/n, S0

generating Dn. It is injective because the r.h.s. has order ⩽ 2n by Remark 5.5.5.
More concretely: ‘computations’ show that every word has the form rk, rks up to equiv-

alence and verify the intended multiplication table. The words are pairwise not equivalent
because there exists a valuation giving them distinct values (the above one in Dn).

Example 5.5.19 (Quaternion group). Hamilton 1844:

“And here there dawned on me the notion that we must admit, in some sense,
a fourth dimension of space for the purpose of calculating with triples ... An
electric circuit seemed to close, and a spark flashed forth.”

In GL(2,C) consider the matrices

e ∶= [
1 0
0 1

] , i ∶= [
i 0
0 −i

] , j ∶= [
0 1
−1 0

] , k ∶= [
0 i
i 0

] .

Then Q8 ∶= { ± e,±i,±j,±k} is a subgroup of GL(2,C). The Hamilton rules are:

i2 = j2 = k2 = ijk = −e.

These relations determine Q8:

Q8 ≅ ⟨ē, i, j, k ∣ ē
2 = 1, i2 = j2 = k2 = ijk = ē⟩ ≅ ⟨x, y ∣ x4 = 1, x2 = y2, yx = x−1y⟩.

Proof. The ēijk-relations R are true under the obvious valuation in Q8. Theorem 5.5.14
gives an homomorphism onto Q8. It is surjective because its image generates Q8. For injec-
tivity, we show ⟨ē, i, j, k ∣ R⟩ has order ⩽ 8. It suffices to verify the intended multiplication
table for 1, ē, i, j, k, ēi, ēj, ēk. To see R implies e.g. (ij, k) note it implies (ijk, ē), (ijk2, ēk),
(ijk2, kē), (ijē, kē), (ij, k). We omit the rest.

Let S denote the xy-relations. Theorem 5.5.14 gives an epimorphism from ⟨ē, i, j, k ∣ R⟩
onto ⟨x, y ∣ S⟩ once we show the relations in R are true under the valuation ē, i, j, k ↦
x2, x, y, xy. E.g. V (ijk) = V (ē) means [xyxy]S = [x2]S – ‘compute’ xyxy = xx−1yy = y2 =
x2. Thus ⟨x, y ∣ S⟩ has order ⩽ 8. We are left to find an epimorphism onto Q8: verify that
the relations in S are true under the valuation x, y ↦ i, j.
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5.6 Normal subgroups

Recall, the ring Zn is obtained by identifying elements x, y ∈ Z that differ only by a multiple
of n. More generally, given a ring R, the ring R/I is obtained by identifying elements x, y
that differ only by an element of the ideal I.

We proceed similarly with a group G and identify elements x, y ∈ G that differ only by
an element of a subgroup U . If G is non-abelian, this has two meanings: for x ∈ G,u ∈ U
identify x and xu, or, identify x and ux.

Definition 5.6.1. Let G be a group, x ∈ G and U a subgroup. Then

xU ∶= {xu ∣ u ∈ U}, Ux ∶= {ux ∣ u ∈ U}

is the left, resp., right coset of x wrt U . We set

G/U ∶= {xU ∣ x ∈ G}, U/G ∶= {Ux ∣ x ∈ G}.

The index of U in G is [G ∶ U] ∶= ∣G/U ∣. We write [G ∶ U] = ∞ if this is infinite.
In an additively written group the notation xU becomes x +U .

We leave the following as an easy exercise.

Remark 5.6.2. G/U is a partition of G, namely the set of equivalence classes of the
equivalence relation ∼U on G given by

x ∼U y ⇐⇒ x−1y ∈ U.

We have xU = yU ⇔ x−1y ∈ U ⇔ x ∈ yU and, in particular, xU = U ⇔ x ∈ U .

Exercise 5.6.3. Picture the multiplicative group C× of C as the plane without the origin.

1. C×/S1 is the partition of C× into circles around the origin, one for each radius r > 0.

2. C×/R× is the partition of C× into lines through the origin (without the origin), one
for each angle 0 ⩽ α < π with the x-axis.

3. Find a subgroup U ⊆ C× such that C×/U is the partition of C× into orthogonal crosses
centered at the origin.

Theorem 5.6.4 (Lagrange). Let G be a finite group and U a subgroup. Then

∣G∣ = ∣U ∣ ⋅ [G ∶ U].

Proof. By the remark, it suffices to show that every left coset xU has cardinality ∣U ∣. But
u↦ xu is a bijection from U onto xU .

Remark 5.6.5. The same proof works if we defined the index as ∣U/G∣. Hence

∣G/U ∣ = ∣U/G∣ = ∣G∣/∣U ∣.
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Can we make G/U into a group, as we did for Zn? We want xU ⋅ yU ∶= xyU . Is this
well-defined? Assume xU = x′U, yU = y′U , i.e., x = x′u and y = y′v for certain u, v ∈ U . We
want xyU = x′y′U , i.e., xy = x′y′w for some w ∈ U . We know xy = x′uy′v, so only need
uy′ = y′u′ for some u′ ∈ U (then set w ∶= u′v). This means we want Uy′ ⊆ Uy′ for all y′ ∈ G.

This condition can be equivalently formulated as follows.

Exercise 5.6.6. Let G be a group and U a subgroup. The following are equivalent:

1. xUx−1 = U for all x ∈ G.

2. xUx−1 ⊆ U for all x ∈ G.

3. Ux = xU for all x ∈ G.

4. Ux ⊆ xU for all x ∈ G.

5. xU ⊆ Ux for all x ∈ G.

Remark 5.6.7. Recalling Definition 5.1.18, (1) states α(U) = U for all inner automor-
phisms α of G, i.e., conjugation by any x ∈ G permutes U .

Definition 5.6.8. Let G be a group. A subgroup U is normal (in G), symbolically

U ◁G,

if xUx−1 = U for all x ∈ G. If this is the case, then the factor group of G modulo U is
(G/U, ⋅) where for x, y ∈ G:

xU ⋅ yU ∶= xyU.

Remark 5.6.9. Let U ◁G.

1. We already checked that ⋅ on G/U is well-defined.

2. (G/U, ⋅) is a group: the neutral element is 1G/U = U ; the inverse of xU is x−1U .

3. If G is abelian, then all subgroups V are normal and G/V is abelian.

Indeed, for x, y ∈ G: xV x−1 = {xvx−1 ∣ v ∈ V } = {xx−1v ∣ v ∈ V } = V and xV ⋅ yV =
xyV = yxV = yV ⋅ xV .

4. {1},G are the trivial normal subgroups of G. Indeed: x{1}x−1 = {1}, xGx−1 = G.

5. Subgroups of index 2 are normal.

Indeed: let V be such a subgroup and x ∈ G. If x ∈ V , then xV = V = V x. If x ∉ V ,
then both xV,V x equal G ∖ V , the unique coset ≠ V in G/V or V /G.

Exercise 5.6.10. Let G be a group, U a subgroup and N ◁G. Then

NU ∶= {nu ∣ n ∈ N,u ∈ U}

is a subgroup of G. More generally, if V is a subgroup of G such that UV = V U , then UV
is a subgroup of G.
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Exercise 5.6.11. If G is a cyclic group and U a subgroup, then G/U is a cyclic group.

Example 5.6.12.

1. Let n > 0. As (Z,+) is abelian, its subgroup nZ is normal, and Zn = Z/nZ by
definition; the index is [Z ∶ nZ] = n.

2. The subgroup U ∶= {1, (12)} is not normal in S3 because (123)(12)(321) = (23) /∈ U.

3. An is normal in Sn since it has index 2 by Remark 5.2.12 (or argue as below).

4. The special orthogonal group U ∶= SO(n,R) is normal in G ∶= O(n,R).
We verify index 2 showing AU = G ∖ U for all A ∈ G ∖ U . ⊆: if B ∈ U , then
det(AB) = −1, so AB ∈ G∖U . ⊇: if B ∈ G∖U , then A−1B ∈ U and B = A(A−1B) ∈ AU .

5. Recall Example 5.2.14: K ′4◁A4.

Use Remark 5.6.7: noteK ′4 is the set of elements of order 2 in A4; hence it is permuted
by all (inner) automorphisms of A4.

As a first application of factor groups we show:

Proposition 5.6.13. Let G be a finite abelian group and p be a prime divisor of ∣G∣. Then
G has a subgroup of order p.

Proof. We show by induction on ∣G∣, that G has an element of order p. If ∣G∣ = p, use
Proposition 5.3.18. Assume ∣G∣ > p. Let x ∈ G have prime order q (Exercise 5.3.22) and
assume p ≠ q. Since G is abelian, N ∶= ⟨x⟩ ◁G and G/N is abelian. G/N has order ∣G∣/q.
As p ∣ ∣G∣ and p ≠ q, also p ∣ ∣G∣/q. Induction gives an element yN ∈ G/N of order p. Let n
be the order of y in G. Then (yN)n = 1G/N , so p ∣ n. If p = n we are done, so assume p ≠ n.
By Lemma 5.3.9 (5), yn/p has order n/gcd(n/p, n) = p.

Remark 5.6.14. We shall later see either one of the assumptions abelian or primality
(of p) can be omitted (Theorem 5.12.1 and Corollary 5.11.5). It is not generally true that
a finite group G contains for every divisor d of ∣G∣ a subgroup of order d (Example 5.7.13).

Example 5.6.15. There are groups U ◁ V ◁G with U /◁ G.

Proof. Consider the unit square (regular 4-gon) with corners numbered counterclockwise
1-4 starting at (1,0). Its symmetry group D4 (Exercise 5.1.14) permutes the corners and
is isomorphic to the following subgroup of S4, writing 1 = id{1,2,3,4}:

D′4 ∶= {1, (13), (24), (14)(23), (12)(34), (13)(24), (1234), (1432)}.

D′4 has the subgroup K
′

4 from Example 5.2.14. Let C ′2 ∶= {1, (14)(23)} ⊆K
′

4. Then C
′

2◁K
′

4

and K ′4 ◁D′4 because both have index 2 (Remark 5.6.9 (5)). But C ′2 /◁ D′4 because for
σ ∶= (13) ∈D′4, τ ∶= (14)(23) ∈ C

′

2:

σ−1τσ = (31) (14)(23) (13) = (12)(34) ∉ C ′2.
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Example 5.6.16. The quaternion group Q8 from Example 5.5.19 is not abelian (e.g. ij = k
and ji = −k) but every subgroup of Q8 is normal.

Proof. Let U be a subgroup of Q8. By Lagrange, ∣U ∣ devides ∣Q8∣ = 8, so ∣U ∣ ∈ {1,2,4,8}.
If ∣U ∣ = 1 or ∣U ∣ = 8, then U = {e} or ∣U ∣ = Q8, so U is normal. If ∣U ∣ = 4, then [Q8 ∶ U] = 2
and U is normal by Remark 5.6.9 (5).

Finally, if ∣U ∣ = 2, then U = {e, x} for some x ≠ e with x2 = e. Hence, x = −e. But
A(±e)A−1 = ±e for all A ∈ Q8 (in fact, GL(2,C)), so U = {±e} is normal.

Exercise 5.6.17. For n > 1, show both O(n,R)/SO(n,R) and Sn/An are isomorphic to C2.
Further, show Q8/{±e} ≅K4. (Note the factor groups are well-defined.)

Exercise 5.6.18. Every abelian group of order 6 is isomorphic to C6.

Example 5.6.19. Every non-abelian group of order 8 is isomorphic to D4 or to Q8.

Proof. Let G be non-abelian of order 8. Possible orders of elements are 1,2,4,8. Order 8 is
impossible since G is not cyclic. By Exercise 5.3.12, not all elements have order 2. Hence
there is an element a ∈ G of order 4. Then ⟨a⟩ has index 2 in G, that is, for b ∈ G ∖ ⟨a⟩

G = {1, a, a2, a3} ∪ {b, ba, ba2, ba3}.

What is c ∶= bab−1? Note c ∈ ⟨a⟩ ◁G . But c ≠ 1 (else a = 1), c ≠ a (else ba = ab and G
is abelian), c ≠ a2 (else 1 = c2 = ba2b−1, so a2 = 1). Hence, c = a3 = a−1, so ba = a−1b.

What is b2? Since G/⟨a⟩ ≅ C2, we have b2⟨a⟩ = (b⟨a⟩)2 = 1G/⟨a⟩ = ⟨a⟩, so b2 ∈ ⟨a⟩. But
b2 ≠ a and b2 ≠ a−1 as otherwise ord(b) = 8. Thus we have two cases:

a4 = 1, ba = a−1b, b2 = 1 or a4 = 1, ba = a−1b, b2 = a2.

By Examples 5.5.18 and 5.5.19 these relations R are those for D4 and for Q8, i.e., ⟨a, b ∣ R⟩
is isomorphic to D4 or Q8. For the valuation V ∶= id{a,b} in G, Theorem 5.5.14 gives an
homomorphism φV ∶ ⟨a, b ∣ R⟩ → G containing a, b in its image. But a, b generate G, so φV
is surjective. Since we know ⟨a, b ∣ R⟩ has order 8, φV is injective, so an isomorphism.

How many abelian groups of order 8 are there? You might want to check all possible 88
2

multiplication tables with a computer. But this number dwarfs the number of atoms in the
solar system. Some theory is needed. We shall see that there are exactly 3 abelian groups
of order 8 up to isomorphism, and exactly 49 of order 100000 (Examples 5.11.18, 5.11.17).

5.6.1 Normal hull

We show that our definition of ⟨X ∣ R⟩ is equivalent to a more standard one using normal
hulls. It is surprising that the concept of normality is linked to logical implication.

Definition 5.6.20. Let G be a group and Y ⊆ G. The normal hull of Y (in G) is

⟪Y ⟫ ∶= ⟨{xyx−1 ∣ y ∈ Y,x ∈ G}⟩.
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Exercise 5.6.21. Show ⟪Y ⟫ is the smallest normal subgroup of G containing Y . That is:
⟪Y ⟫◁G and ⟪Y ⟫ ⊆ N for all N ◁G with Y ⊆ N .

Lemma 5.6.22. Let X ≠ ∅ be a set, (u, v) a relation over X and R a set of relations over
X ≠ ∅. The following are equivalent.

1. R implies (u, v).

2. [v−1u]∅ is in the normal hull of {[w−1w′]∅ ∣ (w′,w) ∈ R} in F (X), denoted ⟪R⟫.

Proof. ⇒: consider the valuation V (x) ∶= [x]⟪R⟫ of X in F (X)/⟪R⟫. Then

V (u) = V (v) ⇐⇒ [u]⟪R⟫ = [v]⟪R⟫ ⇐⇒ [u−1v] ∈ ⟪R⟫,

for every relation (u, v) over X. In particular, all relations in R are true under V . Hence,
any implied relation (u, v) is also true under V . Hence, [v−1u] ∈ ⟪R⟫.
⇐: assume (u, v) is not implied by R. Then there is a group G and a valuation V

in G such that all relations in R are true under V but V (u) ≠ V (v). Choose φV according
to Theorem 5.5.14 and set N ∶= ker(φV ). Then [w−1w′] ∈ N for all (w′,w) ∈ R. By
Exercise 5.6.21, ⟪R⟫ ⊆ N . Since (u, v) is not true under V , again Theorem 5.5.14 gives
[v−1u] ∉ N . Hence, [v−1u] ∉ ⟪R⟫.

Corollary 5.6.23. Let X ≠ ∅ be a set and R a set of relations over X. Then

⟨X ∣ R⟩ ≅ F (X)/⟪R⟫.

Proof. The map [w]R ↦ [w]∅⟪R⟫ is well-defined and bijective – use the lemma:

u ∼R v ⇐⇒ R implies (u, v) ⇐⇒ [v−1u]∅ ∈ ⟪R⟫ ⇐⇒ [u]∅⟪R⟫ = [v]∅⟪R⟫.

It is easily checked to be a homomorphism, hence an isomorphism.

5.6.2 Simple groups

Definition 5.6.24. A group G is simple if G ≠ {1} and its only normal subgroups are {1}
and G.

Examples 5.6.25.

1. Groups of prime order are simple (by Lagrange). An abelian group is simple if and
only if it has prime order (Proposition 5.6.13).

2. For n > 2, Sn is not simple as An◁ Sn (Example 5.6.12 (3)).

3. For n > 1, Dn is not simple: N ∶= {Rk⋅2π/n ∣ k < n} has index 2 in Dn, so is normal.

Example 5.6.26 (Galois). A5 is simple.
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Proof. Assume {1} ≠ N ◁ A5. We have to show N = A5. We first claim that every 3-
cycle (ijk) is conjugate to (123) in A5, i.e., σ(ijk)σ−1 = (123) for some σ ∈ A5. Note
σ(ijk)σ−1 = (σ(i)σ(j)σ(k)), so we clearly find such σ ∈ Sn. If σ ∉ A5, note (45)σ ∈ A5 and

(45)σ(ijk)σ−1(45) = (45)(123)(45) = (123).

It thus suffices to show that N contains some 3-cycle – then it contains all of them
as N is normal, and we are done by Example 5.3.7. Let 1 ≠ σ ∈ N . If σ is not a 3-cycle its
cycle decomposition is (ij)(kℓ) or (ijkℓm). But

(ijm)(ij)(kℓ)(ijm)−1 (ij)(kℓ) = (imj), (ijk)(ijkℓm)(ijk)−1(ijkℓm)−1 = (ijℓ).

Theorem 5.6.27 (Jordan 1870). Let n > 1. Then An is simple if and only if n ∉ {2,4}.

Proof. A2 is trivial, A3 has prime order 3!/2 = 3. A4 has normal subgroup K ′4 from Exam-
ple 5.6.12 (5). We know A5 is simple. Let n > 5 and N ◁An.

Case 1: N contains some σ ≠ 1 with a fixed-point, i.e., σ(i) = i for some i. Let
Gi = {σ ∈ An ∣ σ(i) = i}. Clearly, Gi ≅ An−1 and {1} ≠ N ∩Gi ◁Gi. By induction (and
n > 5), N ∩Gi = Gi, i.e., Gi ⊆ N . But for every j and σ ∈ Gj we have τστ−1 ∈ Gi ⊆ N for
any τ ∈ An with τ(j) = i, hence σ = τ−1τστ−1τ ∈ N . Thus, N contains all G1, ...,Gn. Every
element of An is a product of pairs of transpositions. As n ⩾ 5 such a pair is in some Gj.
Thus, N = An.

Case 2: every permutation in N ∖ {1} moves all numbers. Then distinct σ,σ′ ∈ N
disagree on all 1 ⩽ i ⩽ n: if σ(i) = σ′(i), then σ′σ−1(i) = i, so σ′σ−1 = 1, so σ = σ′.

Given σ ∈ N , we show σ = 1. Write σ as a product of disjoint cycles. Assume a k-cycle
(a1⋯ak) with k ⩾ 3 appears. As n ⩾ 5 there is a 3-cycle τ that contains a3 but not a1, a2.
Then τ(a1⋯ak)τ−1 = (τ(a1)⋯τ(ak)) = (a1a2τ(a3)⋯τ(ak)). Hence, τστ−1 ∈ N agrees with
σ on a1 but not on a2, a contradiction.

Thus, σ is a product of disjoint transpositions. We claim the product is empty. Oth-
erwise, ⩾ 3 transpositions appear (here we use n > 5). Say, σ = (a1a2)(a3a4)(a5a6)⋯. Let
τ ∶= (a1a2)(a3a5). Then τστ−1 = (a1a2)(a5a4)(a3a6)⋯. But this agrees with σ on a1, a2 but
not on a3, contradiction.

5.7 Noether’s isomorphism theorems

Normal subgroups are best identified as kernels:

Lemma 5.7.1. Let φ ∶ G→ G′ be a group homomorphism.

1. If N ′◁G′, then φ−1(N ′) ◁G; in particular, ker(φ) = φ−1({1G′}) ◁G.

2. If N ◁G, then φ(N) ◁ φ(G).

Proof. (1): by Remark 1.1.9 (6), φ−1(N ′) is a subgroup of G; let x ∈ G and n ∈ φ−1(N ′);
then φ(xnx−1) = φ(x)φ(n)φ(x)−1 is in N ′ because φ(n) ∈ N ′◁G′; hence, xnx−1 ∈ φ−1(N ′).

(2): by Remark 1.1.9 (5), φ(N) is a subgroup of φ(G), a subgroup of G′; let n′ ∈ φ(N)
and x′ ∈ φ(G), say φ(n) = n′, φ(x) = x′ for n ∈ N,x ∈ G. Then x′n′x′−1 = φ(x)φ(n)φ(x)−1 =
φ(xnx−1) ∈ φ(N) because xnx−1 ∈ N ◁G.
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Remark 5.7.2. In (2), φ(N) ◁ G′ can fail. E.g., if G is a subgroup of G′ that is not
normal and φ = idG, then N ∶= G◁G but φ(N) = N /◁ G′.

Examples 5.7.3. Let n > 1. An is the kernel of sign ∶ Sn → {±1}. SO(n,R) is the kernel
of det ∶ O(n,R) → {±1}. SL(n,R) is the kernel of det ∶ GL(n,R) → R×.

All normal subgroups are kernels:

Proposition 5.7.4. Let G be a group and N ◁G. The canonical projection πN given by
πN(x) ∶= xN is an epimorphism from G onto G/N with kernel N .

Proof. πN is clearly surjective. It is a group homomorphism by definition of G/N . For the
kernel note πN(x) = 1G/N ⇔ xN = N ⇔ x ∈ N .

Theorem 5.7.5 (Universal property). Let φ ∶ G → G′ be a group homomorphism and
N ◁G with N ⊆ ker(φ). Then there is exactly one group homomorphism φ̄ ∶ G/N → G′

with φ = φ̄ ○ πN .

Exercise 5.7.6. Prove this.

Exercise 5.7.7 (Correspondence theorem). Let G be a group and N ◁G. Then

N ′ ↦ πN(N
′) = N ′/N

is a bijection from the set of N ′◁G with N ⊆ N ′ onto the set of Ñ ◁G/N ; the inverse is

Ñ ↦ π−1N (Ñ).

Theorem 5.7.8 (1st isomorphism theorem). Let φ ∶ G → G′ be a group epimorphism.
Then

G/ker(φ) ≅ G′.

In fact, there is exactly one isomorphism φ̄ ∶ G/ker(φ) ≅ G′ with φ = φ̄ ○ πker(φ).

Proof. Take the homomorphism φ̄ from the universal property with N ∶= ker(φ). It is
surjective: let x′ ∈ G′ and choose x ∈ G with φ(x) = x′; then φ̄(xN) = φ(x) = x′.

It is injective: if xN ∈ ker(φ̄), then φ(x) = 1, so x ∈ N , so xN = N = 1G/N .

More abstract proof of Theorem 5.3.17. If G is a cyclic group, there is an epimorphism
φ ∶ Z→ G (Remark 5.3.4 (1)). Choose n ∈ N such that ker(φ) = nZ (Lemma 2.1.5). By the
theorem, Z/nZ ≅ G. But Z/nZ ≅ Z for n = 0, and Z/nZ ≅ Zn for n > 0.

Example 5.7.9. SO(2,R) ≅ R/Z for the additive groups R and Z.

Proof. The map α ↦ e2πi⋅α is an epimorphism from (R,+) onto the circle group (S1, ⋅).
The kernel is Z. By the theorem, R/Z ≅ S1. But S1 ≅ SO(2,R) by Exercise 5.1.15.

Exercise 5.7.10. For the additive groups C,Z show C/Z ≅ C×.
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Theorem 5.7.11 (2nd isomorphism theorem). Let G be a group, U a subgroup and N◁G.
Then N ∩U ◁U and N ◁NU and

U/(N ∩U) ≅ (NU)/N.

In particular, if G is finite, then ∣NU ∣ = ∣N ∣ ⋅ ∣U ∣/∣N ∩U ∣.

Proof. Clearly, N ∩U is a subgroup of U . It is normal: let u ∈ U,n ∈ N ∩U ; then unu−1 ∈ U
since U is a subgroup, and unu−1 ∈ N since N ◁G, so unu−1 ∈ N ∩U .

NU is a subgroup of G by Exercise 5.6.10. As N = N1 ⊆ NU , N is a subgroup of NU ;
since N ◁G, also N ◁NU .

We define the isomorphism φ setting for u ∈ U :

φ(u(N ∩U)) ∶= uN.

Well-defined: if u(N ∩ U) = u′(N ∩ U) for u,u′ ∈ U , then u−1u′ ∈ N ∩ U , so ∈ N , so
uN = u′N , i.e., φ(u(N ∩U)) = φ(u′(N ∩U)). φ is clearly a homomorphism.

Injective: if u ∈ U and u(N ∩U) ∈ ker(φ), then φ(u(N ∩U)) = N , so uN = N , so u ∈ N ,
so u ∈ N ∩U , so u(N ∩U) = N ∩U = 1U/(N∩U).

Surjective: let nuN ∈ NU/N where n ∈ N,u ∈ U ; then nuN = nNu = Nu = uN as
N ◁G; hence, φ(u(N ∩U)) = nuN .

In particular, ∣U ∣/∣N ∩U ∣ = ∣U/(N ∩U)∣ = ∣NU/N ∣ = ∣NU ∣/∣N ∣.

Exercise 5.7.12. The 2nd statement holds also for N not normal.

Example 5.7.13. A4 has order 12 but no subgroup of order 6.

Proof. Assume U is a subgroup of A4 of order 6. Then [A4 ∶ U] = 2 by Lagrange, so
U ◁ A4 by Remark 5.6.9 (5). Recall K ′4 = {1, (12)(34), (14)(23), (13)(24)} ◁ A4 from
Theorem 5.6.27. Then K ′4 /⊆ U since ∣K ′4∣ ∤ ∣U ∣. Let τ ∈ K ′4 ∖ U . By index 2, A4 = U ∪ τU .
Hence, A4 = K ′4U . By the theorem, 12 = ∣A4∣ = 4 ⋅ 6/∣U ∩K ′4∣, so ∣U ∩K

′

4∣ = 2. Thus, U
contains exactly one of (12)(34), (14)(23), (13)(24). Whichever it is, U is not closed under
conjugation by σ ∶= (123) – a contradiction to U ◁A4:

σ(12)(34)σ−1 = (23)(14), σ(14)(23)σ−1 = (24)(31), σ(13)(24)σ−1 = (12)(34).

Example 5.7.14. Let n > 0, G ∶= GL(n,R), U ∶= SL(n,R) and

N ∶= D(n,R) ∶= {αIn ∣ α ∈ R×}.

Then N ◁G and NU = G. Further, N ∩ U = {In}. Thus U/(N ∩ U) ≅ U = SL(n,R). By
the theorem, SL(n,R) ≅ NU/N = GL(n,R)/D(n,R).

Theorem 5.7.15 (3rd isomorphism theorem). Let G be a group, N,N ′◁G and N ⊆ N ′.
Then N ′/N ◁G/N and

(G/N)/(N ′/N) ≅ G/N ′.

In particular, if G is finite, [G ∶ N] = [G ∶ N ′] ⋅ [N ′ ∶ N].
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Proof. N ′/N = πN(N ′) ◁ πN(G) = G/N by Lemma 5.7.1 (2). For x ∈ G set

ψ(xN) ∶= xN ′.

It is easy to check that this is a well-defined epimorphism from G/N onto G/N ′. We have
xN ∈ ker(ψ) if and only if xN ′ = 1G/N ′ = N ′, i.e., x ∈ N ′. Hence ker(ψ) = N ′/N . Now apply
the 1st isomorphism theorem.

Exercise 5.7.16. The 2nd statement also holds for N ′ not normal.

5.8 Solvable groups

Recalling the preface, solvable groups get their name from Galois theory treated in the
next chapter. It is a beautiful fact that they can be independently motivated starting from
the following question. Can we make a group G abelian by somehow minimally mod-ing
out non-commuting elements, that is, find a minimal N ◁G such that G/N is abelian?

Definition 5.8.1. Let G be a group. The commutator of x, y ∈ G is

[x, y] ∶= xyx−1y−1.

The commutator group of G is the subgroup

[G,G] ∶= ⟨[x, y] ∣ x, y ∈ G⟩.

Remark 5.8.2. Let G be a group and x, y ∈ G.

1. xy = yxx−1y−1xy = yx[x−1, y−1], [y, x]xy = yx, [x, y]−1 = [y, x].

2. Hence, [G,G] equals the set of products of commutators.

3. G is abelian if and only if [G,G] = {1}.

Remark 5.8.3. It is not so easy to find groups G such that [G,G] contains non-commuta-
tors. A known example is the free group with 2 generators (see Definition 5.5.8); the
smallest example has order 96.

Theorem 5.8.4. Let G be a group and N ◁G. Then [G,G] ◁G and, G/N is abelian if
and only if [G,G] ⊆ N . In particular, the abelianization G/[G,G] is abelian.

Proof. To see [G,G] ◁G, let x, y, z ∈ G. Then

z[x, y]z−1 = zxyx−1y−1z−1 = zxz−1zyz−1 zx−1z−1 zy−1z−1 zz−1 = [zxz−1, zyz−1] ∈ [G,G].

By the remark, every x ∈ [G,G] is a finite product x = x1⋯xn of commutators xi. By the
above, zxz−1 = zx1z−1zx2z−1z⋯z−1zxnz−1 is a product of commutators, so zxz−1 ∈ [G,G].

AssumeG/N is abelian. Then πN([x, y]) = πN(x)πN(y)πN(x)−1πN(y)−1 = 1G/N . Hence,
[x, y] ∈ N for all x, y ∈ G, so [G,G] ⊆ N .

