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Abstract. In this paper, we present a provably secure redactable sig-
nature scheme allowing to independently redact structure and content.
We identify the problems when structure is not separated from content,
resulting in an attack on the scheme proposed at VLDB ’08 by Kundu
and Bertino. The attack allows for changing the semantic meaning of a
given tree. We introduce a rigid security model, including consecutive
redaction control, to formalize the required behaviour of our scheme.
Moreover, we present first performance evaluations of our implementa-
tion to demonstrate the practical use of the presented scheme.
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1 Introduction

A redactable signature scheme (RSS) allows a third party to remove parts of a
signed document m without invalidating its protecting signature σ. This action
can be performed without involvement of the original signer. In more detail, a
RSS allows a third party to replace parts of the original document with ⊥, a
special symbol indicating that a redaction took place. As a result, the verifier
only sees a blinded version of the document, while still being able to verify that
the remaining subdocuments are still valid and authentic. The RSSs we will
consider allow for public redactions, i.e. no private keys are required to perform
a redaction. Moreover, a RSS can allow to prohibit a consecutive third party to
remove certain parts, a property named Consecutive Redaction Control [20]. The
notation we use for a document is m = m[1]|| . . . ||m[`]. We will call each m[i] a
submessage, where ` ∈ N+ is the number of submessages and || a concatenation.
Current schemes just allow to redact subdocuments. In particular, no existing
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scheme allows redacting the ordering or other structures, which carry information
as well. This may not be sufficient in some cases, which is shown show next.

Examples and Benefits of Redacting Structure Separately. Structured
data comes in many forms, for example XML-Schemata describe the structure
(and often implicitly the semantics) of tree-structured XML-Documents. Even
in linear documents, e.g. a text file, the order of subdocuments is important,
e.g. the ordering of chapters in a book. Liu et al. introduced the paradigm of
separating structural integrity and content integrity in [18] without considering
RSS. This implicit information stored inside the structure of a document leads
to our attack on the Kundu-Scheme.

The “digital document sanitization problem”, as introduced by Miyazaki et al.
in [19], assumes that the signing process itself cannot be altered. This may hap-
pen, if the signer is not reachable anymore, or must not know which parts of the
document are passed to third parties. Consider the following two examples clari-
fying why one needs to be able to redact structure: (1) In an university the exam
results are published in a list. The list first gives the student’s name (m[1]) and
the grade (m[2]), then the next student’s name (m[3]) and then the grade (m[4])
and so on. Imagine the list being ordered by grades, i.e. the student with the best
grade is at the beginning. Thus, the subdocuments m[i] hold information about
either a grade or a student’s name, while the ordering carries the information
“better-than”. We only want a signed list of all the students’ name who took
part in the exam. Hence, we need to redact all information about grades from
this list. A redactable scheme allows deleting the grades, i.e. all m[i]←⊥, where
i is even. Using a transparent [1, 4, 5] RSS would also remove the trace that some
parts where removed. In particular, ⊥ would not be visible anymore. However,
the original ordered relation of the remaining subdocuments is still present, in-
vading privacy. Hence, we also need to redact the ordering among them. Current
schemes are not able to redact this information; they require that the ordering
cannot be redacted or work only on structureless sets [20].
(2) From a business point of view, we can derive our second example: The sales
department provides a monthly overview over all sent invoices to an external
auditor. However, the order in which a company sends out its invoices may leak
some business critical information. Further imagine that the list must be ordered
in a monthly manner, i.e. the invoices need to be grouped by month, while the
internal ordering must not be made public to protect trade-secrets. This requires
the RSS to explicitly sign each subdocument relation separately to allow removal
of only this information at a later stage.

There are many other application scenarios, e.g. one can redact hierarchies within
companies, or explicitly sign partially ordered sets, which is useful for informa-
tion flow models [24]. Many more examples for the use of RSS are given in
the original works, our main motivation is to maintain privacy or protect trade
secrets. Hence, the RSS is required to be transparent, meaning the fact that
redaction has occurred must not be known by a verifying third party. Loss of
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transparency would decrease the value of the redacted information, e.g. a summa-
rized report redacted by the PR department is less valuable than a summarized
report where redactions by the PR department are hidden. Hence, we require a
usable scheme to be transparent and allow redactions of structure to cater for
such constellations.

State of the Art and Current Limitations. The concept of removing parts
from signed data without invalidating the signature was initially introduced as
“content extraction signature” by Steinfeld et al. in [25] resp. in [12] by John-
son et al. Their inspiring work has lead to many RSS constructions in the last
years [8, 20, 21]. The schemes have been extended to work on tree-structured
data [4, 15, 16] and on arbitrary graphs [17]. However, the schemes proposed
in [15] and [16] suffer from an attack vector changing the semantics of the tree.
We will present this attack in this paper. A related concept are sanitizable sig-
nature schemes (SSS), introduced by Ateniese et al. in [1], where the choice of
values for a specific submessage m[i] is not per se limited to m[i] or ⊥, but to ar-
bitrary strings ⊂ {0, 1}∗. Limiting third parties to certain values is a well-known
field [7, 13, 23].

