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Abstract Increasing power consumption of IT infras-

tructures and growing electricity prices have led to the

development of several energy-saving techniques in the

last couple of years. Virtualization and consolidation of
services is one of the key technologies in data centers to

reduce overprovisioning and therefore increase energy

savings. This paper shows that the energy-optimal al-
location of virtualized services in a heterogeneous server

infrastructure is NP-hard and can be modeled as a

variant of the multidimensional vector packing prob-
lem. Furthermore, it proposes a model to predict the

performance degradation of a service when it is con-

solidated with other services. The model allows con-

sidering the tradeoff between power consumption and
service performance during service allocation. Finally,

the paper presents two heuristics that approximate the

energy-optimal and performance-aware resource alloca-
tion problem and shows that the allocations determined

by the proposed heuristics are more energy-efficient

than the widely applied maximum-density consolida-
tion.

1 Introduction

Increasing power consumption of IT infrastructures,

growing electricity prices and ecological awareness are

major reasons for a change towards green IT. Sev-
eral approaches have been developed over the last

years to reduce the power consumption of IT equip-
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ment. Some of the approaches address the development

of energy-efficient hardware components with special

energy-saving features [1][7][18], whereas others focus

on the energy-efficient management of such components
[10][17]. However, one of the main reasons for the low

energy efficiency of today’s data centers is overprovi-

sioning. The uncertainty of long-term future demands
and the unexpected occurrence of peak loads force data

center operators to oversize their IT equipment even

when most of the time these resources are utilized be-
tween 10 and 50 percent [2]. Meisner et al. show in [16]

that idle or lowly utilized servers consume up to 70%

of their maximum power consumption. Hence, a major

part of the resources is unutilized and at the same time
responsible for a significant amount of energy consump-

tion.

Virtualization and consolidation are key technolo-

gies to dynamically deal with overprovisioning. Ser-

vices can be encapsulated in virtual machines (VMs),
which allow a flexible and transparent resource manage-

ment. At times of low utilization, VMs are consolidated

on a subset of the physical IT infrastructure and un-

used hardware can be turned off. When load increases,
powered-off servers can be powered on again and the

VMs are migrated from the overloaded servers back

to servers with sufficient available resources. However,
it is common knowledge that sharing of IT resources

among different VMs leads to contention, e.g. multi-

ple VMs demand central processing unit (CPU) time
at the same time instant. This behavior leads to a per-

formance degradation of the virtualized services during

consolidation, even if the resources are not fully utilized.

Therefore, the consolidation of virtualized services boils
down to a tradeoff between performance and energy

consumption. This leads to the first question tackled in

this paper:
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1. What is the effect of consolidation on the perfor-

mance of a virtualized service?

A mathematical model is needed that describes the

performance degradation of consolidated services. Such

a model allows predicting the influence of consolidation

on the performance of an individual service, based on
known parameters, like the number of consolidated ser-

vices on the server, the server’s hardware characteristics

or the server’s overall resource utilization. Furthermore,
the model has to be generic so that it can be applied

using different performance metrics depending on the

virtualized service. Knowing the performance degrada-
tion of a consolidated service, a second question arises:

2. How can service consolidation be applied to re-

duce the energy consumption of a heterogeneous server

infrastructure while respecting performance constraints

of individual services?

As described in Section 2, several approaches ex-

ist in literature that model the energy-aware consolida-

tion of services in data centers. However, these models

do not focus on the performance constraints of indi-
vidual services. An energy-aware service consolidation

model is needed that includes the performance model of

a service so that both aspects, energy consumption and
performance are considered while allocating virtualized

services.

In our paper we present a performance model for

consolidated services and an energy-aware service con-
solidation model that is able to consider performance

constraints. We propose two heuristics that approx-

imate the solution of this newly formulated energy-
optimal and performance-aware virtual machine allo-

cation problem. The evaluation of the developed algo-

rithms is carried out by discrete event simulation.

The remainder of this paper is structured as follows:

Section 2 gives an overview on related work, Section 3
discusses the tradeoff between energy consumption and

performance and gives a model for the prediction of

performance degradation of consolidated services. Sec-
tion 4 models the energy-aware resource allocation as a

variant of the NP-hard multidimensional vector packing

problem and extends the model by performance aware-
ness. In Section 5 different algorithms are presented

that solve the energy- and performance-aware resource

allocation problem. In Section 6 the performance degra-

dation model is evaluated as well as the algorithms that
are compared to each other and to other widely used

algorithms for resource allocation. The paper is con-

cluded with Section 7.

2 Related Work

Different models have been developed recently to de-
scribe the energy-efficient allocation of resources. Some

of the approaches model the resource allocation prob-

lem as a packing problem [20], [3], [4]. In the models,

services are modeled as multidimensional hypercubes
that have to be allocated to multidimensional hyper-

bins that represent the servers. In [3] and [20] the au-

thors assume a homogeneous server infrastructure and
in [20], the multidimensional binpacking problem is re-

duced to only 1 dimension, representing the CPU. In

[12] the resource allocation problem is modeled as a
generalized assignment problem. The authors assume a

heterogeneous server infrastructure and multiple tasks

that have to be allocated to the servers. As optimization

method, methods of game theory are used. Similarly,
in [13] game theory is used to determine an optimal

resource allocation in high performance data centers.

