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Length-Hiding Redactable Signatures from
One-Way Accumulators in O(n)

Henrich C. Pöhls?, Kai Samelin??, Joachim Posegga, Hermann de Meer

Institute of IT-Security and Security-Law (ISL), University of Passau, Germany
{hp,ks,jp}@sec.uni-passau.de, demeer@uni-passau.de

Abstract. In this paper, we propose two provably secure and length-
hiding redactable signature schemes. Both have a runtime complex-
ity of O(n). This is lower than existing schemes, which have at best
O(n · log(n)). Our first scheme protects the integrity of the elements
in unordered (multi-)sets, with a storage complexity of O(1). Our sec-
ond construction protects the structural relation of ordering of elements
in lists, with a storage complexity of O(n). We build on a family of
quasi-commutative accumulators and a family of hash-functions based
on non-abelian but associative operations.

Keywords: Redactable Signatures, Transparency, Hash-Functions

1 Introduction

1.1 Contribution and Outline

We present two runtime efficient (O(n)) secure schemes. When information is
stored within a data structure one must take the information stored inside the
structure itself into account. In our case the structure of the message stores the
order of message blocks. We introduce a precise formal model for both types
of RSS in Sect. 2. Our security model is as strong as Brzuska et al.’s [5]. We
discuss the difference to Ahn et al.’s security model in Sect. 2.

To ease explanation our first scheme RSSS ignores structure and protects an
unordered multi-set of blocks. We will use the notion “set” instead of “multi-set”
for the remaining part of this paper. Our second scheme RSSD protects the order
as a one possible structural relation between any two blocks. Both constructions
make use of pre-image- and 2nd-pre-image-resistant one-way accumulators. For
sets, we use a quasi-commutative hash-function, while for ordered documents, a
hash-function with associative but non-abelian operations will be utilized. The
final digest is signed with an unforgeable signature scheme like RSA-OAEP [3;
18].

?Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project
??Is funded by “Regionale Wettbewerbsfähigkeit und Beschäftigung”, Bayern, 2007-

2013(EFRE) as part of the SECBIT project. (http://www.secbit.de)
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Existing efficient constructions that rely on the idea of using accumulators do not
meet our strong privacy requirements [8; 12]. An efficient and secure construction
by Miyazaki et al. is not useable for multi-sets [13]. The secure construction of
Chang et al. requires O(n2) operations [9], and the secure construction of Ahn
et al. still requires O(log(n) ·n) operations [1]. Our schemes both have a runtime
complexity of only O(n), where n denotes the number of blocks. The storage
complexity for our first scheme for multi-sets is O(1), while the second scheme
for ordered lists needs O(n).

The schemes are presented in detail in Sect. 3 and in Sect. 4, including a discus-
sion of their storage and runtime complexities. All formal proofs can be found
in appendices.

2 Preliminaries and Definitions

We build upon the model introduced by Brzuska et al. in [5]. However, we need to
adjust the concrete definitions, since we are discussing sets and linear documents
and not trees. The introduced security model is rigid, i.e., it is more restrictive
than the one introduced in the original papers [11; 20]. It is not as restrictive
as Ahn et al. [1]. We think that the security mode introduced by Brzuska et al.
in [5] is sufficient for most use cases, while the one introduced in [1] by Ahn et
al. seems to be overly strong, if it comes to real world applications. In particular,
we do not require unlinkability [1; 7], a even stronger privacy notation.

We first define the required algorithms for sets:

Definition 1 (RSS Algorithms for Sets). A RSS for sets consists of four
efficient algorithms RSSS := (KeyGen,Sign,Verify,Redact) such that:

KeyGen. The algorithm KeyGen outputs the required key pair, i.e., (pk, sk) ←
KeyGen(1λ), where λ is the security parameter.

Sign. The algorithm Sign outputs the signature σ on input of the secret key sk
and the set S. It outputs (S, σ)← Sign(sk, S)

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correct-
ness of the signature σ, w.r.t. pk, protecting the set S. In particular:
d← Verify(pk, S, σ)

Redact. The algorithm Redact takes as input the set S, the public key pk of
the signer, the signature σ and a subset � ⊆ S, which denotes the blocks
to be redacted. The algorithm outputs (S′, σ′) ← Redact(pk, σ, S, �), where
S′ = S \ �

We assume that the blocks vi can efficiently be derived from the set S. Next, we
define the required algorithms for linear documents. Here, we also require that
the splitting of m into the blocks m[i], along with their ordering, can efficiently
and uniquely be derived from any received m.
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Definition 2 (RSS Algorithms for Linear Documents). A RSS for lin-
ear documents consists of four efficient algorithms. In particular, RSSD :=
(KeyGen,Sign,Verify,Redact) such that:

KeyGen. The algorithm KeyGen outputs the public and private key of the signer,
i.e., (pk, sk)← KeyGen(1λ), where λ is the security parameter.