Recently, Brzuska et al. defined and formalized a set of desired properties for
redactable tree-structured documents in [4]. In this paper, we extend these defi-
nitions towards linear documents with separate structure redaction. Most of the
schemes proposed up to now are not transparent, i.e. one can see that a third
party redacted something [10, 12, 21, 25, 26]. Furthermore, this also impacts on
privacy, as already noted in [16] and [20]. The scheme introduced in [20] also
suffers from several problems: (1) It is just useable for sets, which means that
the ordering, what we call structure, is not protected. (2) It does not allow
multi-sets, i.e. each element, resp. subdocument must be unique. (3) This fact is
not checked during their verification algorithm, hence their scheme is forgeable,
i.e. by copying existing elements. The only other provably transparent schemes,
i.e. [4] and [8], require O(n2) operations as well, but their only gain is trans-
parency, hence coming very costly. We have the same complexity, but allow
much more freedom, i.e. removing structure and allowing consecutive redaction
control.

Our Contribution and Organization. In this paper, we present the first
transparent RSS for ordered linear documents which redacts content and struc-
ture separately. We introduce a precise formal model for this new paradigm.
This model will also include consecutive redaction control, which has been used
in several papers [11, 20, 21], but has not yet been formalized rigorously. We will
denote the set of admissible redactable entities as ADM, following the notation
of [5]. Moreover, we present an attack on the Kundu-Scheme in Sect. 2, allowing
to exploit the implicit semantic meaning of structure. Furthermore, we propose
a concrete provably secure RSS construction, which will meet all of our security
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Fig. 3. Redacted Tree T ′

requirements stated in Sect. 4. Our scheme is also secure against the probabilis-
tic attacks on transparency described by Brzuska et al. in [4]. Existing schemes
fell victim to this attack: The scheme by Kundu and Bertino [16] lacks provably
transparency since it uses ordered random numbers [4]. Also the schemes by Izu
et al. in [11] are suspect to this attack. This is a result of the proofs given for
the Kundu-Scheme in [4]. Hence, we introduce a way to sign the ordering of
all submessages m[i] in this paper. Our solution will sign each “left-of” relation
to allow transparent redactions, as already proposed by Chang et al. in [8] and
by Brzuska et al. in [4]. In particular, each pair (m[i],m[j]) gets signed, where
0 < i < j ≤ `. However, their schemes do not allow to redact any structure. Our
solution requires O(n2) operations for signing and verification. This is similar
to [4] and [8]. A more detailed theoretical cost analysis is provided as well, while
a performance comparison of our implementation using real data can be found
in Sect. 5. Additional preliminaries and our extended model are presented in
Sect. 3. Formal proofs of the security and correctness are in the appendix.

2 Attacking the Kundu-Scheme

The only RSS for trees able to redact non-leafs is the Kundu-Scheme, intro-
duced in [15] and revised in [16]. Their scheme builds upon the idea that a third
party having the pre- and post-order traversal numbers of all nodes contained
in a tree T is always able to correctly reconstruct T . Hence, signing each node
ni ∈ T along with both numbers and the content is enough to protect T . To
make the scheme transparent, these traversal numbers are randomized in an
order-preserving manner, which does not have an impact on the reconstruction
algorithm, which just checks for greater than relations [15, 16]. Thus, verifica-
tion is straight forward — with one additional step: A verifier has to check if
all nodes are in the correct order using the traversal numbers. This leads to
the problem that a verifier is not able to determine whether a given edge ex-
isted in the original tree T , just if it could have existed. However, as shown
in the introduction, the structure itself does carry information as well: Assume
that one removes n2 and n3 from T , as depicted in Fig. 3. This allows to add
a new edge e1,4, which has not explicitly been present in the original tree T .
This implies, that the tree TA = ({n1, n4}, {e1,4}) is valid in terms of the sig-
nature. For more detail we compute the traversal numbers for the example tree
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in Fig. 1: The pre-order traversal of T will output (1, 2, 3, 4), while the post-
order traversal will output (4, 3, 2, 1). The randomization step may transform
them into (0.2, 0.3, 0.6, 0.9) and (0.8, 0.7, 0.2, 0.1) resp. Hence, the node n1 has a
structural position of ρ1 = (0.2; 0.8). For n2, n3 and n4 this is done accordingly.
We redact n2, an intermediate node of n4, and n3. For the redacted tree in Fig. 3,
the traversal-numbers are still in the correct order. Hence, the signature verifies.
Kundu and Bertino neither prohibit nor exclude the redaction of intermediate
nodes, but claim this is a useful property [16]. This behaviour is problematic,
as we will show next. The Kundu-Scheme signs the transitive closure of the tree
T , as depicted in Fig. 2. This is a very weak form of structural integrity pro-
tection and allows some semantic attacks: Consider a hierarchical structure of
treatments inside a medical database, i.e. treatments consists of treatments, e.g.
a chemotherapy consists of giving drugs against cancer and additional prophy-
lactic drugs to avoid infections, codified into the tree’s structure. If the cancer
drugs and chemotherapy node is redacted, the only treatment node left is the
prophylactic drug one. This does neither destroy any XML-Schemata nor can it
be detected by humans. This behaviour is not acceptable, though it may have
its application, e.g. to redact hierarchies within a company. However, we argue
that the places where this is allowed must be explicitly denoted by the signer
to avoid the mentioned attack. It remains on open question how to construct a
secure scheme, which allows such constellations, along with a suitable security
model, since the one introduced in [4] just allows to redact leafs.