However, in [12] and [13] the problem is modeled as
a one dimensional allocation problem. In [13] only the

memory allocation is optimized whereas in [12] only

the CPU is considered. Genetic and evolutionary algo-
rithms are used in [5] and [15] to determine optimal

VM allocations. In [5], the resource allocation prob-

lem is modeled as a knapsack problem. However, the

optimization goal is not specifically energy saving but
the compliance with the constraints in the service level

agreements. Several approaches use service consolida-

tion to reduce the energy consumption of a data cen-
ter infrastructure [20],[14],[6],[3],[19],[4]. However, only

limited analysis exists on the impact of consolidation

on the performance of the consolidated services. The
authors of [20] and [14] consolidate services in a homo-

geneous server infrastructure, however the performance

of the consolidated services is not taken into account.

In [6] and [3], the effect of consolidation on the per-
formance of services is only considered regarding the

provisioning of requested resources. Srikantaiah et al.

analyze in [19] the inter-relationship between energy
consumption, performance and resource utilization of

consolidated workloads. Based on a given energy effi-

ciency metric they find optimal operation points. How-
ever, the results are highly dependent on the chosen

energy efficiency metric and do not allow to predict the

performance degradation of a single service when it is

consolidated. In [4], the impact of consolidation on the
performance is considered, however, the chosen perfor-

mance metrics only evaluate the performance of a data

center as a whole.
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3 Performance Impact of Consolidation

Operators of data center infrastructures (e.g. clouds)
face the challenge of two contradicting goals, namely

reduction of infrastructure energy consumption while

complying with Service Level Agreements (SLAs). On
one hand, the reduction of energy consumption helps to

reduce the total cost of ownership whereas on the other

hand, a violation of SLAs may lead to penalties. In the

following, we describe a use case of a cloud comput-
ing environment in which the cloud provider offers to

its customers virtual servers with certain performance

levels that have to be guaranteed. Based on this use
case we discuss the possibility of saving energy through

the consolidation of the virtual servers and the effect of

such a consolidation on the performance of the services
running on the virtualized servers.

3.1 Use Case: Cloud Computing

In cloud computing environments, for instance, the

Amazon EC21, users can usually choose between vir-
tual servers with different performance levels. In the

case of Amazon EC2, there are three different standard

virtual servers user can choose from: a small, a large

and an extra large one. The different instances pro-

vide different performance levels. E.g. a small virtual

server has only one virtual core whereas an extra large
virtual server provides its user with four virtual cores.

There is also a difference between the performance lev-

els of the cores. The small virtual server’s virtual CPU

core provides 1 EC2 Compute Unit whereas the extra
large virtual server’s cores computational power is 2

EC2 Compute Units for each core. Based on the type of

the applications, the users of the cloud can even choose
application-specific virtual servers. Amazon EC2, for

instance, provides two different types of High-CPU vir-

tual servers which are well suited for compute-intensive
applications. Behind the virtual servers there is a phys-

ical server infrastructure. It is the responsibility of the

cloud provider to determine the amount of physical re-

sources (e.g., CPU cycles, RAM, bandwidth) that have
to be assigned to the virtual servers in order to provide

the promised performance level.

3.1.1 Energy Saving through Consolidation

Consolidation of virtualized servers is a widely applied
measure to decrease energy consumption since it sig-

nificantly reduces the percentage of idle power in the

overall infrastructure. Such a consolidation can be done

1 http://aws.amazon.com/en/ec2/instance-types/

either statically or dynamically at runtime. In the static

approach, the mapping of the virtual servers to the
physical infrastructure is done beforehand and cannot

be changed at runtime. In the case of a cloud provider,

the static consolidation approach assigns to each virtual
server a certain amount of physical resources based on

the performance level of the virtual server. However,

such a static assignment of physical resources does not
solve the problem of overprovisioning. In the static con-

solidation approach, the assignment of the physical re-

sources has to be done based on the resource require-

ments of a fully loaded virtual server in order to en-
sure that in times of high load the performance level

of the virtual server can be guaranteed. On the other

hand, a dynamic consolidation of virtual servers allows
the reassignment of physical resources at runtime when

the load on the virtual servers changes. If there is low

load on the virtual server an assignment of less phys-
ical resources could be sufficient to provide a certain

performance level. If the load on the virtual server in-

creases, more physical resources can be assigned to the

virtual server. The virtual server might be even mi-
grated to another physical host if the current physical

host gets overloaded. Therefore, the dynamic consoli-

dation approach allows for an over-commitment of the
physical servers and helps to reduce the overprovision-

ing of physical resources. A dynamic consolidation of

virtual servers mandates the cloud provider to monitor
the resource utilization of the virtual servers in order to