Assume [G,G] ⊆ N . Then xNyN = xyN = yx[x−1, y−1]N = yxN = yNxN .
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Exercise 5.8.5 (Universal property). Let φ ∶ G→ G′ be a group homomorphism where G′

is abelian. Then there is exactly one homomorphism φ̄ ∶ G/[G,G] → G′ with φ = φ̄○π[G,G].

Example 5.8.6. Let n > 1. Then [Sn, Sn] = An.

Proof. As An◁ Sn has index 2, Sn/An ≅ C2 is abelian, so [Sn, Sn] ⊆ An by the theorem.
For n = 2, A2 = {1} ⊆ [S2, S2]. For n > 2, An ⊆ [Sn, Sn] because An is generated by the

3-cycles (ijk) (Example 5.3.7) and (ijk) = (jk)(ij)(jk)(ij) = [(jk), (ij)] ∈ [Sn, Sn].

Example 5.8.7. [A2,A2] = [A3,A3] = {1}, [A4,A4] ≅K4, and [An,An] = An for n > 4.

Proof. A2 is trivial, A3 has order 3!/2 = 3, so is isomorphic to C3 (Proposition 5.3.18), hence
abelian. For n = 4, consider K ′4 ◁ A4 from Example 5.6.12 (5); it has index (4!/2)/4 = 3
in A4, so A4/K ′4 ≅ C3 is abelian; by the theorem, [A4,A4] ⊆ K ′4. Conversely, note K ′4
contains (the identity and) products of two disjoint transpositions (ij)(kℓ) and

(ij)(kℓ) = (ijk)(ijℓ)(kji)(ℓji) = [(ijk), (ijℓ)] ∈ [A4,A4].

For n > 4, it suffices to show every 3-cycle is a commutator of 3-cycles (Example 5.3.7):

(123) = (124)(135)(421)(531) = [(124), (135)].

Remark 5.8.8. Let G be a group. Then

G(0) ∶= G ▷ G(1) ∶= [G(0),G(0)] ▷ G(2) ∶= [G(1),G(1)] ▷ G(3) ∶= [G(2),G(2)] ▷⋯

and allG(k)/G(k+1) are abelian. IfG is finite, this series eventually stabilizes, i.e., G(k)=G
(k+1)
=

⋯ for some k. Does it stabilize with the trivial {1} or something bigger?

Definition 5.8.9. A group G is solvable if G(k) = {1} for some k ∈ N.

Example 5.8.10. S2, S3, S4 are solvable, and Sn is not solvable for n > 4. Same for An.
In fact, for G = S2, S3, S4 and G = Sn with n > 4 the sequences G(0)▷G(1)▷G(2)▷⋯ read

S2▷{1} S3▷A3▷{1} S4▷A4▷K
′

4▷{1} Sn▷An▷An▷⋯

Remark 5.8.11.

1. Abelian groups G are solvable (G(1) = {1}). In particular, groups of prime order are
solvable (Proposition 5.3.18). Later we find ourselves able to prove that also groups
of order a prime power are solvable (Corollary 5.13.13).

2. Non-abelian simple groups G are not solvable. Using Example 5.6.27, we see again
that An is not solvable for n > 4.

Indeed, [G,G] ◁G and [G,G] ≠ {1} implies [G,G] = G, so G(k) = G for all k ∈ N.
3. Subgroups U of solvable groups G are solvable.

Say, G(k) = {1}. By Exercise 5.8.12 below with φ = idU ∶ U → G we have U (k) ⊆ G(k),
so U (k) = {1}.
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Exercise 5.8.12. Let φ ∶ G→H be a group homomorphism. Then for all k ∈ N:

φ(G(k)) = φ(G)(k) ⊆H(k).

Lemma 5.8.13. Let G be a group and N ◁G. Then G is solvable if and only if both N
and G/N are solvable.

Proof. ⇒∶ assume G is solvable, say G(k) = {1}. We just remarked, N is solvable. To see
G/N is solvable use Exercise 5.8.12 with φ ∶= πN :

(G/N)(k) = πN(G)
(k) = πN(G

(k)) = πN({1G}) = {1G/N}.

⇐: say, (G/N)(k) = {1G/N} = {N}. By Exercise 5.8.12, πN(G(k)) = πN(G)(k) =
(G/N)(k) = {N} and hence G(k) ⊆ N . By Remark 5.8.11 (3), G(k) is solvable. Thus,
there is ℓ ∈ N such that {1} = (G(k))(ℓ) = G(k+ℓ).

Example 5.8.14. Let n > 0. The dihedral group Dn is solvable.

Proof. D1,D2 are abelian. For n > 2, we haveR◁Dn for the abelian subgroup of rotationsR
(of index 2). Both R and Dn/R (order 2) are abelian, so solvable.

TheG(k) of a solvable groupG from a so-called subnormal series; “sub” because possibly
some G(k) /◁ G. The following is sometimes taken as a definition of solvability.

Theorem 5.8.15. Let G be a group. Then G is solvable if and only if there exist ℓ ∈ N
and a subnormal series of G (of length ℓ)

{1} = N0◁N1◁⋯◁Nℓ = G

with abelian factors Nk+1/Nk for k < ℓ.

Proof. ⇒ is trivial. ⇐: it suffices to show that G(k) ⊆ Nℓ−k for all k ⩽ ℓ. This is trivial for
k = 0. Inductively assume k < ℓ and G(k) ⊆ Nℓ−k. Then

G(k+1) = [G(k),G(k)] ⊆ [Nℓ−k,Nℓ−k] ⊆ Nℓ−(k+1),

where the last ⊆ follows from Theorem 5.8.4 because Nℓ−k/Nℓ−(k+1) is abelian.

Example 5.8.16. We saw the subnormal series {1}◁K ′4◁A4 of A4 with factors of order
4 and (4!/2)/4 = 3. This can be “refined” to {1}◁{1, (12)(34)}◁K ′4◁A4 with factors of
prime orders 2, 2 and 3. Recall, prime order implies abelian (Proposition 5.3.18).

Theorem 5.8.17. A finite solvable group has a subnormal series with factors of prime
order.
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Proof. Let G be a finite solvable group. Then it has a subnormal series of some length ℓ as
in the previous theorem. We can assume Nk ≠ Nk+1 for all k < ℓ. Assume there is 0 < k ⩽ ℓ
such that Nk/Nk−1 does not have prime order. Lets us assume k = ℓ and write N ∶= Nℓ−1.
We claim that there exists N ◁N ′◁G such that N ′/N has prime order.

The theorem follows: note N ′/N is abelian (prime order) and G/N ′ ≅ (G/N)/(N ′/N)
(3rd isomorphism theorem) is abelian as a factor of an abelian group. Hence, we can
just repeat ‘inserting’ such N ′ until all factors have prime order. To see this eventually
succeeds, note the index drops: [G ∶ N ′] = [G ∶ N]/[N ′ ∶ N] < [G ∶ N].

We are left to prove the claim: as G ≠ N we have [G ∶ N] > 1. Let p be a prime divisor
of [G ∶ N ′]. By Proposition 5.6.13, G/N has a subgroup Ũ of order p. Then Ũ ◁G/N as
G/N is abelian. Let N ′ ∶= π−1N (Ũ). Then N ′ ◁G by Lemma 5.7.1 and ker(πN) = N ⊆ N ′.

Then N ◁N ′ and N ′/N ≅ Ũ by the 1st isomorphism theorem.

Example 5.8.18. The subnormal series {I2} ◁ {±I2} ◁ SL(2,R) ◁GL(2,R) has a non-
abelian factor and cannot be refined: one can show that {±I2} is the only non-trivial
normal subgroup of SL(2,R). Instead of R this holds for every field Fq of size q > 3.

As an exercise, show GL(2,Fq) has size (q3 − q)(q − 1) and SL(2,Fq) has size q3 − q.

5.9 Direct products

Products of groups are defined just like products of rings (cf. Lemma 2.5.10):

Definition 5.9.1. Let r > 1 and G1, ...,Gr be groups. Then their direct product G1×⋯×Gr

is the group with ⋅ defined for (x1, ..., xr), (y1, ..., yr) ∈ G1 ×⋯ ×Gr as follows:

(x1, ..., xr) ⋅ (y1, ..., yr) ∶= (x1 ⋅ y1, ..., xr ⋅ yr).

If all Gi are the same group G we write Gr for the direct product. For additively written
Gi the direct product is written G1 ⊕⋯⊕Gr and called direct sum.

Remark 5.9.2.

1. Above xi ⋅ yi refers to the group operation of Gi. (G1 × ⋯ × Gr, ⋅) is a group with
neutral element (1G1 , ...,1Gr) and inverses (x1, ..., xr)−1 = (x−11 , ..., x

−1
r ).

2. × is associative and commutative in the sense that G0×(G1×G2) ≅ (G0×G1)×G2 and
G1×G2 ≅ G2×G1. Sloppily, we shall not notationally distinguish products G1×⋯×Gr

parenthesized in various ways. E.g., we do not distinguish G5 and G2 ×G3.

3. For every 1 ⩽ i ⩽ r, the projection πi given by πi(x1, ..., xr) ∶= xi is an epimorphism
from G1 ×⋯ ×Gr onto Gi. The kernel is

ker(πi) = {(x1, ..., xr) ∣ xi = 1Gi}◁G1 ×⋯ ×Gr,

and G1 ×⋯ ×Gk/ker(πi) ≅ Gi (1st isomorphism theorem).
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4. For every 1 ⩽ i ⩽ r, we have a monomorphism from Gi into G1 ×⋯ ×Gr:

x↦ (1G1 , ...,1Gi−1 , x,1Gi+1 , ...,1Gr).

The image of this map is a normal subgroup of G1 ×⋯ ×Gr.

5. If φi ∶ Gi ≅ G′i for all i, then G1 ×⋯ ×Gr ≅ G′1 ×⋯ ×G
′

r via

(x1, ..., xr) ↦ (φ1(x1), ..., φr(xr)).

6. G1 ×⋯ ×Gr is abelian if and only if every Gi is abelian.

Examples 5.9.3. Our definitions click: Zr defined as the additive group of the ring Zr
equals Z⊕⋯⊕Z (r times) defined above. In particular, K4 = Z2 ⊕Z2 ≅ C2 ×C2.

Also note that Corollary 2.5.11 states Znm ≅ Zn ⊕Zm for coprime n,m.

Exercise 5.9.4. Let G1,G2 be finite groups of coprime orders. Show every subgroup H
of G1 ×G2 has the form H1 ×H2 for subgroups Hi of Gi.

Show the coprimality assumption cannot be omitted.

Exercise 5.9.5. Let G1,G2 be cyclic groups. When is G1 ×G2 cyclic?

Exercise 5.9.6. Let G1, ...,Gr be groups and Ni◁Gi for i = 1, ..., r. Then

N ′ ∶= N1 ×⋯ ×Nr ◁G1 ×⋯ ×Gr =∶ G
′ and G′/N ′ ≅ G1/N1 ×⋯ ×Gr/Nr.

Theorem 5.9.7 (Universal property). Let G1,G2 be groups. Then G1 ×G2 is up to iso-
morphism the unique group satisfying:

1. there are epimorphisms φ1 ∶ G1 ×G2 → G1 and φ2 ∶ G1 ×G2 → G2.

2. if G′ is a group and ψ1 ∶ G′ → G1 and ψ2 ∶ G′ → G2 are homomorphisms, then there
is exactly one homomorphism Φ ∶ G′ → G1 ×G2 such that ψ1 = φ1 ○Φ and ψ2 = φ2 ○Φ.

Proof. G1×G2 has properties (1) and (2): for (1) take φi ∶= πi. For (2), given G′, ψ1, ψ2 the
equations force to set Φ(x) ∶= (ψ1(x), ψ2(x)) for x ∈ G′. This is indeed a homomorphism
from G′ to G1 ×G2.

Let H be a group satisfying (1) and (2). Apply (2) for H with G′ ∶= G1 × G2 and
πi ∶ G′ → Gi. This gives a homomorphism Φ ∶ G′ →H with πi = φi ○Φ.

We show Φ is bijective. Since G1×G2 satisfies (2) we get Φ̂ ∶H → G1×G2 with φi = πi○Φ̂.
Then

πi ○ Φ̂ ○Φ = φi ○Φ = πi

It follows that Φ̂○Φ = idG1×G2 . Hence Φ is surjective. To see injectivity, assume Φ(x1, x2) =
1H for (x1, x2) ∈ G1 × G2; then xi = πi(x1, x2) = φi(Φ(x1, x2)) = φi(1H) = 1Gi . Hence,
(x1, x2) is the neutral element of G1 ×G2.

When is G isomorphic to U1 ×U2 for subgroups U1, U2 of G?
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Lemma 5.9.8. Let G be a group and U,V be subgroups satisfying uv = vu for all u ∈ U, v ∈
V . Then UV is a subgroup of G and the following are equivalent:

1. (u, v) ↦ uv is an isomorphism from U × V onto UV ;

2. for every x ∈ UV there is a unique pair (u, v) ∈ U × V with uv = x;

3. U ∩ V = {1}.

Proof. UV is a subgroup by Exercise 5.6.10; directly: let u0v0, u1v1 ∈ UV with u0, u1 ∈ U
and v0, v1 ∈ V ; then u0v0(u1v1)−1 = u0v0v−11 u

−1
1 = u0v0u

−1
1 v
−1
1 = u0u

−1
1 v0v

−1
1 ∈ UV.

Let φ denote the map in (a); it is a homomorphism:

φ((u0, v0)(u1, v1)) = φ(u0u1, v0v1) = u0u1v0v1 = u0v0u1v1 = φ(u0, v0)φ(u1, v1).

φ is obviously surjective. (2) states injectivity, so (1) and (2) are equivalent. We show
injectivity, i.e., ker(φ) = {(1,1)} is equivalent to (3 ).
⇐: let (u, v) ∈ ker(φ), i.e., uv = 1; then u = v−1, so both u ∈ V and v−1 ∈ U , so

u, v ∈ U ∩ V = {1}, so (u, v) = (1,1).
⇒: if x ∈ U ∩ V , then (x,x−1) ∈ ker(φ) = {(1,1)}, so x = 1.

Example 5.9.9. S3 has the subgroups U ∶= {1, (12)} and V ∶= {1, (13)}. Then UV =
{1, (12), (13), (132)} is not a subgroup of S3 as (13)(12) = (123) ∉ UV .

Theorem 5.9.10. Let G be a group and let N,N ′◁G satisfy NN ′ = G and N ∩N = {1}.
Then (n,n′) ↦ nn′ is an isomorphism from N ×N ′ onto G.

We say G is the inner direct product of N and N ′.

Proof. We check the assumption of the lemma: for n ∈ N,m ∈ N ′ we have nmn−1m−1 is
in nN = N because mn−1m−1 ∈ N by N ◁G. But also nmn−1m−1 ∈ N ′m−1 = N ′ because
nmn−1 ∈ N ′ by N ′◁G. Hence, nmn−1m−1 ∈ N ∩N ′ = {1}, so nm =mn.

Exercise 5.9.11. G1 × G2 is the inner direct product of G′1 ∶= G1 × {1G2} and G′2 ∶=
{1G1} ×G2. Every group G is the inner product of its trivial subgroups {1G} and G.

Remark 5.9.12. Let r > 1. A group G is the inner direct product of N1, ...,Nr ◁ G if
(n1, ..., nr) ↦ n1⋯nr is an isomorphism from N1 ×⋯ ×Nr onto G.

Similarly to the theorem, one can show that this is the case if and only if N1⋯Nr = G,
and Ni ∩N1⋯Ni−1Ni+1⋯Nr = {1} for all 1 ⩽ i ⩽ r.

Example 5.9.13. That an abelian group (G,+) has Z-basis (x1, ..., xr) means that G is
the inner direct sum of ⟨x1⟩, ..., ⟨xr⟩.

5.10 Semidirect products

Given a group G to analyze, it is good information finding out that every x ∈ G can be
uniquely written x = u1u2 for elements u1, u2 of proper subgroups U1, U2. If U1, U2 are both
normal, Theorem 5.9.10 tells us that G decomposes as U1 ×U2. What can we say about G
if only one of U1, U2 is normal? This is what actually happens:
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Example 5.10.1. Recall Theorem 5.1.17 and consider Dn for n > 2. The subgroup N ∶=
{Rk2π/n ∣ 1 ⩽ k ⩽ n} is normal and the subgroup U ∶= {I2, S0} is not (e.g., R2π/3S0R−12π/3 =

R4π/3S0 ∉ U). We saw NU =Dn and N ∩U = {I2}.
But Dn is not the inner product of N and U – e.g. use Remark 5.9.2 (4): Dn is not

abelian while both N and U are. Or note in an inner product we would have for k, k′ < n,
and b, b′ < 1 that Rk⋅2π/nS

b
0 ⋅Rk′⋅2π/nS

b′
0 = R(k+k′)⋅2π/n ⋅ S

b
0S

b′
0 which is not true.

Example 5.10.2. Let n > 0 and recall Corollary 5.1.11. The group of isometries I(n,R) has
as subgroups the set of translations N ∶= T(n,R) ∶= {ta ∣ a ∈ Rn} and the set of orthogonal
linear maps U ∶= O(n,R) (using the same symbol as for the representing matrices). Then
Theorem 5.1.9 states that I(n,R) = NU and, obviously, N ∩U = {idRn}.

N is easily checked to be normal nut U is not: (ta)−1φta = t−a+φ(a)φ ∉ U unless a = φ(a).
Clearly, I(n,R) is not the inner product of N and U . This would mean that (taφ)(tbψ) =
tatbφψ – nonsense.

Remark 5.10.3. Assume G = NU,N ∩ U = {1} for subgroups N,U ⊆ G, i.e., every x ∈ G
can be uniquely written as x = nu with n ∈ N,u ∈ U . If both N,U ◁G then G is the inner
product of N,U and we have

nu ⋅ n′u′ = nn′ ⋅ uu′.

In the examples above only N is normal. We can, however, always write

nu ⋅ n′u′ = n ⋅ un′u−1 ⋅ uu′.

Here, n′ gets conjugated with u, i.e., moved by the inner automorphism determined by u
(cf. Definition 5.1.18). Let’s turn this into a definition.

Recall, (Aut(G), ○) is the automorphism group of a group G (Exercise 1.1.24).

Definition 5.10.4. Let G1,G2 be groups, and Φ ∶ G2 → Aut(G1) an homomorphism. The
semidirect product of G1 and G2 wrt Φ, denoted

G1 ⋊Φ G2,

is the set G1 ×G2 together with the operation ⋅ given by

(x1, x2) ⋅ (y1, y2) ∶= (x1Φx2(y1), x2y2)

for all (x1, x2), (y1, y2) ∈ G1 ×G2; here, we write Φx2 ∶= Φ(x2).

Remark 5.10.5. If Φ is constantly idG1 ∈ Aut(G1), then G1 ⋊Φ G2 = G1 ×G2.

Lemma 5.10.6. Let G1,G2 be groups, and Φ ∶ G2 → Aut(G1) an homomorphism. Then
G1 ⋊Φ G2 is a group with neutral element (1G1 ,1G2) and for all (x1, x2) ∈ G1 ×G2:

(x1, x2)
−1 = (Φx−12

(x−11 ), x
−1
2 ).
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Proof. For the neutral element note Φ1G2
= idG1 and Φx(1G1) = 1G1 for all x ∈ G2; hence,

(x1, x2) ⋅ (1G1 ,1G2) = (x1Φx2(1G1), x21G2)) = (x1, x2),

(1G1 ,1G2) ⋅ (x1, x2) = (1G1Φ1G2
(x1),1G2x2) = (x1, x2).

For the inverse note Φx ○ Φx−1 = idG1 for all x ∈ G2 and Φx(y)Φx(y−1) = Φx(yy−1) =
Φx(1G1) = 1G1 for all y ∈ G1; hence,

(x1, x2) ⋅ (Φx−12
(x−11 ), x

−1
2 ) = (x1Φx2(Φx−12

(x−11 )), x2x
−1
2 ) = (x1x

−1
1 , x2x

−1
2 ) = (1G1 ,1G2),

(Φx−12
(x−11 ), x

−1
2 ) ⋅ (x1, x2) = (Φx−12

(x−11 )Φx−12
(x1), x

−1
2 x2) = (1G1 ,1G2)

To verify associativity let (x1, x2), (y1, y2), (z1, z2) ∈ G1 ×G2. Then

((x1, x2)(y1, y2))(z1, z2) = (x1Φx2(y1), x2y2)(z1, z2) = (x1Φx2(y1)Φx2y2(z1), x2y2z2),

(x1, x2)((y1, y2)(z1, z2)) = (x1, x2)(y1Φy2(z1), y2z2) = (x1Φx2(y1Φy2(z1)), x2y2z2).

But Φx2(y1)Φx2y2(z1) = Φx2(y1)Φx2(Φy2(z1)) = Φx2(y1Φy2(z1)).

Proposition 5.10.7. Let G1,G2 be groups, and Φ ∶ G2 → Aut(G1) an homomorphism.
Then G1⋊ΦG2 is abelian if and only if both G1 and G2 are abelian and Φ is constantly idG1.

Proof. ⇒: assume G1 ⋊Φ G2 is abelian. Clearly, G2 is abelian. For G1, let x, y ∈ G1. Then
(x,1G2) ⋅ (y,1G2) = (xΦ1G2

(y),1G21G2) = (xy,1G2) since Φ1G2
= idG1 . By assumption, this

equals (y,1G2) ⋅ (x,1G2) = (yΦ1G2
(x),1G21G2) = (yx,1G2). Thus, xy = yx.

We show Φy(x) = x for all y ∈ G2, x ∈ G1. Note (1G1 , y) ⋅ (x,1G2) = (Φy(x), y). Since
G1 ⋊Φ G2 is abelian, this equals (x,1G2) ⋅ (1G1 , y) = (xΦ1G2

(1G1), y) = (x, y).
⇐: by Remarks 5.10.5 and 5.9.2 (4).

Example 5.10.8. There exists a non-abelian group of order 2025.

Proof. Z45 ⋊Φ Z45 is non-abelian for a non-constant homomorphism Φ ∶ Z45 → Aut(Z45).
Does such Φ exist? By Exercise 2.6.5, Aut(Z45) ≅ Z×45 has order φ(32 ⋅ 5) = 3(3 − 1)(5 − 1)
(Theorem 2.6.10). Proposition 5.6.13 gives ψ ∈ Aut(Z45) of order 3 (indeed, 16 has order 3
in Z×45). Since 3 ∣ 45 there is a (unique) Φ mapping 1̄ to ψ.

Exercise 5.10.9. Construct a non-abelian group of order 2015.

Exercise 5.10.10. Let G1,G2 be groups, and Φ ∶ G2 → Aut(G1) an homomorphism. Show
N ∶= G1×{1G2}, U ∶= {1G1}×G2 are subgroups of G1⋊ΦG2, N is normal, and NU = G1⋊ΦG2.

Exercise 5.10.11. Let G1,G2 be groups, and Φ,Ψ ∶ G2 → Aut(G1) be monomorphisms
with the same image. Then G1 ⋊Φ G2 ≅ G1 ⋊Ψ G2.

Exercise 5.10.12. Assume G1,G2 be groups, Φ ∶ G2 → Aut(G1) an homomorphism, and
φ1 ∶ G1 ≅ G′1, φ2 ∶ G2 ≅ G′2. Determine Ψ, ψ with ψ ∶ G1 ⋊Φ G2 ≅ G′1 ⋊Ψ G

′

2.
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Theorem 5.10.13. Let G be a group, N ◁G and U a subgroup and assume NU = G and
N ∩U = {1G}. Then (n,u) ↦ nu is an isomorphism from N ⋊U onto G.

Here, ⋊ stands for ⋊Φ where Φ ∶ U → Aut(N) maps u ∈ U to conjugation by u, i.e.,
Φu ∶ N → N is n↦ unu−1. We say G is the inner semidirect product of N and U .

Proof. Note Φu permutes N because N ◁G, so Φu ∈ Aut(N). Let Ψ denote (n,u) ↦ nu.
We verify it is a homomorphism: for (n1, u1), (n2, u2) ∈ N ×U ,

Ψ((n1, u1)(n2, u2)) = Ψ(n1Φu1(n2), u1u2) = Ψ(n1u1n2u
−1
1 , u1u2)

= n1u1n2u
−1
1 u1u2 = n1u1n2u2 = Ψ(n1, u1)Ψ(n2, u2).

Ψ is surjective by NU = G. Injective: if Ψ(n,u) = nu = 1G, then n = u−1 ∈ U , so n ∈ N ∩U =
{1G}. Hence, n = 1G and u = nu = 1G, so (n,u) = (1G,1G).

Example 5.10.14. Recall Example 5.10.2 and let n > 0. Then I(n,R) is the inner semidi-
rect product of T(n,R) and O(n,R).

Example 5.10.15. Recall Example 5.10.1 and let n > 1. Dn is the inner semidirect product
of N ∶= {Rk2π/n ∣ k = 1, ..., n} and U ∶= {I2, S0}. Since N ≅ Cn and U ≅ C2 we get

Dn ≅ Cn ⋊Φ C2

for a certain Φ ∶ C2 → Aut(Cn) by Exercise 5.10.12. Concretely: note S0Rk2π/nS
−1
0 = R

−1
k2π/n

,
i.e., conjugation with S0 gives the inverse in N . Since N ≅ Cn via Rk2π/n ↦ ζk and U ≅ C2

via I2, S0 ↦ 1,−1 we can define Φ setting Φ1 ∶= idCn and Φ−1 to be x↦ x−1.
If n = 2, then x = x−1, so Φ is constant and D2 ≅ C2 ×C2 ≅K4 (Remark 5.10.5).

Exercise 5.10.16. For n > 1, Sn is the inner semidirect product of An and {1, (12)}.

Remark 5.10.17. To express that G is the inner (semi)direct product of N,U it is unfor-
tunately quite common to use the notations G = N⋊U and G = N×U . This notation creates
a confusing ambiguity of the equality symbol: the same statement also expresses that G
equals a set of pairs, namely the product of N,U according to Definitions 5.9.1, 5.10.4.
For distinction it is common to express the latter saying G is the outer (semi)direct pro-
duct of N,U . But thereby one only escalates the confusion because only one (semi)direct
product operation is defined. We avoid all these notations and modes of speech.

5.11 Finitely generated abelian groups

In this section we use additive notation for groups unless stated otherwise.

Definition 5.11.1. Let G be an abelian group. The torsion subgroup of G is

T (G) ∶= {x ∈ G ∣ ord(x) ≠ ∞}.

G is a torsion group if T (G) = G. It is torsion-free if T (G) = {0} (cf. Exercise 5.4.2).
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Remark 5.11.2. T (G) is a subgroup of G and G/T (G) is torsion-free.

Proof. 1st statement: let x, y ∈ T (G) have orders n,m ∈ N, i.e., nx = 0,my = 0. Then
m(−y) = 0 and nm(x − y) = 0, so x − y ∈ T (G).

2nd statement: assume x+T (G) ∈ G/T (G) has order n ∈ N; then T (G) = n(x+T (G)) =
nx + T (G), so nx ∈ T (G), say mnx = 0, so x ∈ T (G), so x + T (G) = T (G).

Example 5.11.3.

1. Above it is crucial that G is abelian: in I(2,R) (multiplicative notation), s0 is the
reflection at line y = 0, and s1 ∶= t(0,1)s0t

−1
(0,1)

the reflection at line y = 1. Then s0, s1
have order 2 and s0s1 = t−(0,2) has infinite order.

2. Let n > 1. Zn is torsion-free, Zn is a torsion group.

3. Let r, s ∈ N and n1, ..., ns > 1. Then (forgetting about parentheses)

T (Zr ⊕Zn1 ⊕⋯⊕Zns) = {0}r ⊕Zn1 ⊕⋯⊕Zns ≅ Zn1 ⊕⋯⊕Zns .

4. (Q/Z,+) is a torsion group with infinite exponent.

Indeed: b ⋅ (a/b+Z) = 0+Z for a, b ∈ Z, b > 0, so ord(a/b+Z) ⩽ b, and ord(1/b+Z) = b.

Kronecker classified finite abelian groups 1870, generalizing a result from Gauß’ Dis-
quisitiones Arithmeticae 1801. The following is due to Poincaré 1900:

Theorem 5.11.4 (Classification of finitely generated abelian groups). Let G be a finitely
generated abelian group. Then there exists unique naturals r, s ∈ N and invariant factors
d1, ..., ds > 1 with di ∣ di+1 for all i < s such that

G ≅ Zr ⊕Zd1 ⊕⋯⊕Zds .

Moreover, ds is the exponent of T (G) and r is the rank of the finitely generated free abelian
group G/T (G), called rank of G.

Proof. If G is generated by a set of cardinality t, then there is a surjective homomorphism
from Zt onto G (Remark 5.3.4 (2)). Let U be its kernel, so G ≅ Zt/U by the 1st isomorphism
theorem. By Theorem 5.4.9, there is a Z-basis x̄ = (x1, ..., xt) of Zt and s ⩽ t and positive
d1 ∣ ⋯ ∣ ds such that (d1xt−s+1, ..., dsxt) is a Z-basis of U .

The coordinate map wrt to x̄ (Remark 5.4.4) maps U onto V ∶= {0}r ⊕ d1Z ⊕⋯⊕ dsZ
where r ∶= t − s. Then G ≅ Zt/V , so by Exercise 5.9.6

G ≅ Zr ⊕Zd1 ⊕⋯⊕Zds =∶ G′.

We can assume d1 > 1. Then T (G′) = {0}r⊕Zd1 ⊕⋯⊕Zds . Thus, G/T (G) ≅ G′/T (G′) ≅ Zr
(Exercise 5.9.6) is free of rank r. Since T (G) ≅ Zd1⊕⋯⊕Zds and d1 ∣ ⋯ ∣ ds, we have dsx = 0
for all x ∈ T (G) satisfy dsx = 0. Since (0, ...,0,1) has order ds, we have exp(T (G)) = ds.