3 Preliminaries, Notations and Security Properties

Basically, we have the same requirements as Brzuska et al. [4], i.e. unforgeability,
privacy and transparency. However, we need to adjust the definitions as we treat
structure as a redactable entity and to make statements about linear documents
instead of trees. We require that the splitting of m into the subdocuments m[i],
along with the order, is efficiently reconstructable from any received m.

Definition 1 (RSS Algorithms for Content and Structure Redaction).
A RSS which allows separate redaction of content and structure, with consecutive
redaction control, consists of five efficient algorithms. In particular, RSS :=
(KeyGen,Sign,Verify,Redact,Close) such that:

KeyGen. The algorithm KeyGen outputs the public and private key of the signer,
i.e. (pk, sk) ← KeyGen(1λ), where the input parameter λ is the security pa-
rameter.

Sign. The algorithm Sign outputs the signature σ on input of the secret key sk
and the document m. It outputs (m,σ)← Sign(sk,m).

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correctness of
the signature σ, w.r.t. pk, protecting m. In particular: d← Verify(pk,m, σ)
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Redact. The algorithm Redact takes as input the document m, the public key
pk of the signer, the signature σ and description of the redaction mod con-
taining either a submessage m[i] or a binary relation m[i, j] that shall be
redacted. Calling Redact sequentially allows to redact more relations and sub-
messages. The algorithm outputs (m′, σ′) ← Redact(pk,m, σ,mod), where
m′ ← mod(m) denotes the alteration of m w.r.t. mod. mod may contain
more than one modification in our notation. We require that ADM, which
denotes the entities of m admissible to be redacted, is always correctly recov-
erable from (m,σ). The algorithm doing so will be described as:

Sanitizable. On input of a valid message/signature pair (m,σ), Sanitizable
outputs ADM: ADM← Sanitizable(m,σ).

We will treat Sanitizable as part of Redact and not as a stand alone algorithm.
Note, Redact allows public redactions, since just the public key pk of the
signer is required.

Close. The algorithm Close alters σ on input of m, the public key pk of
the signer, the signature σ and a sanitization control description modc
which contains the entities subject to redaction control. The algorithm out-
puts (m,σ′) ← Close(pk,m, σ,modc). modc may contain many modifica-
tions. Close does not change the message m itself, but Sanitizable(m,σ′) =
Sanitizable(m,σ) \modc. This algorithm can be called by the signer and any
other third party. This enables the signer to close parts of m prior to dis-
tributing.

Signing each “left-of” relation is enough to protect the structure of an ordered
document. This has already been utilized and proven in [8] and [4]. The signer is
able to redact parts of the document as well, since a RSS allows public redaction.
Hence, all parties can sanitize and close the document, which includes the signer
and the final recipient as well.

3.1 Security Properties

We now define the required security properties of RSS. These have already been
identified in [4] for trees. Therefore, we will adapt and extend their notion for our
needs. We will denote the transitive closure of a message m, w.r.t. to Redact, as
span�(m), which is derived from [8]. We denote a redaction of a submessage m[i]
as m \m[i]. A redaction of a relation between m[i] and m[j] will be denoted as
m \m[i, j]. Note, the following definitions address only the information a third
party can derive from the signature; e.g., if obvious redactions took place, it
may be trivial to decide whether something has been redacted. We will use the
notation v to express a subset relation in terms of submessages and submessage
relations.
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Experiment UnforgeabilityRSSA (λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ASign(sk,·)(pk)
let i = 1, 2, . . . , q index the queries

return 1 iff
Verify(pk,m∗, σ∗) = 1 and
∀i, 1 ≤ i ≤ q : m∗ /∈ span�(mi)

Fig. 4. Unforgeability

Experiment PrivacyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) 6= mod1(m1), return ⊥
(m,σ)← Sign(sk,mb)
return (m′, σ′)← Redact(pk,m, σ,modb).

return 1 iff b = d

Fig. 5. Privacy

Unforgeability. No one should be able to compute a valid signature on a docu-
ment outside the transitive closure span�(m), without having access to the secret
key sk. That is, even if an outsider can request signatures on different documents,
it remains impossible to forge a signature for a new document. This is analogous
to the standard unforgeability requirement for other signature schemes. We say
that a RSS is unforgeable, iff for any efficient (PPT) adversary A the probability
that the game depicted in Fig. 4 returns 1, is negligible (as a function of λ).

Privacy. No one should be able to gain any knowledge about redacted parts
without having access to them. This is similar to the standard indistinguishabil-
ity notion for encryption schemes. We say that a RSS for documents is private,
iff for any efficient (PPT) adversary A the probability that the game depicted
in Fig. 5 returns 1, is negligibly close to 1

2 (as a function of λ).

Transparency. The verifier should not be able to decide whether a signature
has been created by the signer, or through the redaction algorithm Redact. This
means, that a party cannot decide whether a freshly signed or a blinded version
where some parts have already been redacted has been received. We say that a
RSS is transparent, iff for any efficient (PPT) adversary A, the probability that
the game depicted in Fig. 6 returns 1, is negligibly close to 1

2 (as a function of
λ).

