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Abstract: At ISPEC ’12, Samelin et al. show that the redactable signature scheme introduced at VLDB ’08 by Kundu
and Bertino does not always preserve the structural integrity of the tree signed. In particular, they show how
redaction of non-leaves promotes descendants and allows a third party to add new edges to the signed tree.
This alters the semantic meaning of the tree and is not acceptable in certain scenarios. We generalize the
model, such that it offers the signer the flexibility to sign trees where every node is transparently redactable.
This includes intermediates nodes, i.e, to allow redacting a hierarchy, but also the tree’s root. We present a
provably secure construction, where this possibility is given, while remaining under explicit control of the
signer. Our security model is as strong as Brzuska et al.’s introduced at ACNS ’10. We have implemented our
secure construction and present a detailed performance analysis.

1 Introduction

Trees are commonly used to organize data. XML
is just one of today’s most prominent examples. To
protect these documents against unauthorized modifi-
cations, digital signature algorithms like RSA (Rivest
et al., 1983) can be used. Using these digital signa-
tures schemes, two important properties of the data
are protected: integrity of the data itself and verifiabil-
ity of the signer and hence the data’s origin. However,
in certain scenarios, it is desirable to remove parts of
a signed document without invalidating the protecting
signature. Additionally, the remaining document shall
still retain the integrity protection and origin verifia-
bility offered by the signature.

This could be simply achieved by requesting a
new signature from the signer with the parts removed
before generating the new signature. While this
roundtrip allows to satisfy the above requirements,
the “digital document sanitization problem”, as in-
troduced in (Miyazaki et al., 2003), adds another re-
quirement: the original signer shall not be involved
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again. This is useful in cases where the signer is not
reachable or must not know that parts of a signed doc-
ument are passed to third parties. Redactable signa-
ture schemes (RSS) have been designed to fulfill these
needs, i.e., they allow that parts of a signed document
can be removed without invalidating the signature. As
standard signatures scheme like RSA, they allow to
detect unauthorized changes of the signed data. In
our case, the data is tree-structured, e.g., XML. More-
over, the tree’s integrity needs to include the structure,
i.e., the edges of the tree, as it carries information as
well (Liu et al., 2009).

We found that existing RSSs for trees have two
major shortcomings: (1) they differ in the integrity
protection they offer for the tree’s structure (structural
integrity protection) (Kundu and Bertino, 2009). (2)
they differ in the flexibility of redactions they allow
(non-leaf redaction) (Brzuska et al., 2010a). We will
explain the shortcomings of existing schemes, using
the trees depicted in Fig. 1-4. Next, we will highlight
the importance of each problems using illustrating ex-
amples:

Intermediate Node Redaction. Information stored
in the tree’s nodes might need to be redacted. Con-
sider the tree depicted in Fig. 1, ignore the labels for
now. To remove the leaf n4, the node n4 itself and the
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edge e3,4 is redacted from the tree T = (V,E). Al-
lowing leaf removal also allows to remove sub-trees,
i.e., by consecutive removal of first n4 and n3 after-
wards (Brzuska et al., 2010a). However, schemes
only allowing for redaction of leaves fail to redact the
data stored in n3 only. In other words, we want that
n3 is redacted, while the nodes n1,n2 and n4 are not
subject to redaction. The resulting tree is depicted
in Fig.2. To connect n4 to the remaining tree, the
third party requires to add a new edge, which was not
present before, i.e., e1,4. However, e1,4 is in the tran-
sitive closure of T , as shown in Fig. 3. Hence, a RSS
which is generally restricted to (consecutive) redac-
tion of leaf nodes does not cater for all use cases. The
scheme introduced by Kundu and Bertino does allow
redaction of intermediate nodes, while also claiming
that this flexibility is a useful property (Kundu and
Bertino, 2009). However, this behavior may be prob-
lematic, as we will show next.

Structural Integrity Protection. Imagine the in-
formation stored in a tree T is a chart showing the em-
ployees’ names as nodes and their position within the
companies hierarchy (Liu et al., 2009). Hence, pro-
tecting structural integrity is equal to protecting the
correctness of the employees’ hierarchical positions
in the given example. If one would only protect the
ancestor relationship of nodes in T , one would only
have a protection of all edges that are part of the tran-
sitive closure of T . This is depicted in Fig. 3. This al-
lows a third party to add edges to the tree T ′ that were
not present in T . Samelin et al. show that the scheme
of Kundu and Bertino (KB-Scheme) is subject to this
attack and name it “Level Promotion” (Samelin et al.,
2012b). In our prior example, an employee can be
“promoted”. We will give a more detailed descrip-
tion of the attack on the KB-Scheme here and want to
see it in the light of allowing flexibility. However, it
motivates the need for structural integrity protection.
A full description of their scheme is given in our ex-
tended notation in App. D. Their scheme builds upon
the idea that a party who has all pre- and post-order
traversal numbers (See Fig. 1) of all nodes contained
in the tree T is always able to correctly reconstruct T .
They argue that signing each node ni ∈ T along with
both traversal numbers is enough to protect the tree’s
integrity.

Their verification checks all signatures on the
nodes individually — with an additional step: A ver-
ifier has to check if all nodes are structured correctly
using the traversal numbers (Kundu and Bertino,
2009). This leads to the problem that a verifier is
not able to determine whether a given edge existed
in the original tree T , just if it could have existed.

Assume that a third party redacts n3 from T , as de-
picted in Fig. 2. On verification the new edge e1,4,
which has not explicitly been present in the origi-
nal tree T becomes valid. This implies, that the tree
T A = ({n1,n2,n4},{e1,2,e1,4}) is valid.

To be more precise, let us compute the traver-
sal numbers for the example tree in Fig. 1. The
pre-order traversal of T will output (1,2,3,4), while
the post-order traversal will output (4,3,2,1). To
make their scheme not leaking occurred redaction,
these traversal numbers are randomized in an order-
preserving manner, which does not have an impact
on the reconstruction algorithm. The randomization
step may transform them into (0.3,0.6,0.8,0.9) and
(0.7,0.4,0.2,0.1) resp. Hence, the node n1 has a
structural position of ρ1 = (0.3;0.7). For n2, n3 and
n4 this is done accordingly. We redact n3, an inter-
mediate node of n1, and n4. For the redacted tree in
Fig. 2, the traversal-numbers are still in the correct
order. Hence, the created signature verifies.

The impact of attacks on the structural integrity
are significant, as the structure of a tree carries part of
the document’s information (Liu et al., 2009). One
might argue that nesting of elements must adhere
to a specific codified structure, i.e., XML-Schemata.
Henceforth, attacks like level-promotions will be de-
tected by any XML-Schema validator, if redactions
are not valid. However, whenever an element can
contain itself, like hierarchically structured lists of
employees or hospital treatments composed of treat-
ments, grandchildren can be promoted to direct chil-
dren, without their traversal-number based validation-
algorithm detecting it (Kundu and Bertino, 2009) and
without breaking an XML-Schemata.