Sign. The algorithm Sign outputs the signature σ on input of the secret key sk
and the document m. It outputs (m,σ)← Sign(sk,m)

Verify. The algorithm Verify outputs a bit d ∈ {0, 1} indicating the correctness of
the signature σ, w.r.t. pk, protecting m. In particular: d← Verify(pk,m, σ)

Redact. The algorithm Redact takes m, the public key pk of the signer, the
signature σ and an index set I which denotes the blocks m[i] to be redacted.
The algorithm outputs (m′, σ′)← Redact(pk, σ,m, I), where m′ is the altered
list. We denote an alteration of m w.r.t. I as m′ ← mod(m, I)

In particular, the following soundness requirements have to hold: Every doc-
ument generated using Sign has to verify with overwhelming probability, i.e.,
for any security parameter λ, any key pair (pk, sk) ← KeyGen(λ), and any
set/list S/m, any (S/m, σ) ← Sign(sk, S/m) we have Verify(pk, S/m, σ) = 1.
For Redact we require the same, i.e., for any security parameter λ, any key pair
(pk, sk) ← KeyGen(λ), and any set/list S/m, any (S/m, σ) ← Sign(sk, S/m)
and for any subset � resp. for any blocks indexed by I, we have (S′/m′, σ′) ←
Redact(pk, σ, S/m, �/I) and require Verify(pk, S′/m′, σ′) = 1. Moreover, a docu-
ment/signature pair created using Redact can be subject to Redact again, hence
allowing to delegate the sanitization to a consecutive third party.

All possible valid redactions, forming the transitive closure of a message m, w.r.t.
Redact, are denoted as span`(m), following [9] and [19].

2.1 Security Properties and Security Model

Next, we will define the required security properties of RSS. These have already
been identified in [5] for trees. We adapt and modify their notion to the needs
of sets and linear documents. We have already given informal definitions in the
introduction, they are suitable for both, sets and linear documents, while the
formal definitions, given as adversarial games, slightly differ. Hence, we will give
both notations for readability.

Unforgeability. No one should be able to compute a valid signature verifying
under pk on a set or list outside the transitive closure span`(S/m) without
having access to the corresponding secret key sk, even when allowed to request
signatures on different sets resp. documents. We say that a scheme RSS for
sets, resp. linear documents, is unforgeable, iff for any efficient (PPT) adversary
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Experiment UnforgeabilityRSSSA (λ)

(pk, sk)← KeyGen(1λ)

(S∗, σ∗)← ASign(sk,·)(pk)
let i = 1, 2, . . . , q index the queries

return 1 iff
Verify(pk, S∗, σ∗) = 1 and
∀i : 1 ≤ i ≤ q, S∗ * Si

Fig. 1. Unforgeability for Sets

Experiment UnforgeabilityRSSDA (λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ASign(sk,·)(pk)
let i = 1, 2, . . . , q index the queries

return 1 iff
Verify(pk,m∗, σ∗) = 1 and
∀i : 1 ≤ i ≤ q, m∗ /∈ span`(mi)

Fig. 2. Unforgeability for Documents

Experiment PrivacyRSSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact for input S0, S1, �0, �1:

if S0 \ �0 6= S1 \ �1, return ⊥
(S, σ)← Sign(sk, Sb)

return (S′, σ′)← Redact(pk, σ, S, �b).
return 1 iff b = d

Fig. 3. Privacy for Sets

Experiment PrivacyRSSDA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),LoRRedact(...,sk,b)(pk)
where oracle LoRRedact for input m0,m1, I0, I1:

if mod(m0, I0) 6= mod(m1, I1), return ⊥
(m,σ)← Sign(sk,mb)

return (m′, σ′)← Redact(pk, σ,mb, Ib).
return 1 iff b = d

Fig. 4. Privacy for Documents

A, the probability that the game depicted in Fig. 1, resp. Fig. 2, returns 1 is
negligible (as a function of λ).

Privacy. An adversary should not be able derive any additional information
besides what can be derived from the received message/signature pair. We say
that a scheme RSS for sets, resp. linear documents, is private, iff for any efficient
(PPT) adversary A, the probability that the game depicted in Fig. 3, resp. Fig. 4,
returns 1 is negligibly close to 1

2 (as a function of λ).

Transparency. The verifier should not be able to decide whether a signature
has been created by the signer, or through the redaction algorithm Redact. From
a signed document one cannot tell whether it is a freshly signed version, where
some blocks have been removed prior to signing, or a blinded version. We say
that a scheme RSS for sets, resp. linear documents, is transparent, iff for any
efficient (PPT) adversary A, the probability that the game depicted in Fig. 5,
resp. Fig. 6, returns 1 is negligibly close to 1

2 (as a function of λ).

Proposition 1 (Transparency =⇒ Privacy). There exists no scheme which
is transparent, but not private.

Proposition 2 (Privacy ; Transparency). There exists a scheme which is
unforgeable and private, but not transparent.
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Experiment TransparencyRSSSA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact for input S, �:

if � /∈ S, return ⊥
if b = 0: (S, σ)← Sign(sk, S),

(S′, σ′)← Redact(pk, σ, S, �)
if b = 1: S′ ← S \ �

(S′, σ′)← Sign(sk, S′),
finally return (m′, σ′).

return 1 iff b = d

Fig. 5. Transparency for Sets

Experiment TransparencyRSSDA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ASign(sk,·),Sign/Redact(...,sk,b)(pk)
where oracle Sign/Redact for input m, I:

if m[i] 6⊆ m, return ⊥
if b = 0: (m,σ)← Sign(sk,m),

(m′, σ′)← Redact(pk, σ,m, I)
if b = 1: m′ ← mod(m, I)

(m′, σ′)← Sign(sk,m′),
finally return (m′, σ′).

return 1 iff b = d

Fig. 6. Transparency for Documents

Proposition 3 (Unforgeability is Independent). There exists a scheme
which is transparent and private, but not unforgeable and vice versa.