Disclosure Secure. No one should be able to redact parts of a document which
are not part of ADM. This is analogous to the immutability requirement for
SSS [5]. Note, in [20] Miyazaki et al. merged this with unforgeability. However, for
unforgeability any message is enough to break the game; for disclosure security,
an adversary has two possibilities: Either it is able to redact a part which is
subject to redaction control or is able to alter ADM, such that the disclosure
control is reversed. Therefore, the games are slightly different. Additionally, our
game is stricter as the adversary can choose the parts of the message to be
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Experiment TransparencyRSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact for input m,mod:

if mod(m) /∈ span�(m), return ⊥
if b = 0: (σ,m)← Sign(sk,m),

(σ′,m′)← Redact(pk, σ,m,mod)
if b = 1: m′ ← mod(m)

(m′, σ′)← Sign(sk,m′),
finally return (m′, σ′).

return 1 iff b = d

Fig. 6. Transparency

Experiment DisclosureSecureRSSA (λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ARSign(sk,·)(pk)
where oracle RSign for input m,modc:

(σ,m)← Sign(sk,m)
return Close(pk,m, σ,modc)

return 1 iff
let i = 1, 2, . . . , q index the queries
let ADMi ← Sanitizable(mi, σi) and
let ADM∗ ← Sanitizable(m∗, σ∗) and
Verify(pk,m∗, σ∗) = 1 and
∃i : m∗ ∈ span�(mi) ∧mi \m∗ *

⋃
0<i≤q ADMi or

∃i : ADM∗ ⊃ ADMi ∧ ∀i : ADM∗ *
⋃

0<i≤q ADMi

Fig. 7. Disclosure Secure

subject to disclosure control. We say that a RSS is disclosure secure, iff for any
efficient (PPT) adversary A the probability that the game depicted in Fig. 7
returns 1, is negligible (as a function of λ).
Next, we will describe the needed primitives for our scheme.

3.2 Aggregate Signatures and Bilinear Pairings

Aggregate signatures (AGG) have been introduced by Boneh et al. in [3]. The
basic idea is as follows: Given ` signatures σi, 0 < i ≤ `, one constructs a
compressed signature σ which contains all signatures σi. This allows verifying
all given signatures σi by verifying σ. The scheme can be constructed as follows:
Let G1 be a cyclic multiplicative group with prime order q, generated by g, i.e.
G1 = 〈g〉. Further, let GT denote a cyclic multiplicative group with the same
prime order q. Let ê : G1 ×G1 → GT be a bilinear map such that:

1. Bilinearity: ∀u, v ∈ G1 : ∀a, b ∈ Z/qZ : ê(ua, vb) = ê(u, v)ab

2. Non-degeneracy: ∃u, v ∈ G1 : ê(u, v) 6= 1

3. Computability: There is an efficient algorithm Abimap that calculates the
mapping ê for all u, v ∈ G1

Definition 2 (The BGLS-Scheme). The AGG by Boneh et al. [3] (BGLS-
Scheme) with public aggregation consists of five efficient algorithms. Especially:

AGG = {AKeyGen,ASign,AVerf,AAgg,AAggVerf}

AKeyGen. The algorithm KeyGen outputs the public and private key of the

signer, sk
$← Z/qZ denote the signer’s private key and Hk : {0, 1}∗ →

G1 an ordinary cryptographic hash-function from the family HK and set
Q ← gsk, where g is a generator of G1. Set the public parameters and key
pk← (g,Q,G1,GT ,Hk, ê). Output (pk, sk).
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Experiment UnforgeabilityAGGA (λ)

(pkc, skc)← AKeyGen(1λ)

(M∗, σ∗, pk∗)← AASign(sk,·)(pk)
Let ω be the index of pkc in pk∗ = (pk∗1, . . . , pk

∗
` )

and M∗ = (m∗1, . . . ,m
∗
` ).

return 1 iff
AAggVerf(pk∗, σ∗,M∗) = 1 and
pkω ∈ pk∗ and m∗ω has never
been queried under pkω

Fig. 8. Aggregate Unforgeability

Experiment ExtractSecureAGGA (λ)
Let k > 1 denote some security parameter

For: i = 1..k: (pkci , skci)← AKeyGen(1λ)

(pk∗, σ∗,M∗)← AAAggSign(skc,··· )(pkci)
where oracle AAggSign for input (m1, . . . ,mk)

For: i = 1..k: (σi,mi)← ASign(skci ,mi)
return AAgg((pkc1 , . . . , pkck ), (σ1, . . . , σk))

return 1
let j = 1, 2, . . . , q index the queries
Verf(pk∗, σ∗,M∗) = 1 and
pk∗ ⊆ pkc and (pk∗, σ∗,M∗) is non-trivial, i.e.:
σ∗ is not in the transitive closure of the
messages queried to the oracle

Fig. 9. k-Element-Aggregate-Extraction

ASign. The algorithm ASign outputs the signature σi on input of the secret key
sk and a single document mi. It outputs σi ← (Hk(mi))

sk.