This destroys the structure of the tree and directly
impacts on the semantics, maybe resulting in a differ-
ent way on how a patient is treated in a hospital or
impacting on the rights that one might believe an em-
ployee can have (Liu et al., 2009). Obviously, this is
not acceptable in the generic case and could lead to
several other attack vectors, similar to the ones XPath
has introduced (Gottlob et al., 2003).

We conclude that the signer must explicitly sign
the edges which can be used by the sanitizer
rather then implicitly “signing” all of them. Cur-
rently, a signer is not able to control this behav-
ior, neither in the KB-Scheme nor in other existing
schemes (Samelin et al., 2012a).

State of the Art. Next, we provide an overview
of the state of the art. The general concept of RSS
were introduced at the same time by Johnson et
al. in (Johnson et al., 2002) and Steinfeld and Bull
in (Steinfeld and Bull, 2002). The latter approach
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was named ”content extraction signatures”. A dif-
ferent but related concept are sanitizable signature
schemes (Ateniese et al., 2005; Brzuska et al., 2009).
Instead of only redaction of parts they allow to ar-
bitrarily modify parts of the signed document. In
this work, we concentrate on redactable signatures for
trees. We take into account solutions that allow flexi-
ble redaction or offer full protection of structural- and
content-integrity.

A recent work is Ahn et al. who cater for a spe-
cial sub-case of redaction called ”quoting” (Ahn et al.,
2011). Quoting is not as flexible as redacting as it
resembles “content extraction” by allowing quoting
consecutive parts of a list. Hence, Ahn et al.’s ap-
proach is different and does not target trees.

Also recently, Camacho and Hevia have showed
how to build more efficient transitive signatures for
directed trees (Camacho and Hevia, 2012). This idea
from Rivest and Micali (Micali and Rivest, 2002),
however, focuses on how to authenticate single edges
within a signed tree T .

Kundu and Bertino were the first to develop a RSS
which addresses the specific needs of tree-structured
documents (Kundu and Bertino, 2008; Kundu and
Bertino, 2009). Brzuska et al. already broke the KB-
Scheme and showed that it does not hide redactions,
based on a probabilistic attack (Brzuska et al., 2010a).
One may argue that Kundu and Bertino do not see
their scheme in the context of RSS, since they just
want to prohibit “leakage” due to structural informa-
tion (Kundu and Bertino, 2009).

The solution by Brzuska et al. only allows redac-
tions of leaves (Brzuska et al., 2010a). Another
scheme for trees, by Wu et al. is also not flexible (Wu
et al., 2010). Moreover, it relies on the Merkle-Hash-
Tree-Technique with standard cryptographic hashes
like SHA-512. Hence, their scheme does neither hide
redactions nor preserve privacy (Kundu and Bertino,
2008; Kundu and Bertino, 2009).

Other schemes do not explicitly consider tree-
structured data, even though they mention XML as an
application: In (Pöhls et al., 2011) existing sanitizable
and redactable signature schemes are integrated into

Redaction Structural Invisibility
of Non-leaves Integrity of Redaction

Kundu Yes, No, implicit No.
and Bertino allowed level-promotion
Brzuska et al. No. Yes. Yes.
Wu et al. No. Yes. No.
Comacho Yes, allows all different
and Hevia allowed transitive edges goal
Ahn et al. No, only Yes. Yes, stronger

quoting context-hiding a

aWe discuss this in detail in Sect.2

Table 1: Existing RSS Schemes’ Capabilities

XML Signatures, extending the work done in (Tan
and Deng, 2009). Neither the approach of Tan et al.,
nor the work of Pöhls et al. do secure trees, since
neither of them caters explicitly for the structure.

Our Contribution and Outline. Our contribution
is twofold and motivated by a lack of flexibility or
integrity protection of many existing RSS for trees:
Either no redaction of intermediate nodes is allowed
or, if allowed, the structural integrity protection is
relaxed to the transitive closure of the trees. As
shown, protecting transitive closures, i.e., ancestor-
descendant relations, is a weaker structural integrity
protection which leads to semantic attacks which go
unnoticed by the integrity protection.

Our first contribution is the rigid security model
for a flexible RSS for trees offering full structural
integrity protection. We follow Brzuska et al.’s se-
curity requirements for RSS for trees with leaf-only
redaction (Brzuska et al., 2010a). In Sect. 2, we
give precise, game-based definitions of the secu-
rity properties: unforgeability, privacy, and trans-
parency (Brzuska et al., 2010a). Our flexibility is al-
lowing the signer to partially weaken the structural
integrity protection at his leisure. Hence, the security
requirements need to additionally capture the signer’s
flexibility to allow redaction of any node. This al-
lows level promotions due to re-locations of speci-
fied sub-trees, which resembles the implicit possibil-
ity of previous schemes. In particular, our signing
algorithm adds an additional edge to the tree to al-



low re-locations. A verifying party needs to decide
which edge to use. This allows the sanitizer to main-
tain transparency after occurred modifications. On
the other hand, the signer remains in charge when
describing how an occurred redaction is hidden by
re-locating the sub-tree. This leads to signer explic-
itly prohibiting the redaction of nodes individually, as
the signer must explicitly sign an edge for re-location.
Additionally, in our construction the signer controls
the protection of the order of siblings. Hence, our
scheme is capable of signing unordered trees. Our
flexibility to redact an node of the tree does include in
its generality the tree’s root. Without loss of security,
the signer can add an annotation to the root to prohibit
redacting the roots by adapting the signing and veri-
fication algorithms. In particular, they must check, if
the annotated root still exists.

Our second contribution is our secure construction
presented in Sect. 3, including a performance mea-
surement. Our construction is based upon a collision-
resistant one-way accumulator (Benaloh and Mare,
1993; Barić and Pfitzmann, 1997) in combina-
tion with the Merkle-Hash-Tree-Technique (Merkle,
1989). Employing the Merkle-Hash-Tree-Technique
enforces the protection of structural integrity. Hence,
our scheme fulfills the defined security requirements
using only standard cryptographic primitives.

We conclude our work in Sect. 4. The appendix
contains the security proofs, the existing notations,
the security model from (Brzuska et al., 2010a) and
the KB-Scheme (Kundu and Bertino, 2009).