determine how many physical resources have to be as-

signed to it. There are several monitoring solutions that

can be used for this purpose. Several hypervisors, e.g.
the KVM2 hypervisor, are based on a Linux operating

system. The Linux operating system allows for moni-

toring the exact resource utilization of single processes
by reading the corresponding entries of the proc file sys-

tem. Since in such systems VMs are ordinary Linux pro-

cesses, they can easily be monitored. Furthermore, the
proc file system contains also information on utilization

of hardware resources like the CPU or the hard drive

disk. More sophisticated monitoring solutions are even

able to monitor multiple physical and virtual servers
in a data center infrastructure. Such a monitoring tool

is e.g. Nagios3. In our use case, we assume that the

cloud environment provides monitoring information on
the resource utilization of the virtual servers. Further-

more, the cloud environment provides the possibility

to dynamically consolidate virtual servers at runtime
based on their resource utilization. Especially the over-

commitment of physical servers is allowed so that over-

provisioning of resources can be reduced.

2 http://www.linux-kvm.org
3 http://www.nagios.org/
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3.1.2 Impact of Consolidation on the Performance of

Virtual Servers

Running multiple virtualized servers on the same phys-

ical hardware intensifies the contention for hardware

resources. Even if a hardware resource, e.g. the CPU, is
lowly utilized, concurrent requests to it can lead to de-

lays due to context switching. Increased delays have a

negative effect on the performance of the virtual servers
and have to be considered when applying consolida-

tion. In our use case, the cloud provider has to consider

the impact of dynamic virtual server consolidation on
the performance of the virtual servers. If several vir-

tual servers are lowly utilized it is self-evident to as-

sign less physical resources to them by consolidating

more virtual servers on the same physical host in or-
der to reduce the power consumption of the physical

infrastructure. However, in order to find the optimal

balance between energy savings and performance the
cloud provider needs to know how much the perfor-

mance of a virtual server will be degraded if the vir-

tual server shares physical resources with other virtual
servers. The performance baseline of a virtual server is

always its performance level that is defined in the SLAs.

This performance level can always be ensured when a

certain amount of physical resources (e.g. number of as-
signed CPU cycles, size of RAM, I/O rate) is assigned

exclusively to the virtual server. The amount of physi-

cal resources that corresponds to a certain performance
level has to be defined by the cloud provider. Allowing

non-exclusive resource usage of virtual servers by con-

solidating them on the same physical server will lead
to a certain performance degradation. How much per-

formance degradation is allowed is determined by the

SLAs. E.g. the performance of the Amazon EC2 vir-

tual servers is given in EC2 Compute Units. ”One EC2

Compute Unit provides the equivalent CPU capacity

of a 1.0 - 1.2 GHz 2007 Opteron or 2007 Xeon proces-

sor.” 4 By defining a range for the performance of a
CPU instead of a single value allows for some perfor-

mance degradation. For an EC2 Compute Unit, a per-

formance degradation of 16.6% is acceptable (1.0 GHz
instead of 1.2 GHz). A model that predicts the per-

formance degradation of a virtual server regarding a

performance metric would allow for the cloud provider

to find a resource allocation that reduces infrastructure
energy consumption and considers performance levels

at the same time.

4 http://aws.amazon.com/en/ec2/faqs/#What is an EC2
Compute Unit and why did you introduce it

3.1.3 Performance Degradation Model for

Consolidation

In this section, we provide a model that predicts the

performance degradation of a virtual server as de-

scribed in the use case in the previous subsections. As
performance metric we take the mean response time,

assuming High-CPU virtual servers that are hosting

CPU-intensive services. In a first step, a performance

degradation model pno virt is developed that predicts
the performance degradation of CPU-intensive services

in a non-virtualized environment (service = linux

process) when it is competing for the CPU with other
CPU-intensive services. In a second step, the model is

extended by considering the overhead that is caused

when a service is encapsulated in a VM (Section 3.7).
In the evaluation section of the paper we show that our

models are able to predict the performance degradation

of consolidated services in non-virtualized and virtu-

alized environments. In the following the term service
denotes a single application running as a process on a

Linux system in the non-virtualized case or running

inside a VM in the virtualized scenario. Defining a
service in this way does not mean that no higher level

services can exist which use multiple of these individual

services. In such a case the performance degradation
of the higher level service is determined based on the

performance degradations of the individual services.

However this is out of the scope of this paper.

Intuitively, besides the process scheduler, there are
three parameters that have an impact on the perfor-

mance of a service v. These are: 1) v#: the number

of services competing for the same CPU core as v, 2)

sCPU : the overall load on the CPU core of the server s
on which v is running and 3) vCPU : the required CPU

cycles of v itself.