We show that r, s and the di are unique. Assume G ≅ Zr′ ⊕ Ze1 ⊕ ⋯ ⊕ Zes′ where
e1 ∣ ⋯ ∣ es′ are > 1. Then r = r′ = rank of G/T (G) . Hence Ze1 ⊕⋯⊕ Zes′ ≅ Zd1 ⊕⋯⊕ Zds .
Then es′ = ds = exp(T (G)) and the sums without the last factor are isomorphic; they have
exponent ds−1 and es′−1, so ds−1 = es′−1. Continuing like this gives s = s′ and di = ei.
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Corollary 5.11.5. Let n, d > 1 and G an abelian group of order n. If d ∣ n, then G has a
subgroup of order d.

Proof. We can assume G = Zd1⊕⋯⊕Zds where d1 ∣ ⋯ ∣ ds. Then we can write d = e1⋯es with
ei ∣ di. By Theorem 5.3.21 (1), there is a subgroup Ui of Zdi of order ei. Then U1 ⊕⋯⊕Us
is a subgroup of G of order d.

Example 5.11.6. Above, the subgroup is not necessarily unique: {0} ⊕ Z2 and Z2 ⊕ {0}
are distinct subgroups of Z2 ⊕Z2.

2nd proof of Corollary 5.3.25. In the classification for G we have r = 0 as G is finite. Then
ds = exp(T (G)) = exp(G). Clearly, xds = 1 for all x ∈ G. In other words, every x ∈ G is a
root of Xds −1 ∈K[X]. Since there are ⩽ ds roots, ∣G∣ ⩽ ds. By Exercise 5.3.27, G contains
an element of order ds, so G is cyclic.

Exercise 5.11.7. Let G be a finitely generated abelian group. Then G is free if and only
if it is torsion-free. G is finite if and only if it is a torsion group.

Exercise 5.11.8. Subgroups of finitely generated abelian groups are finitely generated.

Remark 5.11.9 (Burnside problem). One defines non-abelian torsion groups analogously.
Burnside asked 1902 whether all finitely generated torsion groups are finite. In 1964 Golod
and Shafarevich finally answered “no”. Even finitely generated groups with finite exponent
can be infinite (Novikov, Adian 1968), and so-called Tarski monsters are striking examples
(Olshanskii 1979). Which finite exponents can appear is not fully understood.

5.11.1 Finite abelian groups

Finite abelian groups of a given order are products of certain Zq’s. Which ones? The
answer is not much more than notational warfare:

Definition 5.11.10. A partition of k ∈ N is a tuple ℓ̄ = (ℓ1, ..., ℓs) ∈ Nr for some r > 0 such
that 0 < ℓ1 ⩽ ... ⩽ ℓs and k = ℓ1 + ⋯ + ℓs. A partition of (k1, ..., kr) ∈ Nr for some r > 0 is a
tuple π ∶= (ℓ̄1, ..., ℓ̄r) such that ℓ̄i is a partition of ki.

For n > 1 with prime factorization pk11 ⋯p
kr
r let P(n) be the set of partitions of (k1, ..., kr).

For π = (ℓ̄1, ..., ℓ̄r) ∈ P(n) and writing ℓ̄i = (ℓi1, ..., ℓisi) define the group

Gπ ∶= Zpℓ111
⊕⋯⊕Z

p
ℓ1s1
1

⊕ ⋯ ⋯ ⊕Z
p
ℓr1
r
⊕⋯⊕Z

p
ℓrsr
r

.

Theorem 5.11.11 (Classification of finite abelian groups). Let n > 1. Every abelian group
of order n is isomorphic to Gπ for exactly one π ∈ P(n).

Proof. Let n = pk11 ⋯p
kr
r be the prime factorization. We first show that the Gπ are pairwise

non-isomorphic. Assume Gπ ≅ Gπ′ for π,π′ ∈ P(n). Write π = (ℓ̄1, ..., ℓ̄s), π′ = (ℓ̄′1, ..., ℓ̄
′

s′)
and ℓ̄i = (ℓi1, ..., ℓisi) and ℓ̄

′

i = (ℓ
′

i1, ..., ℓ
′

is′i
). Abbreviate

qij ∶= p
ℓij
i , q′ij ∶= p

ℓ′ij
i .
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Let 1 ⩽ i ⩽ r. We have to show si = s′i and ℓ̄i = ℓ̄
′

i. The elements of Gπ whose order is a
power of pi is a subgroup (use Lemma 5.3.9 (4)) isomorphic to Gi ∶= Zqi1 ⊕⋯⊕ Zqisi . The
isomorphism from Gπ onto Gπ′ maps this subgroup onto the elements of Gπ′ whose order is
a power of pi. This is isomorphic to G′i ∶= Zq′i1 ⊕⋯⊕Zq′is′

i

. Since ℓij, j ⩽ si, is nondecreasing,

exp(Gi) = qisi . Similarly, exp(G′i) = q
′

is′i
. By isomorphism, ℓisi = ℓ

′

is′i
. Thus, deleting the

last factors, the groups stay isomorphic. Continuing gives si = s′i and ℓ̄i = ℓ̄
′

i.
We now show every abelian group G of order n is isomorphic to Gπ for some π ∈ P(n).

We know G ≅ Zd1 ⊕⋯⊕Zds where the dj are the invariant factors. Write dj = p
ℓ1j
1 ⋯p

ℓrj
r for

certain ℓ1j, ..., ℓrj ⩾ 0 and primes p1, ..., pr. Set

F (i, j) ∶= {
Z
p
ℓij
i

if ℓij ≠ 0,

{0} if ℓij = 0.

By Corollary 2.5.11, Zdj ≅ F (1, j) ⊕⋯⊕ F (r, j). Hence G is isomorphic to the direct sum
of the direct sums of the columns of

F (1,1) ⋯ F (1, s)
⋮ ⋱ ⋮

F (r,1) ⋯ F (r, s)

Shuffling factors, G is isomorphic to the direct sum of the direct sums of the rows. If we
omit factors {0} (namely F (i, j) with ℓij = 0) this product equals Gπ for some π ∈ P(n).
Indeed: write ℓ̄i ∶= (ℓi1, ..., ℓis); since n = d1⋯ds we have ki = ℓi1+⋯+ℓis; further, ℓi1 ⩽ ⋯ ⩽ ℓis
because d1 ∣ ⋯ ∣ ds. Take π to be (ℓ̄1, ..., ℓ̄r) with all ℓij = 0 deleted.

Exercise 5.11.12 (Interpretation of the si). Let G be an abelian group, additively written,
and p, n ∈ N with p prime. Let Fp ∶= Zp denote the p-element field. Let pG ∶= {px ∣ x ∈ G}.

1. G/pG is in a natural way a vector space over Fp.
2. If G is finite and p ∤ ∣G∣, then G/pG is trivial.

3. If p ∣ n, then Zn/pZn is isomorphic to Zp.
4. If G = Zn1 ⊕⋯⊕Zns for certain ni > 0, then the dimension of the vector space G/pG

equals the number of ni that are divisible by p.

Corollary 5.11.13 (Primary decomposition). Let G be a finitely generated abelian group.
Then

G ≅ Zr ⊕Zq1 ⊕⋯⊕Zqt
for unique naturals r, t ∈ N and some sequence (q1, ..., qt) of (not necessarily distinct) prime
powers; the sequence is unique up to re-indexing.

Proof. Replace in Theorem 5.11.4 the factor Zd1 ⊕ ⋯ ⊕ Zds by the isomorphic Gπ. This
has the required form. Any presentation of the desired form has Zq1 ⊕⋯⊕Zqt isomorphic
to Gπ, so the factors Zqi are those of Gπ.
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Exercise 5.11.14. Every simple finite abelian group is isomorphic to Zp for a prime p.

Corollary 5.11.15. Let n > 1 have prime factorization n = pk11 ⋯p
kr
r . For k ∈ N let p(k) be

the number of partitions of k. Then there are exactly p(k1)⋯p(kr) many abelian groups of
order n up to isomorphism.

Remark 5.11.16. It is known that the partition function p(k) satisfies

k 1 2 3 4 5 6 7 8 9 10 15 20 25 30 100
p(k) 1 2 3 5 7 11 15 22 30 42 176 627 1958 5604 190569292

p(1000) has 32 digits. Asymptotically we have p(k) ∼
1

4k
√
3
⋅ eπ
√
2k/3.

Example 5.11.17. There are exactly p(3)p(5) = 3 ⋅7 = 21 pairwise non-isomorphic abelian
groups of order 25000 = 23 ⋅ 55 and p(5)p(5) = 49 of order 100000 = 25 ⋅ 55.

Recall Example 5.6.19. We now complete the list of all 5 groups of order 8.

Example 5.11.18. List all abelian groups of order 8 (up to isomorphism).

Solution: 8 = 23. Partitions of 3: (3), (1,2), (1,1,1). This gives the groups

Z23 , Z21 ⊕Z22 , Z21 ⊕Z21 ⊕Z21 .

Example 5.11.19. List all abelian groups of order 100 (up to isomorphism).

Solution: 100 = 22 ⋅ 52. Partitions of 2: (2), (1,1). This gives the groups

Z22 ⊕Z52 , Z22 ⊕Z51 ⊕Z51 , Z2 ⊕Z2 ⊕Z52 , Z21 ⊕Z21 ⊕Z51 ⊕Z51 ,

that is, using Corollary 2.5.11: Z100, Z5 ⊕Z20, Z2 ⊕Z50, Z10 ⊕Z10.

Exercise 5.11.20. Find the smallest n ∈ N such that there are exactly 6 abelian groups
of order n.

5.12 Group actions

Understanding a group requires understanding its subgroups. Given a finite group G, it
only has subgroups of order dividing ∣G∣ (Lagrange). For cyclic groups we find a unique
subgroup of order d for every d ∣ n (Theorem 5.3.21). For abelian groups we find a not
necessarily unique one (Corollary 5.11.5, Example 5.11.6). In general, subgroups of order
d might not exist (Example 5.7.13). The following strengthens Proposition 5.6.13.

Theorem 5.12.1 (Cauchy). Let G be a finite group and p a prime divisor of ∣G∣. Then G
contains a subgroup of order p.

The proof is based on a new perspective on groups:
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Definition 5.12.2. Let G be a group and X ≠ ∅ a set.

1. An action of G on X is a map τ ∶ G × X → X such that τgh(x) = τg(τh(x)) and
τ1(x) = x for all g, h ∈ G,x ∈X; here, τg(x) ∶= τ(g, x). We say G acts on X by τ .

2. For x ∈X, the stabilizer of x ∈X (under τ) is Gx ∶= {g ∈ G ∣ τg(x) = x}.

3. The orbit of x ∈X (under τ) is G(x) ∶= {τg(x) ∈X ∣ g ∈ G}.

4. The set of fixed-points (of τ) is XG ∶= {x ∈X ∣ τg(x) = x for all g ∈ G}.

5. The action is faithful if for all g, h ∈ G: if τg(x) = τh(x) for all x ∈X, then g = h.

6. The action is transitive if for all x, y ∈X there is g ∈ G with τg(x) = y.

Remark 5.12.3. Let τ an action of G on X.

1. For every g ∈ G, τg is a permutation of X because τg−1 ○ τg = τg ○ τg−1 = idX ; e.g.,
τg(τg−1(x)) = τgg−1(x) = τ1(x) = x.

2. The definition means that g ↦ τg is a homomorphism from G into Sym(X). Being
faithful means it is injective.

3. For every x ∈X, the stabilizer Gx is a subgroup of G.

Indeed: if g, h ∈ Gx then τgh−1(x) = τgh−1(τh(x))) = τg(τh−1(τh(x))) = τg(x) = x.

Examples 5.12.4. Let n > 0.

1. GL(n,R) acts on Rn via (A,x) ↦ Ax. This action is faithful (Aei is the i-th column
of A) and not transitive (as 0 is a fixed-point).

2. I(n,R) acts on the power set of Rn by (f,F ) ↦ f(F ) (where f is an isometry and
F ⊆ Rn). The stabilizer of F is the set of symmetries of F (Definition 5.1.13).

3. Let n > 2. Each symmetry of the regular n-gon permutes the n vertices and is
determined by this permutation (cf. Example 5.1.21). Numbering the vertices 1, ..., n
we get a faithful action of Dn on {1, ..., n}. Remark 5.12.3 (2) shows Dn is isomorphic
to a subgroup of Sn. Examples 5.2.6 and 5.6.15 spelled this out for D3 and D4.

4. Let K be a field. Then (K[X],+) acts on K via (f, x) ↦ f(x). If K is infinite, the
action is faithful (Exercise 3.3.5). If K = Fp for a prime p, the action is not faithful
(Proposition 3.3.4).

5. LetK a field. The symmetric group Sn acts faithfully onK[X1, ...,Xn] by (σ, f) ↦ fσ

as of Definition 3.7.1. The fixed-points are the symmetric polynomials.

6. Let K be a group, ring or field. A subgroup Φ of Aut(K) faithfully acts on K by
(φ,x) ↦ φ(x). The fixed-points are KΦ as of Definition 3.7.4.

7. A group G acts on G by left translation (g, x) ↦ gx and also by right translation
(g, x) ↦ xg−1. Both actions are faithful and transitive. Remark 5.12.3 (2) implies G
is isomorphic to a subgroup of Sym(G) – this is Proposition 5.2.3.

Exercise 5.12.5. C2 and R>0 act on C via
(1, z) ↦ z
(−1, z) ↦ z̄

and (r, z) ↦ rz. Are these

faithful? What are the fixed-points? Find T ⊆ C containing exactly one element per orbit.
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Exercise 5.12.6. Let τ be an action of G on X. Define ∼τ⊆X2 by

x ∼τ y ⇐⇒ τg(x) = y for some g ∈ G.

Show this is an equivalence relation and the equivalence classes are the orbits.

Lemma 5.12.7 (Orbit-stabilizer lemma). Let τ be an action of G on X and assume G is
finite. Then for every x ∈X:

∣G(x)∣ = [G ∶ Gx].

Proof. Define f ∶ G(x) → G/Gx setting f(y) ∶= gGx where g ∈ G is such that τg(x) = y.
Well-defined: if τg(x) = τh(x), then g−1h ∈ Gx, so gGx = hGx.
Injective: assume f(y) = f(z) for y, z ∈ Gx, say, f(y) = gGx, f(z) = hGx where τg(x) = y

and τh(x) = z; then g−1h ∈ Gx, i.e., τg−1h(x) = x, so τg(x) = τh(x), i.e., y = z.
Surjective: if g ∈ G, then f(τg(x)) = gGx.

Lemma 5.12.8. Let τ be an action of G on X and assume G,X are finite. Let T contain
exactly one element from each orbit.

1. (Bahngleichung) ∣X ∣ = ∑x∈T [G ∶ Gx].

2. (Burnside’s lemma) ∣T ∣ = ∑g∈G ∣{x ∈X ∣ τg(x) = x}∣/∣G∣.

3. (Fixed-point lemma) If ∣G∣ > 1 is a power of a prime p, then ∣X ∣ ≡ ∣XG∣ mod p.

Proof. (1): by the exercise the orbits partition X, so ∣X ∣ = ∑x∈T ∣G(x)∣. Then apply the
previous lemma. (2): note

∑g∈G ∣{x ∈X ∣ τg(x) = x}∣ = ∣{(g, x) ∣ τg(x) = x}∣ = ∑x∈X ∣Gx∣.

By the previous lemma and Lagrange, ∣G(x)∣ = ∣G∣/∣Gx∣, so ∑x∈X ∣Gx∣ = ∣G∣∑x∈X 1/∣G(x)∣.
Since G(x), x ∈ T, partitions X, this sum equals

∣G∣∑x∈T ∑y∈G(x) 1/∣G(x)∣ = ∣G∣∑x∈T 1 = ∣G∣ ⋅ ∣T ∣.

(3): Let x ∈ T ∗ ∶= T ∖XG. By the orbit-stabilizer lemma, ∣G(x)∣ = [G ∶ Gx] > 1 and by
Lagrange [G ∶ Gx] ∣ ∣G∣, a power of p. Thus, p ∣ [G ∶ Gx].

For x ∈ T ∖ T ∗ we have Gx = G, so [G ∶ Gx] = 1. Thus p ∣ ∣X ∣ − ∣XG∣ because, by (1),
∣X ∣ = ∣XG∣ + ∑x∈T ∗[G ∶ Gx].

Remark 5.12.9. Burnsides lemma states that the the number of orbits equals the expected
value of the number of points fixed by g ∈ G chosen uniformly at random.

Exercise 5.12.10. How many length 6 necklaces can you design with 10 beads? Cutting
the necklace gives a string, e.g., 122183, which is “the same” as 831221 (cut at a different
place). Formalize “the same” by an action of C6 on {1...,10}6 and use Burnside’s lemma.

Exercise 5.12.11. If G acts on X, ∣G∣ = 55, ∣X ∣ = 19, then there are at least 3 fixed points.
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Definition 5.12.12. G acts on G by conjugation (g, x) ↦ gxg−1. The orbit of x ∈ G is
called conjugacy class of x, and the stabilizer of x is called centralizer of x and denoted Z(x).

The center of G is

Z(G) ∶= ⋂x∈G Z(x) = {g ∈ G ∣ gx = xg for all x ∈ G}.

Theorem 5.12.13. Let G act on G by conjugation.

1. Z(G) is the set of fixed-points.

2. Z(G) is an abelian normal subgroup of G.

3. (Class equation) If G is finite and T contains exactly one element from every orbit
of size ⩾ 2, then

∣G∣ = ∣Z(G)∣ + ∑x∈T [G ∶ Z(x)].

Proof. (1): g ∈ Z(G) means g = xgx−1 for all x ∈ G. (2): Z(G) is a subgroup as an
intersection of subgroups. If g ∈ Z(G) and x ∈ G, then xgx−1 = g ∈ Z(G), so Z(G) is
normal. If g, h ∈ Z(G), then hgh−1 = g, so hg = gh; hence, Z(G) is abelian.

(3) follows from (1) and the Bahngleichung.

Proof of Cauchy’s Theorem 5.12.1. Induction on ∣G∣. Choose T as in the class equation.
By Lagrange, ∣G∣ = ∣Z(x)∣⋅[G ∶ Z(x)] for all x ∈ T ; since p is prime, p ∣ ∣Z(x)∣ or p ∣ [G ∶ Z(x)].

Assume p ∣ [G ∶ Z(x)] for all x ∈ T . By the class equation, p ∣ ∣Z(G)∣. As Z(G) is
abelian, Proposition 5.6.13 gives an order p subgroup of Z(G), hence of G.

Assume p ∣ ∣Z(x)∣ for some x ∈ T . By the orbit-stabilizer lemma, [G ∶ Z(x)] = ∣G(x)∣ ⩾ 2.
By Lagrange, ∣Z(x)∣ < ∣G∣. By induction, Z(x) and hence G has a subgroup of order p.

Definition 5.12.14. G acts on the set of its subgroups U by conjugation: (x,U) ↦ xUx−1.
U,V ∈ U are conjugate if they are in the same orbit, i.e., gUg−1 = V for some g ∈ G.

The stabilizer of U is called normalizer of U and denoted N(U), i.e.,

N(U) = {g ∈ G ∣ gUg−1 = U}.

Proposition 5.12.15. Let U be a subgroup of G. N(U) is the largest subgroup V of G
such that U◁V , i.e., it contains all such V . In particular, U◁G if and only if N(U) = G.

Proof. N(U) is a subgroup of G by Remark 5.12.3 (4), and U◁N(U) by definition. Let V
be a subgroup of G with U ◁ V . Then gUg−1 = U for all g ∈ V , so V ⊆ N(U).

Here is a more clever use of some group operation:

Proposition 5.12.16. Let G be a finite group, p be the smallest prime divisor of ∣G∣ and U
a subgroup of index p. Then U is normal.
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Proof. Let G act on G/U via (g, xU) ↦ gxU . Remark 5.12.3 (1) gives an homomorphism
φ ∶ G → Sym(G/U), namely φ(g) is the map xU ↦ gxU . Then N ∶= ker(φ) ⊆ U : if g ∉ U ,
then gU ≠ U , so φ(g) ≠ idG/U . By Lemma 5.7.1 (1), N ◁G. By Exercise 5.7.16,

k ∶= [G ∶ N] = [G ∶ U] ⋅ [U ∶ N] = p ⋅ [U ∶ N],

By the 1st isomorphism theorem, G/N ≅ φ(G), so ∣φ(G)∣ = k ⩾ p. But φ(G) is a subgroup
of Sym(G/U) ≅ Sp, so k ∣ p! by Lagrange. As k ∣ ∣G∣ we have p = k by assumption on p.
Then [U ∶ N] = 1, so U = N . Thus U ◁G.

Exercise 5.12.17. Let τ be a transitive operation of G on X. Assume G,X are finite,
∣X ∣ > 1 and {1} ≠ N ◁G.

(a) There is g ∈ G such that τg has no fixed-points.

(b) The orbits under (the restriction of the operation to) N have all the same size.

Assume p ∶= ∣X ∣ is prime and τ is faithful.

(c) G has an element of order p. Further, N operates transitively and faithfully.

(d) If G is solvable and N0 = {1} ◁N1◁⋯◁Nk = G a subnormal series with factors of
prime order (cf. Theorem 5.8.17), then N1 ≅ Cp.

Exercise 5.12.18. Let G be a simple, non-abelian group with a subgroup of index n ⩾ 2.
Show G is isomorphic to a subgroup of An and n ⩾ 5.

5.13 Sylow’s theorems

Definition 5.13.1. Let p be a prime. A group G is a p-group if for every x ∈ G there is
n ∈ N such that ord(x) = pn.

Lemma 5.13.2. Let p be prime. A finite group is a p-group if and only if its order is a
power of p.

Proof. ⇐ is clear by Lagrange. ⇒: if ∣G∣ is not a power of p, then ∣G∣ has a prime divisor
q ≠ p. Then Cauchy’s theorem 5.12.1 gives a subgroup of order q. By Proposition 5.3.18 it
is isomorphic to Cq. Thus, G contains an element of order q, so is not a p-group.

Example 5.13.3. Let p be prime. From the primary decomposition we see that a finite
abelian group G is a p-group if and only if G ≅ Zpk1 ⊕⋯⊕Zpks for some s ∈ N and ki ∈ N.

Example 5.13.4 (Prüfer p-group). Let p be prime. Let Z(p∞) ∶= ⋃n∈NCpn .

1. Z(p∞) is a subgroup of the circle group S1 = {z ∈ C ∣ ∣z∣ = 1}.
2. Z(p∞) is a p-group with exp(Z(p∞)) = ∞.

3. Every proper subgroup U of Z(p∞) equals Cpn for some n ∈ N.
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4. Z(p∞) is divisible (cf. Exercise 5.4.2).

Proof. (1) is clear. (2): the exponent is ∞ because ζpn has order pn. Given x ∈ Z(p∞)
choose n ∈ N minimal with x ∈ Cpn ; write x = ζkpn for some k ∈ N. Then p ∤ k, so
gcd(k, pn) = 1. By Lemma 5.3.9 (5), x has order pn.

(3): as just seen, for every x ∈ U we have ⟨x⟩ = Cpnx ⊆ U for some nx ∈ N. Since U is
proper, there is a maximal m ∈ N among the nx’s. Then U = Cpm .

(4): it suffices to find for every x ∈ G and every prime q some y ∈ G with yq = x.
Choose n, k ∈ N such that x = ζkpn . If q = p, set y ∶= ζk

pn+1 . If q ≠ p, choose a, b ∈ Z with

apn + bq = 1 by Bézout; then x = xap
n
xbq = xbq and we take y ∶= xb.

Lemma 5.13.5. Let p be prime. Finite non-trivial p-groups have non-trivial center.

Proof. Let G be a finite p-group. By Lemma 5.13.2, ∣G∣ = pn for some n ∈ N. Then
n > 0 since G ≠ {1}. Write pn = ∣Z(G)∣ + ∑x∈T [G ∶ Z(x)] by the class equation (Theo-
rem 5.12.13 (3)). For x ∈ T , [G ∶ Z(x)] ⩾ 2 divides ∣G∣ = pn by Lagrange, so p ∣ [G ∶ Z(x)].
Hence, p ∣ ∣Z(G)∣, so Z(G) ≠ {1}.

As an application we generalize Proposition 5.3.19 and classify the groups of order p2.
In the end of this section we classify the groups of order pq with distinct primes p, q.

Example 5.13.6 (Groups of order p2). Let p be prime and G a group of order p2. Then
G is isomorphic to Zp ⊕Zp or to Zp2 .

Proof. By the classification of finite abelian groups it suffices to show G is abelian. By the
lemma, Z(G) has order > 1 and devides p2 by Lagrange. If ∣Z(G)∣ = p2, then G is abelian.
Hence, it suffices to show ∣Z(G)∣ ≠ p. Otherwise, choose x ∈ G∖Z(G). Then Z(x) contains
both Z(G) and x, so is larger than Z(G). Since ∣Z(x)∣ divides ∣G∣ = p2, we have ∣Z(x)∣ = p2,
so Z(x) = G and x ∈ Z(G), a contradiction.

Definition 5.13.7. Let p be prime and G a finite group of order pℓm with p ∤ m where
ℓ,m ∈ N. A p-subgroup (of G) is a subgroup that is a p-group.

A p-Sylow subgroup is a p-subgroup of order pℓ.

Remark 5.13.8. Let G,p, ℓ,m be as above.

1. If ℓ = 0, then {1} is a p-Sylow subgroup.

2. By Lemma 5.13.2, p-subgroups have order pk for some k and k ⩽ ℓ (Lagrange).

3. For every x ∈ G, if U is a p-(Sylow) subgroup, then so is xUx−1 (conjugation is an
automorphism).

4. If q ≠ p is prime, P a p-subgroup P and Q a q-subgroup, then P ∩Q = {1}.

Indeed: if x ∈ P ∩Q, then ord(x) divides ∣P ∣, a power of p, and ∣Q∣, a power of q, so
ord(x) = 1. (Lemmas 5.3.15, 5.13.2).
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5. If ℓ = 1, then any p-Sylow subgroups P ≠ P ′ have trivial intersection P ∩ P ′ = {1}.

Indeed: P ∩P ′ is a subgroup of P that is proper because ∣P ∣ = ∣P ′∣. Its order divides
∣P ∣ = p (Lagrange), so equals 1.

Exercise 5.13.9. The case of abelian G is easy. Let p be a prime divisor of ∣G∣. Show
there is exactly one p-Sylow subgroup of G, namely the p-torsion subgroup:

Tp(G) ∶= {x ∈ G ∣ ord(x) is a power of p}.

Show G is the inner direct sum of its p-torsion subgroups.

Exercise 5.13.10. Let p, n,m ∈ N with n > 0,m > 1 and p prime. Let Fq be a finite field of
size q ∶= pn. Show ∣GL(m,Fq)∣ = qm(m−1)/2∏m

i=1(q
i−1). Let G be the set of upper triangular

matrices over Fq with 1’s on the diagonal. Show G is p-Sylow subgroup of GL(m,Fq).

Recall the normalizer N(U) of a subgroup from Proposition 5.12.15.

Lemma 5.13.11. Let p be prime, G a finite group and U a non-trivial p-subgroup. Then

[N(U) ∶ U] ≡ [G ∶ U] mod p.

Proof. Let U act on G/U by left-translation, i.e., (u, gU) ↦ ugU . By Lemma 5.13.2, ∣U ∣
is a power of p. By the fixed-point lemma [G ∶ U] ≡ ∣F ∣ mod p where F is the set of
fixed-points of the action. What does it mean to be a fixed-point? ugU = gU for all u ∈ U
is equivalent to g−1ugU = U for all u ∈ U , hence to g−1Ug = U , hence to g ∈ N(U). Thus,
gU ∈ F if and only if g ∈ N(U). Thus ∣F ∣ = [N(U) ∶ U].

Theorem 5.13.12 (1st Sylow theorem). Let p be prime and G a finite group of order pℓm
with p ∤m where ℓ,m ∈ N. Then p-Sylow subgroups exist. In fact,

1. For all k ⩽ ℓ there exist subgroups of G of order pk.

2. Every subgroup of order pk with k < ℓ is normal in some subgroup of order pk+1.

Proof. (1) is proved by induction on k. For k = 0 take {1}. Assume k < ℓ and there is a
subgroup U of order pk. Then p ∣ [G ∶ U] = pℓ−km. By the lemma, p ∣ [N(U) ∶ U]. By
Cauchy’s theorem, N(U)/U has a subgroup Ũ of order p.

Let πU ∶ N(U) → N(U)/U be the canonical projection. Then U ′ ∶= π−1U (Ũ) is a subgroup

of N(U) and hence of G. Its order is ∣Ũ ∣ ⋅ ∣U ∣ = pk+1.
(2): let U be a subgroup of order pk with k < ℓ. Define U ′ as above. Then U ⊆ U ′ ⊆ N(U)

and U ◁N(U). This implies U ◁U ′.

Corollary 5.13.13. Let p be prime. Finite p-groups are solvable.

Proof. A finite p-group G has order pℓ for some ℓ ∈ N by Lemma 5.13.2. Let N0 ∶= {1} and
N1 be a subgroup of order p. Then choose a N2 of order p2 with N1 ◁N2. Continuing ℓ
times, gives a subnormal series of G. Then Nk+1/Nk has order p, so is isomorphic to Cp
(Proposition 5.3.18), so abelian.
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Theorem 5.13.14 (2nd Sylow theorem). Let p be prime and G a finite group.