2 Extended Security Model for RSS
for Trees

We will use the following notation throughout this
paper: The root, denoted n1, is the only node with-
out a parent. Nodes are addressed by ni. With ci,
we refer to all the content of node ni, which is an
additional information that might be associated with
a node, i.e., data, element name and so forth. The
first rigid model for secure RSS for trees was given
in (Brzuska et al., 2010a). Brzuska et al. formalized
the requirements for redactable signatures for tree-
structured documents. Their model only allows re-
moving leaves; sequentially running their leaf-cutting
algorithm only removes complete sub-trees. How-
ever, the model is restrictive with the respect, that
it only allows redacting leaves of the tree. (Brzuska
et al., 2010a) We restate their model and review it
in App. C. We will now rework the Brzuska et al.’s
model to securely allow the possibility to redact any
node. After we have stated our new security model,

we will shortly compare the new model to Brzuska et
al.’s and Ahn et al.’s (Ahn et al., 2012; Brzuska et al.,
2010a). Keep in mind, that our flexibility allows to
work on ordered and un-ordered trees, and generally
we also allow redacting a tree’s root.

Flexible Redactable Signature Scheme
for Trees. A RSS R SS T for trees con-
sists of the four efficient (PPT)3 algorithms:
R SS T := (KeyGen,Sign,Verify,Modify). Note, all
algorithms may output ⊥ in case of an error.

KeyGen. The algorithm KeyGen outputs the pub-
lic and private key of the signer, i.e., (pk,sk)←
KeyGen(1λ), λ being the security parameter.

Sign. On input of the secret key sk, the tree T and
ADM the algorithm Sign outputs the signature σT .
ADM controls what changes by Modify are admis-
sible. In detail, ADM is the set containing all
signed edges, including the ones where a sub-tree
can be re-located to. In particular, (ni,n j) ∈ ADM,
iff the edge (ni,n j) is to be signed. These edges
cannot be derived from T alone. For simplicity,
we assume that ADM is always correctly deriv-
able from (T,σT ). The output: (T,σT ,ADM)←
Sign(sk,T,ADM).

Verify. On input of the public key pk, the tree T and
the signature σT the algorithm Verify outputs a bit
d ∈ {0,1} indicating the correctness of the sig-
nature σT , w.r.t. pk, protecting the tree T . The
output: d← Verify(pk,T,σT ).

Modify. The algorithm Modify takes as input the
signer’s public key pk, the tree T , the signature
σT and ADM of T , and an instruction MOD. MOD
contains the actual change to be made: redact a
leaf ni, relocate a sub-tree Tψ, distribute a sub-tree
Tυ without the original root, or prohibit relocating
a sub-tree Tω. A modification of T w.r.t. MOD is
denoted as T ⊗MOD.
Apart from potentially changing T , the old ADM
must be adjusted: In particular, if a node ni is
redacted, the edge to its father needs to be re-
moved as well. Moreover, if there exists a sub-
tree which could be relocated under the redacted
node, the corresponding edges need to be removed
from ADM as well. A modification of ADM w.r.t.
MOD will be denoted as ADM⊗MOD. The alter-
ation of ADM is crucial to maintain privacy and
transparency. Note, running Modify multiple times
is the same as a MOD containing more than one
change to be made. The output: (T ′,σ′T ,ADM′)←
Modify(pk,T,σT ,ADM,MOD).

3probabilistic polynomial-time (PPT)



Correctness. Genuinely signed or signed and mod-
ified trees are considered valid by the verification al-
gorithm. We use span�(T,ADM) to denote all valid
trees that can be generated from a signed tree T by
running Modify never, once or more times, with a
MOD which respects ADM. Hence, we require all el-
ements of span�(T,ADM) have valid signatures, iff T
has a valid signature. Note: Prohibiting additional re-
locations is allowed in our scheme. We will always
explicitly denote ADM in our algorithms for clarity.

The Extended Security Model. As discussed be-
fore, Ahn et al.’s framework has a stronger notation
for privacy than Brzuska et al. Our scheme is as se-
cure as Brzuska et al.’s. We extend this model to cater
for the flexibility of intermediate node redaction and
re-locations, so the security properties must hold also
when the signer is given the new freedom to allow any
node being removed.
1. Unforgeability: No one should be able to com-

pute a valid signature on a tree T ∗ for pk out-
side span�(T,ADM) without access to the cor-
responding secret key sk. This is analogous to
the standard unforgeability requirement for signa-
ture schemes, as already noted in (Brzuska et al.,
2010a). A scheme RSS is unforgeable, iff for any
efficient (PPT) adversary A , the probability that
the game depicted in Fig. 6 returns 1, is negligi-
ble (as a function of λ). In the game the attacker
is given access to a signature generating oracle
Sign(sk, ·, ·) and the public key pk, but not the se-
cret key. The attacker wins if he has a valid signa-
ture for T ∗, which is a tree for which he has never
queried the oracle directly, nor can he generate T ∗
by modifying a previously queried signed tree.

2. Privacy: No one should be able to gain any
knowledge about the unmodified tree without hav-
ing access to it. This is similar to the stan-
dard indistinguishability notation for encryption
schemes (Brzuska et al., 2010a). A scheme RSS
is private, iff for any efficient (PPT) adversary A ,
the probability that the game shown in Fig. 7 re-
turns 1, is negligibly close to 1

2 (as a function of
λ). In the game the attacker is given a signature
generating oracle and the public key. He con-
trols two inputs to the LoRModify oracle (Fig. 8)
and also how they need to be modified to result
in the same tree. The oracle modifies both of
them into the same tree and outputs one of them
to the attacker. The attacker needs to identify the
used input to win. So the attacker controls all the
inputs Tj,0,ADM j,0,MOD j,0,Tj,1,ADM j,1,MOD j,1,
but need to guess which of the (now modified)
trees is returned. Note, that the two inputs need

Experiment UnforgeabilityRSST
A (λ)

(pk,sk)← KeyGen(1λ)

(T ∗,σ∗T )← ASign(sk,·,·)(pk)
let i = 1,2, . . . ,q index the queries

return 1 iff
Verify(pk,T ∗,σ∗T ) = 1 and
for all 1≤ i≤ q, T ∗ /∈ span�(Ti,ADMi)

Figure 6: Game for Unforgeability

Experiment PrivacyRSST
A (λ)

(pk,sk)← KeyGen(1λ)

b $←{0,1}
d← ASign(sk,·,·),LoRModify(·,·,·,·,·,·,sk,b)(pk)
return 1 iff b = d

Figure 7: Game for Privacy

Oracle LoRModify(Tj,0,ADM j,0,MOD j,0,
Tj,1,ADM j,1,MOD j,1,sk,b)

if MOD j,0(Tj,0) 	= MOD j,1(Tj,1) return ⊥
(Tj,0,σT,0,ADM j,0)← Sign(sk,Tj,0,ADM j,0)
(Tj,1,σT,1,ADM j,1)← Sign(sk,Tj,1,ADM j,1)
(T ′j,0,σ

′
T,0,ADM′j,0)←Modify(pk,Tj,0,σT,0,ADM j,0,MOD j,0)

(T ′j,1,σ
′
T,1,ADM′j,1)←Modify(pk,Tj,1,σT,1,ADM j,1,MOD j,1)

if ADM′j,0 	= ADM′j,1 abort returning ⊥
return (T ′j,b,σ

′
T,b,ADM′j,b)

Figure 8: LoRModify Oracle (from Privacy)

to be modified such that they are equal w.r.t. T , σ
and also ADM.