Proof. The formal proofs for Prop. 1, Prop. 2 and Prop. 3 are in the appendices.

Definition 3 (Cryptographic Hash-Function). Let HK : {0, 1}∗ → {0, 1}λ
denote a family of keyed hash-functions mapping input of arbitrary length onto an
output with fixed length λ, where λ denotes the security parameter. In this paper,
we call Hk ∈ HK a cryptographic hash-function, iff the following properties hold:

Collision Resistance. It is computationally infeasible to find m,m′, such that
Hk(m) = Hk(m′). More formally:

Pr[k
$← K; (x, x′)← A(k) : x 6= x′ ∧Hk(x) = Hk(x′)] < ε(λ)

2nd Preimage Resistance. It is computationally infeasible to find a x′ for a
given x, such that Hk(x) = Hk(x′), where x 6= x′. More formally:

Pr[k
$← K,x

$← {0, 1}∗;x′ ← A(k, x) : x 6= x′ ∧Hk(x) = Hk(x′)] < ε(λ)

Preimage Resistance. It is computationally infeasible to find a m, for a given

value h
$← {0, 1}λ, such that Hk(m) = h. More formally:

Pr[k
$← K;h

$← {0, 1}λ;x← A(k, h)) : h = Hk(x)] < ε(λ)

Above probabilities are taken over all coin tosses and must be negligible as a
function of λ. We require efficient computation and a compression of the input.
One example for such a cryptographic hash-function family is SHA. Benaloh et
al. introduced quasi-commutative hash-functions in [4]:

Definition 4 (Quasi-Commutative Hash-Function (QCHF)). A hash-
function family QCHFK is called quasi-commutative, iff:
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Experiment ResistanceQCHFA (λ, n)

k
$← K

d
$← Xk

o = {o1, o2, . . . , on | oi
$← Yk}

r
$← Xk

(r∗, o∗)← A(k, n, o, d, r)
return 1 iff
QCHFk(r∗, o∗) = QCHFk(r, o) or
QCHFk(r∗, o∗) = d and in all cases
o∗ /∈ span(o)

Fig. 7. Experiment QCHF

Experiment ResistanceAHFA (λ, n)

k
$← K

o = (o1, o2, . . . , on | oi
$← Xk}

o∗ ← A(k, n, o)
return 1 iff
AHFk(o∗) = AHFk(o) and
o∗ /∈ span(o)

Fig. 8. Experiment AHF

Quasi-Commmutativity. ∀k ∈ K : Xk × Yk → Xk.

Additionally: ∀k ∈ K : ∀x ∈ Xk : ∀y1, y2 ∈ Yk : QCHFk(QCHFk(x, y1), y2) =
QCHFk(QCHFk(x, y2), y1). We will denote the accumulation of {v1, . . . , vn}
(in arbitrary order), along with a seed r ∈ Xk, as QCHFK(r, v1; . . . ; vn).

Security. For a secure instantiation of a QCHFk ∈ QCHFK , we require the
probability that the experiment depicted in Fig. 7 returns 1 to be negligible (as
a function of λ) for any efficient (PPT) adversary A, where span(o) is the
transitive closure of QCHFk, i.e., the set span(o) contains all sets which can
be generated by sequentially running QCHFk given o. This prohibits winning
the game using intended collisions, i.e., the output of valid redactions is
not a forgery. This definition captures the required form of pre-image- and
2nd-pre-image-resistance. Moreover, we require that an adversary A cannot
decide how many additional members have been digested, i.e., the following
distributions S1 and S2 must be computationally indistinguishable:

S1 = {x | x $← Xk, k
$← K} S2 = {QCHFk(x, y) | y $← Yk, x

$← Xk, k
$← K}

The probability is taken over all coin tosses. To sum up, an outsider cannot
distinguish between random elements and accumulated digests.

Instantiation 1 (Quasi-Commmutativity using Modular Exponentiation)
A hash-function QCHFk ∈ QCHFK can be constructed in the following way: [4]

Choose Parameter. Let m = pq, where p = 2p′ + 1, q = 2q′ + 1, q, p, q′, p′ ∈ P
and r

$← (Z/nZ)×.

Hashing. On input of r, y1, . . . , ym we compute d ← r
∏i=n

i=1 Hp(yi) (mod m),
where Hp : {0, 1}∗ → P ∩ Zm/4 is a cryptographic hash-function, modeled as
a random oracle, and n the number of blocks. Refer to [2] how to construct
such a function.

Hence, m is a RSA-modulus with safe primes. This hash function is quasi-
commutative and allows to aggregate input, while producing a short digest [4].
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In [4] witnesses can be calculated, which are yth-roots, to allow proving mem-
bership for digested values. Our construction does not require witnesses. The
security proofs for collision-resistance and one-wayness of Benaloh et al.’s in-
stantiation of a QCHFk ∈ QCHFK can also be found in [4]. The homomorphic
behavior of the RSA-function allows to forge digests in a simple way, i.e., by
multiplying elements. The solution against this attack is to hash the input prior
to aggregating it, i.e., Hp prohibits this simple attack. [2] contains the proofs
why this function meets our security requirements.