1. For every p-subgroup U and every p-Sylow subgroup P there is g ∈ G such that
gUg−1 ⊆ P .

2. Any two p-Sylow subgroups are conjugate.

3. A p-Sylow subgroup is normal if and only if it is the only p-Sylow subgroup.

Proof. (1): we can assume U is non-trivial. Let U act on G/P be left translation, i.e.,
(u, gP ) ↦ ugP . By Lemma 5.13.2, ∣U ∣ is a power of p. By the fixed-point lemma, [G ∶
P ] ≡ ∣F ∣ mod p where F is the set of fixed-points. Since P is p-Sylow, [G ∶ P ] = ∣G∣/∣P ∣ /≡ 0
mod p. Hence F ≠ ∅. Let gP ∈ F . Then g−1ugP = P for all u ∈ U , so g−1U(g−1)−1 ⊆ P .

(2) follows from (1) because all p-Sylow subgroups have the same order.
(3): let P be a p-Sylow subgroup. Recall P ◁G means gPg−1 = P for all g ∈ G. But the

sets gPg−1, g ∈ G, are precisely the p-Sylow subgroups (by (2) and Remark 5.13.8 (2)).

Exercise 5.13.15. Let G be a finite group, U a subgroup, p prime and P a p-Sylow sub-
group of G. Show that for every p-Sylow subgroup Q of U there are a p-Sylow subgroup P
of G and x ∈ G such that Q = U ∩ xPx−1.

Theorem 5.13.16 (3rd Sylow theorem). Let p be prime and G a finite group of order pℓm
with p ∤m where ℓ,m ∈ N. Let sp denote the number of p-Sylow subgroups of G.

Then sp ∣m and sp ≡ 1 mod p.

Proof. Let G operate on the set of p-Sylow subgroups X by conjugation, i.e., (g,P ) ↦
gPg−1. Note X ≠ ∅ by the 1st Sylow theorem, and the action is transitive by the 2nd
Sylow theorem, i.e., X equals the orbit G(P̃ ) – we fix P̃ ∈X arbitrarily.

By definition, the stabilizer GP̃ is the normalizer N(P̃ ). By the orbit-stabilizer lemma,

sp = ∣X ∣ = ∣G(P̃ )∣ = [G ∶ N(P̃ )].

Recalling ∣P̃ ∣ = pℓ we get sp ∣m using Lagrange as follows:

pℓm = ∣G∣ = [G ∶ N(P̃ )] ⋅ ∣N(P̃ )∣ = [G ∶ N(P̃ )] ⋅ [N(P̃ ) ∶ P̃ ] ⋅ ∣P̃ ∣ = sp ⋅ [N(P̃ ) ∶ P̃ ] ⋅ p
ℓ.

We now show sp ≡ 1 mod p. Let P̃ act on X by conjugation. Let T ⊆X contain exactly
one P ∈X of each orbit. For the stabilizers P̃P of P ∈X the Bahngleichung reads

sp = ∑P ∈T [P̃ ∶ P̃P ].

Since [P̃ ∶ P̃P ] ∣ ∣P̃ ∣ = pℓ by Lagrange, we can write [P̃ ∶ P̃P ] = pkP for some kP ⩽ ℓ. It now
suffices to show

kP = 0 ⇐⇒ P = P̃ .

⇐ is clear because P̃P̃ = P̃ , so [P̃ ∶ P̃P̃ ] = 1. ⇒: if kP = 0, then [P̃ ∶ P̃P ] = 1, so P̃ = P̃P ,
so gPg−1 ⊆ P for all g ∈ P̃ . By definition, P̃ ⊆ N(P ). By Proposition 5.12.15, P ◁N(P ).
Then both P̃ and P are p-Sylow subgroups of N(P ). By the 2nd Sylow theorem, they are
conjugate in N(P ), i.e., P̃ = gPg−1 for some g ∈ N(P ). But gPg−1 = P by normality.
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The Sylow theorems are our main tool for analyzing finite groups.

Example 5.13.17. There are no simple groups of order 10, 20, 30, 40, 50, 70, 80 or 90
(by Example 5.6.26, A5 is simple of order 60).

Proof. Let G be a group. Case ∣G∣ = 20 = 22 ⋅ 5: by the 3rd Sylow theorem s5 ∣ 4 and s5 ≡ 1
mod 5, so s5 = 1. By the 2nd Sylow theorem, the unique 5-Sylow subgrup is a normal
subgroup of G of order 5. Hence, G is not simple. Cases ∣G∣ = 10,40,50,70 are similar.

Case ∣G∣ = 30 = 2 ⋅ 3 ⋅ 5: 3rd Sylow gives s5 ∣ 6 and s5 ≡ 1 mod 5, so s5 ∈ {1,6}. Further,
s3 ∣ 10 and s3 ≡ 1 mod 3, so s3 ∈ {1,10}. If s5 = 1 or s3 = 1, we are done as before. So
assume s5 = 6 and s3 = 10. Remark 5.13.8 (5) gives 10 ⋅ (3− 1) = 20 elements of order 3 and
6 ⋅ (5 − 1) = 24 elements of order 5, contradicting ∣G∣ = 30.

The case ∣G∣ = 80 is similar (exercise). The case ∣G∣ = 90 = 2 ⋅ 32 ⋅ 5 is more complicated:
s3 ∣ 10 and s3 ≡ 1 mod 3 implies s3 ∈ {1,10}. s5 ∣ 18 and s5 ≡ 1 mod 5 implies s5 ∈ {1,6}.
If one is = 1 we are done. So assume s3 = 10, s5 = 6.

Then there are 6 ⋅ (5 − 1) = 24 elements of order 5, disjoint from all 3-Sylow subgroups
(Remark 5.13.8 (4), (5)). If the 3-Sylow subgroups intersect trivially, they comprise another
1 + 10 ⋅ (9 − 1) = 81 elements – too many.

Hence, there are distinct 3-Sylow subgroups P,Q with ∣P ∩Q∣ > 1, so ∣P ∩Q∣ = 3 by
Lagrange. By Exercise 5.7.12, ∣PQ∣ = ∣P ∣ ⋅ ∣Q∣/∣P ∩Q∣ = 27.

By Proposition 5.12.16, P ∩Q is normal in both P and Q. Hence, P,Q ⊆ N ∶= N(P ∩Q),
the normalizer of P ∩Q in G. Thus, ∣N ∣ ⩾ 27. Further, ∣N ∣ ∣ 90 and 9 ∣ ∣N ∣ by Lagrange (P
is a subgroup of N). Thus, ∣N ∣ ∈ {45,90}. If ∣N ∣ = 45, then N ◁G (index 2) and we are
done. If ∣N ∣ = 90, then N = G, so P ∩Q◁G and we are done.

Exercise 5.13.18. In case ∣G∣ = 30 above, show G has a subgroup of order 15 and infer
that s3 = s5 = 1.

Example 5.13.19 (Groups of order pq). Let p < q be primes. There is a homomorphism
Φ ∶ Cp → Aut(Cq) such that every group of order pq is isomorphic to either Cpq or Cq⋊ΦCp.

Moreover, the 2nd case happes only if p ∣ q − 1.

Proof. Let G have order pq. 3rd Sylow gives k, ℓ ∈ N such that sp ∣ q and sp = 1 + kp,
and sq ∣ p and sq = 1 + ℓq. Then sq = 1: otherwise sq = p, so p − 1 = ℓq, so ℓ ≠ 0 and
q < p, a contradiction. Let P,Q be p-, resp., q-Sylow subgroups. Then Q ◁ G by 2nd
Sylow. Moreover, P ∩Q = {1} by Remark 5.13.8 (4). By the 2nd isomorphism theorem,
∣PQ∣ = ∣P ∣∣Q∣/∣P ∩Q∣ = pq = ∣G∣. Thus, G = PQ.

By Theorem 5.10.13, G ≅ Q ⋊ P . As Q ≅ Cq and P ≅ Cp, we have Q ⋊ P ≅ Cq ⋊Φ Cp for
some homomorphism Φ ∶ Cp → Aut(Cq) (Exercise 5.10.12).

As ker(Φ) is a subgroup of Cp, its order divides p by Langrange. If this order is p,
then Φ is constant and G ≅ Cq ×Cp ≅ Cpq (Remark 5.10.5).

Assume ker(Φ) has order 1. Then Φ is injective. By Exercise 5.10.11 it suffices to
show such Φ have only one possible image. By Exercise 2.6.5, Aut(Cq) ≅ Z×q . By Exam-
ple 5.3.14 (2), Z×q is cyclic, so has at most one subgroup of order p (Theorem 5.3.21).

As ∣Z×q ∣ = q − 1 (Remark 2.6.7), the 2nd case implies p ∣ q − 1 by Lagrange.
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Example 5.13.20. The 2nd case above happens for the dihedral group Dq for a prime
q > 2. It has order 2q and is not cyclic (Example 5.3.14 (4)). In fact, we already saw in
Example 5.10.15 that Dq ≅ Cq ⋊Φ C2 for a certain Φ ∶ C2 → Aut(Cq).

Exercise 5.13.21. Let p ≠ q be prime. Groups of order p2q are inner semidirect products
of proper subgroups.

Exercise 5.13.22. Groups of order 922 or 2022 are solvable.

Exercise 5.13.23. Let p be prime and p ⩽ n < p2. Every p-Sylow subgroup of Sn is abelian.

Example 5.13.24. We list all groups (up to ≅) of order ⩽ 10 using Proposition 5.3.19 for
order 4, the above for 6 and 10, Examples 5.11.18, 5.6.19 for 8, and Example 5.13.6 for 9:

{1}, C2, C3, C4, K4
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
order 4=22

, C5, C6, D3
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
order 6

, C7, C8, C2 ×C4, C
3
2 , D4, Q8

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
order 8=23

, C9, C
2
3

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
order 9=32

, C10, D5
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
order 10

.

The numbers of groups of order 2n for n = 4, ...,9 are 14,51,267,2328,56092,10494213.
The numbers of groups of order 3n for n = 3, ...,7 are 5,15,67,504,9310.

For fixed prime p, no somehow explicit formula is known for the number of groups of
order pn. The Higman-Sims formula states the upper bound p2n

3
/27+O(n8/3

).



Chapter 6

Field theory

6.1 Ruler and compass constructions

Definition 6.1.1. We refer to the elements of R2 as points. A point p is constructible if
there are n ∈ N and a sequence p1, ..., pn of points with pn = p such that for all 1 ⩽ i ⩽ n
there are 1 ⩽ i1, i2, i3, i4, i5, i6 < i such that one of the following holds.

1. pi ∈ {(0,0), (1,0)},

2. pi is the intersection of the line through pi1 ≠ pi2 and the line through pi3 ≠ pi4 ,

3. pi is an intersection of the line through pi1 ≠ pi2 and the circle of radius ∥pi3 − pi4∥
around pi5 ,

4. pi is an intersection of the circle of radius ∥pi1 − pi2∥ around p3 and the circle with
radius ∥pi4 − pi5∥ around pi6 .

The set of constructible points is denoted Con.

Notation: as usual we view the set R2 as the set of complex numbers C and thereby
Con ⊆ C. Accordingly, we write e.g. 0,1, i, eiα instead (0,0), (1,0), (0,1), (sin(α), cos(α))
and call a real r ∈ R constructible if (r,0) is constructible. It is easy to see that z ∈ C is
constructible if and only if both reals Re(z), Im(z) are constructible.

Remark 6.1.2. Every constructible point is determined by a sequence as above, so by
a number k ∈ N and for each 1 ⩽ i ⩽ k: a number 1-4 determining the rule, numbers
i1, ..., i6 < i and a bit determining which of the ⩽ 2 intersections is taken. This way one sees
that Con is countable, so “most” points are not constructible.

Remark 6.1.3 (Classical Greek problems1).

1. Delian problem: is 3
√
2 constructible?

Given a cube can you construct another of double volume?

1https://mathshistory.st-andrews.ac.uk/HistTopics/category-greeks/

137

https://mathshistory.st-andrews.ac.uk/HistTopics/category-greeks/


CHAPTER 6. FIELD THEORY 138

“Eratosthenes, in his work entitled Platonicus relates that, when the god proclaimed
to the Delians through the oracle that, in order to get rid of a plague, they should
construct an altar double that of the existing one, their craftsmen fell into great
perplexity in their efforts to discover how a solid could be made the double of a
similar solid; they therefore went to ask Plato about it, and he replied that the oracle
meant, not that the god wanted an altar of double the size, but that he wished, in
setting them the task, to shame the Greeks for their neglect of mathematics and their
contempt of geometry.” (Theon of Smyrna)

2. Angle trisection: is eiα/3 constructible from α ∈ [0,2π)? from means that eiα is
allowed aside 0,1 in in Rule 1 of the definition above.

Given an angle α can you construct an angle α/3?

3. Squaring the circle: is
√
π constructible?

Given a circle, can you construct a square of the same area?

The egyptian Rhind papyrus (c.1850 BCE) gives a geometric approximation of π by
3.1605. The first mathematician on record trying to square the circle was Anaxagoras
c.450 BCE while in prison for heresy, namely for “teaching that the sun was a red-hot
stone and the moon was earth.” (Russell) The problem became popular in ancient
Greece. Remarkably, unlike in modern times, erroneous ‘proofs’ were scarce.

4. Construction of regular n-gons: for which n > 2 is ζn = e2πi/n constructible?

Given a circle, can you inscribe a regular n-gon?

Lemma 6.1.4. Con is a subfield of C. It is closed under conjugation and square roots,
i.e., if z ∈ Con, then z̄ ∈ Con and ±

√
z ∈ C.

Sketch of proof. It suffices to construct 0,1, z + z′,−z, z ⋅ z′, z−1, z̄,±
√
z from z, z′ ∈ C. This

is done by school geometry. We only explain how to construct
√
z =
√
reiα/2 from z = reiα

where r,α > 0. Bisect the angle of the x-axis and the line through z and 0 (the origin) and
intersect with a circle around 0 of radius

√
r. How to construct

√
r from r? Construct −r

(i.e., (−r,0)), the midpoint between −r and 1 on the x-axis, and then a circle around it
that intersects the x-axis in −r and 1. Construct a line perpendicular to the x-axis and
passing through 0. Its intersection u with the circle gives a right triangle −r,1, u by Thales’
theorem. Its height Im(u) is

√
1 ⋅ r by Euclid’s right triangle altitude theorem.

Theorem 6.1.5. z ∈ C is constructible if and only if there are n ∈ N and fields

Q =K0 ⊆K1 ⊆ ⋯ ⊆Kn ⊆ C

with z ∈Kn and for all i < n, the extension Ki+1 ∣Ki results by adjunction of a square root,
i.e., Ki+1 =Ki(a) for some a ∈ C with a2 ∈Ki.

Proof. ⇐: we show Ki ⊆ Con by induction on i. For i = 0, note K0 = Q is the prime field of
Con. AssumeKi ⊆ Con andKi+1 =Ki(a) with a2 ∈Ki and a ∈ C. ThenKi∪{a} ⊆ Con since
Con is closed under square roots. Then Ki+1 =Ki(a) ⊆ Con since Con is a subfield of C.
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⇒: let z1, ..., zn = z witness that z is constructible. We claim that for all i ⩽ n there are
K0 ∶= Q(i) ⊆K1 ⊆ ⋯ ⊆Ki such that zi ∈Ki and for all j ⩽ i we have Kj+1 =Kj(a) for some
root a ∈ C of some f ∈Kj[X] with deg(f) ⩽ 2. This suffices by Lemma 3.5.11 (2).

Lemma 3.5.11 (3) implies Kj+1 = Kj + Kj ⋅
√
Df , so Kj+1 is closed under complex

conjugation if Kj is. By induction, all Kj are closed under conjugation.
Observe: if z ∶= x + iy ∈Kj then x = (z + z̄)/2 ∈Kj and y = (z − z̄)/(2i) ∈Kj (as i ∈Kj);

hence, if z, z′ ∈Kj, then ∥z − z′∥2 ∈Kj.
We proceed by induction on i. Our claim is trivial for i = 0. Assume it for i < n and

distinguish cases on how zi+1 is obtained.
Case: zi+1 ∈ {0,1}. Set f ∶=X − 1 (and Ki+1 =Ki).
Case: zi+1 is an intersection of two lines. A line through x0+iy0, x1+iy1 ∈Ki is the set of

(x, y) ∈ R2 satisfying (x1−x0)(y−y0) = (y1−y0)(x−x0). Here, x0, y0, x1, y1 ∈Ki∩R. Hence
the intersection of two lines means solving a system of linear equations with coefficients
in Ki. The solution is in Ki, so we can again take f ∶=X − 1.

Case: zi+1 is the intersection of a circle and a line. A circle with radius r around
x0 + iy0 ∈Ki is the set of (x, y) satisfying (x−x0)2 + (y − y0)2 = r2. Here, x0, y0, r2 ∈Ki ∩R.
To find the intersection with a line, eliminate one variable given the linear equation for the
line and solve a quadratic equation in the other: this equation is f .

The field extension that contains a root of f contains one coordinate of zi+1, hence also
the other (due to the linear equation), and hence zi+1 (since it contains i).

Case: zi+1 is the intersection of two circles. Given two circles (x − x0)2 + (y − y0)2 = r2

and (x − x1)2 + (y − y1)2 = s2 with r2, s2, x0, x1, y0, y1 ∈ Ki ∩R, subtract the equations and
get a linear equation. Eliminate one variable and proceed as before.

Informally, z ∈ C is constructible if and only if z equals some expression built from the
field operations, fractions and square roots. We illustrate this by a famous example:

Example 6.1.6 (Regular 17-gon). To construct ζ17 it suffices to construct cos(2π/17).
This is possible as noted by 18 year old Gauß:

cos(2π/17) = −
1

16
+

√
17

16
+

1

16

√
34 − 2

√
17 +

1

8

√

17 + 3
√
17 −
√
34 − 2

√
17 − 2

√
34 + 2

√
17.

We have a ∶= 34−2
√
17, b ∶= 34+2

√
17 ∈ Q(

√
17), so c ∶= 17+3

√
17−
√
a−2
√
b ∈ Q(17,

√
a,
√
b).

Thus, cos(2π/17) is captured by successively adjoining square roots, e.g. via

Q ⊆ Q(
√
17) ⊆ Q(

√
17,
√
a) ⊆ Q(

√
17,
√
a,
√
b) ⊆ Q(

√
17,
√
a,
√
b,
√
c).

This field tower is poorly motivated and all but unique. We need some theory.

6.2 Algebraic extensions

Let L ∣ K be a field extension. By L as a K-vector space we mean: the vectors are L
with +L, the scalar field is K and the scalar multiplication is (a, b) ↦ a ⋅L b for a ∈K,b ∈ L.
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Examples 6.2.1. We know for C and quadratic number fields Q(
√
d) (cf. Example 4.8.17):

R[X]/(X2 + 1) ≅ R(i) = C = {x + yi ∣ x, y ∈ R},

Q[X]/(X2 − d) ≅ Q(
√
d) = {x + y

√
d ∣ x, y ∈ Q}.

C as an R-vector space has basis 1, i, and, Q(
√
d) as a Q-vector space has basis 1,

√
d.

Definition 6.2.2.

1. L ∣K is finitely generated if L =K(A) for some finite A ⊆ L.

2. L ∣K is simple if L =K(a) for some a ∈ L, a primitive element of L ∣K.

3. The degree [L ∶ K] of L ∣ K is the dimension of L as a K-vector space; we write
[L ∶K] = ∞ if the degree is infinite.

4. L ∣K is finite if [L ∶K] is finite.

5. L ∣K is algebraic if every a ∈ L is algebraic over K.

Remark 6.2.3.

1. If L ∣K is finite, then it is finitely generated.

Indeed: if x1, ..., xn is a basis of L as a K-vector space, then L =K(x1, ..., xn).

2. [L ∶K] = 1 if and only if L =K.

Indeed: if L = K, then 1 is a basis of L as a K-vector space; in particular, K is a
1-dimensional subspace of L; hence [L ∶K] = 1 implies L =K.

3. If L ∣K is finite and a ∈ L, then a is a root of some f ∈K[X] with deg(f) ⩽ [L ∶K].
In particular, a is algebraic over K.

Indeed: let n ∶= [L ∶ K]; then 1, a, a2, ..., an are linearly dependent vectors, so x0 +
x1a +⋯ + xnan = 0 for certain xi ∈K; then a is a root of xnXn +⋯ + x0 ∈K[X].

Examples 6.2.4. Q(π) ∣ Q is simple of infinite degree (by Remark 6.2.3 (3) and Linde-
mann’s theorem). R ∣ Q is not finitely generated and hence [R ∶ Q] = ∞.

Indeed, assume R = Q(A) for A ⊆ R of size n ∈ N; then there is a surjection from
Q[X1, ...,Xn] onto R; but Q[X1, ...,Xn] is countable.

Recall minimal polynomials from Definition 3.5.2. The ≅ below is Corollary 4.8.15.

Theorem 6.2.5. a ∈ L is algebraic over K if and only if K(a) ∣ K is finite. In case,
n ∶= deg(mK

a ) = [K(a) ∶K] and 1, a, ..., an−1 is a basis of K(a) as a K-vector space.
In particular, then

K[X]/(mK
a ) ≅K(a) = {x0 + x1a +⋯ + xn−1a

n−1 ∣ x0, ..., xn−1 ∈K}.
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Proof. ⇐ follows from Remark 6.2.3 (3). ⇒: to show 1, a, ..., an−1 generate K(a) as a
K-vector space, we verify the displayed equality. By Theorem 3.5.8, K(a) = K[a] and
we have to show that every f(a) with f ∈ K[X] equals r(a) for some g ∈ K[X] with
deg(r) < n. Write f = q ⋅mK

a + r with deg(r) < n by polynomial division; then f(a) = r(a).
Independent: assume x0 + x1a +⋯xn−1an−1 = 0 with xi ∈K not all 0; then a is a root of

xn−1Xn−1+xn−2Xn−2+⋯+x0 ∈K[X]∖{0} of degree < n; we then also find a monic such f ,
contradicting the definition of mK

a .

Exercise 6.2.6. Recall Exercise 3.5.10. Let a ∈ C be a root of X3−X+1 ∈ Q[X]. The basis
1, a, a2 determines a vector space isomorphism φ ∶ Q(a) ≅ Q3. Compute φ(a4), φ(a5), φ(a6).

x↦ ax in Q(a) corresponds to an endomorphism of Q3 – what is its matrix?

Exercise 6.2.7. Let K be a field and f ∈ K[X] ∖ {0}. View K[X]/(f) naturally as a
K-vector space and show its dimension is deg(f).

Example 6.2.8. Q(
√
2,
√
3) = Q(

√
2 +
√
3) = {x1 + x2

√
2 + x3

√
3 + x4

√
6 ∣ x1, ..., x4 ∈ Q}.

Proof. Compute powers of α ∶=
√
2 +
√
3:

α2 = 5 + 2
√
6, α3 = 11

√
2 + 9
√
3, α4 = 49 + 20

√
6.

We see, α is a root of f ∶= X4 − 10X2 + 1 ∈ Q[X]. Further,
√
2 = (α3 − 9α)/2,

√
3 =

−(α3 − 11α)/2 ∈ Q(α). Thus, Q(
√
2,
√
3) = Q(α).

By Example 4.5.5, f is irreducible, so f =mQ
α . By the theorem, 1, α,α2, α3 is a basis of

Q(α) as a Q-vector space. But then also 1,
√
2,
√
3,
√
6 is a basis.

Such ad hoc argument won’t take us far. We need more theory.

Proposition 6.2.9. Assume K ≠ L and char(K) ≠ 2. Then [L ∶K] = 2 if and only if L is
obtained from K by adjunction of a square root.

Proof. ⇒: there is a ∈ L ∖K such that 1, a is a basis of L as a K-vector space. Then
L = K(a) and [K(a) ∶ K] = deg(mK

a ) = 2. By Lemma 3.5.11, K(a) = K(
√
D) for the

discriminant D ∈K of mK
a .

⇐: assume L = K(a) with a2 ∈ K. Then a ∉ K as L ≠ K. Then X2 − a2 ∈ K[X] is
irreducible, so equals mK

a . Then [K(a) ∶K] = deg(m
K
a ) = 2.

Example 6.2.10. Let C ∣ K ∣ Q be field extensions. By Corollary 3.5.12, if [K ∶ Q] = 2,
then K is a quadratic number field.

Definition 6.2.11. M is a (proper) intermediate field of L ∣ K if M ∣ K and L ∣ M are
field extensions (and L ≠M ≠K).

We agree that n < ∞ = n ⋅ ∞ = ∞ ⋅ n = ∞ ⋅∞ for all n ∈ N, n > 0.

Theorem 6.2.12 (Degree formula). If M is an intermediate field of L ∣K, then

[L ∶K] = [L ∶M] ⋅ [M ∶K].
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Proof. If [L ∶M] = ∞ or [M ∶K] = ∞, then [L ∶K] = ∞. Assume [L ∶M] = n, [M ∶K] =m
for n,m ∈ N. Let x1, ..., xn be a basis of L as an M -vector space, and y1, ..., ym a basis of
M as a K-vector space. We claim the xiyj are a basis of L as a K-vector space.

Generating: let x ∈ L; write x = a1x1 +⋯ + anxn with ai ∈M and ai = bi1y1 +⋯ + bimym
with bij ∈K. Then x = ∑ij bijxiyj.

Independent: assume ∑ij aijxiyj = 0 with aij ∈ K; then b1x1 + ⋯ + bnxn = 0 for bi ∶=

∑j aijyj ∈M . Then bi = 0 for all i because x1, ..., xn are independent. Then aij = 0 for all j
because y1, ..., ym are independent.

Remark 6.2.13. Together with Remark 6.2.3 (2) we see: field extensions of prime degree,
like C ∣ R, do not have proper intermediate fields.

3rd proof of Example 4.5.5. By Example 6.2.8, f ∶= X4 − 10X2 + 1 ∈ Q[X] has root α ∶=√
2 +
√
3 ∈ R. It suffices to show [Q(α) ∶ Q] = 4 – then f =mQ

α is irreducible.
We know Q(α) = Q(

√
2,
√
3). By the degree formula

[Q(α) ∶ Q] = [Q(
√
2,
√
3) ∶ Q(

√
2)] ⋅ [Q(

√
2) ∶ Q].

Clearly, both factors are ⩽ 2. But then they are = 2 because
√
2 ∉ Q and

√
3 ∉ Q(

√
2).

Indeed: assume
√
3 ∈ Q(

√
2); then

√
3 = x + y

√
2 for certain x, y ∈ Q; then y ≠ 0 as

√
3 ∉ Q

and x ≠ 0 as
√
3/2 ∉ Q; then 3 = x2 + 2xy

√
2 + 2y2 implies

√
2 ∈ Q – contradiction.

Theorem 6.2.14. For a ∈ L the following are equivalent.

1. a is transcendental over K.

2. K[a] ⊊K(a).

3. f ↦ f(a) is an isomorphism from K[X] onto K[a].

4. [K(a) ∶K] = ∞.

5. There is an infinite sequence of fields K(a) ⊋K1 ⊋K2 ⊋ ⋯ ⊋K.

Proof. 1⇔ 2 follows from Theorem 3.5.8, and 1⇔ 4 from Theorem 6.2.5.
1⇔ 3: clearly, f ↦ f(a) is an epimorphism, so (3) states it is injective, i.e., its kernel

is {0}; but this means a is transcendental over K.
1 ⇒ 5: clearly, with a also a2 is transcendental over K. Further, K(a2) ⊊ K(a):

otherwise a ∈K(a2), so a = f(a2)/g(a2) for f, g ∈K[X]; then a is a root ofXg(X2)−f(X2),
a contradiction. This gives a chain K(a) ⊋K(a2) ⊋K(a2

2
) ⊋K(a2

3
) ⊋ ⋯.

5⇒ 4: since [Ki ∶Ki+1] ⩾ 2 (Remark 6.2.3 (2)), Theorem 6.2.12 gives for all n > 0:

[K(a) ∶K] ⩾ [K(a) ∶Kn] = [K(a) ∶K1]⋯[Kn−1 ∶Kn] ⩾ 2
n.

Exercise 6.2.15. Every f ∈K(X) ∖K is transcendental over K.

Corollary 6.2.16.

1. Let n > 1 and a1, ..., an ∈ L such that ai is algebraic over K(a1, ..., ai−1) for all 1 ⩽ i ⩽ n.
Then K(a1, ..., an) ∣K is finite.
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2. K ∣ L is finite if and only if it is finitely generated and algebraic.

3. Let M be an intermediate field. Then L ∣ K is algebraic if and only both L ∣M and
M ∣K are algebraic.

Proof. 1: write Ki ∶= K(a1, ..., ai), so Ki+1 = Ki(ai+1) and Ki+1 ∣ Ki is finite by Theo-
rem 6.2.5. By the degree formula, Kn ∣K is finite:

[Kn ∶K] = [Kn ∶Kn−1]⋯[K2 ∶K1] ⋅ [K1 ∶K].

(2 ⇒) by Remark 6.2.3 (1) and (3) and (2⇐) by (1).
(3 ⇒) is trivial. (3 ⇐): let a ∈ L; say a is a root of bnXn + ⋯ + b0 ∈ M[X]. Then a is

algebraic over M̃ ∶= K(b0, ..., bn) and by assumption, the bi are algebraic over K. By (1),
M̃(a) ∣K is finite. By Remark 6.2.3 (3), a is algebraic over K.

Exercise 6.2.17. Let a0, a1 ∈ L algebraic over K and

n0 ∶= [K(a0) ∶K], n1 ∶= [K(a1) ∶K] = n1, n ∶= [K(a0, a1) ∶K].