3. Transparency: A party who receives a signed
tree T cannot tell whether he received a freshly
signed tree or a tree which has been created via
Modify (Brzuska et al., 2010a). We say that a
scheme RSS is transparent, if for any efficient
(PPT) adversary A , the probability that the game
shown in Fig. 9 returns 1, is negligibly close to 1

2
(as a function of λ). In the game for transparency,
the attacker has access to the public key and a sig-
nature generation oracle. He controls the input to
the ModifyOrSign oracle (Fig. 10). Hence, he can
choose the original tree T with admissible modi-
fications ADM and by MOD also the modified tree.
Note, MOD can contain several modification in-
structions. To win, the attacker has to guess if
the signed outputted T ′ was created through the
modification algorithm from a signed T (b = 0)
or through modifying T and ADM before signing
them (b = 1).



Experiment TransparencyRSST
A (λ)

(pk,sk)← KeyGen(1λ)

b $←{0,1}
d← ASign(sk,·,·),ModifyOrSign(·,·,·,sk,b)(pk)
return 1 iff b = d

Figure 9: Game for Transparency

Oracle ModifyOrSign(T,ADM,MOD,sk,b)
if MOD /∈ ADM, return ⊥
if b = 0: (T,σT ,ADM)← Sign(sk,T,ADM),

(T ′,σ′T ,ADM′)←Modify(pk,T,σT ,ADM,MOD)
if b = 1: T ′ ← T ⊗MOD , ADM′ ← ADM⊗MOD

(T ′,σ′T ,ADM′)← Sign(sk,T ′,ADM′)
return (T ′,σ′T ,ADM′).

Figure 10: ModifyOrSign Oracle (from Transparency)

Separation of Security Properties. The implica-
tions and separations of Brzuska et al. do not change:
Unforgeability is independent; Transparency ⇒ Pri-
vacy; Privacy � Transparency. We omit the proofs
in this paper; they are essentially the same as given
in (Brzuska et al., 2010a).

Security of our Model. Our security model offers
the same security as Brzuska et al.’s: unforgeability,
privacy and transparency notations (Brzuska et al.,
2010a).

The security model of Ahn et al.’s important
work (Ahn et al., 2012) introduces “strong context-
hiding” as a very strong privacy notation. Compared
to Brzuska et al.’s privacy notation, context-hiding
will even hide the fact “whether it [(T ′,σ′,ADM′)] was
derived from a given signed message” when the at-
tacker has access to a real original message and sig-
nature, i.e., (T,σ,ADM) and the secret key sk. This is
considered a very strong privacy property by (Boneh
and Freeman, 2011) and we do not achieve this, as we
do not achieve unlinkability (Brzuska et al., 2010b).
However, in most use cases this strong privacy no-
tation is not needed, since the existing side-channel
information already links two signatures, i.e., non-
personal governmental datasets being released to fos-
ter Open Government initiatives.

Redacting any Node. To show the full flexibility of
allowing any node to be redactable we do treat the
tree’s root as a redactable node. Note, redacting the
root, as shown in Fig. 11 (3c), is possible. In the
example (3c) n2 transparently becomes the new root.
However, in general redacting, the root might leave
one with a forest of trees, i.e., two or more uncon-

nected sub-trees. Each sub-tree is than a valid signed
sub-tree, however the connection between the sub-
trees is lost. Iff the signer provided re-location edges
that allow to connect the sub-trees into one tree then
this is a possible option after having redacted the root.

Adding signer control, to prohibit this is straight
forward: During signing we annotate n1 as root and
additionally indicate that redacting the root is prohib-
ited. Complementary, the verify algorithm will check
for that indicator and, iff present, it will verify, if one
node with the annotation is present in the root node
received.

3 Our New Secure Flexible Scheme

Merkle-Hash-Tree (M H ). Our construction fol-
lows the ideas of the Merkle-Hash-Tree (Merkle,
1989): We use the following notation for the recur-
sively constructed extended version, which works on
arbitrary trees with content. We denote a concate-
nation of two strings x,y with x||y. The extended
Merkle-Hash M H is calculated as: M H (x) =
H (H (cx)||M H (x1)|| . . . ||M H (xn)), where H is a
cryptographic hash function like SHA-512, cx the
content of the node x, xi a child of x, and n the num-
ber of children of x. M H (n1)’s output, called root
hash, depends on all nodes and on the right order of
the siblings. Hence, signing the root hash protects the
integrity of the nodes in an ordered tree and the tree’s
structural integrity. Obviously, this technique does
not allow to hash unordered trees; an altered order
will most likely cause a different digest value. One
may argue that annotating an unordered sub-tree is
sufficient. However, this does not allow to rearrange
items and hence enforces a given order, which may
not be wanted in certain use-cases, e.g., if invoices
are signed. Hence, an unsorted list or tree should be
signed and verified as such. A more detailed analy-
sis of the Merkle-Hash-Tree is given in (Kundu and
Bertino, 2009), which also gives an introduction on
the possible inference attacks on non-private schemes.

Accumulating Hash-Functions (AH ). One-way
accumulators have been introduced by in (Benaloh
and Mare, 1993). The basic idea is to construct a
strongly one-way family of functions AH K , where
∀AH k ∈ AH K : Xk × Yk → Xk. We just need the
basic operations of an accumulator, e.g., no dynamic
updates or revokation techniques are required. A ba-
sic accumulator consists of three efficient algorithms,
i.e., AH := {KeyGen,Hash,Check}:
KeyGen. Outputs the system parameters prm on

input of a security parameter λ, i.e., prm ←



KeyGen(1λ)

Hash. Outputs the accumulated digest d along with
the set of witnesses W = {w1, . . . ,wn}, i.e.,
(d,W )← Hash(prm,I ), on input of a set of to-
be-digested items I = {v1, . . . ,vn} and the param-
eters prm. The accumulatation of I = {v1; . . . ;vn}
is denoted as AH k(prm,{v1; . . . ;vn}), where k ∈
K. Each witnesses w� in W allows to prove the
membership of the corresponding value v�.