Definition 5 (Associative Non-Abelian Hash-Functions (AHFK)). The
family of Associative Non-Abelian Hash-Functions, denoted as AHFK , is also
accumulating. However, the ordering of its input becomes relevant:

Associative but Non-Commutative. ∀k ∈ K : Xk × Yk → Xk and ∀k ∈
K : ∀x ∈ Xk : ∀y1, y2, y1 6= y2 ∈ Yk : AHFk(AHFk(x, y1), y2) 6=
AHFk(AHFk(x, y2), y1)1 but ∀k ∈ K : ∀y1, y2, y3 ∈ Yk : AHFk(AHFk(y1, y2), y3) =
AHFk(y1,AHFk(y2, y3)). This implies Xk = Yk. We will denote the accu-
mulation of v1, . . . , vn (in that particular order) as AHFK(v1; . . . ; vn).

Security. For a secure instantiation of a AHFk ∈ AHFK , we require the prob-
ability that the experiment depicted in Fig. 8 returns 1 to be negligible (as
a function of λ) for any efficient (PPT) adversary A. This definition cap-
tures the required form of pre-image- and 2nd-pre-image-resistance. As be-
fore, span(o) is the transitive closure of AHFk, i.e., the set span(o) contains
all lists of elements which can be generated by sequentially running AHFk
given o. Again, this prohibits the adversary from winning the game using in-
tended collisions. Moreover, we require that an adversary cannot decide how
many additional members have been digested, i.e., the following distributions
S1 and S2 must be computationally indistinguishable:

S1 = {x | x $← Xk, k
$← K} S2 = {AHFk(x; y) | x, y $← Xk, k

$← K}

The probability is taken over all coin tosses. This prohibits an adversary from
distinguishing between random elements and accumulated digests.

An instantiation of an AHFk is the Tillich-Zémor (T Z) construction based on
SL(2,F2[X]/Pr(X)) [21].2 The generators used in [21] have been broken in [10]

and [14]. However, the authors of [14] give new generators in [15] that rely
on a different underlying mathematical problem and are secure. We will use the
secure parameters in our instantiation of AHFk. Our second construction RSSD
(Sect. 4) relies only on the existence of AHFK . We use T Z as an instantiation
in our examples to show our ideas in a simple and understandable way.

Instantiation 2 (Hashing using SL2) A hash-function AHFk ∈ AHFK
can be constructed in the following way: [21; 15]

1 To be more precise: With overwhelming probability.
2 SL(2,R) denotes the group of all 2× 2 matrices with determinant one.
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S = v1 . . . vi . . . vn r

S′ = v1 . . . . . . vn r′

Accumulate
vi onto r
for Redaction

σ

Fig. 9. Illustration of Construction 1

Choose Parameter. Let r ∈ {127, 157, 223, 251, 383, 509}.3 Choose an irre-
ducible polynomial Pr(X) with degree r.

Hashing. Let A and B be two matrices, i.e., A =
(
X3 1
1 0

)
and B =

(
X+1 1
1 0

)
. Af-

terwards, define the mapping π := {0, 1} → A,B, where 0 7→ A, 1 7→ B. Let
the message m to be digested written in binary, in particular m = b1|| . . . ||bn.
Define the digest d as: d ← π(b1)π(b2) . . . π(bn), where any calculations are
done in SL(2,F2[X]/Pr(X)).

We want to explicitly remind the reader that matrix multiplication is associa-
tive, but non-abelian and that the operations are performed in a finite group,
i.e., SL(2,F2[X]/Pr(X)). This implies compression. Hence, the digest is always
a group element. This has already been used in [16] for multimedia data. As
for the Benaloh hash, a trivial attack vector exists for T Z, if the input is not
hashed using a standard cryptographic hash like SHA-512 prior to inputting
it into T Z. In particular, let d ← T Z(m[0];m[1]), where m[0] is arbitrary
and m[1] = 01. This will have the same digest as T Z(m[0]||0; 1) due to the
mapping onto bitstrings paired with the associative behaviour. Hashing the el-
ements using a cryptographic hash for each block m[i] obviously solves this
problem. In particular, this enforces an adversary to find 2nd-pre-images resp.
collisions. Hence, if T Z is used as an instantiation of a AHFk, the blocks need
to be digested using a standard cryptographic hash. In our case, we model the
hash-function as a random oracle to enforce an uniform distribution: We re-
quire that the output of the hash-functions AHFk(s;x) and QCHFk(s, x) is
computationally indistinguishable from uniform, if s is. This will be crucial
to maintain transparency. This is required, since we add fake-digests to hide
redactions. The instantiations given are based on group-theoretic operations
and therefore already have this property due to their algebraic structure [4;
15; 21].

3 RSSS: Construction 1 for Sets

Construction 1 (RSS for Sets.) Our first construction makes use of an un-
forgeable signature scheme (SS := {SKeyGen,SSign,SVerify}). It uses the quasi-

3 Here, r is the security parameter for the hash-function.



10

commutative behavior of QCHFK to hide redacted elements. The basic idea is
depicted in Fig. 9.

Key Generation. The key pair generation algorithm KeyGen outputs (sk,pk)←
SKeyGen(1λ). Additionally, it also choses a cryptographic and quasi-commutative
hash-function QCHFk ∈ QCHFK .

Signing. To sign a set S = {v1, . . . , vn}, perform the following steps:

1. Set r
$← Xk, i.e., r

$← (Z/nZ)× for the hash-function by Benaloh et al.