Then n ⩽ n0n1 and n0, n1 both divide n; in particular, n = n0n1 if n0, n1 are coprime. The
same holds more generally for finite tuples ā0, ā1 of algebraic elements.

Examples 6.2.18.

1. The complex roots of X3 − 2 ∈ Q[X] are α1 ∶=
3
√
2, α2 ∶= ζ3α1, α3 ∶= ζ23α1 where

ζ3 = e2πi/3. Then [Q(αi) ∶ Q] = 3 and [Q(α1, α2) ∶ Q] = 6 < 3 ⋅ 3.
Indeed, note Q(α1, α2) = Q(α1, ζ3) and ζ3 is a root of X2 + X + 1 ∈ Q[X] (Re-
mark 1.6.9). Hence, [Q(ζ3) ∶ Q] = 2, so [Q(α1, ζ3) ∶ Q] = 6 by the exercise.

2. [Q(i) ∶ Q] = [Q(
√
2) ∶ Q] = 2 and [Q(i,

√
2) ∶ Q] = 2 ⋅ 2.

Indeed: i ∉ Q(
√
2) ⊆ R, so [Q(i,

√
2) ∶ Q(

√
2)] = 2.

Exercise 6.2.19. Let a ∈ C be a root of X4 + 2X + 2 ∈ Q[X]. Show 3
√
2 ∉ Q(a).

6.2.1 Relative algebraic closure

Theorem 6.2.20. The set K
L
of a ∈ L that are algebraic over K is an intermediate field

of L ∣K called the relative algebraic closure of K in L.

It contains every a ∈ L that is algebraic over K
L
.

Proof. Given a, b ∈ K
L
, say, roots of f, g ∈ K[X], we have to find polynomials having

a − b and ab−1 (if b ≠ 0) as roots. It is difficult to construct such polynomials from f, g.
Arguing abstractly is easier: K(a, b) ∣K is finite, hence algebraic by Corollary 6.2.16; thus,
a − b, ab−1 ∈K(a, b) are algebraic over K.

2nd statement: if a ∈ L is algebraic over K
L
, then K

L
(a) ∣K

L
is finite (Theorem 6.2.5),

hence algebraic (Corollary 6.2.16 (2)). Since alsoK
L
∣K is algebraic,K

L
(a) ∣K is algebraic

by Corollary 6.2.16 (3); hence, a is algebraic over K, i.e., a ∈K
L
.
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Corollary 6.2.21. If A ⊆K
L
, then K(A) ∣K is algebraic.

Proof. Since A ⊆K
L
and K

L
is a field, we have K(A) ⊆K

L
.

Example 6.2.22. QC
∣ Q is not finitely generated.

Proof. n
√
2 has minimal polynomial Xn − 2 over Q (irreducible by Eisenstein). Hence,

[QC
∶ Q] ⩾ [Q( n

√
2) ∶ Q] = n (Theorem 6.2.5), so [QC

∶ Q] = ∞. As QC
∣ Q is algebraic,

Corollary 6.2.16 (2) gives the claim.

6.2.2 Impossibility for ruler and compass

Corollary 6.2.23. If z ∈ C is constructible, then z is algebraic (over Q) and [Q(z) ∶ Q] is
a power of 2.

Proof. Choose Q ⊊K1 ⊊ ⋯ ⊊Kn ∋ z according Theorem 6.1.5. Then [Ki+1 ∶Ki] = 2. Hence,
[Kn ∶ Q] = 2n. Since 2n = [Kn ∶K(z)] ⋅ [K(z) ∶ Q], also [K(z) ∶ Q] is a power of 2.

Example 6.2.24. The converse is false: it is known that f ∶= X4 − 4X + 2 ∈ Q[X] has a
non-constructible root z ∈ C; but [Q(z) ∶ Q] = 4 since f is irreducible by Eisenstein.

Example 6.2.25 (Classical Greek problems, again).

1. The Delian problem is unsolvable: 3
√
2 is not constructible because [Q( 3

√
2) ∶ Q] = 3

is not a power of 2.

2. Squaring the circle is impossible: Lindemann’s theorem implies
√
π is not algebraic.

3. Trisecting angles is not always impossible: eπi/3 is constructible but eπi/9 is not.

Indeed: let α ∶= π/9 and z ∶= eiα + e−iα = 2 cos(π/9) and e3iα + e−3iα = 2 cos(π/3) = 1;
hence z3 = (eiα + e−iα)3 = e3iα + 3eiα + 3e−iα + e−3iα = 1 + 3z. Hence, z is a root of
X3 − 3X − 1 ∈ Q[X]; this is irreducible because it has no root in Z (Exercise 3.1.15);
hence, [Q(z) ∶ Q] = 3; hence neither z nor cos(α) = Re(eiα) nor eiα is constructible.

We do not have yet the theoretical means to understand the constructibility of regular
n-gons and delay an answer to Section 6.9.1.

6.3 Splitting fields

Lemma 6.3.1 (Kronecker). Let K be a field and f ∈K[X] ∖K. Then there exists a field
extension L ∣K such that f has a root in L. Moreover, [L ∶K] ⩽ deg(f).

Proof. Let g be a monic irreducible factor of f and write g = Xn + an−1Xn−1 +⋯ + a0. By
Example 4.6.3 (3), K[X] is a principal ideal domain and by Remark 4.7.11 (3), (g) is a
maximal ideal in K[X]. By Lemma 4.8.9 (2), L ∶=K[X]/(g) is a field.
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Since the canonical projection π(g) is a homomorphism,

0L = π(g)(g) = X̄
n + ān−1X̄

n−1 +⋯ + ā0

where we write x̄ ∶= π(g)(x). Note π(g)↿K ∶ K → L is injective as a field homomorphism.
Identifying a ∈K with ā we sloppily view K as a subfield of L. Then π(g)(g) = g(X̄). Thus
α ∶= X̄ ∈ L is a root of g, hence also of f . Moreover: since g is irreducible and monic,
g =mK

α by Lemma 3.5.6. Then [K(α) ∶K] = deg(g) ⩽ deg(f) (in fact, K(α) = L).

Exercise 6.3.2. Let K be a field. Then f, g ∈ K[X] are not coprime if and only if f, g
have a common root in some field extension L ∣K. In particular, f and f ′ are not coprime
if and only if f has a multiple root in some field extension L ∣K.

Definition 6.3.3. Let K be a field and f ∈ K[X] of degree n > 0. L is a splitting field of
f over K if L ∣K is a field extension and

1. f splits in L: there are a1, ..., an ∈ L and b ∈K such that f = b(X − a1)⋯(X − an);

2. if M is an intermediate field of L ∣K such that f splits in M , then M = L

Remark 6.3.4. Then:

1. L =K(a1, ..., an); in particular, L ∣K is finite (Corollary 6.2.16 (1)).

2. a ∈K is the lead coefficient of f , and {a1, ..., an} the set of roots of f in L.

3. Since L[X] is factorial: if g ∣ f with g ∈ L[X], then g = b(X − ai1)⋯(X − air) for
certain 1 ⩽ i1, ..., ir ⩽ n and b ∈K; in particular, g splits in L.

Theorem 6.3.5 (Existence of splitting fields). Let K be a field. For every f ∈ K[X] of
degree n > 0 there exists a splitting field L of f over K with [L ∶K] ⩽ n!.

Proof. We can assume f is monic. Choose L1 ∣K of degree ⩽ n with a root a1 ∈ L1 of f . In
L1[X] write f = (X − a1)f1 with f1 ∈ L1[X] and deg(f1) = n − 1 (Corollary 3.3.2). Choose
L2 ∣ L1 of degree ⩽ n−1 with a root a2 ∈ L2 of f1. In L2[X] write f = (X−a1)(X−a2)f2 with
f2 ∈ L2[X] and deg(f2) = n− 2. Continue and get Ln ∣K such that f = (X −a1)⋯(X −an).
Note [Ln ∶ K] = [Ln ∶ Ln−1]⋯[L2 ∶ L1][L1 ∶ K] ⩽ n!. Set L ∶= K(a1, ..., an). As this is an
intermediate field of Ln ∣K, its degree divides [Ln ∶K], so is ⩽ n!.

LetM be an intermediate field of L ∣K such that f splits inM , say f = (X−b1)⋯(X−bn)
with bi ∈M . For every ai we have 0 = f(a) = (ai − b1)⋯(ai − bn), so ai equals some bj ∈M .
Thus, L =K(a1, ..., an) ⊆M ⊆ L, so L =M .

Example 6.3.6. Recall Example 6.2.18 (1). Q( 3
√
2, ζ3) is a splitting field of X3−2 ∈ Q[X]

over Q and [Q( 3
√
2, ζ3) ∶ Q] = 6 = 3!.

Example 6.3.7. Q( 8
√
2, i) is a splitting field of X8−2 over Q, and [Q( 8

√
2, i) ∶ Q] = 16 < 8!.
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Proof. The complex roots are α ∶= 8
√
2, ζ8α, ..., ζ78α. The splitting field contains ζ8 = α7 ⋅

ζ8α/2, so equals Q(α, ζ8). Note X8 − 2 is irreducible (Eisenstein), so [Q(α) ∶ Q] = 8.
Further, ζ8 /∈ Q(α) ⊆ R, so [Q(α, ζ8) ∶ Q(α)] > 1. Compute

(ζ8 + ζ
−1
8 )

2 = ζ28 + 2 + ζ
−2
8 = i + 2 − i = 2.

Hence, ζ8 + ζ−18 equals one of the square roots ±α4 of 2 in Q(α); then ζ28 + 1 = ±α4 ⋅ ζ8, so
ζ8 is a root of a quadratic polynomial in Q(α)[X]. Hence [Q(α, ζ8) ∶ Q(α)] = 2. Thus,
[Q(α, ζ8) ∶ Q] = [Q(α, ζ8) ∶ Q(α)] ⋅ [Q(α) ∶ Q] = 2 ⋅ 8.

Finally, [Q(α, ζ8) ∶ Q(α, i)] = 1 because Q(α, i) ⊆ Q(α, ζ8) and

2 = [Q(α, ζ8) ∶ Q(α)] = [Q(α, ζ8) ∶ Q(α, i)][Q(α, i) ∶ Q(α)] = [Q(α, ζ8) ∶ Q(α, i)] ⋅ 2.

Exercise 6.3.8. The splitting field of X4 − 4X2 + 2 over Q is Q(α) where α ∶=
√
2 −
√
2.

What is [Q(α) ∶ Q]?

We now aim to show that splitting fields are unique in some sense.

Remark 6.3.9. Recall Remark 3.1.8: for commutative rings R,S, a homomorphism φ ∶
R → S and f = anXn +⋯ + a0 ∈ R[X] we write

φ(f) ∶= φ(an)X
n +⋯ + φ(a0).

If a ∈ R is a root of f , then φ(a) ∈ S is a root of φ(f) because

φ(f)(φ(a)) = φ(an)φ(a)
n +⋯ + φ(a0) = φ(ana

n +⋯ + a0) = φ(f(a)) = φ(0R) = 0S.

Theorem 6.3.10. Let L ∣ K and L′ ∣ K ′ be field extensions and φ ∶ K → K ′ a homomor-
phism. Let f ∈K[X] be irreducible and a ∈ L a root of f .

1. For every root a′ ∈ L′ of φ(f) there is exactly one homomorphism ψ ∶K(a) → L′ that
extends φ and maps a to a′.

2. If φ(f) has n roots in L′, then there are exactly n homomorphisms ψ ∶ K(a) → L′

that extend φ.

Proof. (2) follows from (1) and the previous remark. (1): uniqueness is easy. Assume ψ,ψ′

are homomorphism as stated. We have K(a) = K[a] (Theorem 3.5.8). Let g(a) ∈ K[a]
with g ∈K[X]. Then ψ(g(a)) = φ(g)(ψ(a)) = φ(g)(ψ′(a)) = ψ′(g(a)).

For existence, let χ ∶ K[X] → L′ extend φ and map X to a′ (Theorem 3.1.7). Then
χ(f) = φ(f)(a′) = 0L′ , so (f) ⊆ ker(χ). But ker(χ) ≠ K[X] and (f) is a maximal ideal
in K[X] (Remark 4.7.11), so (f) = ker(χ). The isomorphism theorem for rings gives a
monomorphism χ′ ∶ K[X]/(f) → L′ with χ′ ○ π(f) = χ. Then χ′(X + (f)) = χ(X) = a′

and χ′(b + (f)) = χ(b) = φ(b) for b ∈ K. By Corollary 4.8.15 (and (f) = (mK
a )), there is

χ′′ ∶K(a) ≅K[X]/(f) mapping a to X + (f) and b ∈K to b + (f). Set ψ ∶= χ′ ○ χ′′.
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Definition 6.3.11. Let L ∣ K and L′ ∣ K be field extensions. A K-homomorphism (K-
isomorphism) is a homomorphism (isomorphism) φ ∶ L→ L′ that fixes K, i.e., φ↿K = idK .

If L = L′, we speak of a K-endomorphism (K-automorphism) of L.

Remark 6.3.12. Let L ∣K and L′ ∣K be field extensions and f ∈K[X] ∖K.

1. If f is irreducible, and a ∈ L,a′ ∈ L′ are roots of f , then there is exactly one K-
isomorphism from K(a) onto K(a′) with φ(a) = a′.

Indeed: apply the theorem with φ = idK ; clearly, φ is onto K(a′).

2. A K-homomorphism φ ∶ L → L′ maps roots of f in L to roots of f in L′ (Re-
mark 6.3.9).

3. A K-automorphism φ of L permutes the roots of f in L.

Indeed by (2), φ maps roots to roots; there are ⩽ deg(f) many (Corollary 3.3.3); as
a field homomorphism φ is injective (Remark 1.1.22 (2)).

4. Let A ⊆ L and φ,ψ ∶K(A) → L′ are K-homomorphisms that agree on A, then φ = ψ
(Lemma 3.6.10).

Corollary 6.3.13. Let L ∣ K and L′ ∣ K be field extensions, and assume L ∣ K is finite.
Then there are ⩽ [L ∶K] many K-homomorphisms from L to L′.

Proof. Let n ∶= [L ∶ K] and choose a1, ..., ar ∈ L with K(a1, ..., ar) = L. Let Ki ∶=
K(a1, ..., ai) (and K0 = K). By the degree formula n = n0n1⋯nr where n0 ∶= 1 and
ni ∶= [Ki ∶Ki−1] = deg(m

Ki−1
ai ) for 0 < i ⩽ r. We proceed by induction on r.

For r = 0, our claim is trivial. For r > 0, we assume inductively that there are m ⩽
n1...nr−1 many K-homomorphisms φ from Kr−1 to L′. By Theorem 6.3.10 (2), every φ has
exactly mr many extensions to a homomorphism from Kr to L′ where mr is the number
of roots of φ(mKr−1

ar ) in L
′. In total, there are m ⋅mr homomorphisms from Kr = L to L′.

But mr ⩽ degφ(m
Kr−1
ar ) = nr. Our claim follows.

Theorem 6.3.14 (Uniqueness of splitting fields). Let K be a field and f ∈ K[X] ∖K.
Then the splitting field of f over K is unique up to K-isomorphism.

In fact, if L,L′ are splitting fields of f over K, and a ∈ L,a′ ∈ L′ roots of some irreducible
factor g of f in K[X], then there is a K-isomorphism from L onto L′ that maps a to a′.

Proof. Let L,L′ be two splitting fields of f over K. Let a1, ..., an ∈ L and a′1, ..., a
′

n list
the (not necessarily distinct) roots of f in L,L′. Then L =K(a1, ..., an), L′ =K(a′1, ..., a

′

n).
Since roots of g are roots of f , we can assume a = a1. Since g ∣ f , it has some a′j as
root in L′ (Remark 6.3.4), say, a′j = a

′

1. By Remark 6.3.12, there is a K-isomorphism
φ1 ∶K(a1) →K(a′1) that maps a1 to a′1.

Write f = (X − a1)f1 where f1 ∈K(a1)[X]. Its roots in L are a2, ..., an. Let g2 ∈K(a1)
be an irreducible factor of f1. Some aj for j > 1 is a root of g2 in L (Remark 6.3.4 (3)). We
can assume j = 2. We have f = (X − a′1)φ1(f1) where φ1(f1) ∈ K(a′1) has roots a′2, ..., a

′

n

in L′, φ1(g2) ∈ K(a′1) is an irreducible factor of φ(f1) and some a′k for k > 1 is a root
of φ(g2) in L′. We can assume k = 2.
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By Theorem 6.3.10, φ1 extends to a homomorphism φ2 ∶ K(a1, a2) → L′ mapping a2
to a′2; clearly, φ2 is a K-isomorphism from K(a1, a2) onto K(a′1, a

′

2). Continue.

Exercise 6.3.15. Let L ∣K be finite with [L ∶K] = n and a ∈ L. AssumeK-automorphisms
of L map a to ⩾ n many values. Show a is primitive, i.e., K(a) = L.

Example 6.3.16. Let L ∶= Q( 4
√
2, i),K ∶= Q. Determine Aut(L) and infer L = Q( 4

√
2+ i).

Solution. Write α ∶= 4
√
2. We havemQ

α =X4−2 (irreducible by Eisenstein) andm
Q(α)
i =X2+

1 (irreducible as it has no root in Q(α) ⊆ R). The degree formula gives [L ∶K] = 8. Recall,
automorphisms are Q-automorphisms (Exercise 3.4.15), so there are ⩽ 8 automorphisms.

Theorem 6.3.10 gives ψ1, ψ2, ψ3, ψ4 ∈ Aut(Q(α))mapping α to one of the 4 roots ±α,±iα
of mQ

α . By the corollary above each ψi extends to two automorphisms of L mapping i to ±i.
This gives 4 ⋅ 2 automorphisms, so all of them.

Hence, α + i is primitive by the previous exercise: 8 values ±α ± i,±iα ± i.

Exercise 6.3.17. Determine [Q(
√
3, 3
√
3) ∶ Q] and find all homomorphisms fromQ(

√
3, 3
√
3)

into C. Which ones are automorphisms of Q(
√
3, 3
√
3)?

Exercise 6.3.18. Let p1 < ⋯ < pn be prime and K ∶= Q(√p1, ...,
√
pn). Show

√
q ∉K for q

a product of other primes (induction on n). Infer [K ∶ Q] = 2n and K = Q(√p1 +⋯+
√
pn).

6.3.1 Normal extensions

Splitting fields have the following important property with a nonsensical name:

Lemma 6.3.19. Let L be the splitting field of f ∈ K[X] ∖ K over K. Then the field
extension L ∣ K is normal: it is algebraic and for every irreducible g ∈ K[X], if g has a
root in L, then g splits in L.

Proof. Let a1, ..., an be the roots of f in L. Then L =K(a1, ..., an), so L ∣K is algebraic by
Corollary 6.2.16 (1). Let g ∈K[X] be irreducible and b ∈ L a root. Let L′ be the splitting
field of g over L. We have to show that every root b′ ∈ L′ of g is in L.

By the theorem there is a K-automorphism φ of L′ that maps b to b′. It suffices to
show φ(L) ⊆ L. But for every 1 ⩽ i ⩽ n, φ(ai) is a root of φ(f) = f , so φ(ai) = aj ∈ L for
some j. Then φ(L) = φ(K(a1, ..., an)) =K(φ({a1, ..., an})) ⊆ L by Lemma 3.6.10 (2).

Exercise 6.3.20. A partial converse: if L ∣ K is a finite and normal field extension with
L ≠K, then L is a splitting field over K of some f ∈K[X] ∖K.

Hint: f is the product of minimal polynomials of generators.

Remark 6.3.21.

1. If L ∣M ∣K are field extensions and L ∣K is normal, then so is L ∣M .

Indeed: let f ∈M[X] be irreducible with root a ∈ L. We have to show f splits in L.
We can assume f is monic. Then f =mM

a . By Lemma 3.5.6, f ∣mK
a in M[X] (note

a is algebraic over K). As mK
a splits in L, so does f (Remark 6.3.4).
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2. There exist field extensions L ∣M ∣K with L ∣K normal and M ∣K not normal.

E.g., for α ∶= 3
√
2 we have Q(α, ζ3) ∣ Q(α) ∣ Q (Example 6.3.6). Q(α) ∣ Q is not

normal: X3 − 2 does not split since Q(α) it does not contain the other two roots.

In fact, X3 − 2 factors (X − α) ⋅ (X2 + αX + α2) in Q(α).
3. There exist L ∣M ∣K with both M ∣K and L ∣M normal, and L ∣K not normal.

E.g., Q( 4
√
2) ∣ Q(

√
2) ∣ Q: note that adjoining square roots gives normal extensions

and Q( 4
√
2) ∣ Q is not normal, e.g., it does not contain the root i 4

√
2 of X4 − 2.

In fact, X4 − 2 factors (X − 4
√
2)(X + 4

√
2)(X2 +

√
2) in Q( 4

√
2).

The reason why normality is important is the following:

Lemma 6.3.22. Let L ∣ K be an algebraic field extension. Then L ∣ K is normal if and
only if φ(L) = L for all field extensions L′ ∣ L and K-homomorphisms φ ∶ L→ L′.

Proof. ⇒: assume L ∣K is normal and let L′, φ be given. We show φ(L) = L.
For a ∈ L, normality gives mK

a = (X − a1)⋯(X − an) for certain ai ∈ L. Note mK
a =

φ(mK
a ) = (X −φ(a1))⋯(X −φ(an)). As φ(a) is a root of mK

a we have φ(a) = ai for some i.
Conversely, a is a root of φ(mK

a ) so equals φ(ai) for some i.
⇐: assume the r.h.s.. We have to show that every f ∈K[X]∖K with a root a ∈ L splits

in L. We can assume f is irreducible. Let L′ be a splitting field of f over L and let a′ ∈ L′

a root of f . We have to show a′ ∈ L. By Theorem 6.3.10, there is a K-homomorphism
φ ∶K(a) → L′ that maps a to a′. By assumption, φ(L) ⊆ L, so a′ = φ(a) ∈ L.

Remark 6.3.23. The same proof works also with the variant of the r.h.s. that has φ(L) ⊆ L
instead φ(L) = L.

In the next section we observe that one can make field extensions normal by making
them minimally larger:

Theorem 6.3.24 (Normal hull). Every algebraic field extension L ∣K has a normal hull N :
N ∣ L is a field extension and N ∣K is normal and, if N ′ is an intermediate field of N ∣ L
such that N ′ ∣K is normal, then N = N ′. Moreover, N is unique up to L-isomorphism.

6.4 Algebraic closure

Definition 6.4.1. Let K be a field. K is algebraically closed if every f ∈K[X] ∖K has a
root in K. A field K is an algebraic closure of K if K is algebraically closed and K ∣K is
an algebraic field extension.

Remark 6.4.2. Let K be a field.
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1. K is algebraically closed if and only if the irreducible polynomials in K[X] are
precisely the linear ones.

⇒: if f ∈K[X] has degree > 1, then it has a root a ∈K and we can write f = (X−a)g;
then deg(g) = deg(f) − 1 > 0 and f is reducible.
⇐: an irreducible factor of a given f ∈ K[X] ∖K is linear, say it equals aX + b for
a, b ∈K,a ≠ 0; then −b/a ∈K is a root of f .

2. If K is algebraically closed if and only if every f ∈K[X] ∖K splits in K.

⇐ is clear and⇒ follows from (1), since K[X] is factorial (this solves Exercise 3.8.4).

3. K is algebraically closed if and only if L =K for every algebraic field extension L ∣K.

⇒: if a ∈ L, then the irreducible mK
a is linear and hence a ∈K.

⇐: if f ∈K[X]∖K does not have a root in K, then the splitting field of f is a proper
algebraic extension.

4. Let L ∣ K be a field extension and L algebraically closed. Then K
L
is an algebraic

closure of K (by Theorem 6.2.20).

5. If K is an algebraic closure of K, then K ∣ K is normal. If f ∈ K[X] and a1, ..., an
lists its roots in K, then K(a1, ..., an) is the splitting field of f over K

Examples 6.4.3. The fundamental theorem of algebra (Theorem 3.8.3) states that C is
algebraically closed, so C is an algebraic closure of R.

By (4) above, QC
is an algebraic closure of Q.

Theorem 6.4.4 (Embedding theorem). Let L ∣ K be an algebraic field extension, M an
intermediate field, K an algebraic closure of K and φ ∶M →K a K-homomorphism.

Then there exists a K-homomorphism ψ ∶ L → K that extends φ. In particular, there
exists a K-homomorphism φ ∶ L→K.

Proof. Consider the set H of K-homomorphisms χ ∶ N → K whose domain N is an inter-
mediate field of L ∣M and that extend φ.

View each χ as a set of ordered pairs. Then H is partially ordered by ⊊. Further, (H,⊊)
is inductive: every chain C ⊆H has upper bound χ∗ ∶= ⋃C = ⋃χ∈C χ ∈H.

By Zorn’s lemma, H contains a maximal element ψ. We claim N = L for its domain N .
Otherwise choose a ∈ L∖N . Then L ∣ N is algebraic (Corollary 6.2.16) andmN

a ∈ N[X] irre-
ducible. Choose a root a′ ∈K of ψ(mN

a ) ∈K[X]. Theorem 6.3.10 gives aK-homomorphism
χ ∶ N(a) →K (with χ(a) = a′) that extends ψ, contradicting maximality.

Theorem 6.4.5. Every field K has an algebraic closure K, unique up to K-isomorphism.

Proof. Uniqueness: for another algebraic closure K̃, the embedding theorem gives a K-
homomorphism φ ∶ K̃ →K. Then φ(K̃) is an intermediate field of K ∣K and algebraically
closed. By Corollary 6.2.16 (3), K ∣ φ(K̃) is algebraic. By Remark 6.4.2 (3), φ(K̃) =K.

Existence: write P ∶=K[X] ∖K. For f ∈ P let Xf be a variable and set R ∶=K[Xf , f ∈
P ]; note f(Xf) ∈ R for all f ∈ P . Let

I ∶= ({f(Xf) ∣ f ∈ P}).
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We claim I is a proper ideal of R. Otherwise 1 ∈ I, so 1 = g1f1(Xf1) + ⋯ + gnfn(Xfn) for
some n ∈ N and fi ∈ P and gi ∈ R. Let L be the splitting field of f ∶= f1⋯fn and ai ∈ L a root
of fi(Xfi). Plug ai for Xfi and 0L for all other variables Xf (evaluation homomorphism).
Then 1 = 0 in L, a contradiction.

By Theorem 4.7.15, I is contained in a maximal ideal I∗ of R. Then R/I∗ is a field
(Lemma 4.8.9). Identifying x ∈K with x+I∗ we view K as a subfield of R/I∗. Every f ∈ P
has root xf ∶=Xf + I∗ ∈ R/I∗ because f(Xf + I∗) = f(Xf) + I∗ = I∗ = 0R/I∗ . Set

K1 ∶=K({xf ∣ f ∈ P}).

By Corollary 6.2.21, K1 ∣ K is algebraic. Repeat the construction with K1 in place
of K and get an algebraic field extension K2 ∣ K1 such that every f ∈ K1[X] ∖K1 has a
root in K2. And so on: K0 ∶=K ⊆K1 ⊆K2 ⊆ ⋯. Define

K ∶= ⋃n∈NKn.

It is easy to see that K is a field. The field extension K ∣K is algebraic: if x ∈K, then
x ∈Kn for some n; but Kn ∣K is algebraic by Corollary 6.2.16 (3).

K is algebraically closed: let f ∈ K[X] ∖K; choose n ∈ N such that the finitely many
coefficients of f are in Kn, i.e., f ∈Kn[X]; then f has a root in Kn+1, hence in K.

Remark 6.4.6. The existence of algebraically closed field extensions has deeper reasons.
They exemplify so-called existentially closed structures constructed in mathematical logic.

Lemma 6.4.7 (Homogeneity). Let K be a field and a, b ∈ K be roots of an irreducible
f ∈K[X]. Then there exists a K-automorphism φ of K with φ(a) = b.

Proof. By Theorem 6.3.10 there exists a K-homomorphism ψ ∶ K(a) → K with ψ(a) = b.
By the embedding theorem there is a K-homomorphism φ ∶ K → K extending ψ. Then
φ(K) is an intermediate field of K ∣ K and algebraically closed. By Remark 6.4.2 (3),
φ(K) =K, so φ is a K-automorphism of K.

We now revisit the concept of normality.

Lemma 6.4.8. Let L be an intermediate field of K ∣K. Then the following are equivalent.

1. L ∣K is normal.

2. For every irreducible f ∈K[X], L contains either all or none of the roots of f in K.

3. φ(L) = L for every K-automorphisms φ of K.

Proof. By Corollary 6.2.16 (3), L ∣K is algebraic. 1⇒ 3 follows from Lemma 6.3.22.
3 ⇒ 2: assume f ∈ K[X] is irreducible, a, b ∈ K are roots and a ∈ L and b ∉ L. By

homogeneity there is a K-automorphism φ of K with φ(a) = b. Then φ(L) ≠ L.
2⇒ 1: let f ∈K[X] be irreducible with a root in L. Write f = b(X − a1)⋯(X − an) for

certain ai ∈K,b ∈K (Remark 6.4.2 (2)). By (2), all ai ∈ L, so f splits in L.
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Proof of Theorem 6.3.24. Existence: let A ⊆ L be the set of all roots of all irreducible
g ∈K[X] that have a root in L. Then N ∶= L(A) is a normal hull of L ∣K.