AVerf. To verify a signature σi, a third party has to check, if the following equa-

tion holds: ê(σi, g)
?
= ê(Hk(mi), Q).

AAgg. To aggregate ` signatures σi, protecting mi, into an aggregated signature
σ, the aggregator computes σ ←

∏`
i=1 σi, denoted as AAgg(pk,S), where S

is a set of signatures signed using the same public parameters. Note: This
can be done by untrusted parties and without knowing the private keys.

AAggVerf. To verify an aggregated signature σ, a verifier checks whether

ê(σ, g)
?
=

∏`
i=1 ê(Hk(mi), Qi) holds, on input of σ, a list of public keys

pk = (pk1, . . . ,pk`) and a list of signed messages M = (m1, . . . ,m`). To

improve efficiency, the right side can be rewritten as ê(
∏`
i=1Hk(mi), Q), if

we just use one public key, Q, which allows this improvement. Using just
one public key also has the advantage that we are sure that just one signing
key is used. We denote the algorithm as d← AAggVerf(pk, σ, {mi}0<i≤`).

As usual, the correctness requirements should hold. Formal proofs of those can
be found in [3]. We require the expected security properties to hold, i.e. un-
forgeability under chosen message attacks. The proofs can also be found in [3].
We explicitly assume that splitting up an aggregate signature is not feasible, as
shown for the BGLS-Scheme in [9]. However, we require that the attacker has ac-
cess to a signing oracle where it can chose the messages. For the BGLS-Scheme,
this has already been assumed in [20], but is not stated formally in [3]. In par-
ticular, we require that the probability that the games depicted in Fig. 8 and
Fig. 9 return 1 is negligible. Moreover, it is required that, if a third party knows
a contained signature, it can build an inverse and actually remove the signature
from the aggregate. We will denote the removal of σi from σ as σ′ ← σ \ σi. For
the BGLS-Scheme [3] this means: σ′ ← σ · σ−1i . We will use this behaviour to
obtain secure consecutive redaction control.
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4 RSS Construction using Aggregate Signatures

Our construction is based upon the defined AGG. The construction introduced
will be generic, we give an instantiation afterwards. It extends the scheme intro-
duced by Miyazaki et al. in [20] without inheriting its flaws and limitations. Us-
ing aggregating signatures over accumulating hashes [2] resp. distributing many
signatures has three advantages: (1) We can introduce consecutive redaction con-
trol; (2) we are information theoretically secure, both in terms of transparency
and privacy; (3) we speed up the verification procedure as well.

4.1 High-Level Description of Our Construction

Construction 1 (RSS) Our construction makes use of an aggregating signa-
ture scheme AGG as defined earlier. We will explain every algorithm in detail
next. Note, this is a high-level description; an instantiation based on the BGLS-
Scheme is given in Sect. 4.2.

Key Generation. The key pair generation algorithm KeyGen outputs the key
pair (sk,pk), i.e.: (sk,pk) ← AKeyGen(1λ), i.e. it uses the key pair of the
underlying AGG.

Signing. To sign m, where all “left-of” relations m[i, j] can be derived from,
perform the following steps:

1. Choose a nonce τ , i.e. τ must be unique for each document signed. The
tag is needed to avoid adding subdocuments from other documents signed
with the same secret key sk

2. Sign τ , i.e. στ ← ASign(sk, τ)

3. Draw ` pair-wise distinct nonces ri from a uniform distribution. These
are needed to prevent an adversary from aggregating a contained entity
twice

4. Append each ri to the corresponding subdocument m[i] v m, then append
τ and sign the resulting string, i.e. σi ← ASign(sk, τ ||ri||m[i])

5. Sign each existing tagged “left-of” relation: σi,j ← ASign(sk, τ ||ri||rj),
for all 0 < i < j ≤ `, if m[i, j] v m

6. Aggregate each generated signature, i.e:

σc ← AAgg(pk, στ ∪ {σi | m[i] v m} ∪ {σi,j | m[i, j] v m})

7. Output σ = (σc, τ, {σi | m[i] v m}, {σi,j | m[i, j] v m}, {ri | m[i] v
m ∨m[i, j] v m ∨m[j, i] v m})

Note: This algorithm already allows to sign partially ordered sets by not re-
quiring all relations; this is necessary to maintain privacy and transparency.
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Redact. To redact a subdocument m[i], the following steps are performed:

1. Check σ’s validity using Verify. If the signature is not valid, return ⊥

2. If m[i] 6v m, return ⊥

3. Set m′ = m \m[i]. Note, this does not redact the submessage’s relations

4. Calculate: σ′c = σc \ σi
5. Output σ′ = (σ′c, τ, {σi | m′[i] v m′}, {σi,j | m′[i, j] v m′}, {ri | m′[i] v

m′ ∨m′[i, j] v m′ ∨m′[j, i] v m′})

To redact a relation m[i, j], the third party has to perform the following steps:

1. Check σ’s validity using Verify. If the signature is not valid, return ⊥

2. If m[i, j] 6v m, return ⊥

3. Set m′ = m \m[i, j]. Note, this does not redact submessages mi nor mj

4. Calculate: σ′c = σc \ σi,j
5. Output σ′ = (σ′c, τ, {σi | m′[i] v m′}, {σi,j | m′[i, j] v m′}, {ri | m′[i] v

m′ ∨m′[i, j] v m′ ∨m′[j, i] v m′})