Check. Outputs a bit d ∈ {0,1} indicating if a given
value vi was accumulated into the digest d with
respect to prm and a witness wi. In particular, b←
Check(prm,vi,d,wi)

In some papers, the witness generation is done by
an algorithm Proof. We will use this algorithm in
the appendix to describe our requirements formally.
However, the above notation allows to shorten the al-
gorithmic description. We require the usual sound-
ness requirements (Barić and Pfitzmann, 1997) to
hold, while the concrete instantiation of an accu-
mulator must be strongly one-way (Barić and Pfitz-
mann, 1997). In particular, an outsider should not
be able to guess members or to generate member-
ship proofs. To achieve transparency, we also require
that the accumulator does not leak how many addi-
tional members a digest has. The formal descrip-
tions of our needs are relegated to App. B. Addi-
tional information about accumulators can be found
in (Barić and Pfitzmann, 1997; Benaloh and Mare,
1993; Camenisch and Lysyanskaya, 2002). To main-
tain transparency, we require that any output of AH
is distributed uniformly over the co-domain of the
hash-function. An accumulator not fulfilling these re-
quirements has been proposed by Nyberg in (Nyberg,
1996); the underlying Bloom-Filter can be attacked by
probabilistic methods and therefore leaks the amount
of members. This is not acceptable. To prohibit re-
calculations of a digest, we require a nonce as the
seed. This has already been proposed in (Nyberg,
1996) and (Barić and Pfitzmann, 1997). The idea to
use accumulating hashes has already been proposed
by Kundu and Bertino in (Kundu and Bertino, 2008).
However, they state that accumulators are not able to
achieve the desired functionality. We will show that
they are sufficient by giving a concrete construction.

The Construction. We want to allow explicit re-
location of sub-trees. If a non-leaf is subject to redac-
tion, all sub-trees of the node need to be relocated. If
this is possible and what their new ancestor will be
must be under the sole control of the signer. We will
first sketch our solution, and give a concrete instanti-
ation and the algorithms afterwards. Our re-location

definition does not require to delete the intermediate
node. This behaviour will be discussed, after the con-
struction has been introduced.

Sketch. Our solution requires that the signer repli-
cates all re-locatable nodes and the underlying sub-
trees to all the locations where a sanitizer is allowed to
relocate the sub-tree to. The replicas of the nodes are
implicitly used just to produce the re-locatable edges
as our algorithms all work on nodes. Each additional
edge is also noted in ADM. In Fig. 11(1+2), the dot-
ted area corresponds to the sub-tree n3 and n4 under
the re-locatable n3. The sub-tree n3 and n4 must be
re-located as a whole. The dashed curved edge e1,3
corresponds to such an additional edge contained in
ADM to indicate the allowed re-location of n3 as di-
rect child of n1. All algorithms work on nodes not on
edges, hence always imagine one builds all allowed
re-locations by replicating nodes before one runs an
algorithm like MODIFY, as depicted in Fig. 11(1).

We allow to re-locate a re-locatable sub-tree with-
out redaction of nodes. We prohibit simple copy at-
tacks, i.e., leaving a relocated sub-tree Tω in two loca-
tions, because each node ni gets an associated unique
nonce ri. The whole tree gets signed as in the stan-
dard Merkle-Hash-Tree, with one notable exception:
Instead of using a standard hash like SHA-512, we
use an accumulator which allows the sanitizer to re-
move values without changing the digest value. To
remove parts the sanitizer is removing the redacted
elements and no longer provides the corresponding
witnesses of the redacted elements. The accumula-
tors also allows us to sign unordered trees; it does not
matter in what order the members are checked. How-
ever, if ordered trees are present, the ordering between
siblings has to be explicitly signed. To allow distribu-
tion of sub-trees without the root, we sign each node’s
Merkle-Hash individually using a standard signature
scheme. As said, redaction is therefore a simple re-
moval of the nodes and the corresponding witnesses.
Re-location is similar: Apply the necessary changes
to T . Additionally, a sanitizer can prohibit consec-
utive re-locations, this could be seen equal to con-
secutive sanitization control (Miyazaki et al., 2005).
To prohibit further re-location one removes the cor-
responding witnesses. This implies that ADM is ad-
justed accordingly.

Verification: For a node x check, if x’s content, x′s
children and x’s order to other siblings is contained in
x’s Merkle-Hash. This is done for each node. A seed
is used to prohibit simple recalculation attacks (Barić
and Pfitzmann, 1997). To sign the ordering between
siblings, we sign the “left-of” relation, as already used
and proposed in (Brzuska et al., 2010a), (Chang et al.,
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Figure 11: (1) Expanded tree with duplicates for all possible re-locations of sub-trees, (2) Tree with allowed Level-Promotion
of n3, (3) Examples of valid trees with 3 or 4 nodes after: (3a) redact re-locatability, (3b) redact n4, (3c) redact root, (3d)
relocate-only n3, (3e) re-locate n3 and redact n4, (3f) redact n2 and level-promote n3

2009) and (Samelin et al., 2012b).

The Algorithmic Description. We assume that wit-
nesses are generated, distributed and used to verify
memberships, and, of course, removed from distribu-
tion, if the corresponding values are removed. This
does not introduce any security problems, since the
sanitizer could give away the original tree anyway.
How the witnesses are generated depends on the ac-
tual accumulator used and is therefore omitted.

KeyGen(λ):
//Choose a suitable accumulator
Choose AH k ∈ AH K
Generate prm← AHKeyGenk(λ)
//Choose an unforgeable signature scheme Π
Choose Π and set (pkS,skS)←Π.AKeyGen(λ)
//Return all generated material
return (pk = (pkS, prm,AH k,Π),sk = (skS))

Expand(T,ADM):
For all edges ei ∈ ADM

Replicate the sub-tree underneath the
node addressed by ei
to the designated position
this must be done bottom-up

Note: This implies that ri are copied as well.
Return this expanded tree, denoted as Ω

Sign(sk,T,ADM):
For each node ni ∈ T :

ri
$←{0,1}λ

If ri has already been drawn, draw again
Expanded tree Ω← Expand(T,ADM)
For each node x ∈Ω:

Draw a random seed sx
$←{0,1}λ

Let xi denote a children of x
If the tree is un-ordered:

dx = M H (x)← AH k(prm,{sx;cx||rx;
M H (x1); . . . ;M H (xn)})

σx←Π.ASign(skS,dx||unordered)
Else: //ordered tree

dx = M H (x)← AH k(prm,{sx;cx||rx;
M H (x1); . . . ;M H (xn);Ξx})

// Build Ξx, the set of
// all “left-of” relations of xi:
Ξx = {ri||r j | 0 < i < j ≤ n}
σx←Π.ASign(skS,dx||ordered)

// Build list of all witnesses:
Let W = {wi|ni ∈Ω}.
return σT = ({σi}ni∈Ω,W ,ADM)

Modify(pk,T,σT ,ADM,MOD):
use Verify to verify the tree T
Expanded tree Ω← Expand(T, ADM)
Case 1: Redact node nl :