The impact of these three parameters is analyzed

by applying a sensitivity analysis. In the performance

measurements, described in the Sections 3.3, 3.4 and
3.5, one out of the three parameters is fixed whereas

the other two parameters are varied in order to deter-

mine their impact on the performance of v. As service,
we choose a load generator which generates load on the

CPU by performing mathematical operations (sin(x),

cos(x), pow(x, y), x · y, x + y). The load generator is
able to put an arbitrary load on a predefined core of

the CPU. The desired load is achieved by periodically

suspending the computation of the mathematical oper-

ations with sleep phases. The duration of a sleep phase
is determined based on the duration of the preceding

computational phase so that the generated load is equal

to the desired load. Independently from the chosen load
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level, v performs a predefined number of mathematical

operations. Measurement of the execution time of these
operations allows for determining performance of v. As

performance metric we choose the execution time of

1 loop iteration of the computational phase in which
each of the previously mentioned mathematical oper-

ations are executed once. The performance measure-

ments were carried out on a server with 16 GB RAM
and 2 Intel Xeon E5420 processors, each 2.5 GHz. The

measurements in the Subsections 3.2, 3.3, 3.4 and 3.5

were executed 30 times. The given confidence intervals

have a confidence level of 99%.

3.2 Reference Measurements

In order to determine the performance degradation of

the service v when it is consolidated with other services,
reference measurements are needed. The performance

degradation of a service is the additional execution time

that is caused by the consolidation with other services.

Therefore, we consider as baseline performance the ex-
ecution time of v in an unconsolidated scenario when it

has exclusive access to the CPU. In such a scenario v

is the only service using the CPU.

Fig. 1 Performance of v in an unconsolidated scenario

Figure 1 shows the execution time of v for different

load levels in an unconsolidated scenario, normalized
by the number of loop iterations in the computational

phase. As expected, the execution time is halved when

the number of CPU cycles assigned to the service is

doubled. The performance degradation of v, when it
is consolidated with other services, is determined by

comparing its execution time to the reference values in

Figure 1.

3.3 Constant Number of Services

In the first measurement of the performance degrada-

tion of v in a consolidated scenario, the number of ser-

vices is kept constant. In Figure 2, v is consolidated
with an additional service w. v and w utilize the CPU

core at the same load levels. The load of the services

varies between 10% and 50% in 5% steps so that the
overall load is 20%, 30%, ..., 100%. The y-axis shows

the average performance degradation for v. E.g. at 50%

overall load (service load = 25%), the performance

degradation for v is approxemately 15%, compared to
its performance when it utilizes 25% of the CPU core

in the unconsolidated scenario.
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Fig. 2 Constant number of services, varying overall load and
process load

According to the graph in Figure 2, the performance

degradation of a consolidated service grows linearly
with the overall load and the service load.

3.4 Constant Overall Load

In the measurement of Figure 3, the overall utilization

of the CPU core is kept constantly at 90%. This 90%

load is achieved by dividing the load equally between

1, 2, ..., 7 services. The x-axis shows the number of
services, the y-axis the performance degradation of a

single service.

According to the graph in Figure 3, the performance
degradation of v grows with the number of consoli-

dated services. The number of consolidated services has

a higher impact on the performance degradation than

the load of the single services since a doubling of the
number of services leads to a bisection of the service

load but the performance degradation is still increas-

ing.
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Fig. 3 Constant overall load, varying number of services and
service load

3.5 Constant Service Load

In the last measurement, the service load is kept con-

stant whereas the overall load and the number of pro-
cesses is varying. In Figure 4, each service puts 10%

load on the CPU core so that the overall load is 10%,

20%, ...,100% for 1, 2, ..., 10 services.

�

✁�

✂�

✄�

☎�

✆�

✝�

✞�

✟�

✠�

✂ ☎ ✝ ✟ ✁� ✁✂

✡
☛
☞
✌✍
✎
✍
✏✑
✒
✓
✒
✔
✕
✖✗
✘

✙✚✛✜✢✣ ✤✥ ✦✢✣✧★✩✢✦

✪✤✫✥★✬✢✫✩✢

✭✢✣✥✮ ✬✢✯✣✰✬✰✱★✤✫

Fig. 4 Constant service load, varying number of services and
overall load

With growing overall load and growing number of

services the performance degradation of v increases lin-
early.

3.6 Performance Degradation Function

In order to find the relationship between the number
of services, the overall load on the CPU core and the

load of a single service symbolic regression is used to

discover mathematical equations. As input, the param-

eters of the measurements in the Sections 3.2, 3.3, 3.4
and the corresponding performance loss are used. Based

on the linearity of the performance degradation that

can be observed in the measurements of the Sections

3.3 and 3.5 the assumption is made that the perfor-

mance degradation of a service can be approximated
by a linear formula. The overall goal is to define a func-

tion pno virt : (V × S) → R, with V denoting the set of

virtualized services and S denoting the set of servers,
that estimates the performance degradation of a ser-

vice v ∈ V when it is allocated to a server s ∈ S. The
computed formula is presented in Equation (1).

pno virt(v, s) = 0.802 · sCPU − 0.762 · vCPU − 3.6 (1)

In Equation (1) it can be seen that v#, s
CPU and

vCPU are dependent. Because of the constraint that

all services utilize the CPU core at the same level, the
relationship between v#, s

CPU and vCPU is given by

sCPU = v# · vCPU . For different service load levels,

Equation (1) can only be applied in combination with
a round robin scheduler. The round robin scheduler

ensures that each service gets the same amount of

CPU time, independently from its CPU requirements.