Verify. The algorithm Verify performs the following steps:

1. Check, if all ri are pair-wise distinct. If not, output 0

2. Use AAggVerf to verify τ , every m[i] and the received relations which we
assumed can be derived from m. In particular, all received submessages
m[i], appended with τ and the received ri, τ itself, and only the submes-
sage relations derived from m must be checked. If the validation passes,
return 1, otherwise 0 resp. ⊥ on error

Close. The algorithm Close prohibits the possibility of further redaction:

1. Check the validity of σ using Verify. If the signature is not valid, return
⊥

2. If a submessage m[k] is subject to redaction control, do not distribute
σk anymore, i.e. output σ′ = (σc, τ, {σi | m[i] v m ∧ σi 6= σk}, {σi,j |
m[i, j] v m}, {ri | m[i] v m ∨m[i, j] v m ∨m[j, i] v m})

3. If a submessage relation m[k, l] is subject to redaction control, do not
distribute σi,j anymore, i.e. output σ′ = (σc, τ, {σi | m[i] v m}, {σi,j |
m[i, j] v m}, {ri | (m[i] v m ∨m[i, j] v m ∨m[j, i] v m) ∧ σi,j 6= σk,l})

The algorithms Redact and Close do not require any private keys. They only al-
low to remove resp. to close just a single submessage or one relation. This is done
for brevity; sequentially running the given algorithms reestablishes the required
and intuitive behaviour, i.e. removing a submessage along with its relations. The
reason why we need to add στ to the aggregate: If at least one subdocument resp.
relation is closed, an adversary must be able to calculate resp. extract στ , which,
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as we will prove in the appendix, is infeasible. Thus, the verification algorithm
will not accept the signature, which reestablishes our required correctness re-
quirement. A third party having all signatures but στ can calculate it. However,
this does not introduce any security problems, since the third party could give
away all signatures anyway.

4.2 Instantiation Using the BGLS-Scheme

To clarify the generic description given in Sect. 4.1 we will give an instantiation
now. It shows how such a scheme can be implemented using the BGLS-Scheme
and it allows us to give performance measurements in Sect. 5.

Construction 2 (RSS2) For brevity, we will omit the case where already par-
tially ordered sets are subject to signing; the algorithms can be adjusted accord-
ingly very easily, as already shown in the high-level description of our algorithms.
We will prove our generic scheme in the appendix, i.e. in App. A.

Sign. To sign a document m = m[1]|| . . . ||m[`], the signer signs each subdoc-
ument using the secret key sk and an additional tag τ . First, the signer
signs τ , i.e. στ ← (Hk(τ))sk. Afterwards, ` pair-wise distinct nonces ri
have to be drawn uniformly. Then, each submessage m[i] v m is signed,
i.e. σi ← (Hk(τ ||ri||mi))

sk. Note, τ must be different for each document m
under sk. Afterwards, the signer calculates σi,j ← (Hk(τ ||ri||rj))sk for all
0 < i < j ≤ `. The tag τ is required to avoid adding subdocuments of other
documents signed with the same secret key sk. Hence, τ “binds” all subdoc-
uments to exactly one document mτ . Afterwards, the signer aggregates all
signatures σi and σi,j into the final aggregated signature σc, i.e.:

σc ← στ ·
∏̀
i=1

σi ·
∏̀
j=2

i<j∏
i=1

σi,j

All signatures, i.e. σi, σi,j and στ , are sent along with the document m.
Furthermore, a third party requires all random numbers ri for verification.

Redact. Verify σ first. To redact m[k], m[k] is deleted from the set of subdoc-
uments, i.e. m′ = m \m[k]. Then the third party produces a new aggregated
signature σ′ over the remaining subdocuments by calculating σ′c ← σc · σ−1k .
To redact a relation m[i, j], the algorithm is similar, i.e. m′ = m \ m[i, j]
and σ′c ← σc ·σ−1i,j . Redacted signatures must not be further distributed. Also,
all no longer required nonces must be deleted as well to maintain privacy, as
shown in the generic construction.

Verify. To verify σ, the verifier checks whether the following equation holds:

ê(σc, g)
?
= ê(Hk(τ) ·

∏̀
i=1

si ·
∏̀
j=2

i<j∏
i=1

ti,j , Q)
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where

si =

{
Hk(τ ||ri||m[i]) if m[i] v m
1 otherwise

and ti,j =

{
Hk(τ ||ri||rj) if m[i, j] v m
1 otherwise

If so, he checks if all used ri are pair-wise distinct. If this test is passed, the
ordering and the content has been verified explicitly and the received docu-
ment is valid. The case where a given submessage resp. submessage relation
is not part of the received document, does not impact on transparency, since
the document could have been signed like this; A third party always knows, if
a given entity does not exist, which is crucial to have a useable verification
procedure, while 1 is the neutral element in the multiplicative group. More-
over, no information from the signature is leaked, as required by our security
model. Thus, the instantiation used allows a very compact representation of
the verification algorithm without introducing security flaws.