//1. remove all nl (incl. replicas) from Ω:
Set Ω′ ←Ω\nl
//2. remove the node nl from T :
Set T ′ ← T \nl
return σ′T = (T ′,{σi}ni∈Ω′ ,{wi}ni∈Ω′ ,ADM)

Case 2: Share sub-tree Tυ, where n1 /∈ Tυ:
return σ′T = (Tυ,{σi}ni∈Tυ ,{wi}ni∈Tυ ,ADM)

Case 3: Re-locate Tψ:
Set T ′ ← MOD(T )
return σ′T = (T ′,{σi}ni∈Ω,{wi}ni∈Ω,ADM)

Case 4: Remove re-location edge el :
Set ADM′ ← ADM \ el
Expanded tree Ω′ ← Expand(T,ADM′)
//Note: This expansion is done with the modified ADM′.
return σ′T = (T,{σi}ni∈Ω′ ,{wi}ni∈Ω′ ,ADM′)

Verify(pk,T,σT ):
Check if each ri ∈ T is unique.
For each node x ∈ T :

Let the value protected by σx be dx
Let d← Check(prm,cx||rx,dx,wx)
If d = 0, return 0
For all children ci of c do:

let the value protected by σci be dc
//Note: checks if children are signed
Let d← Check(prm,dc,dx)
If d = 0, return 0
If σx = dx||ordered:



Generation of σ Verification of σ
�������

Nodes 10 100 1,000 10 100 1,000

Ordered 276 6,715 57,691 26 251 2,572
Unordered 103 599 5,527 21 188 1,820
SHA-512 4 13 40 4 13 40

Table 2: Median Runtime; in ms

//Is every “left-of”-relation signed?
//Note: just linearly many checks
For all 0 < i < n:

d← Check(prm,ri||ri+1,dx,wx,x+1)
If d = 0, return 0

return 1

Arguably, allowing re-location without redaction
may also be too much freedom. However, it allows
the signer to allow a flattening of hierarchies, i.e., to
remove the hierarchical ordering of treatments in a
patients record. A third party can prohibit consecu-
tive re-locations by removing the associated witnesses
from distribution. An example of an resulting tree is
depicted in Fig.11(3a). Note, the algorithm Modify
actually works by removing the duplicated nodes, and
hence removes the allowed edge e1,3.

Runtime Complexity. For generation of σT , the
sibling’s order requires n(n−1)

2 hashing steps. All
other steps require to touch the nodes only once. Con-
sequently, the runtime approximation of our signing
algorithm is linear in the number of nodes, while be-
ing quadratic in the number of siblings. Redacting
is just removing values. Verification is O(|V |), since
a verifier has to check, if each digest is contained
in its parent’s digest and if the content has been di-
gested. Checking the order of siblings can be done in
linear time due to the transitive behaviour. We have
implemented our scheme to demonstrate the practi-
cal usability. As the accumulator, we have choosen
the original construction (Benaloh and Mare, 1993).
Tests were performed on a Lenovo Thinkpad T61 with
an Intel T8300 Dual Core @2.40 GHz and 4 GiB
of RAM. The OS was Ubuntu Version 10.04 LTS
(64 Bit) with Java-Framework 1.6.0 26-b03 (Open-
JDK). Source code will be made available upon re-
quest. We took the median of 10 runs. We measured
trees with unordered siblings and one with ordered
siblings. Time for generation of keys for the hash is
included. We excluded the time for creating the re-
quired key pairs; it becomes negligible in terms of
the performance for large n. On digest calculation
we store all intermediate results in RAM to avoid any
disk access impact.

As shown, our construction is useable, but be-
comes slow for large branching factors. The ad-

vanced features come at a price; our scheme is con-
siderably slower than a standard hash like SHA-512.
Signatures are more often verified than generated, so
the overhead for verification has a greater impact.
All other provable secure and transparent schemes,
i.e., (Brzuska et al., 2010a) and (Chang et al., 2009),
have the same complexity and therefore just differ by
a constant factor, but do not provide a performance
analysis on real data.

Security of the Construction. Our scheme is un-
forgeable, private and transparent. Assuming AH
is strongly one-way, and the signature scheme Π is
UNF-CMA, our scheme is unforgeable, while AH
always outputs uniformly distributed digests and wit-
nesses, our scheme is transparent and also private.
Note, it is enough to show that Transparency and
Unforgeability hold because Transparency =⇒ Pri-
vacy (Brzuska et al., 2010a). The formal proofs are
relegated to App. A for readability.

4 Conclusion

The lack of flexibility for redacting any node of a
tree and the lack of signer control motivated the con-
struction of a new RSS. The scheme can sign ordered
and unordered trees. It allows the sanitizer to redact
non-leaf nodes and keeps the redaction transparent by
allowing level-promotions, but level promotions are
under the signer’s sole control. Keeping the signer in
control gives him the decision for which intermedi-
ate nodes he wants to weaken the structural integrity
protection and allow a re-location, but allows trans-
parency.

Furthermore, our construction is the first which al-
lows a signer to explicitly sign ordered and unordered
trees. How to sign trees where both, ordered and
unordered siblings, are present is still an open prob-
lem. We allow re-locations without redaction so that
a signer can allow a sanitizer to redact the hierarchy
from a sub-tree which contains hierarchically struc-
tured, but otherwise equal, nodes. In these cases, our
scheme allows redacting just the structure. Such a vi-
olation of structural integrity requires explicit confir-
mation by the signer.

Allowing the flexibility required us to give an ex-
tended security model. Finally, we have proven our
scheme using the extended security model. The per-
formance analysis demonstrates that the scheme is
considerably slower than SHA-512. It therefore re-
mains an open problem how to construct transparent
schemes with an overhead of O(n) and how to mix
ordered and unordered trees.



REFERENCES

Ahn, J. H., Boneh, D., Camenisch, J., Hohenberger, S., She-
lat, A., and Waters, B. (2011). Computing on au-
thenticated data. Cryptology ePrint Archive, Report
2011/096. http://eprint.iacr.org/.

Ahn, J. H., Boneh, D., Camenisch, J., Hohenberger, S., She-
lat, A., and Waters, B. (2012). Computing on authen-
ticated data. In Cramer, R., editor, TCC, volume 7194
of Lecture Notes in Computer Science, pages 1–20.
Springer.

Ateniese, G., Chou, D. H., de Medeiros, B., and Tsudik, G.
(2005). Sanitizable Signatures. In ESORICS, pages
159–177.
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A Security Proofs of the
Construction

Our changes to the security model do not affect the
implications and separations as presented in (Brzuska
et al., 2010a). Hence, unforgeability is independent,
while transparency ⇒ privacy and privacy � trans-
parency (Brzuska et al., 2010a). The proofs are es-
sentially the same as already given in (Brzuska et al.,
2010a). Following from that it is sufficient to show
that transparency and unforgeability hold to show that
our scheme are secure. We will show this for each
property on its own.