2. Choose a random nonce id
$← {0, 1}λ

3. Accumulate each tagged vi ∈ S and r using QCHFk. In particular, com-
pute d← QCHFk(r, (v1||id); . . . ; (vn||id)), where || denotes a concatena-
tion, which is uniquely reversable.

4. Sign the final digest d, k, and id, i.e., σS ← SSign(sk, (d||id||k)).

5. Output (S, σ), where σ = (σS , r,pk).

Redact. To redact a subset �, the sanitizer performs the following steps:

1. Check σ’s validity using Verify. If the signature is not valid, return ⊥

2. If � 6⊆ S, return ⊥

3. Accumulate the elements �i ∈ � onto r, i.e., r′ ← QCHFk(r, (�1||id); . . . ; (�n||id))

4. Output (S′, σ′), where σ′ = (σS , r
′,pk) and S′ = S \ �

Verify. The algorithm Verify works equivalent to the Sign algorithm; it performs
the following steps:

1. Calculate d′ ← QCHFk(r, (v1||id); . . . ; (vn||id))

2. Output 1, iff d′ is the value protected by σS, w.r.t. pk, 0 otherwise, resp.
⊥ on error.

Time and Storage Complexity. RSSS requires one fake-digest r, which size
depends on the security parameter used. Hence, the storage requirement is in
O(1). The signature generation and verification require O(n) steps. Hence, we
have a computational complexity of O(n). Redaction is in O(n) as well.

Theorem 1 (Construction 1 is Secure). If QCHFK is 2nd-pre-image re-
sistant and pre-image resistant, while SS is unforgeable, our construction 1 is
unforgeable.

Proof. Relegated to the appendices due to size requirements.
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m = f0 m[1] f1 m[2] f2 m[3] f3

m′ = f0 m[1] f ′1 m[2] f2

f

σ

Step1: Accumulate
f1 on m[2]

Step2: Accumulate f onto f2
Step3: Store result in f ′1

Fig. 10. Illustration of Construction 2

4 RSSD: Construction 2 for linear Documents

Construction 2 (RSS for Linear Documents.) Our second construction uti-
lizes an unforgeable signature scheme (SS); (SS := {SKeyGen, SSign,SVerify}).
It uses the associative but non-abelian behavior of AHFK to hide redacted ele-
ments. The basic idea is depicted in Fig. 10.

Key Generation. The key pair generation algorithm is the same as in Con-
struction 1; KeyGen outputs (sk,pk)← SKeyGen(1λ). Here, λ is the security
parameter. Additionally, choose an associative but non-abelian hash-function
AHFk ∈ AHFK .

Signing. To sign m, perform the following steps:

1. Choose n + 1 random values: fi
$← Xk, where 0 ≤ i ≤ n. For the T Z

instantiation: fi
$← SL(2,F2[X]/Pr(X)).

2. Choose a random nonce id
$← {0, 1}λ

3. Accumulate each tagged message and each fake-digest in the right order,
i.e., d← AHF(f0; (m[1]||id); f1; . . . ; (m[n]||id); fn).

4. Sign d, l, k and id, i.e., σm ← SSign(sk, (d||id||k)).

5. Output (m,σ), where σ = (σm, f0, . . . , fn,pk), resp. ⊥ on error.

Redact. 1. Check the validity of σ using Verify. If σ is not valid, return ⊥.
For each i ∈ I, perform the following steps in descending order:

2. Accumulate (m[i]||id) onto the associated fake-digest fi−1: Calculate f ←
AHFk(fi−1; (m[i]||id)).

3. Merge f and fi into f ′i ; In particular, calculate f ′i−1 ← AHFk(f ; fi).

4. Output (m′, σ′), where σ′ = (σm, f0, . . . , f
′
i−1, . . . , fn−1,pk) and m′ ←

mod(m, I). The indices have been adjusted to account for the redaction

Verify. The algorithm Verify is similar to the Sign algorithm; it performs the
following steps:



12

1. Accumulate each given m[i] and fi in their provided order: Calculate

d← AHFk(f0; (m[1]||id); f1; . . . ; (m[n]||id); fn)

2. Output 1, if d is the value protected by σm, w.r.t. pk, 0 otherwise, resp.
⊥ on error.

The verification algorithm is equal for non-redacted and redacted documents.

Time and Storage Complexity. RSSD requires n+1 fake-digests. The actual
size depends on AHFk. Hence, the storage requirement is O(n). The signature
generation and verification requires O(n) steps. Hence, RSSD also has only a
runtime complexity of O(n). Redaction is in O(n) as well.

Theorem 2 (Construction 2 is Secure). If AHFK is 2nd-pre-image resis-
tant and pre-image resistant, while SS is unforgeable, our construction 2 is un-
forgeable.

Proof. Relegated to App. B due to size requirements.

5 Conclusion, Future Work and Open Questions

We presented two secure, transparent RSS, both with a computational com-
plexity of only O(n). Our first scheme protects unordered sets and has a stor-
age complexity of O(1), while the second one protects linearly ordered docu-
ments, but has a storage complexity of O(n). Both schemes use accumulators
to achieve transparency: QCHFK is abelian and AHFK is associative but non-
commutative. We have relaxed the requirements to the existence of a family of
hash-functions, which implies that the existence of a secure transparent RSS
can be reduced to the existence of secure signature scheme and the existence
of a family of hash-functions with quasi-commutative resp. associative but non-
abelian operations. We have formally proven the security of both schemes. For
describing the requirements we additionally introduced a rigid security model
for RSS for sets and linear documents, which has been derived from Brzuska et
al.’s initial model [5]. An open problem is the formulation of a formal proof for
the existence of AHFK ; as shown, constructions exist, but a formal proof, as
given for abelian associative one-way-functions in [17], would be very convenient.
We strongly encourage finding such a proof. We also would like to see unlinkable
schemes in O(n), extending the work done by Ahn et al. [1] and Brzuska et
al. [7].