Close. The algorithm Close just no longer sends the corresponding signature.
This is the same behaviour as defined in the generic construction.

Correctness and Security of the Proposed Scheme. The proofs are rele-
gated to App. A.

Runtime and Storage Complexity. Our construction requires n+ n(n−1)
2 +

1+n steps for signing. The dominant term is n(n−1)
2 , which is inO(n2). Redacting

a subdocument or relation just requires two steps, namely deleting the subdoc-
ument or relation m[k] and adjusting the aggregated signature to σ′. Hence, the
redaction algorithm is in O(1). Verification is in O(n2). Note, this construction
requires all signatures to be available. Hence, our scheme has a storage require-

ment of O(n2), since n+ n(n−1)
2 signatures are required.

4.3 Modifications

Restricting to Sanitizer and Accountability. The proposed scheme allows
public redaction. To limit redaction to explicitly denoted third parties, the sig-
nature σc can be altered to hold an additional signature σ2 ← SIGN(sk, CH(m)),
where m is the message to be signed, while CH is a chameleon hash [14]. The
parameters of CH and m itself need to be delivered with σ2. Only third parties
who possess the secret key for CH can alter m without breaking the verifica-
tion procedure. This can be enriched further to achieve third party and signer
accountability [5]: CH could be replaced with a tag-based chameleon-hash, i.e.
the one introduced by Brzuska et al. in [5]. Note, both types of accountability
have not yet been formalized for RSS. We are confident that both formalizations
are similar or even the same, though we note that this is ongoing work. The
approach has already been introduced in [23] by Pöhls et al.
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Generation of σ in ms Verification of σ in ms Redaction in ms
HH

HHHCurve
`

10 25 50 100 10 25 50 100 10 25 50 100

128 Bit 6,350 28,675 158,557 615,546 3,675 16,638 89,233 338,156 3 10 22 32

256 Bit 39,313 170,405 667,321 2,660,354 20,323 92,828 345,360 1,401,178 9 20 44 83

384 Bit 95,555 435,902 1,740,444 6,837,645 49,203 229,935 896,825 3,580,709 15 37 71 153

Table 1. Median Runtime for the Scheme; All in ms

Binding Subdocuments and Relations. A third party can bind two or more
subdocuments m[i] resp. relations m[i, j] to each other. In particular, it may be
wanted that m[1] and m[3] can just be redacted together as one. This is also true
for any relations; it may be wanted that a (maybe consecutive) third party is
only able to redact all relations of, e.g., m[6] at once. To do so, the corresponding
signatures must be aggregated and distributed, e.g. in our first example σ(1,3) ←
σ1 ·σ3. For our second example this would be σ(6) ←

∏i=5
i=1 σi,6 ·

∏i=`
i=7 σ6,i. Note,

this does not affect the message m itself. This has already been proposed in [20].
However, we can show that for our scheme, which allows much more freedom,
the signer is still able to restrict the third parties in such a sophisticated way.

5 Performance Measurements

We have implemented our scheme to demonstrate the usability despite its run-
time complexity of O(n2) and the fact that it is based on pairings. We used the
library developed by the National University of Maynooth1 [22] and the tests
were run on a Lenovo Thinkpad T61 with an Intel T8300 Dual Core @2.40

Ghz and 4 GiB of RAM. We ran Ubuntu Version 10.04 LTS (64 Bit) and Java
version 1.6.0 26-b03. We used a single thread to calculate the signatures; an
improvement would be to parallelize signature calculations, since all but the ag-
gregation step are independent. The source code is available upon request. We
took the median of 10 runs and evaluated three sizes of curves, i.e. 128, 256
and 384 Bit. Tab. 1 shows the results for 10, 25, 50 and 100 subdocuments. As
shown, for high security parameter sizes and high subdocument counts, we are
considerably slower than a standard SHA-512 hash. For comparison, a SHA-512
on a document with 10 subdocuments takes 4ms and for 100 it takes 40ms. So,
our implementation is at best 1,587 times slower than SHA-512 (10 subdocu-
ments signed using a 128 bit curve). In comparison to other primitives based on
pairings used in SSS our scheme can compete: A chameleon hash like Zhang et.
al’s [27] (128bit) takes 930ms to generate a single hash according to [23], while
our scheme has a growth of O(n2). However, all other provably secure and trans-
parent schemes, i.e. [4] and [8], have the same complexity and therefore just
differ by a constant factor. Hence, faster aggregate signatures would directly

1 http://www.nuim.ie/
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lead to a faster scheme. We note that for large security parameters, and a large
submessage count, the scheme becomes very slow.

6 Conclusion and Open Questions

We presented a secure RSS for linear documents, that offers information-
theoretical transparency and privacy. It treats content and structure as separate
redactable parts; giving more freedom, which allows this RSS a wider applica-
bility. Furthermore, we have introduced a formal and rigorous security model,
which is the first to formally define the property of secure consecutive redac-
tion control. Our scheme needs O(n2) signing and verification steps. However, it
allows redacting structure and content separately, which has not been possible
with any scheme before, and has many applications in real world environments.
Our implementation demonstrates that our construction is rather slow, but may
still be useable for some real-life applications. It remains an open question, if
more efficient schemes can be constructed and how we can construct an un-
linkable [6] RSS with the same possibilities. Moreover, we presented an attack
on the Kundu-Scheme [15, 16], which breaks the structural integrity protection,
thus allows modifying a signed document’s semantic meaning.
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A Security and Correctness Proofs

Theorem 1 (The Construction is Private). Our construction is private in
the information-theoretical sense.