The Construction is unforgeable If AH is
strongly one-way, while the signature scheme Π is un-
forgeable, our scheme is unforgeable.

Proof. Let Aun f be an algorithm winning our un-
forgeability game. We can then use Aun f to forge the
underlying signature scheme or to calculate member-
ship proofs. Hence, our scheme’s security relies upon
the security of the signature scheme and AH . Given
the game in Fig. 6 we can derive that a forgery must
fall in at least one of the three cases, for at least one
node in the tree:

Type 1 Forgery: The value d protected by σT has
never been queried by Aun f to OSign Type 2 Forgery:
The value d protected by σT has been queried by Aun f

to OSign, but T ∗ /∈ span�(T,ADM); so the tree T ∗ with
valid signature σT is not in the transitive closure of T .
This case has to be divided as well:

Type 2a Forgery: T /∈ span�(T ∗,ADM) Type 2b
Forgery: T ∈ span�(T ∗,ADM) To win Aun f , the at-
tacker must be able to construct one of the three above
forgeries. This forgery can be used to break at least
one of the underlying primitives.

Type 1 Forgery: In the first case, we can use the
Type 1 Forgery of Aun f to create Aun f Sig which forges
a signature. We construct Aun f Sig using Aun f as fol-
lows:
(1) Aun f Sig chooses a hash-function AH and passes
prm to Aun f . This is also true for pk of the signature
scheme to forge.
(2) All queries to OSign from Aun f are forwarded to
Aun f Sig’s oracle and genuinely returned to Aun f .
(3) Eventually, Aun f will output a pair (T ∗,σ∗T ).
Aun f Sig returns (T ∗,σ∗T ), as a valid forgery. The
concrete signature forged can easily be extracted by
defining a tree-traversal algorithm looking for the sig-
nature not queried for the particular value. This is
due to the fact, that we allow to distribute sub-trees.
Hence, any node may be forged, not just the root
node.

Type 2a Forgery: In the case of 2a, we can use
the Type 2a Forgery produced by Aun f to construct
Acol which breaks the collision-resistance of the un-
derlying hash-function. To do so, (1) Acol generates
a key pair of a signature scheme to emulate OSign and
chooses AH .
(2) It passes pk and prm to Aun f .
(3) For every request to the signing oracle, Acol gen-
erates the signature σ using sk and returns it to Aun f .
(4) Eventually, Acol will output (T ∗,σ∗T ). Given
the transcript of the simulation, Acol searches for
a pair M H (n1) = M H (n2) with different content
resp. sub-trees. If such a pair is found and T ∗ /∈
span�(Ti,ADMi), Acol outputs exactly this pair, else
it aborts. The outputted pair is a collision of the hash-
function.

Type 2b Forgery: If Aun f returns a Type 2b
Forgery, we can build Aone which calculates member-
ship proofs of the underlying accumulator. To do so,
(1) Aone generates a key pair of a signature scheme to
emulate OSign and chooses AH .
(2) It passes pk and AH to Aun f .
(3) For every request to the signing oracle, Aone gen-
erates the signature σ using sk and returns it to Aun f .
(4) Eventually, Aun f will output (T ∗,σ∗T ). Given
the transcript of the simulation, Aone searches for
a pair M H (n1) = M H (n2) with different content
resp. sub-trees. If such a pair is found and Ti ∈
span�(T ∗,ADM∗), Aone outputs (Ti,T ∗,σT ,σ∗), iff
the preimage maps to queried document. In other
words, the queried tree must be in the transitive clo-
sure of the preimage. Otherwise, we just have a
normal collision, which belongs to case 2a. The
membership proofs of the used accumulator can triv-
ially be extracted. We showed how to use all three
forgery types to break existential unforgeability of the
underlying signature scheme Π, the one-way or the
collision-resistance property of AH .

Our construction is transparent and private. If
AH always outputs uniformly distributed digests,
and the digests and witnesses are therefore indis-
tinguishable from random numbers, our scheme is
transparent and therefore also private (Brzuska et al.,
2010a): This follows directly from the definitions,
i.e., the uniform distribution of the digests and wit-
nesses from random numbers. In particular, all output
of AH is computationally indistinguishable from ran-
dom. This implies that the output of OModi f yOrSign is
also computationally indistinguishable from uniform,
hence hiding the secret bit b with overwhelming prob-
ability. In other words, an adversary breaking trans-
parency is able to distinguish between random and
computed digests, which has been assumed to be in-



feasible. Attacking the nonces is not possible, since
removing a random from a uniform distribution re-
sults in a uniform distribution again. An additional
note: This is the reason why we require a random seed
for the accumulator; otherwise, an adversary could
just recalculate the digests.

B Formal Definition of the
Requirements of AH

Collision-Resistance and One-Wayness. The fam-
ily AH K contains only collision-resistant func-
tions (Barić and Pfitzmann, 1997). Furthermore, it
must be hard to find a digest with the same value with-
out having the preimages, i.e., we need strong one-
wayness (Barić and Pfitzmann, 1997). We can capture
both requirements:

Pr[k $← K;x $← Xk;y $← Yk;(x′,y′)← A(x,y) :

AH k(x,y) = AH k(x′,y′)∧ y 	= y′]< ε(λ)

Where the probability is taken over all coin tosses.
In other words, an adversary should not be able to
reverse the hashing step and to find a valid preimage
or to find any other collision.

Indistinguishability of Output. We require that
an adversary cannot decide how many additional
members have been digested. We say that an
accumulator is indistinguishable, iff the proba-
bility that the game depicted in Fig. B returns
1, is negligibly close to 1

2 (as a function of λ).
Experiment IndistinguishableAH

A (λ)
pk← KeyGen(1λ,parm)

b $←{0,1}
d∗ ← ALoRHash(...,b,pk)(ω,parm,pk)

where oracle LoRHash for input S ,R :

z $← Ypk
if b = 1: return (Hash(pk,S ∪R ∪ z),
{(yi, pi) | pi← Proof(pk,yi ∈ S ,S ∪R ∪ z)})
if b = 0: return (Hash(pk,S ∪ z),
{(yi, pi) | pi← Proof(pk,yi ∈ S ,S ∪ z)})

return 1, iff d = b

Here, the adversary can choose the input, and has
to guess, if the digest has only one more member
(b = 0) or more (b = 1). The blinding value z is
chosen by the oracle at random. The basic idea is to
require that one additionally accumulated blinding
value is enough to hide that an accumulator has

additional members. Please note that the witnesses
are also returned.