Uniqueness: let Ñ be a normal hull of L ∣ K. By the embedding theorem, there is an
L-homomorphism φ ∶ Ñ → L. Then Ñ is L-isomorphic to φ(Ñ), so φ(Ñ) is a normal hull
of L ∣ K. Thus, φ(Ñ) = N . Indeed, as φ(Ñ) ∣ K is normal, A ⊆ φ(Ñ), so N ⊆ φ(Ñ) and
N is an intermediate field of φ(Ñ) ∣ L; since φ(Ñ) is a normal hull, N = φ(Ñ).

6.5 Finite fields

Proposition 6.5.1. The cardinality of a finite field K is a power of char(K).

Proof. p ∶= char(K) > 0 because K is finite. By Theorem 3.4.14, we can assume K has
prime field Fp. As K is finite, n ∶= [K ∶ Fp] is finite. Then K as an Fp-vector space is
isomorphic to Fnp , so has cardinality pn.

Especially important for computer science is the case char(K) = 2 and [K ∶ F2] = n:
this endows the set of binary strings of length n with the structure of a field or an F2-vector
space. We now show such fields exist for all n > 0 and, in fact, classify all finite fields. The
proof is done by connecting the dots of many things we learned so far. It also exemplifies
how group theory is useful for field theory.

Theorem 6.5.2 (Classification of finite fields). Let p, n, k > 0 with p prime and let q ∶= pn.

1. There exists an up to isomorphism unique field Fq with q elements, namely the split-
ting field of Xq −X over Fp; it consists of the roots of this polynomial.

2. There exist irreducible f ∈ Fp[X] of degree n. For any such f we have Fq ≅ Fp[X]/(f)
and every root of f in Fq is a primitive element of Fq ∣ Fp.

3. Fq has a subfield of cardinality pk, i.e., isomorphic to Fpk , if and only if k ∣ n.

Proof. (1): let L be the splitting field of Xq −X over Fp and a1, ..., aq ∈ L list the roots.
We claim the ai are pairwise distinct. Otherwise some ai is a multiple root of Xq −X.

By Lemma 3.3.13, ai is a root of (Xq −X)′ = qX −1. But qai = 0 in L since char(L) = p ∣ q.
We next claim {a1, ..., aq} is a subfield of L – then L = {a1, ..., aq} is a field of cardinal-

ity q. We have to show: if a, b ∈ L are roots of Xq −X, then so are ab, a−1,−1 and a + b.
That ab, a−1 are roots is clear. −1q = −1 if q is odd; if q is even, p = 2 and 1 = −1. For a + b
we have to show (a+ b)q = a+ b, i.e., = aq + bq. By Lemma 3.4.16, this is true for q = p, i.e.,
n = 1. For n > 1 it follows by induction.

Uniqueness: if K is a field with q elements, its characteristic is p by the proposition, so
we can assume K extends Fp. Since K× has order q − 1, every a ∈ K is a root of Xq −X;
hence, K is also a splitting field, so K ≅ L (Theorem 6.3.14).

(2): by Corollary 5.3.25, F×q is cyclic, say, generated by a ∈ Fq. Clearly, Fq = Fp(a). By
Theorem 6.2.5, n = [Fq ∶ Fp] = deg(m

Fp
a ), so m

Fp
a is irreducible of degree n.

Let f ∈ Fp[X] be such and b ∈ Fq a root. Then Fp[X]/(f) ≅ Fp(b) and [Fp(b) ∶ Fp] = n,
so ∣Fp(b)∣ = q, so Fp(b) = Fq.
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(3): letK be a subfield of Fq. ThenK ∣ Fp, so ∣K ∣ = pk for some k ⩽ n by the proposition.
Then k = [K ∶ Fp] divides n = [Fq ∶ Fp] by the degree formula.

Conversely, assume k ∣ n, say n = kℓ. Let q′ ∶= pk. Then q′ − 1 ∣ q − 1 because

(pk)ℓ − 1 = (pk − 1) ⋅ ((pk)ℓ−1 +⋯ + pk + 1).

As F×q is cyclic of order q−1, Theorem 5.3.21 gives a subgroup U ⊆ F×q of order q′−1. Every
x ∈ U has order dividing ∣U ∣ = q′ − 1 by Lagrange, so xq

′
= x. Hence, U ∪ {0} is a set of q′

many roots of Xq′ −X in Fq. We saw above that this set is a subfield.

Exercise 6.5.3. Let p, k, n > 0, p prime and k ∣ n. Show Xpk −X ∣Xpn −X and infer from
this that Fpn has a subfield ≅ Fpk .

Corollary 6.5.4. Let p, n, k > 0 with p prime and q ∶= pn. Let f ∈ Fp[X] be irreducible of
degree k. Then f is a factor of Xq −X if and only if k ∣ n.

Proof. ⇒: by Remark 6.3.4, f splits in Fq, so has root a ∈ Fq. Then Fp(a) ⊆ Fq and
[Fp(a) ∶ Fp] = deg(f) = k divides [Fq ∶ Fp] = n by the degree formula.
⇐∶ let a ∈ F p be a root of f . Then [Fp(a) ∶ Fp] = k and Fq contains a field isomorphic

to Fp(a). Then f has a root b ∈ Fq. As b is a root ofXq−X, f ∣Xq−X by Corollary 3.5.7.

Theorem 6.5.5. Let p be a prime. Recursively, let F0 ∶= Fp and choose Fn+1 as an
extension of Fn and isomorphic to Fp(n+1)!. Then Fp ≅ ⋃nFn.

Proof. The Fn are well-defined by (3) of the theorem. It is easy to see that ⋃nFn is a field.
By Theorem 6.4.5 it suffices to show ⋃nFn is an algebraic closure of Fp.

To see ⋃nFn ∣ Fp is algebraic, let x ∈ ⋃nFn and choose n ∈ N with x ∈ Fn. As Fn ∣ Fp is
finite, it is algebraic, so x is algebraic over Fp.

To see ⋃nFn is algebraically closed, are looking for a root of a given f ∈ ⋃nFn[X] ∖

⋃nFn. Choose n ∈ N with f ∈ Fn[X]. We can assume f is irreducible in Fn[X]. By
Kronecker’s lemma there is a finite field extension L ∣ Fn where f has a root. By the
theorem, L ≅ Fpk for some k (with n! ∣ k). By Corollary 3.5.7, f ∣Xpk −X in Fn[X]. Now,
L is isomorphic to a subfield F of Fk ≅ Fpk! . The isomorphism maps Fn onto Fn (as the

set of roots of Xpn! −X), so F extends Fn. As F is the splitting field of Xpk −X over Fp
and f ∣Xpk −X in Fn[X], also f splits in F .

Remark 6.5.6. The sequence Fn above has a poorly motivated ad hoc definition; more
generically, one can define Fp as a so-called direct limit of the fields Fpn .

Example 6.5.7. F23 is the set of roots of X8 −X which factors over F2[X] as

X ⋅ (X − 1) ⋅ (X3 +X + 1) ⋅ (X3 +X2 + 1).

Then F23 ≅ F2[X]/(f) for f one of the degree 3 factors, say, f ∶=X3 +X + 1. Let x ∈ F2 be
a root of f , so F23 ≅ F2(x). The elements of F23 are the F2-linear combinations of 1, x, x2.
Here is a vector space isomorphism from F2(x) onto F3

2 :

0 1 x x2 x3 = 1 + x x4 = x + x2 x5 = 1 + x + x2 x6 = 1 + x2

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
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Calculations use the rules 1 + 1 = 0 and x3 = 1 + x (note x = −x). E.g., (1 + x)(x + x2) =
x + x2 + x2 + x3 = x + x3 = x + (1 + x) = 1, so (1 + x)−1 = x + x2. Such calculations verify the
stated equalities for the powers of x. We see x generates the group F2(x)×.

Example 6.5.8. Both X2 + 1 and X2 + X − 1 are irreducible over F3 = {0,±1}. For
respective roots x, y ∈ F3 we have F32 ≅ F3(x) ≅ F3(y). Calculations use the rules 1+1 = −1
and x2 = −1, resp., y2 = 1 − y. E.g., y3 = y ⋅ y2 = y − y2 = y − 1 + y = −1 − y.

Then x4 = 1 in F3(x)× while y generates F3(y)×:

1 y y2 = 1 − y y3 = −1 − y y4 = −1 y5 = −y y6 = −1 + y y7 = 1 + y
(1,0) (0,1) (1,−1) (−1,−1) (−1,0) (0,−1) (−1,1) (1,1)

Example 6.5.9. F24 is the set of roots of X16 −X which factors over F2[X] as

X ⋅ (X − 1) ⋅ (X2 +X + 1) ⋅ (X4 +X3 +X2 +X + 1) ⋅ (X4 +X3 + 1) ⋅ (X4 +X + 1).

Then F24 ≅ F2(x) ≅ F2(y) for roots x, y ∈ F2 of X4 +X + 1 and X4 +X3 + 1. Calculations
use the rules x4 = 1 + x, resp., y4 = 1 + y3. Both x and y generate F2(x)×, resp., F2(y)×:

x4 = 1 + x x5 = x + x2 x6 = x2 + x3 x7 = 1 + x + x3 x8 = 1 + x2

(1,1,0,0) (0,1,1,0) (0,0,1,1) (1,1,0,1) (1,0,1,0)
⋯

y4 = 1 + y3 y5 = 1 + y + y3 y6 = 1 + y + y2 + y3 y7 = 1 + y + y2 y8 = y + y2 + y3

(1,0,0,1) (1,1,0,1) (1,1,1,1) (1,1,1,0) (0,1,1,1)
⋯

Exercise 6.5.10. Let 0,1, a, b list F4. Determine the tables for +, ⋅. Verify f ∶=X4+X+1 =
(X2 +X + a)(X2 +X + b) in F4[X] and show f is irreducible in F2[X]. Determine the
degree of the splitting field of f over F4.

6.5.1 Reed-Solomon codes

Reed-Solomon codes are the key component of how data are stored on CDs or DVDs.
Instead of the given data x one stores an error-correcting code C(x) of x such that x can
be retrieved even after considerable parts of the code C(x) are damaged.

Let q ⩾ m > n with q a power of a prime p and consider the data as a vector x =
(x0, ..., xn−1) ∈ Fnq , that is, a length n word over an alphabet of size q. Fix pairwise distinct
a1, ..., am ∈ Fq – in practice, one often uses powers of a primitive element of Fq ∣ Fp. Define

C(x) ∶= (px(a1), ..., px(am)) ∈ Fmq , where px ∶= xn−1X
n−1 +⋯ + x0 ∈ Fq[X].

Note C ∶ Fnq → Fmq is linear: C(x) = Ax where A is the (m × n) Vandermonde matrix
with i-th row 1, ai,⋯, an−1i . The key observation is this: for distinct x, y ∈ Fkq , the codes
C(x),C(y) have the same i-th entry if and only if ai is a root of px − py, a polynomial of
degree < n. Hence, C(x) and C(y) differ in ⩾m − n + 1 entries.

This means that ⩽ (m − n)/2 errors can be corrected: x is uniquely determined by any
tuple obtained by changing ⩽ (m − n)/2 entries of C(x).
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Remark 6.5.11. We cheated by using many letters – if only bits are used, one additionally
codes the letters in Fq by bit strings.

Sipser and Spielman’s expander codes (1996) code n bits by m ⩽ O(n) bits, correct a
constant fraction of errors and have very efficient encoding and decoding algorithms.

6.6 Separable extensions

Definition 6.6.1. Let K be a field. f ∈ K[X] ∖K is inseparable (over K) if there exists
an irreducible factor g ∈K[X] of f that has a multiple root in K; otherwise, f is separable.

Lemma 6.6.2. Let K be a field and f ∈K[X] irreducible. The following are equivalent.

1. f is inseparable.

2. f has < deg(f) many roots in K.

3. f has < deg(f) many roots in some L ∣K such that f splits in L.

4. f has a multiple root in some field extension L ∣K.

5. f has formal derivative f ′ = 0.

Proof. 1⇒ 2: the unique factorization of f in K[X] reads f = b(X − a1)⋯(X − an) where
for n ∶= deg(f) > 0, b ∈K and ai ∈K (Remark 6.4.2 (1)). The ai are all roots of f in K. If
a ∈K is a multiple root of f , then a = ai = aj for some i ≠ j.

2 ⇒ 3 ⇒ 4 are trivial and 5 ⇒ 1 follows from Lemma 3.3.13 (1). 4 ⇒ 5: by Exer-
cise 6.3.2, f, f ′ have a common divisor g of positive degree. Since f is irreducible, f, g are
associate, so deg(f) = deg(g). As deg(f ′) < deg(f), g ∣ f ′ implies f ′ = 0.

Remark 6.6.3. For monic f we defined the discriminant Df in Example 3.7.11 and noted
that Df = 0 is equivalent to (4).

Example 6.6.4. For an example of an irreducible inseparable f we need an infinite field
of positive characteristic p. Set K ∶= Fp(T ). By Eisenstein, f ∶= Xp − T is irreducible in
K[X] and Quot(Fp[T ])[X] =K[X]. f is inseparable since f ′ = pXp−1 = 0.

In fact, let a ∈K be a root of f ; then a is a multiple root of f by Lemma 3.4.16:

(X − a)p =Xp − ap =Xp − T.

This just plugs Xp for X in the irreducible separable X −T . All examples are like this:

Proposition 6.6.5. Let K be a field with p ∶= char(K) > 0 and f ∈ K[X] be irreducible.
Then f is inseparable if and only if f = g(Xpn) for some n > 0 and some irreducible
separable g ∈K[X].

Proof. ⇐: clearly f ′ = 0. ⇒: by Lemma 3.3.11 (3), f = g1(Xp) for some g1 ∈ K[X].
With f also g1 is irreducible. If g1 is separable, we are done. Otherwise, repeat and write
g1 = g2(Xp) for some g2 ∈K[X]. And so on. As the degrees of the gis decrease this process
stops with a separable gn. Then f = g1(Xp) = g2((Xp)p) = ⋯ = gn(Xpn).
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We now explain the mysterious Definition 3.4.17.

Proposition 6.6.6. A field K is perfect if and only if every f ∈K[X] ∖K is separable.

Proof. Equivalently, in the r.h.s., require separability only for irreducible f . ⇒∶ if char(K) =
0, then Lemma 6.6.2 (5) is false by Lemma 3.3.11 (2). Assume char(K) =∶ p > 0 and the
Frobenius endomorphism is surjective. If f is inseparable, then f ′ = 0, so f = g(Xp) for
some g = amXm +⋯ + a0 ∈ K[X] by Lemma 3.3.11 (3); but ai = b

p
i for certain bi ∈ K; then

f is reducible: f = (bmX)pm + (bm−1X)p(m−1) +⋯ + b
p
0 = (bmX

m +⋯ + b0)p.
⇐: if K is not perfect, then p ∶= char(K) > 0 and there is x ∈ K ∖Kp. Choose a root

a ∈ K of Xp − x. Then mK
a ∣ X

p − x by Lemma 3.5.6. Then mK
a = (X − a)

d for some d ∈ N
because Xp−x = (X −a)p. As a ∉K, Theorem 6.2.5 implies d = deg(mK

a ) = [K(a) ∶K] > 1.
Thus mK

a is irreducible and inseparable.

Hence, separability is automatic in most cases of interest. In other words, it is annoying
because for a general theory we need to pay attention.

Definition 6.6.7. A field extension L ∣ K is separable if all a ∈ L are separable over K,
i.e., a is algebraic over K and mK

a is separable.

Remark 6.6.8. Let M be an intermediate field of L ∣ K. If a ∈ L is separable over K,
then a is also separable over M : a multiple root of mM

a would also be one of mK
a because

mM
a ∣m

K
a by Lemma 3.5.6.

Exercise 6.6.9. Let L ∣K =∶K0 be a field extension, r ∈ N and a1, ..., ar ∈ L such that for
all 1 ⩽ i ⩽ r, ai is separable over Ki−1 ∶= K(a1, ..., ai−1). Let ni ∶= [Ki ∶ Ki−1]. Then there
are exactly n1⋯nr many K-homomorphisms from Kr to K.

Hint: follow the proof of Corollary 6.3.13.

Theorem 6.6.10. Let L ∣ K be a finite field extension and n ∶= [L ∶ K]. Then L ∣ K is
separable if and only if there are exactly n many K-homomorphisms from L to K.

Proof. ⇒∶ write L = K(a1, ..., ar) by Corollary 6.2.16 (2). Each ai is separable over K,
so also over K(a1, ..., ai−1) (Remark 6.6.8). The exercise gives n = n1⋯nr many K-
homomorphisms. But n = [L ∶K] by the degree formula.
⇐: assume a ∈ L is not separable over K. Let d ∶= deg(mK

a ) = [K(a) ∶ K] and note
n = [L ∶ K(a)] ⋅ d by the degree formula. By Lemma 6.6.2 (2), mK

a has < d many roots
in K. By Theorem 6.3.10 (2) there are < d many K-homomorphisms φ ∶ K(a) → K. It
suffices to show that every such φ has ⩽ [L ∶ K(a)] extensions to an homomorphism from
L to K. Identifying φ(K(a)) ⊆ K with K(a), we count K(a)-homomorphisms from L
to K. Corollary 6.3.13 states there are ⩽ [L ∶K(a)] many.

The exercise thus implies:

Corollary 6.6.11. Let L ∣ K be a field extension, r ∈ N and a1, ..., ar ∈ L such that for all
1 ⩽ i ⩽ r, ai is separable over K(a1, ..., ai−1). Then K(a1, ..., an) ∣K is separable.
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Corollary 6.6.12. Let L ∣K be a field extension and M an intermediate field. Then L ∣K
is separable if and only if both L ∣M and M ∣K are separable.

Proof. ⇒: by Corollary 6.2.16 (3) and Remark 6.6.8. ⇐: by Corollary 6.2.16 (3), L ∣K is
algebraic. Let a ∈ L. Since L ∣M is separable,mM

a is separable overM . Let a1, ..., an ∈M be
the coefficients ofmM

a , somM
a ∈M

′[X] forM ′ ∶=K(a1, ..., an). Then a is separable overM ′.
As M ∣ K is separable, all ai are separable over K. By Remark 6.6.8, a2 is separable over
K(a1), a3 over K(a1, a2) and so on. By the previous corollary, K(a1, ..., an, a) ∣ K is
separable, so a is separable over K.

Exercise 6.6.13. Let L ∣K be a field extension.

1. The set Lsep,K of a ∈ L that are separable over K is an intermediate field.

2. If a ∈ L is separable over Lsep,K , then a ∈ Lsep,K .

3. K(A) ∣K is separable for A ⊆ Lsep,K .

Remark 6.6.14. Some modes of speech that we shall not employ: Lsep,K is called the
relative separable closure of K in L. For L ∶=K it is the separable closure of K. [Lsep,K ∶K]
is the separable degree of L ∣K; one can prove the degree formula for it.

6.6.1 Primitive element theorem

Theorem 6.6.15 (Steinitz 1910). Every finite, separable field extension is simple.

Proof. Let L ∣ K be a finite, separable field extension. If K is finite, then so is L and a
primitive element is a generator of L× (Corollary 5.3.25). Assume K is infinite.

Write L = K(a1, ..., an) for n ∈ N and ai ∈ L. If n < 2 there is nothing to show.
Inductively, L = K(a1, ..., an−1)(an) = K(a)(an) for some a ∈ L – hence, we are left with
the case n = 2, i.e., L =K(a1, a2). We can assume a1, a2 ∉K, so mK

a1 ,m
K
a2 have degree > 1.

We are looking for b ∈ L such that L = K(b). For c ∈ K we try b ∶= a1 + ca2. Call c bad
if K(b) ⊊K(a1, a2). It suffices to show that there are only finitely many bad c.

Assume c is bad. Then a2 ∉ K(b) as otherwise also a1 ∈ K(b) and K(b) = K(a1, a2).

Hence, m
K(b)
a2 has degree > 1. By Remark 6.6.8, a2 is separable over K(b). Hence, L

contains a root a′2 ≠ a2 of m
K(b)
a2 . By Theorem 6.3.10, there is a K(b)-homomorphism

φ ∶ K(b, a2) → L with φ(a2) = a′2. Then b = φ(b), i.e., a1 + ca2 = φ(a1 + ca2) = φ(a1) + ca′2,

so c = (φ(a1) − a1)/(a2 − a′2). Since φ(a1), a
′

2 are roots of m
K(b)
a1 ,m

K(b)
a2 , they are also roots

of mK
a1 ,m

K
a2 (Lemma 3.5.6).

We see that every bad c is of the form (a′1 − a1)/(a2 − a
′

2) for roots a
′

1, a
′

2 of mK
a1 ,m

K
a2 .

Thus, there are only finitely many bad c.

Corollary 6.6.16. A separable field extension L ∣ K is finite if and only if there is n ∈ N
such that for all a ∈ L we have [K(a) ∶K] ⩽ n.
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Proof. ⇒: by the degree formula, [K(a) ∶K] ∣ n ∶= [L ∶K].
⇐: assume [L ∶ K] = ∞ and let n > 0; choose a1 ∈ L ∖K0,K0 ∶= K, a2 ∈ L ∖K1,K1 ∶=

K(a1), and so on. This is possible because L = K(a1, ..., an) implies [L ∶ K] < ∞ by
Corollary 6.2.16 (1). Then [Ki+1 ∶ Ki] ⩾ 2, so [Kn ∶ K] = [Kn ∶ Kn−1]⋯[K1 ∶ K0] ⩾ 2n >
n. Each ai+1 is separable over K, hence Ki (Corollary 6.6.12), so Kn ∣ K is separable
(Corollary 6.6.11) By the theorem, Kn =K(a) for some a ∈ L.

Example 6.6.17. We look for primitive elements of Q(α, ζ3) ∣ Q from Example 6.2.18
where α ∶= 3

√
2. We have mQ

α =X3 −2 with complex roots α,αζ3, αζ23 , and m
Q
ζ3
=X2 +X +1

(Example 4.5.9 (2)) with roots ζ3, ζ23 . We want a primitive element of the form α+ cζ3 and
see c ≠ 0 is bad in the sense of Steinitz’ theorem only for the values

αζ3 − α

ζ3 − ζ23
= −αζ23 ,

αζ23 − α

ζ3 − ζ23
= −α(1 + ζ23).

So no rational c ≠ 0 is bad; e.g., Q(α, ζ3) = Q(α + ζ3).

Example 6.6.18. We saw Q(
√
2,
√
3) = Q(

√
2+
√
3) in Example 6.2.8 using some ad hoc

tricks. We can now argue as follows: note ±
√
3 are the roots of mQ

√

3
= X2 − 3 and ±

√
2

are the roots of mQ
√

2
= X2 − 2; then 1 is not bad in the sense of Steinitz’ theorem because

1 /∈ {(±
√
2 −
√
2)/(
√
3 +
√
3)}.

Example 6.6.19. For α ∶= 4
√
2 we saw Q(α, i) = Q(α+ i) in Example 6.3.16 using some ad

hoc tricks. We can now argue as follows: note ±α,±iα are the roots of mQ
α =X4 − 2 and ±i

are the roots of mQ
i = X

2 + 1; then 1 is not bad in the sense of Steinitz’ theorem because
1 /∈ {(−α − α/(2i),±iα − α)/(2i)}.

The assumption of separability cannot be omitted:

Example 6.6.20. Let p be prime, K ∶= Fp(X,Y ) and L ∶= K( p
√
X,

p
√
Y ) ∣ K. Then L ∣ K

is finite and not simple.

Proof. To see L ∣K is finite, note L is the splitting field of f ∶= (Zp −X)(Zp − Y ). This is
because f = (Z −

p
√
X)p ⋅ (Z −

p
√
X)p by Frobenius.

We claim ap ∈ K for all a ∈ L. We have L = K(
p
√
X)(

p
√
Y ) = K(

p
√
X)[

p
√
Y ] =

K[
p
√
X,

p
√
Y ] by Lemma 3.5.8, so a = g(

p
√
X,

p
√
X) for some g ∈ K[Z0, Z1]. With the

Frobenius endomorphism φ of K we have ap = φ(g)(X,Y ) ∈K.
We show L ≠ K(a) for every a ∈ L. Note mK

a (Z) ∣ Z
p − ap ∈ K[Z] by the claim, so

[K(a) ∶ K] = deg(mK
a ) ⩽ p. But [L ∶ K] = [L ∶ K(

p
√
X)] ⋅ [K(

p
√
X) ∶ K] > p because

[L ∶ K(
p
√
X)] > 1 as

p
√
Y ∉ K(

p
√
X) and [K(

p
√
X) ∶ K] = deg(mK

p√
X
) = deg(Zp −X) = p

since Zp −X is irreducible in (Fp[X,Y ])[Z] and K(Z) by Eisenstein (with prime X).
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6.7 Galois extensions

Definition 6.7.1. A field extension L ∣ K is Galois if it is separable and normal. The
Galois group G(L ∣K) of L ∣K is the set of K-automorphisms of L.

Remark 6.7.2.

1. If K is the prime field of G, then G(L ∣K) = Aut(L) (Exercise 3.4.15).

2. If K = L, then G(L ∣K) = {idL}.

3. If L ∣M ∣M ′ ∣K are field extensions, then G(L ∣M) is a subgroup of G(L ∣M ′).

4. If L ∣K is finite, then ∣G(L ∣K)∣ ⩽ [L ∶K] (Corollary 6.3.13).

Example 6.7.3. C ∣ R is Galois, G(C ∣ R) contains the identity and conjugation, so is
isomorphic to C2. Similarly for quadratic number fields (Definition 4.1.1).

Lemma 6.7.4. Let L ∣ K be Galois and M an intermediate field. Then L ∣M is Galois,
and M ∣K is Galois if and only if φ(M) =M for all φ ∈ G(L ∣K).

Proof. L ∣ M is separable by Corollary 6.6.12 and normal by Remark 6.3.21 (1), hence
Galois. M ∣ K is separable by Corollary 6.6.12. We have to show M ∣ K is normal if
and only if φ(M) = M for all φ ∈ G(L ∣ K). ⇒ follows from Lemma 6.3.22. ⇐: by the
embedding theorem we can assume that L is a subfield of K. By Lemma 6.4.8 we have to
show ψ(M) =M for all K-automorphisms ψ of K. But since L ∣K is normal, this lemma
implies ψ(L) = L, so ψ↿L ∈ G(L ∣K). Hence ψ(M) = (ψ↿L)(M) =M by assumption.

Recall Example 5.12.4 (4) and Definition 3.7.4: for G ⊆ Aut(L), evaluation (φ,x) ↦
φ(x) defines an action of G on L and the fixed field is

LG ∶= {x ∈ L ∣ φ(x) = x for all φ ∈ G}.

Lemma 6.7.5. Let L be a field, G a subgroup of Aut(L). Then a ∈ L is algebraic over LG

if and only if the orbit G(a) = {φ(a) ∣ φ ∈ G} is finite; in case,

mLG
a = ∏b∈G(a)(X − b)

Proof. ⇒: if a is a root of f ∈ LG[X], then every φ ∈ G maps a to a root of f in L
(Remark 6.3.12 (2)); there are ⩽ deg(f) many.
⇐: let b1, ..., bn list G(a). By Vieta’s formula, the coefficients of f ∶= ∏b∈G(a)(X − b)

are ±sn,k(b1, ..., bn) for 1 ⩽ k ⩽ n. These are in LG: for φ ∈ G we have φ(sn,k(b1, ..., bn)) =
sn,k(φ(b1), ..., φ(bn)) = sn,k(b1, ..., bn) because φ permutes G(a) and sn,k is symmetric.

To show mLG
a = f we verify Lemma 3.5.6 (3): let g ∈ LG[X] have a as a root. Let

b ∈ G(a) and choose φ ∈ G with φ(a) = b. Then b is a root of φ(g) = g, so (X − b) ∣ g. Since
this holds for all b ∈ G(a) we get f ∣ g.

Theorem 6.7.6. An algebraic field extension L ∣K is Galois if and only if LG(L∣K) =K.
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Proof. Write G ∶= G(L ∣K). By the embedding theorem we can assume L ⊆K.
⇒: assume there exists a ∈ LG ∖K. Then mK

a has degree ⩾ 2; as it is separable, there
exists a root b ∈K with b ≠ a; by homogeneity (Lemma 6.4.7) there is a K-automorphism
φ of K with φ(a) = b. But L ∣ K is normal, so Lemma 6.4.8 implies φ(L) = L. Then
φ↿L ∈ G and (φ↿L)(a) = b ≠ a, contradicting a ∈ LG.
⇐: as every a ∈ L is algebraic over K = LG, the lemma shows mK

a is separable. For
normality, let f ∈ K[X] be irreducible with a root a ∈ L; we have to show f splits in L.
We can assume f is monic. By the lemma, f =mK

a splits in L.

Theorem 6.7.7. Let L be a field and G a finite subgroup of Aut(L). Then L ∣ LG is a
finite Galois extension of degree [L ∶ LG] = ∣G∣ with Galois group G.

Proof. Let G′ ∶= G(L ∣ LG); then G ⊆ G′, so LG
′
⊆ LG. The converse is trivial, so LG

′
= LG.

Then L ∣ LG is Galois by the previous theorem.
For a ∈ L we have deg(mLG

a ) = ∣G(a)∣ by the lemma. But ∣G∣ = [G ∶ Ga]∣Ga∣ = ∣G(a)∣∣Ga∣
by the orbit-stabilizer lemma, so deg(mLG

a ) ∣ ∣G∣. By Corollary 6.6.16, L ∣ LG is finite.
By the primitive element theorem, L = LG(a) for some a ∈ L. Every φ ∈ G that fixes a

equals idL (Remark 6.3.12 (4)), so Ga = {idL}. Then

∣G∣ = ∣G(a)∣ = deg(mLG

a ) = [L ∶ L
G].

G = G′ follows from G ⊆ G′ and [L ∶ LG] = ∣G∣ ⩽ ∣G′∣ ⩽ [L ∶ LG] (Remark 6.7.2 (4)).