Proof. Our scheme is private in the information-theoretical sense. In particular,
the parts redacted are completly removed from the signature and the message.
Hence, the secret bit b is perfectly hidden. The signing algorithm requires that
always fresh ri are drawn uniformly, while removing a random number from a
uniformly distributed list leads to a uniformly distributed list again. Hence, even
an unbounded adversary is not able to guess the bit better than at random. The
adversary would be able to distinguish between two uniform distributions. The
other way around is similar; if the redacted message would have been signed
directly, while the corresponding ri are not changed, the output is the same,
prohibiting even unbounded adversaries from guessing any better than random.
This implies perfect privacy. ut

Theorem 2 (The Construction is Transparent and therefore private).
Our construction is transparent in the information-theoretical sense.

Proof. Our scheme is transparent in the information-theoretical sense. In other
words, the secret bit b is perfectly hidden. Our signing algorithm requires that
always fresh ri are drawn uniformly, while removing a random number from a
uniformly distributed list leads to a uniformly distributed list again. Hence, even
an unbounded adversary is not able to guess the bit better than at random.
Otherwise, the adversary would be able to distinguish between two uniform
distributions, which is obviously impossible. Again, the other way around is
similar: If the redacted message would have been signed directly, the distributions
are still uniform and it is impossible for any adversary to guess b better than at
random. ut
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Theorem 3 (The Construction is Unforgeable). Our construction is un-
forgeable.

Proof. Note: We require that the tags τm are chosen unique for each message,
while sk is fixed. The ri are drawn uniformly as well. Hence, we will omit those
unlikely collisions and trivial copy-attacks. Please note: We just use a single pub-
lic key, which simplifies our proof. Knowing this, we can construct an adversary B
with breaks the unforgeability of the aggregate signature scheme, if an adversary
A with a non-negligible advantage ε exists, winning our unforgeability game. To
do so, B uses A as a black box. For every signature query A requests, B forwards
the queries to its signing oracle OSign and genuinely returns the answers to A.
Eventually, A will output a pair (m∗, σ∗). Given the transcript of the simulation,
B checks, if (m∗, σ∗) is a trivial “forgery”, i.e. a result of an allowed redaction.
If so, B aborts the simulation and starts over. If, at some time, B does not need
to restart, B outputs the tuple (m∗, σ∗) as its forgery attempt. Note that if
∃i : σ∗ 6= σi ∧mi = m∗, then the pair (m∗, σ∗) does not win our unforgeability
game and is therefore not a valid forgery attempt. This ends the simulation. We
have to distinguish between two cases: (1) If ∃i : σ∗ = σi ∧ mi 6= m∗, B has
found collision of the underlying random oracle or must have forged at least two
messages. One can extract the colliding aggregates and output them as a valid
forgery of the aggregate signature scheme itself. In both cases, m∗ has never
been queried. (2) If ¬∃i : σ∗ = σi ∨ mi = m∗. Then we have a valid forgery
of a message m never queried. This breaks the unforgeability of the aggregate
signature scheme.

For the BGLS-Scheme, we relegate the reader to [3] and [20], where the authors
show how to break the “Diffie-Hellman-Problem” using our algorithm B, which
always outputs a valid forgery, if A is successful, hence with probability ε, if no
restarts are allowed. ut

Theorem 4 (The Construction is Disclosure Secure). Our construction
is disclosure secure.

Proof. Let A be an algorithm winning our disclosure secure game. We can then
use A to win our extract secure game. To do so, we let B use A as a black-box
again. For every query of A to the oracle ORSign, B forwards the queries to
its oracle OAAggSign. For all messages mc = mi \ modc,i, B calls OSign and
simulates (m′i, σ

′
i) ← Close(pk,mi, σi,modc,i). Afterwards, it forwards (m′i, σ

′
i)

genuinely to A. Eventually, A outputs its forgery attempt (m∗, σ∗). If (m∗, σ∗) is
non-trivial and actually winning the disclosure secure game, B outputs (m∗, σ∗),
otherwise B restarts the simulation. This ends the description of our simulation.
We have to distinguish between two cases:

Case 1: A could reconstruct parts of ADMi

Case 2: A could redact parts of mi, which were subject to disclosure control
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The first case: Trivial; A must be able to extract signatures from the aggregate.
The second case: Either A forged the signature or extracts subsignatures as well.
To extract the subsignatures in the non-forgery case, one reverse calculates the
signatures. In particular, one only needs to calculate σ\σ∗ and output the result.
The result was an aggregated signature.

In case of the BGLS-Scheme the algorithm given in [9] can use B to break DH,
if we assume that the k-element-aggregate-extraction-assumption holds, even if
the adversary has access to the signing oracle. This implies, that both cases are
actually the same, if the BGLS-Scheme is utilized. ut


