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The book presents the field of proof complexity in its full breadth and depth. It starts
historically tracing proof complexity to foundational questions of mathematical logic, and
ends with a question about its nature: “what are the intrinsic reasons that some formulas are
hard to prove? Can the proof complexity of some formulas be traced to the computational
complexity of associated computational tasks?” (p.477)

The central goal of proof complexity is to prove lower bounds to the size of proofs in
various (propositional) proof systems. To date no superpolynomial lower bounds are known
for standard textbook systems, called Frege, given by finitely many inference rules. However,
already lower bounds for weak proof systems are well-motivated from a computer science
perspective for their application to algorithm analysis. Systems around Resolution are re-
lated to Sat solvers, algebraic systems like Nullstellensatz or Polynomial Calculus to ideal
membership algorithms, and semi-algebraic systems like Sherali-Adams or Sum-of-Squares
to linear or semidefinite programming. While the combinatorially inclined research in this
direction form the “rudiments from which proof complexity can grow” (p.473), it uses some-
what ad hoc methods tackling specific tautologies and proof systems. The book aims to
presents “proof complexity as a whole entity rather than as a collection of various topics
held together loosely by few notions. The frame that supports it is logic.” (p.4)

The gem of proof complexity is a subexponential lower bound on the size of bounded-
depth Frege proofs of tautologies expressing the pigeonhole principle. Being bounded-depth
means that the proof operates with formulas of some fixed ∧/∨-alternation rank. This goes
back to Ajtai 1988 and “opened completely new vistas, showing that proof complexity is part
of a much larger picture and that it does not need to be just a finitary proof theory” (p.184).
Ajtai gave a forcing-type construction of an expansion of a cut of a nonstandard model M
of true arithmetic by a bijection between n+ 1 and n for some nonstandard n in such a way
that induction for bounded formulas is preserved. This implies the proof lower bound due
to the correspondence of bounded-depth Frege and arithmetics with bounded induction.

That a bounded arithmetic T corresponds to a proof system P means that (1) P has
short proofs of propositional translations of universal consequences of T and (2) T proves
the soundness of P . By (1), lower bounds on P -proofs imply independence from T , and this
explains a central motivation from mathematical logic (p.37): understanding independence
for universal arithmetical sentences. (2) implies that every T -provably sound proof system
is simulated by P in the sense that its proofs can be efficiently translated to P -proofs. This
implies that lower bounds on P imply the consistency of NP 6= coNP with T , and thus
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explains a central motivation from computer science (p.476): such a consistency counts
towards the truth of the conjecture. Indeed, while bounded arithmetics are not foundational
for the whole of mathematics, they are for computational complexity theory in that they
formalize a large part of it.

The book has four parts. Part I (Basic Concepts) introduces the proof systems mentioned
above and many more and develops their basic theory. Part II (Upper Bounds) is devoted to
the correspondence and starts with Chapter 8 presenting the one for bounded-depth Frege
with a clear model-theoretic argument. This is extended to systems with modular counting
or threshold connectives, and also to weak systems around Resolution. Chapter 12 gives an
elegant presentation of the correspondence of Cook’s PV and Buss’ S1

2 with Extended Frege
based on Herbrand’s theorem. Beautiful applications in Chapter 11 are quasipolynomial
upper bounds for weak pigeonhole principles in R(log), and subexponential bounded-depth
simulations of Frege. A point stressed (p.204) is that natural theories should be based on
prevailing reasoning principles identified in mathematical logic, like induction, collection, or
choice principles.

Part III (Lower Bounds) starts with weak systems around Resolution. Aiming at general
results and techniques, it treats the hardness of arbitrary infinity axioms and their relativiza-
tions, and a proof complexity generator g : {0, 1}n → {0, 1}m (with m > n): the hardness
to prove that a given y ∈ {0, 1}m is outside the range of g; here, g is given by an m × n
matrix A over F2 with certain combinatorial expansion properties. Chapter 15 proves Ajtai’s
theorem on the propositional level via k-evaluations. Chapter 16 gives Polynomial Calcu-
lus degree lower lower bound for weak pigeonhole principles and sketches a Sum-of-Squares
degree lower bound for the abovementioned generator. Chapters 17 and 18 cover feasible
interpolation: given two disjoint NP problems, this property allows to efficiently construct
separating circuits (or monotone ones, or formulas, or span programs, or what) from proofs
of disjointness (per input length). Thus, this property reduces proof lower bounds to com-
putational hardness (of the separation problem), and actually gives a win-win situation: its
failure implies hardness of proof search.

Part IV (Beyond Bounds) is less detailed than the rest and surveys approaches to strong
proof systems like Extended Frege. In particular, Chapter 19 presents the approach via
proof complexity generators, Chapter 20 sketches two forcing perspectives, and Chapter 21
discusses finite consistency statements. The final Chapter 22 gives a structural overview of
the whole field and ends with the question from the beginning of this review.
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