3.7 Consideration of Virtualization

The performance degradation function pno virt only es-
timates the performance degradation for processes in

a non-virtualized environment. Based on pno virt we

develop a performance degradation function pvirt that
considers the overhead caused by virtualization. We as-

sume that the overhead caused by virtualization con-

sists of two factors: First, the number of VMs plays a

role since for each consolidated VM on the server there
will be an additional load on the CPU which influences

the overall server performance. Second, the higher the

load on the VM the higher the overhead. As a conse-
quence of our assumptions we define pvirt as follows:

pvirt(v, s) = pno virt(v, s) + v# · (λ1 + λ2v
CPU ) (2)

In Equation 2 λ1 stands for the performance degra-

dation that is caused by each single VM. Since our sec-
ond assumption was that the overhead of a VM is also

depending on the load on the VM, we modify λ1 with

a fraction of the load on the VM, given by λ2v
CPU .

Experimentally we determined λ1 to be 1 and λ2

to be 0.1. In Section 6 we will evaluate pvirt and

pno virt through measurements in virtualized and non-
virtualized scenarios and will show that our assump-

tions regarding the overhead due to virtualization are

correct.

3.8 Applicability and Limits of our Approach

In this section we want to discuss briefly the appli-

cability and the limits of the presented performance
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degradation function. The benchmark that was cho-

sen to develop the performance degradation function
performed CPU-intensive operations. Therefore the re-

sponse time was mainly determined by the performance

of the CPU. Hence the performance degradation func-
tion is limited to predict the performance degradation

of CPU intensive workload, like the workload that can

be found on the High CPU virtual servers of the Ama-
zon EC2 cloud. Furthermore we present a performance

degradation function that considers the overhead of vir-

tualization which allows its application in real world

virtualization environments. Finally, we evaluate the
performance degradation function on servers with dif-

ferent Intel CPUs. At least this indicates the indepen-

dence of the model from specific hardware. Limit of the
model is the choice of the scheduler, which is a Round

Robin Scheduler. The impact of other schedulers on the

performance degradation remains future work.

4 Energy-Optimal and Performance-Aware

Resource Allocation Model

In this section a model for the energy-optimal and

performance-aware VM allocation is given. The model

is developed step by step. First, a model is presented
that minimizes the power consumption of the physical

server infrastructure but does not consider performance

issues. In a second step, this model is extended by the

performance degradation function that is described in
Section 3. The novelty of our resource allocation model

is that it reduces infrastructure power consumption

while considering performance requirements of single
services. In the following, the terms VM and virtual-

ized service are used equivalently. We assume that each

VM contains only 1 service. The virtualized service is
therefore the service and the VM in which the service

is encapsulated.

4.1 Energy-Optimal Resource Allocation

The energy-optimal resource allocation problem con-

sists of a set V = {v1, ..., vn} of n, n ∈ N, virtualized ser-
vices that has to be mapped unto a set S = {s1, ..., sm}
of m, m ∈ N, heterogeneous servers, so that the follow-

ing conditions are fulfilled:

In the case of CPU, the requirements of a virtualized

service are the number of needed CPU-cycles per sec-

ond. In the case of the RAM, the requirement is the size
of the RAM (in MB) that is needed by the virtualized

service, whereas in the case of the HDD and NIC, it is

the I/O rate and the bandwidth in mbps, respectively.

Condition 1 The resource requirements of all
v ∈ V on CPU, random access
memory (RAM), hard disk drive
(HDD) and network interface card
(NIC) are fully met

Condition 2 The utilizations of the CPU, RAM,
HDD and NIC for all s ∈ S are
always less than or equal to 100%

Condition 3 The sum of the power consumption
for all s ∈ S is minimal compared
to all other mappings.

These requirements can be determined based on the ser-

vice’s profile, if existing, and monitoring data. Similar
to the resource requirements of services, the utilizations

of CPU, RAM, HDD and NIC represent the number of

used CPU-cycles, the size of allocated RAM, the ex-

tent of used I/O rate and the used bandwidth. While
the first two conditions ensure that the consolidated

services do not suffer from resource starvation, the lat-

ter conditions’ goal is to minimize the overall energy
consumption of the physical server infrastructure.

4.2 Assumptions

For the energy-optimal resource allocation model that
is described in Section 4.3, the following assumptions

are made:

1. Service requirements: A virtualized service has

4 different resource requirements which are the re-
quirements on CPU, RAM, HDD and NIC, as pre-

viously described. Although these four resources

model the most energy consuming demands of a ser-
vice, more resources may be added later to further

increase the model accuracy.