13

References

1. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. In Ronald Cramer, editor, TCC,
volume 7194 of Lecture Notes in Computer Science, pages 1–20. Springer, 2012.
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linkability of Sanitizable Signatures. In Public Key Cryptography, pages 444–461,
2010.

8. Sebastien Canard and Amandine Jambert. On extended sanitizable signature
schemes. In CT-RSA, pages 179–194, 2010.

9. Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short Redactable Signatures Us-
ing Random Trees. In Proceedings of the The Cryptographers’ Track at the RSA
Conference 2009 on Topics in Cryptology, CT-RSA ’09, pages 133–147, Berlin,
Heidelberg, 2009. Springer-Verlag.

10. Markus Grassl, Ivana Ilic, Spyros S. Magliveras, and Rainer Steinwandt. Crypt-
analysis of the tillich-zémor hash function. J. Cryptology, 24(1):148–156, 2011.

11. R. Johnson, D. Molnar, D. Song, and D.Wagner. Homomorphic signature schemes.
In Proceedings of the RSA Security Conference - Cryptographers Track, pages 244–
262. Springer, Feb. 2002.

12. Marek Klonowski and Anna Lauks. Extended Sanitizable Signatures. In ICISC,
pages 343–355, 2006.

13. Kunihiko Miyazaki, Goichiro Hanaoka, and Hideki Imai. Digitally signed document
sanitizing scheme based on bilinear maps. In Proceedings of the 2006 ACM Sympo-
sium on Information, computer and communications security, ASIACCS ’06, pages
343–354, New York, NY, USA, 2006. ACM.

14. Christophe Petit and Jean-Jacques Quisquater. Preimages for the tillich-zemor
hash function. In Proceedings of the 17th international conference on Selected areas
in cryptography, SAC’10, pages 282–301, Berlin, Heidelberg, 2011. Springer-Verlag.

15. Christophe Petit and Jean-Jacques Quisquater. Rubik’s for Cryptographers. http:
//perso.uclouvain.be/christophe.petit/files/Rubik.pdf, January 2011.

16. Jean-Jacques Quisquater and Marc Joye. Authentication of sequences with the sl2
hash function: application to video sequences. J. Comput. Secur., 5:213–223, June
1997.

17. Muhammad Rabi and Alan T. Sherman. An observation on associative one-way
functions in complexity theory. Inf. Process. Lett., 64(5):239–244, 1997.



14

18. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.
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A Relations between Security Properties

We will prove Propositions 1-3 which show the relationships between different
security properties. For brevity, we will use the notation S/m whenever it is
appropiate to do so.

A.1 Transparency =⇒ Privacy

This will prove Proposition 1. Note, the proof is essentially the same as given
in [5] resp. in [6]. We just restate the proof for completeness and readability and
modify it to account for our altered notation. The proof is given for sets and
linearly ordered documents.

Proof. Assume an (efficient) adversary APriv that wins our privacy games with
probability 1

2 + ε. We can then construct an (efficient) adversary Atrans which
wins the transparency games. According to the transparency game, Atrans re-
ceives a public key pk and oracle access to OSign and OSign/Redact. Let Atrans
randomly pick a bit b′ and forward pk to Apriv. Whenever Apriv requests ac-
cess to the signing oracle OSign, Atrans just forwards the query to its or-
acle and returns the unmodified answer to Apriv. When Apriv requests ac-
cess to OLoRRedact for sets, i.e., sends a query ((S0, �0), (S1, �1)) then Atrans
checks that S0 \ �0 = S1 \ �1 and forwards (Sb′ , �b′) to OSign/Redact. Similarly,
if OLoRRedact is queried for documents ((m0,m[i]0), (m1,m[i]1)), then Atrans
checks that m0 \m0[i0] = m1 \m1[i1] and forwards (mb′ ,m[ib′ ]) to OSign/Redact.
Eventually, Apriv outputs its guess d. Our adversary Atrans outputs 0, if d = b′

and 1 otherwise.

What is the probability that Atrans is correct? We have to consider two cases:

1. If b = 0, then OSign/Redact signs the set (or the message) and redacts the
chosen element or block afterwards. This gives exactly the same answer as
OLoRRedact would do, if using the bit b′. Hence, Apriv can correctly guess
the bit b′ with probability at least 1

2 + ε, if b = 0.
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2. If b = 1, then OSign/Redact always signs the document S′b′ resp. m′b′ after
removing the chosen elements. Since the privacy game requires that the
modified documents are equal, i.e., that S′0 = S′1 and m′0 = m′1, the answer
is independent of b′. Hence Pr[ATrans = 1 | b = 1] = 1

2 .

Hence, due to the probability of 1
2 that b = 1, it follows that Pr[ATrans = b] ≥

1
2 + ε

2 . Hence, ATrans has non-negligible advantage, iff ε is non-negligible. ut

A.2 Privacy ; Transparency

This will prove Proposition 2. Note, the proof is essentially the same as given
in [5] resp. in [6]. We just restate the proof for completeness and readability and
modify it to account for our altered notation. The proof is given for unordered
sets and linearly ordered documents.