Below, note (3) implies that L ∣K is finite.

Theorem 6.7.8 (Artin’s characterization). Let L ∣ K be a finite field extension and G ∶=
G(L ∣K). The following are equivalent.

1. L ∣K is Galois.

2. ∣G∣ = [L ∶K].

3. L is the splitting field of some separable f ∈K[X] ∖K.

Proof. Note L ∣ K is algebraic by Corollary 6.2.16. Further, G ⩽ [L ∶ K] is finite (Corol-
lary 6.3.13), so [L ∶ LG] = ∣G∣ by Theorem 6.7.7. Then [L ∶ K] = ∣G∣ ⋅ [LG ∶ K] by the
degree formula. Thus, [L ∶ K] = ∣G∣ if and only if [LG ∶ K] = 1, if and only if LG = K
(Remark 6.2.3 (2)). Hence, 2⇔ 1 by Theorem 6.7.6.

1 ⇒ 3: as L ∣ K is finite and normal, by Exercise 6.3.20, L is the splitting field of
some f ∈ K[X] ∖K which is a product of certain minimal polynomials over K; these are
separable since L ∣K is separable; hence f is separable (by definition).

3 ⇒ 1: L ∣ K is normal by Lemma 6.3.19. Write L = K(a1, ..., an) for ai ∈ L roots
of f . Each ai is a root of an irreducible factor of f , so separable over K and hence over
K(a1, ..., ai−1) (Remark 6.6.8). Thus, L ∣K is separable by Corollary 6.6.11.

Definition 6.7.9. If f ∈K[X] ∖K and L is the splitting field of f over K, then

G(f,K) ∶= G(L ∣K).
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Remark 6.7.10 (Galois’ idea). Let f ∈ K[X] ∖K and A the set of roots of f in L, the
splitting field of f over K; let a1, ..., an list A.

1. (φ,x) ↦ φ(x) is a faithful action of G(f,K) on A (Remark 6.3.12 (2), (4)).

2. Restriction φ ↦ φ↿A is a group monomorphism from G(f,K) into Sym(A) ≅ Sn
(Remark 5.12.3 (2)). Hence, ∣G(f,K)∣ ∣ ∣Sn∣ = n! (by Lagrange).

3. More concretely, for φ ∈ G(f,K) define φ∗ ∈ Sn setting

φ∗(i) = j⇔ φ(ai) = aj

for all i, j ∈ {1, ..., n}. Then φ↦ φ∗ is a group monomorphism from G(f, k) into Sn.

4. If f is irreducible, then the action is transitive (Theorem 6.3.14) and n ∣ ∣G(f,K)∣.

Indeed: write G ∶= G(f,K) and let a ∈ A; then ∣G∣ = [G ∶ Ga]∣Ga∣ = ∣G(a)∣∣Ga∣ by the
orbit-stabilizer lemma; by transitivity, G(a) = A has size n.

Galois’ revolutionary insight is that the finite group G(f,K)∗ ⊆ Sn contains important
information about the polynomial equation f = 0.

Example 6.7.11. The splitting field of f ∶= X3 − 2 over Q is Q(α, ζ3) for α ∶= 3
√
2 (Ex-

ample 6.3.6). By Artin’s characterization, Q(α, ζ3) ∣ Q is Galois and the Galois group
G ∶= G(f,Q) has order [Q(α, ζ3) ∶ Q] = 6 (Examples 6.2.18 (1)). By Remark 6.7.10 (2), G
is isomorphic to a subgroup of S3. As ∣S3∣ = 3! = 6 we see G ≅ S3.

Alternatively, use Corollary 6.7.17 below: G ≅ S3 because Df = −27 ⋅ 22 is not a square
in Q. Thus, G is non-abelian and solvable (Remark 5.8.11 (3)).

Example 6.7.12. The splitting field of f ∶= X4 − 5X2 + 6 = (X2 − 2)(X2 − 3) ∈ Q[X]
is Q(

√
2,
√
3). By Artin’s characterization, Q(

√
2,
√
3) ∣ Q is Galois with Galois group

G ∶= G(f,Q) of order [Q(
√
2,
√
3) ∶ Q] = 4 (Example 6.2.8). Hence, G ≅ C4 or G ≅ K4

(Proposition 5.3.19). G containes the identity and φ1, φ2, φ3 determined by

√
2,
√
3↦ −

√
2,
√
3,
√
2,
√
3↦
√
2,−
√
3,
√
2,
√
3↦ −

√
2,−
√
3.

To see e.g. φ3 exists, Remark 6.3.12 gives an (Q-)automorphism ψ of Q(
√
2) with ψ(

√
2) =

−
√
2; then Theorem 6.3.10 gives φ3 as an extension to Q(

√
2)(
√
3).

Each of them has order 2 in G because φ2
i fixes all roots ±

√
2,±
√
3, so φ2 = idQ(

√

2,
√

3)

(Remark 6.7.10 (1)). Hence, G ≅K4 is abelian and not cyclic.

Exercise 6.7.13. Let f ∶= X4 − 5 ∈ Q[X]. Describe the elements of G(f,Q). Show
G(f,Q(i)) ≅ C4 and G(f,Q(

√
5)) ≅K4.

Exercise 6.7.14. Let f ∶= X4 − 4X2 + 2 from Exercise 6.3.8. Its roots are ±α,±β for

α =
√
2 −
√
2, β =

√
2 +
√
2, and its splitting field over Q is Q(α). Show there is a unique

σ ∈ G(f,Q) with σ(α) = β and compute σ(
√
2) and σ(β). Infer that G(f,Q) is cyclic.

Exercise 6.7.15. In Exercise 6.3.18 show G(K ∣ Q) ≅ Zn2 .
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We continue with some more abstract examples, and determine Galois groups in some
familiar settings. Recall the discriminant Df of a monic polynomial f from Example 3.7.11.

Proposition 6.7.16. Let K be a field and f ∈ K[X] be monic, separable of degree n > 1.
Then G(f,K)∗ ⊆ An if and only if

√
Df ∈K.

Proof. Let a1, ..., an list the roots of f in L, the splitting field of f over K. Then

√
Df = ∏1⩽i<j⩽n(ai − aj).

This implies φ(
√
Df) = sign(φ∗)

√
Df for every φ ∈ G(L ∣ K). Hence, G(L ∣ K)∗ ⊆ An if

and only if every φ ∈ G(L ∣K) fixes
√
Df . This is equivalent to

√
Df ∈K by Theorem 6.7.6

(note L ∣K is Galois by Artin).

Corollary 6.7.17 (Galois theory of the cubic). Let K be a field and f ∈K[X] be monic,
cubic, separable and irreducible. If

√
Df ∈K, then G(f,K) ≅ A3; otherwise, G(f,K) ≅ S3.

Proof. By Remark 6.7.10 (4), the order of G ∶= G(f,K)∗ ⊆ S3 is divisible by 3. Since
∣G∣ ∣ ∣S3∣ = 6, we have ∣G∣ ∈ {3,6}. Then, G = A3 = {1, (123), (321)} or G = S3. Apply the
proposition.

Example 6.7.18. Consider f± ∶=X3±3X+1 ∈ Q[X]. Using the formula in Example 3.7.11
compute Df+ = −63 and Df− = 9. Hence, G(f+,Q) ≅ S3 and G(f−,Q) ≅ A3.

Definition 6.7.19. A finite Galois extension L ∣K is cyclic, abelian or solvable if so is its
Galois group G(L ∣K).

Proposition 6.7.20. Let p, n ∈ N, n > 0 and p prime. Then Fpn ∣ Fp is a finite cyclic
Galois extension; G(Fpn ∣ Fp) is generated by the Frobenius endomorphism.

Proof. Fpn ∣ Fp is obviously finite, and Galois by Artin because Fpn is the splitting field of
Xpn−X over Fp (Theorem 6.5.2) and Fp is perfect (Example 3.4.18). Then G ∶= G(Fpn ∣ Fp)
has order [Fpn ∶ Fp] = n by Artin. As Fpn is perfect, the Frobenius endomorphism φ is an
automorphism of Fpn . It fixes the prime field Fp, so φ ∈ G.

Let x generate F×pn (Corollary 5.3.25), i.e., x has order pn − 1 in F×pn . Note φk(x) = xp
k
,

so the minimal k for which φk(x) = x is n. As Fp(x) = Fpn , this implies φn = idFpn . Hence,
φ has order n in G, so generates G.

Exercise 6.7.21. Generalize to the case where p is a prime power.

Recall Exercise 3.7.8: K[sn,1, ...] is the subring of symmetric polynomials in K[X̄].

Proposition 6.7.22. Let K be a field, n > 0 and M ∶=K(sn,1, ..., sn,n). Then

G(f,M) ≅ Sn

where f ∶= (X −X1)⋯(X −Xn) ∈M[X].
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Proof. f ∈ M[X] by Vieta’s formula, and L ∶= M(X̄) = K(X̄) is the splitting field of f
over M . As f is separable, L ∣M is Galois by Artin. By Remark 6.7.10, G(f,K)∗ ⊆ Sn. It
thus suffices to show ∣G(f,K)∣ ⩾ n!.

For σ ∈ Sn let σ̂ ∶ K[X̄] → K[X̄] be the ring automorphism f ↦ fσ (permute the
variables Xi by σ). Note σ̂ fixes the subring K[sn,1, ..., sn,n]. It uniquely extends to an
automorphism of the quotient field K(X̄) = L via f/g ↦ σ̂(f)/σ̂(g) – again denoted σ̂.
Then σ̂ fixes M , so σ̂ ∈ G(L ∣M) = G(f,M). It is clear that σ ↦ σ̂ is injective.

6.8 Galois theory

The application of group theoretic terminology to field extensions might appear strange.
The theorem below is maybe the most beautiful result of this course. Roughly speaking,
it equates the structure of a Galois extension with the structure of its Galois group.

Theorem 6.8.1 (Main theorem of Galois theory). Let L ∣ K be a finite Galois extension
with Galois group G ∶= G(L ∣K).

1. U ↦ LU is a bijection from the set U of subgroups of G onto the setM of intermediate
fields of L ∣K; its inverse is M ↦ G(L ∣M); both maps reverse inclusions.

2. For all M ∈ M: L ∣M is a Galois extension.

3. For all U ∈ U : L ∣ LU is a Galois extension with Galois group U .

4. For all M ∈ M and all φ ∈ G: G(L ∣ φ(M)) = φG(L ∣M)φ−1.

5. For all M ∈ M: [M ∶ K] = [G ∶ G(L ∣M)] and, M ∣ K is a Galois extension if and
only if G(L ∣M) ◁G; in case, G(M ∣K) ≅ G/G(L ∣M).

{1}
n/k
Ð→ U

k
Ð→ G

L
n/k
←Ð M

k
←Ð K

Figure 6.1: corresponding U,M with [M ∶K] = [G ∶ U] = k, [L ∶K] = ∣G∣ = n

Proof. Note G is finite because ∣G∣ = [L ∶K] (by Artin). (2) follows from Lemma 6.7.4 and
(3) from Theorem 6.7.7.

(1): let Φ denote U ↦ LU and Ψ denote M ↦ G(L ∣ M). Then Ψ(Φ(U)) = G(L ∣
LU) = U by Theorem 6.7.7. Further, Φ(Ψ(M)) = LG(L∣M). By (2), L ∣ M is Galois, so
LG(L∣M) =M by Theorem 6.7.6. Thus, Φ is bijective and Φ−1 = Ψ.

Clearly, if U,U ′ ∈ U , M,M ′ ∈ M with U ⊆ U ′,M ⊆M ′, then Φ(U) = LU ⊇ LU
′
= Φ(U ′)

and Ψ(M) = G(L ∣M) ⊇ G(L ∣M ′) = Ψ(M ′).

(4) ⊇: let ψ ∈ G(L ∣M) and x ∈ φ(M), say x = φ(y) with y ∈M . Note ψ(y) = y. Then
(omitting ○): φψφ−1(x) = φψ(y) = φ(y) = x. Hence, φψφ−1 ∈ G(L ∣ φ(M)).
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(4) ⊆: using the inclusion already proved,

φG(L ∣M)φ−1 = φG(L ∣ φ−1φ(M))φ−1 ⊇ φφ−1G(L ∣ φ(M))φφ−1 = G(L ∣ φ(M)).

(5): by the degree formula and Artin

[M ∶K] = [L ∶K]/[L ∶M] = ∣G∣/∣G(L ∣M)∣ = [G ∶ G(L ∣M)].

Further, we have the equivalences:

M ∣K is Galois
⇐⇒ M = φ(M) for all φ ∈ G by Lemma 6.7.4
⇐⇒ G(L ∣M) = G(L ∣ φ(M)) for all φ ∈ G since Ψ is injective by (1)
⇐⇒ G(L ∣M) = φG(L ∣M)φ−1 for all φ ∈ G by (4)
⇐⇒ G(L ∣M) ◁G.

Assume M ∣K is Galois. For φ ∈ G we have φ(M) =M by Lemma 6.7.4, so φ ↦ φ↿M
is a group homomorphism from G to G(M ∣K). Its kernel is G(L ∣M). By Noether’s 1st
isomorphism theorem we are left to show that the map is surjective. Let ψ ∈ G(M ∣ K).
The embedding theorem allows to assume L ⊆K and gives an extension φ ∶ L →K. Since
L ∣K is normal, Lemma 6.4.8 yields φ(L) = L. Then φ ∈ G and φ↿M = ψ.

A first application:

More abstract proof of the fundamental theorem 3.8.3 after Artin. By Remark 3.8.2 (2) it
suffices to show every f ∈ R[X]∖R has a root in C. Let L be the splitting field of (X2+1)f
over R. Then L ∣ C ∣ R and we claim L = C. By Artin L ∣ R is Galois and ∣G∣ = [L ∶ R]
for G ∶= G(L ∣ R). As [C ∶ R] = 2 we have 2 ∣ [L ∶ R] be the degree formula. By the 1st
Sylow theorem, G has a 2-Sylow subgroup U . Set M ∶= LU . Then [M ∶ R] = [G ∶ U] is odd.
By the primitive element theorem, M = R(a) for some a ∈ C. Then deg(mR

a ) = [M ∶ R] is
odd, so mR

a has a root in R (Remark 3.8.2 (3)). Thus, deg(mR
a ) = 1 and a ∈ R, so M = R.

Then G = U , so ∣G∣ = 2k for some k > 0. Then [L ∣ C] = 2k−1 by the degree formula, so
G′ ∶= G(L ∣ C) has order 2k−1. We claim k = 1: then [L ∶ C] = 1, so L = C and we are done.

Otherwise, by the 1st Sylow theorem, G′ has a subgroup U ′ of order 2k−2. As L ∣ C is
Galois with Galois group G′, [LU

′
∶ C] = [G′ ∶ U ′] = 2 – impossible by Remark 3.8.2 (4).

Which intermediate fields M does L ∣K have?

Corollary 6.8.2. Let L ∣K be a finite Galois extension.

1. If L ∣K is cyclic, then there is for every d ∣ [L ∶K] exactly one intermediate field M
with [M ∶K] = d; then M ∣K is Galois and cyclic.

2. If L ∣K is abelian, then there is for every d ∣ [L ∶K] at least one intermediate field M
with [M ∶K] = d and M ∣K is Galois and abelian.

3. If L ∣K is solvable and L ≠K, then there are ℓ > 0 and intermediate fields K =M0 ⊊
M1 ⊊M2⋯ ⊊Mℓ = L such that for all i < ℓ, Mi+1 ∣Mi is Galois of prime degree.

For every intermediate field M of L ∣ K: the field extension L ∣ M is Galois and
solvable and, if M ∣K is Galois, then M ∣K is solvable.
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Proof. Write G ∶= G(L ∣ K). (1): the intermediate fields M with [M ∶ K] = d correspond
to subgroups U of G of index d. there is exactly one by Theorem 5.3.21. M ∣ K is Galois
because all subgroups are normal since G is abelian. (2) is similar using Corollary 5.11.5.

(3): by Theorem 5.8.17 there is a subnormal series Nℓ = {idL} ◁Nℓ−1 ◁⋯◁N0 = G
with (abelian) factors Ni/Ni+1 of prime order. For Mi ∶= LNi we have M0 = LG = K by
Theorem 6.7.6, and M0 ⊆ ⋯ ⊆Mℓ = L. Note Ni = G(L ∣Mi).

Since L ∣ Mi is finite Galois we can use (5) of the main theorem with Mi in the
role of K: Mi+1 ∣ Mi is Galois because G(L ∣ Mi+1) = Ni+1 ◁ Ni = G(L ∣ Mi); further,
[Mi+1 ∶Mi] = [G(L ∣Mi) ∶ G(L ∣Mi+1)] = [Ni ∶ Ni+1] is prime.

For M an intermediate field, note L ∣ M is Galois and G(L ∣ M) is solvable as a
subgroup of G(L ∣ K) (Remark 5.8.11 (3)). If M ∣ K is Galois, then G(L ∣ M) ◁G and
G(M ∣K) ≅ G/G(L ∣M) is solvable by Lemma 5.8.13.

Exercise 6.8.3. Finite separable field extensions have finitely many intermediate fields.

Corollary 6.8.4. Let z ∈ C be algebraic and L ⊆ C the splitting field of mQ
z over Q. If

[L ∶ Q] is a power of 2, then z is constructible.

Proof. Say, [L ∶ Q] = 2n. By Artin, L ∣ Q is Galois and ∣G(L ∣ Q)∣ = 2n. By Corol-
lary 5.13.13, G(L ∣ Q) is solvable. Choose intermediate fields Mi as in (3) above. As
[Mi+1 ∶ Mi] ∣ 2n is prime, [Mi+1 ∶ Mi] = 2. By Proposition 6.2.9, Mi+1 results from Mi by
adjunction of a square root. By Theorem 6.1.5, z is constructible.

Example 6.8.5. We continue Example 6.7.12 of the Galois extension L ∶= Q(
√
2,
√
3) ∣ Q

with Galois group G ∶= {idL, φ1, φ2, φ2}. The proper nontrivial subgroups are ⟨φi⟩ of
index 2. Thus their fixed fields have degree 2. E.g., φ1 fixes

√
3, so Q(

√
3) ⊆ L⟨φ1⟩; since

both field extensions of Q have degree 2 we have Q(
√
3) = L⟨φ1⟩. Analogously, Q(

√
2) =

L⟨φ2⟩. Finally note φ3(
√
6) = φ3(

√
2)φ(

√
3) = (−

√
2) ⋅ (−

√
3) =
√
6, so Q(

√
6) = L⟨φ3⟩.

We display non-trivial subgroups and proper subfields fields with arrows indicating
subgroups of index 2, resp., field extensions of degree 2.

⟨φ1⟩ ⟨φ2⟩ ⟨φ3⟩
↘ ↓ ↙

G

Q(
√
2) Q(

√
3) Q(

√
6)

↖ ↑ ↗
Q

Example 6.8.6. We continue Example 6.7.11 of the Galois extension L ∶= Q(α, ζ3) ∣ Q
(where α = 3

√
2) with Galois group G ∶= G(X3 − 2,Q) ≅ S3. Number the roots a1 ∶= α, a2 ∶=

αζ3, a2 ∶= αζ23 . Let us abuse our notation for S3 to denote elements of G, e.g., (12) denotes
the automorphism that swaps a1, a2 and fixes a3. Then the nontrivial proper subgroups
are A3 ≅ ⟨(123)⟩ of index 2, and ⟨(12)⟩, ⟨(13)⟩, ⟨(23)⟩ of index 3.

As (12) fixes a3, we have Q(a3) ⊆ L⟨(12)⟩; since both fields are degree 3 extensions of Q
we have Q(a3) = L⟨(12)⟩. Similarly, Q(a2) = L⟨(13)⟩ and Q(a1) = L⟨(23)⟩. For L⟨(123)⟩ we know
it is the unique degree 2 extension, and we saw [Q(ζ3) ∶ Q] = 2; hence Q(ζ3) = L⟨(123)⟩.
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We display subgroups and intermediate fields with arrows indexed by the index of the
subgroup, resp., the degree of the field extension.

{1}
↙2 2↙↘2 3↘

⟨(12)⟩ ⟨(23)⟩ ⟨(13)⟩ ⟨(123)⟩

3↘ 3↘↙3 ↙2

G

Q(α, ζ3)
↗2 2↗↖2 3↖

Q(α) Q(αζ3) Q(αζ23) Q(ζ3)
3↖ 3↖↗3 ↗2

Q

Exercise 6.8.7. Continuing Exercises 6.3.8, 6.7.14, show Q(
√
2 −
√
2) ∣ Q has exactly one

proper intermediate field, namely Q(
√
2).

A more complicated example:

Example 6.8.8. One can show by elementary means that f ∶= X4 − X2 − 1 ∈ Q[X] is
irreducible with roots ±

√
ϕ,±i/

√
ϕ ∈ C where ϕ ∶= (1+

√
5)/2 is the golden ratio. The roots

of f are the vertices of a square inscribed in a circle of radius
√
ϕ and we now show the

automorphisms of its splitting field act on them like the symmetry group of this square.
The splitting field of f over Q is L ∶= Q(

√
ϕ, i), so L ∣ Q is Galois with Galois group

G ∶= G(f,Q). Then ∣G∣ = [L ∶ Q] = 8 because and [L ∶ Q(
√
ϕ)] = 2 (as i /∈ Q(

√
ϕ) ⊆ R)

and [Q(
√
ϕ) ∶ Q] = deg(f) = 4. Since i/

√
ϕ ∉ Q(

√
ϕ) ⊆ R we see Q(

√
ϕ) ∣ Q is not normal,

hence not Galois, so G(L ∣ Q(
√
ϕ)) /◁ G. The only group of order 8 with a non-normal

subgroup is D4 (cf. Examples 5.6.19 and 5.5.19). Hence, G ≅D4.
We determine an isomorphism: every φ ∈ G is determined by ⩽ 4 choices ±

√
ϕ,±i/

√
ϕ

for φ(
√
ϕ) and ⩽ 2 choices ±i for φ(i), so all choices are possible:

φ(
√
ϕ)
√
ϕ −
√
ϕ i/

√
ϕ −i/

√
ϕ
√
ϕ −
√
ϕ i/

√
ϕ −i/

√
ϕ

φ(i) i i i i −i −i −i −i
φ id r2 rs r3s s r2s r r3

where we introduce names r, s: mapping them to R2π/4, S0 determines an isomorphism
onto D4 (cf. Theorem 5.1.17). Note the isomorphism only equates the action on the roots,
not on all of L, e.g., r(1) = 1 is not a rotation by π/2.

We display the nontrivial subgroups and the corresponding fixed fields. The arrows
indicate subgroups of index 2, resp., field extensions of degree 2:

⟨s⟩ ⟨r2s⟩ ⟨r2⟩ ⟨rs⟩ ⟨r3s⟩
↘ ↓ ↙ ↓ ↘ ↓ ↙
⟨r2, s⟩ ⟨r⟩ ⟨r2, rs⟩

↘ ↓ ↙
G

Q(
√
ϕ) Q(i

√
ϕ) Q(

√
5, i) Q(

√
1 + 2i) Q(

√
1 − 2i)

↖ ↑ ↗ ↑ ↖ ↑ ↗

Q(
√
5)⟩ Q(

√
−5) Q(i)

↖ ↑ ↗
Q
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To see e.g.Q(i) = L⟨r2,rs⟩ note ⊆ follows because both r2 and rs fix i; for ⊇ note [Q(i) ∶ Q]
has the required degree [L⟨r

2,rs⟩ ∶ Q] = [G ∶ ⟨r2, rs⟩] = 2.
How did we find, e.g., b =

√
1 + 2i to see Q(b) = L⟨rs⟩? We want b ∈ L fixed by rs but

not by r2. Since rs has order 2, a natural guess is b ∶=
√
ϕ+(rs)(

√
ϕ) =

√
ϕ+ i/

√
ϕ; indeed,

r2(b) = −
√
ϕ − i
√
ϕ = −b ≠ b and a direct computation shows b2 = 1 + 2i.

Exercise 6.8.9. Let K be a field and f ∈ K[X] irreducible and separable. Show: if
G(f,K) is abelian, then it has order deg(f).

6.9 Cyclotomic fields

Definition 6.9.1. Let K be a field and n > 0. An nth roots of unity (over K) is a root
of Xn − 1 in K; their set is denoted CK

n ⊆ K. A primitive nth root of unity is one that

generates CK
n as a subgroup of K

×

.
The nth cyclotomic field over K is K(CK

n ), the splitting field of Xn−1 ∈K[X] over K.

Remark 6.9.2.

1. CQ
n = Cn = {1, ζn, ζ2n, ..., ζ

n−1
n } ⊆ C as of Definition 1.6.8 with Q(ζn) as the nth cyclo-

tomic field over Q. ζn is a primitive nth root of unity over Q.

2. CK
n is indeed a subgroup of K

×

, and hence cyclic (Corollary 5.3.25).

Indeed: if x, y ∈ CK
n , then xy−1 ∈ CK

n since (xy−1)n = xn(yn)−1 = 1.

3. If ζ ∈ CK
n is primitive, then the nth cyclotomic field over K is K(ζ).

4. For char(K) = p > 0, write n = pkm with p ∤m; then in K[X],

Xn − 1 = (Xm − 1)p
k

,

so the nth roots of unity (over K) are the mth roots of unity.

Theorem 6.9.3. Let n > 0, L be the nth cyclotomic field over K, and char(K) ∤ n. Then
CK
n has order n and φ(n) primitive elements (Euler’s totient). Moreover, L ∣K is a finite

Galois extension and G(L ∣K) is isomorphic to a subgroup of Z×n.

Proof. Xn − 1 has derivative nXn−1; for x ∈ CK
n we have nxn−1 ≠ 0, so no root is multiple

(Lemma 3.3.13 (1)); hence, ∣CK
n ∣ = n. If ζ ∈ CK

n is primitive, then CK
n = {1, ζ, ..., ζ

n−1} has
order n. Moreover, ζk is primitive if and only if gcd(k,n) = 1 (Lemma 5.3.9 (5)).

Moreover: L ∣K is clearly finite (Remark 6.3.4), and by the above, Xn − 1 is separable,
so L ∣ K is Galois by Artin. φ↿CK

n permutes CK
n for φ ∈ G(L ∣ K) by Remark 6.3.12 (3).

Hence, φ ↦ φ↿CK
n is a group homomorphism from G(L ∣K) into Aut(CK

n ). It is injective
by Remark 6.3.12 (4). But Aut(CK

n ) ≅ Z×n by Exercise 2.6.5 – CK
n ≅ Zn via ζk ↦ k̄.

Examples 6.9.4. For prime p we factor Xp − 1 = (X − 1)(Xp−1 + ⋯ + X + 1) (Exam-
ple 4.5.9 (2)), so the pth cyclotomic field over Q is a degree p − 1 extension.
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Recalling Example 1.6.10, we have Q(ζ3) = Q(
√
−3),Q(ζ4) = Q(i),Q(ζ6) = Q(

√
−3)

are extensions of degree 2 = φ(3) = φ(4) = φ(6). We have ζ5 = cos(2π/5) + i sin(2π/5)

and cos(2π/5) = (
√
5 − 1)/4, sin(2π/5) =

√
(
√
5 + 5)/8, so Q(ζ5) = Q(

√
5)(
√
−a) where

a = (
√
5 + 5)/8 has degree 4 = φ(6). We prove below that [Q(ζn) ∶ Q] = φ(n) for all n > 0.

Definition 6.9.5. Let n > 0 and K a field with char(K) ∤ n and let a1, ..., aφ(n) ∈ K list
the primitive nth roots of unity. Then the nth cyclotomic polynomial over K is

ΦK
n ∶= ∏

φ(n)
i=1 (X − ai).

Lemma 6.9.6. Let n > 0 and K a field with char(K) ∤ n.

1. Xn − 1 = ∏d∣nΦ
K
d .

2. If char(K) = 0 and K extends Q, then ΦK
n ∈ Z[X].

3. If char(K) = p > 0 and K extends Fp, then ΦK
n ∈ Fp[X].

Proof. (1): as ∣CK
n ∣ = n we can write Xn−1 = ∏a∈CKn

(X−a) in K[X]; as CK
n ≅ Zn (additive)

there are exactly φ(d) elements of order d ∣ n (Corollary 5.3.24); these are the primitive
dth roots of unity; thus, (1) just groups the factors X − a according orders.

(2) is proved by induction on n. For n = 1, ΦK
1 = X − 1 ∈ Z[X]. For n > 1, we have

Xn − 1 = ΦK
n ⋅ f with f ∶= ∏d∣n,d<nΦ

K
d ; by induction, f ∈ Z[X]; hence, polynomial divison

of Xn − 1 by f yields Φn when done in K[X]. But Xn − 1, f ∈ Z[X] and f is monic, so
polynomial division runs in Z[X] (Theorem 3.2.1). Hence, ΦK

n ∈ Z[X].
The proof of (3) is analogous.

Remark 6.9.7. This gives a recursive procedure to compute ΦQ
n :

ΦQ
1 =X − 1

ΦQ
2 = (X

2 − 1)/(X − 1) =X + 1

ΦQ
3 = (X

3 − 1)/(X − 1) =X2 +X + 1

ΦQ
4 = (X

4 − 1)/((X − 1)(X + 1)) = (X2 + 1)(X2 − 1)/(X2 − 1) =X2 + 1

ΦQ
5 = (X

5 − 1)/(X − 1) =X4 +X4 +X3 +X2 +X + 1

ΦQ
6 = (X

6 − 1)/((X − 1)(X + 1)(X2 +X + 1)) =X2 −X + 1

ΦQ
30 =X

8 +X7 −X5 −X4 −X3 +X + 1.