2. Additivity of service requirements: Let
vCPU (s), vRAM (s), vHDD(s), vNIC(s) denote the

CPU, RAM, HDD and NIC requirements of a vir-

tualized service v on the server s. If two virtual-

ized services v and v′ are consolidated on the same
server s, the resource requirements of the two ser-

vices together are the sum of the resource require-

ments of v and v′: (v + v′)CPU (s) = vCPU (s) +
v′CPU (s), (v + v′)RAM (s) = vRAM (s) + v′RAM (s),

(v + v′)HDD(s) = vHDD(s) + v′HDD(s) and (v +

v′)NIC(s) = vNIC(s) + v′NIC(s). However, run-
ning multiple services on the same hardware will

of course lead to additional overhead due to context

switching of the CPU, which is also considered by

explicitly modeling the performance degradation.
3. Requirement adaption: Let s and s′ be two

servers having different CPU frequency, RAM size,

I/O rate and bandwidth for data communication.
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For the RAM, HDD and NIC requirements of a vir-

tualized service v we assume that the requirements
of v are the same on s and s′: vRAM (s) = vRAM (s′),

vHDD(s) = vHDD(s′), vNIC(s) = vNIC(s′). In the

case of the CPU, regarding the required CPU cycles
we assume vCPU (s) = vCPU (s′). For different CPU

clock frequencies of s and s′, the same number of re-

quired CPU cycles will result in a different load on
the CPUs of s and s′. A service, e.g., that requires

5 · 108 CPU cycles per second puts 50% load on a

1GHz CPU and 25% load on a 2GHz CPU. First

measurements on an Intel Xeon E5420 (2.5 GHz),
Intel Core 2 Duo E6400 (2.13 GHz) and AMD Phe-

nom II X4 955 (3.2 GHz) show that the mean error

of the suggested requirement adaptation for CPUs is
approximately 5%. If this assumption does not hold,

it will increase the overall model error, however the

general findings are not invalidated.
4. Server power consumption model: The power

consumption of a server is calculated using the lin-

ear, CPU load dependent model proposed by Fan

et al. [8]. The model consists of a per server con-
stant idle power and the dynamic power consump-

tion caused by CPU and fans. The server power is

modeled as Pidle + uCPU · (Pmax − Pidle).

4.3 Formal Problem Description

In order to describe the energy-aware resource alloca-

tion problem in a formal way that allows finding an

algorithmic solution, we introduce the following math-
ematical notation:

v = (vCPU , vRAM ,

vHDD, vNIC), v ∈
R

4

Vector, representing a virtu-

alized service with vCPU de-

noting the number of required

CPU cycles, vRAM denoting
the size of required RAM

in MB, vHDD denoting the

required I/O rate in mbps
and vNIC denoting the needed

data rate for network commu-

nication in mbps.

V = {v1, ...,vn} Set of n, n ∈ N, vectors repre-

senting n virtualized services

s = sCPU ×sRAM×
sHDD × sNIC

4-dimensional hyper bin in

R
4, representing a server with

sCPU denoting the number of

overall CPU cycles, sRAM de-
noting the overall RAM size

in MB, sHDD denoting the

overall I/O rate in mbps and
sNIC denoting the data rate

in mbps of the communication

link to which the server repre-
sented by s is connected.

S = {s1, ..., sm} Set of m, m ∈ N, hyper bins

representing m servers.

α : V → S Resource allocation function

that assigns to each v ∈ V a

server s ∈ S.

With the given notation, the energy-optimal re-

source allocation problem can be modeled as a variant
of the multidimensional vector packing problem. In the

following, the formal problem description is developed

step by step.

– First, a definition of the multidimensional vector

packing is given (Section 4.3.1).
– It is shown that a resource allocation that con-

siders only Condition 1 and Condition 2 can be

transformed to the multidimensional vector packing

problem as given in Definition 1 (Section 4.3.2).
– The multidimensional vector packing problem is

then adapted by assigning a cost function to each

bin and by changing the optimization goal to the
minimization of the sum of all cost functions (Sec-

tion 4.3.3).

– It is shown that the energy-aware resource alloca-
tion that considers all 3 conditions can be trans-

formed to the newly defined vector packing problem

with cost functions (Section 4.3.4).

– In a last step, the energy consumption of migration
is integrated into the model (Section 4.3.5).

4.3.1 Multidimensional Vector Packing

In this subsection the multidimensional vector-packing
problem is defined. Simply described, the goal of the

multidimensional vector packing is to pack a finite num-

ber of multidimensional vectors into a finite number of

multidimensional bins with variable sizes so that the
number of non-empty bins is minimal. A more formal

description is given in Definition 1.

Definition 1 (Multidimensional Vector Packing)

Let V = {v1, ...,vn}, n ∈ N, be a set of n d-dimensional

vectors, with d ∈ N and d ≥ 2. Let S = {s1, ..., sm},
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m ∈ N, be a set of m d-dimensional bins. Furthermore,

let a : V → S be a function that assigns to each v ∈ V
a bin s ∈ S and Sa = {s ∈ S|a−1(s) 6= ∅} be the set of

non-empty bins after the assignment of the vectors in V

to the bins in S by a. The goal of the multidimensional
vector packing is to determine a, so that:

1. ∀s ∈ S the vector
∑

{v∈V |a(v)=s} v fits into s

2. the number of non-empty bins is minimal: ∀a′, a′ :
V → S, |Sa| ≤ |Sa′

|.