Proof. We have to create a redactable signature scheme which provides privacy
without transparency. To do so, we append a bit b to the signature σ with the
interpretation that b = 0 if the documents has been redacted. More precisely, let
RSS := {KeyGen,Sign,Verify,Redact} denote a RSS which fulfills all security
properties. Alter RSS into RSS′ as follows:

– KeyGen’(1λ) := return KeyGen(1λ)

– Sign’(sk, S/m) := return (S/m, σ||1), where (S/m, σ)← Sign(sk, S/m)

– Verify’(pk, S/m, σ||b) := return Verify(pk, S/m, σ)

– Redact’(pk, σ||b, S/m, �/i) := return (S′/m′, σ′||0)
where (S′/m′, σ′)← Redact(pk, σ, S/m, �/i)

A third party can easily decide whether a signature originates from the signer or
not. Hence, Transparency is clearly violated. On the other hand, the added bit
b gives no information about the document, so it does not help in the privacy
experiment. ut

A.3 Independence of Unforgeability

This will prove Proposition 3. To the best of our knowledge, this is the first proof
that unforgeability for RSS is independent of privacy and transparency.

Proof. First, we show that Unforgeability implies neither transparency nor pri-
vacy. To do so, we append a collision-resistant one-way hash H of the original
document d← H(m) or the ordered set d← H(sort(S)) to the signed document.
So we sign (sort(S)/m||d). Let RSS := {KeyGen,Sign,Verify,Redact} denote a
redactable signature scheme which fulfills all the mentioned security properties.
We then alter RSS into RSS′ as follows:
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– KeyGen’(1λ) := KeyGen(1λ)

– Sign’(sk, sort(S)/m) := ((S/m, d), σ) by first calculating d = H(m) resp.
d = H(sort(S)) and then Sign(sk, sort(S)/m||d).

– Verify’(pk, (S/m, d), σ) := Verify(pk, sort(S)/m, σ)

– Redact’(pk, (S/m, d), �/i) := ((S′/m′, d), σ′)← Redact(pk, S/m, �/i)

To win the privacy game two cases must be considered:

1. The digest H(sort(S)/m) is signed but H(sort(S)/m) 6= H(sort(S′)/m′)

2. The digest H(sort(S)/m) is signed and H(sort(S)/m) = H(sort(S′)/m′)

Here, the digest is appended to the signature, not to the message, to “trick” the
privacy game. Obviously, all cases are an invasion of privacy. Due to Prop. 1 we
also know that Transparency is lost. However, the scheme is still unforgeable, as
long as H is collision-resistant.

To show that neither privacy nor transparency imply unforgeability, we only
need to assume a forgeable underlying signature scheme. Hence, transparency
and privacy are given, while an adversary can win the unforgeability game. ut

B Security Proofs of Construction 1 and 2

Both constructions can be proven secure in the same way. Hence, we will join
the proofs. If any differences are present, we will highlight them at the specific
location. Note, it is sufficient to show that transparency and unforgeability hold
to show that our schemes are secure due to transparency =⇒ privacy. We
will show each property on its own. As before, we will use the notation S/m
whenever we do not need to distinguish between a set S or a message m. d will
denote a digest.

Theorem 3 (Construction 1 and 2 are unforgeable). If QCHFK resp.
AHFK are 2nd-pre-image resistant and pre-image resistant, while SS is un-
forgeable, our scheme is unforgeable.

Proof. Let Aunf be an algorithm winning our unforgeability game for RSS. We
can then use Aunf to forge the underlying signature scheme SS, or to break the
2nd-pre-image resistance or to find pre-images of QCHFK resp. AHFK . We will
show next, that our schemes’ security relies upon the security of SS, QCHFK
resp. AHFK . Given the games in Fig. 1 and in Fig. 2, we can derive that a
forgery must fall in at least one of the three cases:

Case 1: The value protected by the underlying signature σm has never been signed

Case 2: The value protected by the underlying signature σm has been signed, but
S∗ 6⊆ S resp. m∗ /∈ span`(m), in particular the documents protected are not
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in the transitive closure of any queried signature. This case has to be divided
as well:

Case 2a: S 6⊆ S∗ resp. m /∈ span`(m
∗)

Case 2b: S∗ ⊃ S resp. m ∈ span`(m
∗)

We omit the case for collisions that are in the transitive closure. Collisions in
the transitive closure are a result of valid redactions. Hence, these collisions
are intentionally allowed and make our schemes correct. Therefore, it is not
considered a valid collision in terms of the forgery experiments.

Case 1: We use Aunf to forge a signature of the underlying SS. To forge a
SS signature, the attacker can construct an algorithm AunfSS that generates a
valid signature for a new message m∗ not queried. If Aunf is an algorithm with
non-negligible advantage ε winning the unforgeability game, it can be used to
construct AunfSS . To do so, we use Aunf as a black-box.

1. First, AunfSS chooses a hash-function QCHFk ∈ QCHFK resp. AHFk ∈
AHFK and passes k to instruct Aunf to use the same hash-function.

2. This is also done with pk of the SS to forge.

3. Any queries to the RSS signing oracle from Aunf are forwarded to AunfSS ’s
own signing oracle and genuinely returned to Aunf .