C Brzuska et al.’s Security Model

In (Brzuska et al., 2010a) Brzuska et al. formal-
ized the needs of signatures for tree-structured docu-
ments. A RSS for tree-structured documents requires
four efficient algorithms; in particular R SS T :=
(sKg,sSign,sVf,sCut):

• sKg(1λ outputs the key-pair (sk, pk), where λ is
the security parameter;

• sSign(sk,T ) outputs a structural signature σT ;

• sVf(pk,T,σT ) outputs a bit v∈ {0,1}, which indi-
cates the correctness of the signature σT protect-
ing the tree T and

• the redaction algorithm sCut(pk,T,σT ,Li), which
removes the leaf Li from the tree T and outputs a
sub-tree T ′ � T \{Li} � T and the corresponding
new signature σ′T for which sVf(pk,T ′,σ′T ) out-
puts 1.

Applying the leaf-cutting algorithm sCut subse-
quently allows removing complete sub-trees (Brzuska
et al., 2010a). It does not allow to redact non-leaves
or to express re-locations of sub-trees.

RSS Security Requirements We informally repeat
the existing security properties for tree-structured
documents as given and formalized by Brzuska et al.
in (Brzuska et al., 2010a). These requirements should
also hold for the structure of the tree T , not just its
data. The structural integrity protection requires that
all relations between nodes and their position within
the tree’s hierarchy are protected by the signature σT .

1. Unforgeability: No one should be able to com-
pute a valid signature on a tree T ′ for pk with-
out having access to the corresponding secret key
sk. This is analogous to the standard unforgeabil-
ity requirement for signature schemes, as already
noted in (Brzuska et al., 2010a).

2. Privacy: Given a sub-tree with a signature σ and
two possible source trees Tj,0 and Tj,1, no one
should be able to decide from which source tree
the , stems from. This definition is similar to the
standard indistinguishability notation for encryp-
tion schemes (Brzuska et al., 2010a).

3. Transparency: A third party should not be able
to decide which operations may have been per-
formed on a signed tree. Hence, whether a sig-
nature σT of a tree has been created from scratch



Experiment UnforgeabilityRSS
A (λ)

(pk,sk)← KeyGen(1λ)

(T ∗,σ∗)← ADSign(sk,·)(pk)
let i = 1,2, . . . ,q index the queries

return 1 iff
DVerify(pk,T ∗,σ∗) = 1 and
for all 1≤ i≤ q, T ∗ � Ti

Figure 12: Game for Unforgeability

Experiment TransparencyRSS
A (λ)

(pk,sk)← KeyGen(1λ)

b $←{0,1}
d← ADSign(sk,·),DSign/DCut(·,·,sk,b)(pk)

where oracle DSign/DCut for input T,L:
if L is not a leaf of T , return ⊥
if b = 0: (T,σ)← DSign(sk,T ),

(T ′,σ′)← DCut(pk,T,σ,L)
if b = 1: T ′ ← T \L

(T ′,σ′)← DSign(sk,T ′),
finally return (T ′,σ′).

return 1 iff b = d

Figure 13: Game for Transparency

or through sCut shall remain indistinguishable for
a party receiving a signed tree T (Brzuska et al.,
2010a).

The given notations take the tree structure of docu-
ments into account and allow public redactions, as
sCut only requires the public key pk. The formal
games are depicted in Fig. 12, Fig. 13 and Fig. 14/15.

D Revisiting the KB-Scheme

Here we shortly review the KB-Scheme as intro-
duced in (Kundu and Bertino, 2009). We omit the
step that randomizes the traversal numbers preserv-
ing their ordering. The KB-Scheme claims this is
done to preserve transparency. It has been shown
in (Brzuska et al., 2010a) that this is not sufficient to
maintain transparency. We already state the scheme
in our notation, since the original notation in (Kundu
and Bertino, 2009) and in (Brzuska et al., 2010a) is

Experiment PrivacyRSS
A (λ)

(pk,sk)← KeyGen(1λ)

b $←{0,1}
d← ADSign(sk,·),SignCut(...,sk,b)(pk)
return 1 iff b = d

Figure 14: Game for Privacy

SignCut(Tj,0,L j,0,Tj,1,L j,1,sk,b)
if Tj,0 \L j,0 � Tj,1 \L j,1 return ⊥
(Tj,b,σ j,b)← sSign(sk,Tj,b)
return (T ′j,b,σ

′
j,b)← sCut(pk,Tj,b,σ j,b,L j,b)

Figure 15: SignCut Oracle

not able to express the possibility of removing inter-
mediate nodes. Every node ni ∈ T will be addressed
by his pre-order traversal number, i.e., the root is de-
noted as n1. Note, the amount of nodes in T , i.e., |V |,
will be denoted as n.

KeyGen. Generate a key pair (sk,pk) of an aggre-
gating signature scheme ASS allowing public ag-
gregation, e.g., the BGLS-Scheme (Boneh et al.,
2003). By abuse of notation, we assume that pk
contains all system parameters.

Sign. The signing-step outputs a signature for each
node inside the tree:

1. Compute the pre- and post-order traversal num-
bers, of the tree T .

2. Transform these lists into an randomized but
order-preserving space. For each node ni, let
ρi denote the associated pair of randomized
traversal numbers

3. Set GT ← H (ω||ρ1||c1|| . . . ||ρn||cn), where ω
is a nonce and H a cryptographic hash-function
like SHA-512

4. ∀ni ∈ T compute: ξi←H (GT ||ρi||ci)

5. Sign all ξi, i.e., σi← SIGNASS (sk,ξi)

6. Aggregate all signatures into σT

7. Output σ = (T,σT ,{(σi,ρi)}0<i≤n,GT ,pk)

Modify. The Kundu-Scheme allows redaction of arbi-
trary nodes but no re-locations. Hence, MOD just
contains the description to redact the node ni:

1. Verify the signature using Verify
2. Remove ni from T , i.e., T ′ ← MOD(T ). This

can be expressed as T ′ ← T \ni, where ni is the
node to be redacted as specified by MOD. Both
also includes all edges from resp. to ni. Note,
ni may not be a leaf

3. Aggregate all signatures {σ j} j 	=i into σ′T
4. Output the altered tuple σ′, i.e.,:

σ′ = (T ′,σ′T ,{(σi,ρi)}0<i≤n′ ,GT ,pk)

Verify. Verification just uses σ:

1. For each node ni ∈ T compute ξi ←
H (GT ||ρi||ci)

2. Check the validity using ASS . In particular,
each ξi calculated must be signed and contained
in σT



3. Traverse the tree using pre-order and check if
each of the associated traversal numbers is in
the correct order, i.e., the associated pre- and
post-order must remain plausible. Let f denote
the parent of g; it must yield that p f > pg and
r f < rg, where px denotes the associated pre-
order-number and rx the post-order-number as-
sociated to the node x.

4. Output 1, if all checks pass, 0 otherwise resp.
⊥ on error