4.3.2 Resource Allocation Modeled by

Multidimensional Vector Packing

A resource allocation function α : V → S that only aims

at fulfilling Condition 1 and Condition 2, without con-
sidering the overall energy consumption, can be trans-

formed to the multidimensional vector packing problem

as described in Definition 1. In Definition 1, we choose
d = 4 to be the dimension of the vectors and the bins

in V and S, respectively. Furthermore, we set V := V
and S := S. Then the function a computes by defini-
tion an assignment of the vectors in V to the bins in S

that respects the requirements as given in Definition 1.

We set α := a. The way how the vectors and the bins

are modeled, as well as the properties of a ensure that
for α, Condition 1 and Condition 2 are fulfilled. Re-

garding Condition 3, the minimization of the number

of non-empty bins, as it is done by a, corresponds to the
minimization of the number of powered on servers by

α. These servers host the consolidated virtualized ser-

vices. However, in a heterogeneous server environment,
the minimization of the number of powered on servers

is not necessarily equivalent to the minimization of the

overall power consumption.

4.3.3 Multidimensional Vector Packing with Dynamic

Costs

To consider the overall power consumption, Definition 1

has to be adapted by assigning a dynamic cost function

to the bins and by changing the optimization goal. The
multidimensional vector packing problem with dynamic

costs is defined in Definition 2.

Definition 2 (Multidimensional Vector Packing

with Dynamic Costs) Let V = {v1, ...,vn}, n ∈ N,
be a set of n d-dimensional vectors, with d ∈ N and

d ≥ 2. Let S = {s1, ..., sm}, m ∈ N, be a set of m

d-dimensional bins. Furthermore, let a : V → S be a

function that assigns to each v ∈ V a bin s ∈ S. Let
V s = {v ∈ V |a(v) = s} and vs

sum
:=

∑

v∈V s v. We

assign to each bin s ∈ S a cost function fs : R
d → R. fs

is required to be strictly increasing in each dimension

and fs(0) > 0. Furthermore, let Sa = {s ∈ S|a−1(s) 6=
∅} be the set of non-empty bins after the assignment of
the vectors in V to the bins in S by a. The goal of the

multidimensional vector packing is to determine a, so

that

1. ∀s ∈ S the vector
∑

{v∈V |a(v)=s} v fits into s

2. the sum of the cost functions of all non-empty bins

with vs

sum
as input is minimal: ∀a′, a′ : V → S, a′ 6=

a :
∑

s∈Sa fs(v
s

sum
) ≤

∑

s∈Sa′ fs(v
s

sum
).

4.3.4 Resource Allocation Modeled by

Multidimensional Vector Packing with Dynamic Costs

A resource allocation α : V → S that fulfills Condition

1, Condition 2 and Condition 3, can be transformed to

the multidimensional vector packing problem with dy-
namic costs as described in Definition 2. In Definition 2,

we choose d = 4 to be the dimension of the vectors and

the bins in V and S, respectively. Furthermore we set
V := V and S := S. We assign the power consumption

function pows of a server s ∈ S to be the cost function

fs of the corresponding bin s ∈ S that represents the
server s. The server power consumption functions fulfill

the requirements of a cost function as given in Defini-

tion 2. Then the function a computes by definition an

assignment of the vectors in V to the bins in S that
respects the requirements as given in Definition 2. We

set α := a. The way how the vectors and the bins are

modeled, as well as the properties of a ensure that α
fulfills Condition 1, Condition 2 and Condition 3.

4.3.5 Consideration of Migration

The additional energy consumption caused by the mi-

gration of virtualized services has not been considered
in the model yet. Every time a changed allocation of

virtualized services is calculated by α, some of the vir-

tualized services have to be migrated from one host to

another. This leads to an increased power consump-
tion of the overall infrastructure. The resource allo-

cation function a or α, respectively, as defined in the

Sections 4.3.3 and 4.3.4 only compare the power con-
sumption of different allocations after the migration. In

order to consider the costs of migration, we modify the

model in Definition 2 by extending it with a cost func-
tion fa

mig : V → S representing the migration. fa
mig(v),

v ∈ V , computes the power consumption overhead that

is caused by the reallocation of v by a. To compute

this overhead, we use a simple model. Let vsize denote
the size of the data of the virtualized service v which

has to be migrated in Mbit and d denote the available

data rate for the migration in Mbps. Then the duration
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of the migration t can be approximated by t ≈ vsize

d
.

Furthermore, we assume that during the data transfer
the power consumption of the participating servers in-

creases by 1W [11]. Knowing t and the power consump-

tion overhead of 2 · 1 W it is possible to estimate the
energy consumption of the migration, which is t · 2 W .