The first with a coefficient ≠ 0,1 is ΦQ
105 which has degree 48.

Theorem 6.9.8 (Gauß). Let n > 0. Then ΦQ
n = m

Q
ζn
. In particular, [Q(ζn) ∶ Q] = φ(n)

and G(Q(ζn) ∣ Q) ≅ Z×n.

Proof. The 2nd sentence is clear by Theorem 6.9.3. We claim that for every primitive
ζ ∈ CQ

n and prime p ∤ n we have mQ
ζ =m

Q
ζp .

Assume ≠. Both f ∶= mQ
ζ , g ∶= m

Q
ζp ∣ X

n − 1. Since f, g are monic, Lemma 4.4.15 shows
f, g ∈ Z[X]. Since f, g are coprime, fg ∣Xn−1, say fgh =Xn−1. As fg is monic, h ∈ Z[X].
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Note ζ is a root of g(Xp), so g(Xp) = fh′ by Lemma 3.5.6, and again h′ ∈ Z[X]. Let f̄
be obtained by replacing coefficients x ∈ Z by x̄ = [x]p; i.e., this is the extension of the

canonical homomorphism from Z onto Zp = Fp to Z[X]. Then f̄ ⋅ h̄′ = g(Xp) = ḡp by the
Frobenius homomorphism. Let f̃ be an irreducible factor of f̄ in Fp[X]. Then f̃ ∣ ḡ, so
f̃ 2 ∣ Xn − 1 = Xn − 1. But then a root of f̃ (in Fp) is a multiple root of Xn − 1. This

contradicts ∣C
Fp
n ∣ = n by Theorem 6.9.3. This proves the claim.

Let ζ ∈ CQ
n be primitive. Then ζ = ζkn with k,n coprime. Write k = p1⋯pℓ for primes

pi ∤ n. Then mQ
ζn
= mQ

ζ
p1
n

by the claim. As ζp1n is also a primitive nth root of unity, the

claim implies mQ
ζ
p1p2
n
=mQ

ζ
p1
n
=mQ

ζn
and so on. Hence, mQ

ζ =m
Q
ζn
.

This implies that every primitive nth root of unity is a root of mQ
ζn

and therefore

ΦQ
n ∣m

Q
ζn
. Since also mQ

ζn
∣ ΦQ

n (Lemma 3.5.6) and both are monic, mQ
ζn
= ΦQ

n .

Example 6.9.9. Consider 7th roots of unity over F2. We have the factorization

X7 − 1 = (X − 1)(X3 +X + 1)(X3 +X2 + 1).

All roots of unity ≠ 1 are primitive; 3 have the first cubic factor as minimal polynomial and
the other 3 the second; ΦF2

7 is reducible; the 7th cyclotomic field over F2 is an extension
of degree 3 ≠ φ(7) = 6. Note 3 is the order of 2 modulo 7. We see in the proof below that
this is no coincidence.

Recall Definition 2.7.1 and Theorem 2.7.8.

Proposition 6.9.10. Let n > 0 and p ∤ n prime. Φ
Fp
n is irreducible in Fp[X] if and only

if p is a primitive root of n.

Proof. For ζ ∈ C
Fp
n primitive, m

Fp
ζ ∣ Φ

Fp
n . Hence, Φ

Fp
n is irreducible in Fp[X] if and only if

m
Fp
ζ = Φ

Fp
ζ , if and only if d ∶= deg(m

Fp
ζ ) = φ(n), if and only if (by Artin) d = [Fp(ζ) ∶ Fp] =

φ(n). Now Fp(ζ) ≅ Fpd , and we can assume =. By Proposition 6.7.20, d equals the order
of the Frobenius endomorphism ψ in G ∶= G(Fpd ∣ Fp). The group monomorphism of G
into Z×n from Theorem 6.9.3 (recall the proof) maps ψ to p̄ ∈ Z×n. Thus, d is the order of p̄
in Z×n. This means that d = φ(n) if and only if p is a primitive root of n.

Exercise 6.9.11. Show f ∶=X12−729 ∈ Q[X] has splitting fieldQ(ζ12) overQ (use 729 = 36

and ζ12 = (
√
3 + i)/2). Determine all intermediate fields of Q(ζ12) ∣ Q.

Exercise 6.9.12. n > 0 is prime if and only if ΦQ
n =Xn−1 +⋯ +X + 1.

6.9.1 Constructibility of regular n-gons

We are now equipped to address the last of the classical Greek problems on ruler and
compass constructions, the construction of regular n-gons.

Recall, Fermat primes are primes of the form 2k + 1 for k ∈ N (Remark 2.3.5 (1)).
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Theorem 6.9.13 (Gauß, Wantzel). Let n > 2. Then ζn is constructible if and only if
n = 2mp1⋯pℓ for some ℓ,m ∈ N and pairwise distinct Fermat primes pi.

Proof. We claim ζn is constructible if and only if φ(n) is a power of 2. ⇒: if ζn is
constructible, then [Q(ζn) ∶ Q] is a power of 2 by Corollary 6.2.23; but [Q(ζn) ∶ Q] = φ(n)
by Gauß’ Theorem 6.9.8. ⇐ follows from Corollary 6.8.4 because Q(ζn) is the splitting
field of mQ

ζn
over Q (Remark 6.9.2 (3)).

Let n = pk11 ⋯p
kℓ
ℓ be the prime factorization of n. By Theorem 2.6.10,

φ(n) = pk1−11 ⋯pkℓ−1ℓ (p1 − 1)⋯(pℓ − 1).

This is a power of 2 if and only if for all pi ≠ 2 we have ki = 1 and pi −1 is a power of 2.

Remark 6.9.14. The ancient Greeks constructed regular n-gons for n = 2k,2k3,2k5 where
k ∈ N. Gauß’ 17-gon marked the first progress after 2 milennia (Example 6.1.6).

Since there are 5 known Fermat primes (see Remark 2.3.5 (1)), for odd n we know
25 − 1 = 33 constructible regular n-gons; the largest is n = 4294967295. Isn’t it remarkable
that we know this regular n-gon is constructible without ever possibly see a construction?

An explicit construction of a regular 216 + 1 = 65537-gon was worked out in more than
221 pages and 10 years by Hermes (1894); he believed “Geduld ist die Pforte der Freude.”

6.9.2 Dirichlet’s theorem

As a further application we prove a special case of Dirichlet’s theorem (cf. Remark 2.3.5 (5)).

Theorem 6.9.15 (Dirichlet). For every n > 1 there are infinitely many primes p with

p ≡ 1 mod n.

Proof. Let s ∈ N and p1, ..., ps be primes with pi ≡ 1 mod n. We have to find another such
prime. Let x ∶= np1⋯ps > 1, understanding x = n if s = 0. Note ∣ΦQ

n(x)∣ = ∏j ∣x − ζ
j
n∣ > 1

where j ranges over 1 ⩽ j ⩽ n coprime to n; hence, ΦQ
n(x) /∈ {0,±1}. As ΦQ

n ∈ Z[X], we
have ΦQ

n(x) ∈ Z. Let p be a prime divisor of ΦQ
n(x).

By ΦQ
n(x) ∣ xn − 1 we have xn ≡ 1 mod p, so p ∤ x, so p ≠ pi. We are left to show p ≡ 1

mod n. As p ∤ x we have x̄ ∈ Z×p ; let k be its order. As xn ≡ 1 mod p we have k ∣ n. Since
xp−1 ≡ 1 mod p by Fermat, also k ∣ p − 1. It suffices to show k = n.

Otherwise, n = kℓ for some ℓ > 1. Now, the roots of

(Xn − 1)/(Xk − 1) = (Xk)ℓ−1 +⋯ +Xk + 1 =∶ f

in C are the nth roots of unity that are not kth roots of unity, in particular, they contain
the primitive nth roots of unity. Thus, ΦQ

n ∣ f in C[X], hence in Q[X]. Since both are
monic, ΦQ

n ∣ f in Z[X] (Lemma 4.4.15). Thus,

ΦQ
n(x) ∣ f(x) ≡ ℓ mod p.

As p ∣ ΦQ
n we get p ∣ ℓ; as ℓ ∣ n ∣ x we get p ∣ x; but p ∤ x was observed above.
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Remark 6.9.16 (Inverse Galois problem). It is unknown whether every finite group H
is the Galois group of some Galois extension of Q. Shafarevich (1958) verified this for all
solvable H. For illustration, we show:

Proposition 6.9.17. For every n > 1 there exists a Galois field extension L ∣ Q with
G(L ∣ Q) ≅ Zn.

Proof. Dirichlet’s theorem gives a prime p with p ≡ 1 mod n. By Theorem 6.9.8, Q(ζp) ∣ Q
is Galois of degree φ(p) = p − 1 with Galois group G ≅ Z×p , cyclic of order p − 1 (Theo-
rem 2.7.6). As n ∣ p− 1, G has a cyclic subgroup U of order (p− 1)/n (Theorem 5.3.21), so
[G ∶ U] = n. As G is abelian, U is normal. By (5) of the main theorem, L ∶= Q(ζp)U ∣ Q is
Galois with G(L ∣ Q) ≅ G/U . But G/U is cyclic of order [G ∶ U] = n, so ≅ Zn.

Example 6.9.18. G(Q(cos(2π/7)) ∣ Q) ≅ Z3.

Proof. Follow the proof above with n = 3 and p = 7. Then G(Q(ζ7) ∣ Q) ≅ Z×6 . Indeed, it
contains the automorphisms φk with φk(ζ7) = ζk7 for k < 7. Note φ2

6 = id as φ6(φ6(ζ7)) =
ζ36 = ζ7. Hence U ∶= {id, φ6} is a subgroup of order 2 = 6/3. Then Q(ζ7)U ∣ Q is Galois
with group G(Q(ζ7)U ∣ Q) ≅ G(Q(ζ7) ∣ Q)/U ≅ Z3.

To determine Q(ζ7)U it suffices to find α ∈ Q(ζ7)U ∖Q: then [Q(α) ∶ Q] > 1 and 3 =
[Q(ζ7)U ∶ Q] = [Q(ζ7)U ∶ Q(α)] ⋅ [Q(α) ∶ Q] imply [Q(ζ7)U ∶ Q(α)] = 1, so Q(ζ7)U = Q(α).

But φ6(ζ7 + ζ67) = ζ
6
7 + ζ

36
7 = ζ

6
7 + ζ7 ∈ L

U and ζ67 = ζ̄7 (complex conjugation), so ζ7 + ζ67 =
2Re(ζ7) = 2 cos(2π/7) =∶ α. It is known that α ∉ Q.

Exercise 6.9.19. For every finite group H there are field extensions L ∣M ∣ Q with L ∣M
Galois and G(L ∣M) ≅H. (Hint: Proposition 6.7.22.)

6.10 Adjunctions of roots

Definition 6.10.1. Let n > 0. A field extension L ∣K results by adjunction of an nth root
if and only if L =K(b) for some b ∈ L with bn ∈K.

L ∣K results by adjunction of a root if this happens for some n > 0.

Example 6.10.2. Q( 3
√
2) ∣ Q and Q( 3

√
2, ζ3) ∣ Q(ζ3) and Q(ζ3) ∣ Q result by adjunction of

a root. The 1st is not Galois, the others are.

Theorem 6.10.3. Let L ∣ K a field extension of degree n > 1 and assume K contains a
primitive nth root of unity and char(K) ∤ n. Then L ∣ K results by adjoining an nth root
if and only if L ∣K is a cyclic Galois extension.

Lemma 6.10.4 (Pure equations). Let n > 1 and K be a field with char(K) ∤ n. Let
a ∈K×, and L ⊆K be the splitting field of Xn − a over K.

1. L contains a primitive nth root of unity ζ.

2. If b ∈ L is a root of Xn − a, then L =K(b, ζ).
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3. L ∣K and L ∣K(ζ) are Galois extensions.

4. G(L ∣ K(ζ)) is isomorphic to a subgroup of Zn; it is isomorphic to Zn if Xn − a is
irreducible in K(ζ)[X].

Proof. (1): no root of Xn − a is a root of (Xn − a)′ = nXn−1, so has n pairwise distinct
roots b1, ..., bn ∈ L (Lemma 3.3.13). Then bi/b1 are n pairwise distinct roots of unity. Thus,
L contains the nth cyclotomic field over K.

(2): b, ζb, ζ2b, ..., ζn−1b are pairwise distinct roots of Xn − a, so equal b1, ..., br above.
Then L =K(b1, ..., bn) =K(b, ζ).

(3): Xn − a is separabel (having n roots), so L ∣ K (clearly, finite) is Galois by Artin.
Then also L ∣K(ζ) is Galois by Lemma 6.7.4.

(4): every φ ∈ G(L ∣ K(ζ)) maps b to ζkφb for some kφ < n; as L = K(ζ)(b) this
determines φ (Remark 6.3.12). Thus, φ ↦ k̄φ defines a group monomorphism into Zn.
If Xn − a is irreducible in K(ζ)[X], the action of G(L ∣ K(ζ)) on the roots is transitive
(Remark 6.7.10 (3)), i.e., this monomorphism is surjective.

Proof of ⇒ in Theorem 6.10.3. Assume L = K(b) with a ∶= bn ∈ K and ζ ∈ K for an n-th
root of unity ζ. Apply Lemma 6.10.4: by (2), L is the splitting field of Xn − a, L ∣ K is
Galois by (3), and the Galois group is cyclic by (4) (and Corollary 5.3.23).

For the case K = Q, we can additionally describe G(L ∣K). Recall Exercise 2.6.5.

Proposition 6.10.5. Let n > 1, a ∈ Q and assume f ∶= Xn − a ∈ Q[X] is irreducible in
Q(ζn)[X]. Let Φ ∶ Z×n ≅ Aut(Zn) be given by Φ(k̄)(x̄) ∶= kx for all k̄ ∈ Z×n, x̄ ∈ Zn. Then

G(f,Q) ≅ Zn ⋊Φ Z×n.

Proof. Let L ⊆ C be the splitting field of f over Q. Then ζn ∈ L. The roots are
b, ζnb, ..., ζn−1n b for some b ∈ L. Let φ ∈ G(f,Q) = G(L ∣ Q). Then φ(ζn) is a primitive

nth root of unity, φ(ζn) = ζ
ℓφ
n for some ℓφ < n, coprime to n. Using the notation from the

previous proof, we define the desired isomorphism Ψ by

Ψ(φ) ∶= (k̄φ, ℓ̄φ).

Then Ψ is injective: (kφ, ℓ–φ) determine the values of φ on the roots. Surjectivity
follows using Artin, the degree formula and the lemma plus Theorem 6.9.8:

∣G(f,Q)∣ = [L ∶ Q] = [L ∶ Q(ζn)] ⋅ [Q(ζn) ∶ Q] = ∣Zn∣ ⋅ ∣Z×n∣.

To show Ψ is a homomorphism, let φ,ψ ∈ G(L ∣ Q); then

φ(ψ(b)) = φ(ζ
kψ
n b) = φ(ζn)

kψφ(b) = ζ
kψℓφ
n ζ

kφ
n b = ζ

kψℓφ+kφ
n b,

φ(ψ(ζn)) = φ(ζ
ℓψ
n ) = ζ

ℓφℓψ
n .

Thus, Ψ(φ ○ ψ) = (kψℓφ + kφ, ℓφℓψ) = (k̄φ +Φ(ℓ̄φ)(k̄ψ), ℓ̄φ ⋅ ℓ̄ψ) = Ψ(φ) ⋅Ψ(ψ).
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Remark 6.10.6. Let K be a field, a ∈K and p prime. Then Xp − a ∈K[X] is irreducible
if and only if it has no root in K.

Proof. ⇒ is clear. ⇐∶ assume g ∣Xp−a for some monic g ∈K[X] of degree 0 < d < p. Write
Xp − a = (X − α1)⋯(X − αp) with αi ∈ K and assume g = (X − α1)⋯(X − αd). As g has
coefficients in K we have b ∶= α1⋯αd ∈K. As αpi = a we have bp = ad. By Bézout, 1 = xd+yp
for certain x, y ∈ Z. Then a = axdayp = bpxayp, so Xp − a has root bxay ∈K.

The following states that so-called characters of G in K are linearly independent.

Lemma 6.10.7 (Artin). Let n > 0, K a field, G a group, χ1, ..., χn ∶ G → K× pairwise
distinct group homomorphisms, and a1, ..., an ∈K not all 0. Then there is g ∈ G such that

a1χ1(g) +⋯ + anχn(g) ≠ 0.

Proof. Otherwise there is a minimal n > 0 such that this fails. Then n ≠ 1 since a1χ1(1G) =
a1 ≠ 0. Let g ∈ G. Choose g′ ∈ G with χ1(g′) ≠ χn(g′). Then ∑i aiχi(g) = 0 implies

∑i aiχn(g
′)χi(g) = 0. Further, ∑

n
i=1 aiχi(g

′g) = ∑i aiχi(g
′)χi(g) = 0. Subtracting gives

∑
n
i=1 ai(χi(g

′) − χn(g
′))χi(g) = ∑

n−1
i=1 ai(χi(g

′) − χn(g′))χi(g).

As g is arbitrary, and n minimal, all ai(χi(g′) − χn(g′)) = 0. But (χ1(g′) − χn(g′)) ≠ 0, so
a1 = 0. But then ∑

n
i=2 aiχi(g) = 0 for all g ∈ G, so again by minimality of n, all ai = 0.

Proof of ⇐ in Theorem 6.10.3. Let ζ ∈K be a primitive nth root of unity. Let φ generate
G ∶= G(L ∣ K). Since ∣G∣ = n by Artin, idL, φ, ..., φn−1 lists G. Note χk ∶= φk↿L× for k < n
are pairwise distinct group homomorphisms from L× into L×. By Artin’s lemma above,
there is x ∈ L× such that b ∶= ∑

n−1
k=0 ζ

kχk(x) ≠ 0. Then, as ζ is fixed by φ and φn(x) = x,

φ(b) = φ(x) + ζφ2(x) +⋯ + ζn−2φn−1(x) + ζn−1φn(x) = ζ−1b.

Thus φ(bn) = ζ−nbn = bn, so a ∶= bn is fixed by G(L ∣K). Thus, a ∈K by Theorem 6.7.6.
We are left to show L = K(b). By the degree formula, it suffices to show [K(b) ∶ K]

has degree ⩾ n. By Corollary 6.8.2 (1), K(b) ∣ K is Galois, so [K(b) ∶ K] = ∣G(K(b) ∶ K)∣
by Artin. Hence, it suffices to find n pairwise distinct K-automorphisms of K(b).

Easy: for k < n we have φk(b) = ζ−kb and, as b ≠ 0, these values are pairwise distinct;
hence, φk↿K(b) are pairwise distinct; they take values in K(b) by Lemma 6.7.4.

6.11 Radical extensions

Definition 6.11.1. A field extension L ∣ K is a radical extension if there are r > 0 and
L0 =K ⊆ L1 ⊆ ⋯ ⊆ Lr = L such that Li+1 ∣ Li results by adjunction of a root for all i < r.

f ∈K[X] is solvable with radicals (over K) if f splits in some radical extension of K.

Intuitively, this means the roots of f can be computed from the coefficients using field
operations and n-th roots for various n > 1.
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Examples 6.11.2.

1. By Theorem 6.1.5, every constructible z ∈ C is contained in a radical extension of Q,
namely one obtained by successive adjunctions of square roots.

2. Lemma 3.5.11 shows, if char(K) ≠ 2, then a quadratic f ∈K[X] splits in K(
√
Df).

3. Cardano’s formulas (Proposition 3.5.15 and Remark 3.5.14) show that every cubic
f ∈ Q[X] is solvable by radicals. In particular, f =X3 + aX2 + b ∈ Q[X] splits in L4:

L0 ∶= Q ⊆ L1 ∶= L0(ζ3) ⊆ L2 ∶= L1(δ) ⊆ L3 ∶= L2(x) ⊆ L4 ∶= L3(y),

where ζ33 = 1 ∈ L0, δ2 = −Df/27 ∈ L1, x3 = (δ − b)/2 ∈ L2, y3 = (δ + b)/2 ∈ L3.

The following is the reason why solvable groups are called ‘solvable’.

Theorem 6.11.3. Let K be a field with char(K) = 0 and f ∈ K[X]. Then f is solvable
with radicals if and only if G(f,K) is solvable.

Of course, we intend to apply Galois theory. A difficulty is that radical extensions can
be non-Galois, even if all steps Li+1 ∣ Li are Galois.

Example 6.11.4. Q ⊆ Q(
√
2) ⊆ Q( 4

√
2) is a radical extension with Galois steps but

Q( 4
√
2) ∣ Q is not Galois as it does not contain the complex roots ±i 4

√
2 of mQ

4√2
=X4 − 2.

Lemma 6.11.5. Assume L0 = K ⊆ L1 ⊆ ⋯ ⊆ Lr = L are fields with char(K) = 0 such that
Li+1 ∣ Li results by adjunction of a root for all i < r. Then there exist m ∈ N such that for
all multiples n ∈ N of m there exist s ∈ N and fields

K ⊆ L′0 ⊆ L
′

1 ⊆ ⋯ ⊆ L
′

s

such that L ⊆ L′s and L′s ∣ K is finite Galois, L′0 = K(ζ) for a primitive nth root of unity
ζ ∈K, L′0 ∣K and L′i+1 ∣ L

′

i for all i < s are cyclic Galois extensions.

Proof. Induction on r. For r = 0 set m ∶= 1 and let n > 0 be given. For a primitive n-th
root of unity ζ ∈K, and K(ζ) ∣K is a cyclic Galois extension (Theorem 6.9.3).

Let r > 0 and Lis be given. Let Lr = Lr−1(b) with bk ∈ Lr−1. For the first r−1 many Lis
choose m′ by induction and set m ∶= km′. Let n be a multiple of m. Then m is a multiple
of m′ so induction gives L′0, ..., L

′

s′ , in particular, L′s′ ∣K is Galois and contains bk.
Write G ∶= G(L′s′ ∣K) and define

f ∶= ∏φ∈G(X
k − φ(bk)).

Then f ∈ L′s′[X]. But φ(f) = f for all φ ∈ G, so f ∈ (L′s′)
G[X] =K[X] (Theorem 6.7.6).

By Artin, L′s′ is the splitting field of some g ∈ K[X]. Let L′ be the splitting field of fg
over K, so L′ ∣K is finite Galois by Artin. Then g splits over L′, so L′s′ ⊆ L

′. As f(b) = 0,
also b ∈ L′ and hence Lr = Lr−1(b) ⊆ L′s′(b) ⊆ L

′.
But L′ is a radical extension of L′s′ : successively adjoin the roots of f . These are kth

roots of certain φ(bk) ∈ L′s′ . Since L′0 ⊆ L
′

s′ contains a primitive nth root of unity ζ, it
contains also a primitive kth root of unity, namely ζn/k (note k ∣ n). Thus, each such
adjoinment produces a cyclic Galois extension by Theorem 6.10.3.
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Proof of Theorem 6.11.3. ⇒: given a radical extension L ∣ K where f splits, choose K ⊆
L′0 ⊆ ⋯ ⊆ L

′

s =∶ L
′ as in the lemma. By the main theorem,

{idL′} = G(L
′ ∣ L′s) ◁G(L

′ ∣ L′s−1) ◁⋯◁G(L
′ ∣ L′0) ◁G(L

′ ∣K).

Moreover, for i < s, G(L′ ∣ L′i)/G(L
′ ∣ L′i+1) ≅ G(L

′

i+1 ∣ L
′

i) is cyclic, so abelian. Also
G(L′ ∣K)/G(L′ ∣ L′0) ≅ G(L

′

0 ∣K) = G(K(ζ) ∣K) is abelian by Theorem 6.9.3.
Thus, G(L′ ∣K) is solvable (Theorem 5.8.15). Let L̃ ⊆ L′ be the splitting field of f over

K. Then L̃ ∣K is Galois by Artin. By the main theorem G(L′ ∣ L̃) ◁G(L′ ∣K) and

G(L̃ ∣K) ≅ G(L′ ∣K)/G(L′ ∣ L̃).

But factors of solvable groups are solvable (Lemma 5.8.13).
⇐: let G(f,K) = G(L ∣ K) for L ⊆ K the splitting field of f . Choose intermediate

fields K =M0,M1, ...,Mℓ of L ∣K according to Corollary 6.8.2 (3).
Let n ∶= [L ∶ K] and ζ be a primitive nth root of unity. By Artin, M1 is the splitting

field of some f ∈K[X] over K. ThenM1(ζ) is the splitting field of (Xn−1)f overM0 =K,
so M1(ζ) ∣K is Galois, so M1(ζ) ∣K(ζ) is Galois (Lemma 6.7.4).

Further, φ(M1) = M1 for every φ ∈ G(M1(ζ) ∣ K(ζ)) ⊆ G(M1(ζ) ∣ K) (Lemma 6.7.4),
i.e., φ↿M1 ∈ G(M1 ∣K). Thus, φ↦ φ↿M1 is a group homomorphism from G(M1(ζ) ∣K(ζ))
into G(M1 ∣K). It is injective: if φ,ψ agree on M1, then also on M1(ζ) (both fix ζ).

Thus, G(M1(ζ) ∣ K(ζ)) is isomorphic to a subgroup of G(M1 ∣ K). But p1 ∶= [M1 ∶
K] = ∣G(M1 ∣K)∣ is prime, so ∣G(M1(ζ) ∣K(ζ))∣ = [M1(ζ) ∶K(ζ)] is p1 or 1.

Repeating this argument,

M0 =K ⊆K(ζ) ⊆M1(ζ) ⊆ ⋯ ⊆Mℓ(ζ) = L(ζ)

with Mi(ζ) ∣ Mi−1(ζ) Galois of prime degree pi ∶= [Mi ∶ Mi−1] or 1. Consider an i with
Mi(ζ) ≠Mi−1(ζ). By Artin, G(Mi(ζ) ∣Mi−1(ζ)) has order pi, so is cyclic. As pi ∣ n,Mi−1(ζ)
contains a primitive pith root of unity (namely, ζn/pi). By Theorem 6.10.3,Mi(ζ) ∣Mi−1(ζ)
results by adjoining a pith root.

Since also the first step K(ζ) ∣ K results by adjoining a root, L(ζ) ∣ K is a radical
extension. Since f splits in L, it splits in L(ζ).

6.11.1 The Abel-Ruffini theorem

Recall Examples 6.11.2. The Mitternachtsformel is general in the sense that it is a sin-
gle formula where we plug the coefficients of a given quadratic polynomial to find roots.
Similarly, we saw general formulas for degree 3 and Cardano’s school also found general
formulas for degree 4. Other degrees cannot be handled this way:

Theorem 6.11.6 (Abel-Ruffini). Let n > 1 and S1, ..., Sn be variables and K be a field of
characteristic 0. The general degree n polynomial over K

f ∶=Xn − S1X
n−1 + S2X

n−1 +⋯ + (−1)nSn ∈K(S1, ..., Sn)[X]

is solvable with radicals over K if and only if n < 5.
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Proof. Let L be the splitting field of f over K(S1, ..., Sn). Then L ∣ L0 ∶= K(S1, ..., Sn) is
Galois by Artin (note f is separable since char(K(S1, ..., Sn)) = 0). Let x1, ..., xn ∈ L be
the roots of f . Then L =K(x1, ..., xn) because Si = sn,i(x1, ..., xn) by Vieta’s formula.

By Theorem 6.11.3 and Example 5.8.10 it suffices to show G(L ∣ L0) ≅ Sn. By Propo-
sition 6.7.22 is suffices to show G(L ∣ L0) ≅ G(M ∣ M0) where M ∶= K(X1, ...,Xn) and
M0 ∶=K(sn,1, ..., sn,n). By Theorem 3.7.7, L0 ≅M0 via the K-homomorphism φ that maps
Si to sn,i. We are left to show that φ−1 extends to an isomorphism from M onto L.

We verify this for the homomorphism ψ ∶M → L determined by Xi ↦ xi. Since

ψ(sn,i) = sn,i(x1, ..., xn) = Si = φ
−1(sn,i),

ψ extends φ−1. For surjectivity, note M is the splitting field of

(X −X1)⋯(X −Xn) =X
n − sn,1X

n−1 +⋯ + (−1)nsn,n = φ(f).

overM0. Thus, ψ(M) ⊆ L is a splitting field of ψ(φ(f)) = f over L0. Thus, ψ(M) = L.

Can one find ‘special’ formulas? For each degree 5 equation an own one? No:

Corollary 6.11.7. Let f ∈ Q[X] be irreducible of degree 5 and assume f has exactly 3
roots in R. Then f is not solvable with radicals over Q.

Proof. By Remark 6.7.10, φ ↦ φ∗ is a group monomorphism from G ∶= G(f,Q) into S5.
We claim it is surjective. We show that the φ∗ generate S5.

By Remark 6.7.10 (4), 5 ∣ ∣G∣. By Cauchy’s theorem 5.12.1, G contains an element φ of
order 5. Then φ∗ ∈ S5 has order 5, so must be a 5-cycle: write φ∗ as a product of disjoint
cycles by Theorem 5.2.7 and use Example 5.3.14 (4). We can assume φ∗ = (12345),
enumerating the 5 complex roots of f accordingly.

Letting ψ ∈ G be complex conjugation, ψ∗ is a transposition, namely (ij) if the 2 roots
in C ∖R are the ith and the jth. By Exercise 5.3.6, ⟨φ∗, ψ∗⟩ = S5.

Example 6.11.8. f ∶=X5 − 4X + 2 ∈ Q[X] cannot be
solved with radicals over Q.

Indeed, f is irreducible by Eisenstein and has exactly
3 real roots.
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