4. Eventually, Aunf will output a pair (S∗, (σ∗S , r
∗, pk)) resp.

(m∗, (σ∗m, f
∗
1 , . . . , f

∗
n, pk))

5. AunfSS returns (QCHFk(r∗, (v∗1 ||id∗); . . . ; (v∗n||id∗)), σ∗S) for sets or
(AHFk(f∗0 ; (m[1]∗||id∗); f∗1 ; . . . ; (m[n]∗||id∗); f∗n), σ∗m) for lists resp. If the di-
gest has been queried, abort.

The tuples are valid forgeries of the underlying signature scheme, since
AHFk(f∗0 ; (m[1]∗||id∗); f∗1 ; . . . ; (m[n∗]∗||id∗); f∗n∗) resp.QCHFk(r∗, (v∗1 ||id∗); . . . ; (v∗n||id∗))
have never been queried, i.e., no second pre-image has been found.

Therefore, the SS itself must have been forged.

Case 2a: We can use Aunf in a new algorithm A2nd to break the 2nd-pre-image
resistance of the underlying hash-function.

1. First, A2nd generates a key pair of a SS to emulate the signing oracle and
receives QCHFk ∈ QCHFK or AHFk ∈ AHFK resp.

2. It passes pk and k to Aunf .

3. For every request to the signing oracle, A2nd generates the signature σ using
sk and returns it to Aunf .

4. Eventually, Aunf will output (S∗, (σ∗S , r
∗, pk)) or (m∗, (σ∗m, f

∗
0 , . . . , f

∗
n∗ , pk))

resp.
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5. Given the transcript of the simulation, A2nd searches for a pair

AHFk(f0,i; (m[1]i||idi); f1,i . . . ; (m[n]i||idi); fn,i) = AHFk(f∗0 ; (m[1]∗||id∗); f∗1 ; . . . ; (m[n∗]∗||id∗); f∗n∗)

orQCHFk(ri, (v1i ||idi); . . . ; (vn,i||idi)) = QCHFk(r∗, (v∗1 ||id∗); . . . ; (v∗n∗ ||id∗))
resp.

6. If such a pair is found and S∗ * Si resp. m∗ /∈ span`(mi) and Si * S∗ resp.
mi /∈ span`(m

∗) yields, A2nd outputs exactly this pair, else it aborts.

Hence, the adversary was able to find a 2nd-pre-image of AHFk resp. QCHFk.
In particular, it is able to provide a list which maps to the same digest value,
which was not in the transitive closure.

Case 2b: In this case the attacker was able to add members to the set and
created a larger set S∗ or add blocks while the signature is still valid as the
digest is equal. We will now show how to use Aunf to construct Aone which
breaks the pre-image resistance of the underlying hash-function.

1. To do so, Aone generates a key pair of a SS to emulate the signing oracle
and receives QCHFk ∈ QCHFK or AHFk ∈ AHFK resp.

2. It passes pk and k to Aunf .

3. For every request to the signing oracle, Aone generates the signature σ using
sk and returns it to Aunf .

4. Eventually,Aunf will output (S∗, (σ∗S , r
∗, pk)) resp. (m∗, (σ∗m, f

∗
0 , . . . , f

∗
n∗ , pk)).

5. Given the transcript of the simulation, Aone searches for a pair
AHFk(f0,i; (m[1]i||idi); f1,i; . . . ; (m[n]i||idi); fn,i) =AHFk(f∗0 ; (m[1]∗||id); f∗1 ;
. . . ; (m[n∗]∗||id); f∗n∗)
resp.QCHFk(r, (v1,i||id); . . . ; (vn,i||id)) = QCHFk(r∗, (v∗1 ||id); . . . ; (v∗n∗ ||id)).

6. If such a pair is found and Si ( S∗ resp. mi ∈ span`(m
∗), where m 6= m∗

yields, Aone outputs exactly this pair, else it aborts.

This algorithm allows to expand digests, which contradicts the assumption made
about the pre-image resistance of the accumulator. Note, the message needs to be
in the transitive closure to be considered a valid expansion. Otherwise, we have
a second pre-image, which belongs to case 2a. The actual pre-image of the hash-
function can easily be extracted. Again, we can use Aone to win our Resistance
game depicted in Fig. 7 resp. Fig. 8. Note, all messages are randomized due to
the appended and randomized document identifier. Even if the queried message
is in the transitive closure, the adversary is not able to give an already redacted
message to the signer and then create a forgery by “expanding” them afterwards,
since the adversary cannot guess the document identifier. This prevents framing
attacks.

In all cases: Aunf is successful, iff it can break at least one of the underlying
primitives. ut
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Theorem 4 (Construction 1 and 2 are transparent and private). If
QCHFK and AHFK always output uniformly distributed digests and are there-
fore indistinguishable, our scheme is transparent and due to Prop. 1, also private.

Proof. This follows directly from the definitions, i.e., the uniform distribution
of the digests. In particular, all digests are computationally indistinguishable
from random. This implies that the output of Sign resp. Redact is also compu-
tationally indistinguishable from uniform, therefore hiding the secret bit b with
overwhelming probability. In other words, an adversary breaking transparency
is able to distinguish between random and computed digests, which has been
assumed to be infeasible. An additional note: This is the reason why we require
the fake-digests to be chosen at random. Otherwise, an adversary could just
recalculate the digest or distinguish between fake and merged digests. ut