However, to integrate the migration costs into Defini-

tion 2, the energy consumption of the migration has to
be transformed to power consumption. The envisioned

resource management checks periodically the necessity

of service reallocations. If the duration of such a period

is T seconds, the average power consumption increase
that is caused by a migration that lasts t seconds is
t·2 W

T
. We define fa

mig as follows:

fa
mig(v) =

{

0, if v is not migrated by a
t·x
T
, if v is migrated by a

.

We change the optimization goal of Definition 2 to

determine a so that

∀a′, a′ : V → S, a′ 6= a :
∑

s∈Sa

fs(v
s

sum
)+

∑

v∈V

fa
mig(v) ≤

∑

s∈Sa′

fs(v
s

sum
) +

∑

v∈V

fa′

mig(v)

4.4 Complexity

In order to show the NP-hardness of the modified multi-
dimensional vector packing problem, the NP-complete

[9] binpacking problem is reduced to it. The binpacking

problem is given in Definition 3

Definition 3 (Binpacking) Let I = {i1, ..., in}, with
n ∈ N be a set of n items. To each item i ∈ I a size

l(i) > 0 is assigned. Furthermore, let B = {b1, ..., bm}
with m ∈ N be a set of m bins. Each bin b ∈ B has the

same size lbin. The goal of the binpacking problem is to

pack all items in I in as few bins as possible so that for
each bin b ∈ B, l(ib1) + ... + l(ibj) ≤ lbin, where ib1, ..., i

b
j

denote the items in I that were packed into the bin b.

4.4.1 Reduction of the Binpacking Problem to the

Modified Multidimensional Vector Packing

Let a be a function as defined in Definition 2. For

each item i ∈ I we define a vector v = (v1, ..., vd)

with v1 = l(i) and v2 = ... = vd = 0. Further-

more, for each one dimensional bin b we define a d-
dimensional bin s = {s1, ..., sd} with l(s1) = lbin and

l(s2) = ... = l(sd) = 0, with l(si) denoting the length

of the hyper bins’ edge in the i-th dimension. For each

d-dimensional bin s we choose a cost function f(w) =

|w| + c, with w ∈ R
d and c ∈ R

+. Then f is strictly
increasing and f(0) = c > 0. The function a has the

property to minimize
∑k

i=1 fsi(v
si
sum

), the sum of the

cost functions of all non-empty bins s1, ..., sk with vsi
sum

as input for si.
∑k

i=1 fsi(v
si
sum

) can also be written as

k·c·
∑k

i=1 v
si
sum

·e1, with e1 ∈ R
d and e1 = (1, 0, 0, ..., 0).

But in this case
∑k

i=1 v
si
sum

·e1 =
∑n

i=1 vi and is there-
fore independent from the number of non-empty bins.

Thus, the minimization of
∑k

i=1 v
si
sum

· e1 is equivalent

to the minimization of c · k and therefore to the mini-
mization of k which is the number of non-empty bins.

4.5 Extension of the Energy-Optimal Resource

Allocation by Performance Awareness

The resource allocation function α, as presented in the

previous sections minimizes the overall server power

consumption
∑

s∈Sa pows(v
s

sum
) but does not con-

sider performance constraints of the consolidated ser-

vices. Therefore α can be regarded as a pure energy-

aware resource allocation function. By replacing the
cost function pows of s by P : S → R, P (s) =
∑

{v∈V |a(v)=s} p(v, s) a resource allocation function

that minimizes the performance degradation of the al-
located services is obtained. Basically, this new resource

allocation maximizes the performance of the virtualized

services without considering energy consumption. Com-

bining these two extremes, a third category of resource
allocation function can be derived which is energy-

optimal and performance-aware at the same time.

4.5.1 Energy-Optimal Resource Allocation with

Performance Constraints

A first approach is to minimize the power consumption

of the infrastructure considering certain performance

constraints. The limitation of service degradation to
maximal x% could be such a constraint. We define a

new cost function fp : S → R and assign it to the

servers in S:

fp(s) =

{

pows(v
s

sum
), if ∀v ∈ V s : p(v, s) ≤ x%

∞, else
.

With the new cost function fp, only allocations are

taken that do not degrade the performance of the ser-

vices more than x%.
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4.5.2 Weighted Energy- and Performance-Aware

Resource Allocation

A further approach can be the combination of

the energy-optimal cost function pows and the
performance-aware cost function P by the assignment

of weights. We define a new cost function fw : S → R

and assign it to the servers in S:

fw(s) = w1 · pows(v
s

sum
) + w2 · P (s)

The higher the weighting factor of a cost function

the more its impact on the determination of the alloca-

tion.

5 Algorithms

In this section, three different heuristics are pre-
sented that approximate the optimal solution of the

energy- and performance-aware virtual machine alloca-

tion problem. We also present the NP-hard algorithm
that computes the optimal allocation. For small scenar-

ios, the results of the heuristics will be compared to the

optimal solution in Section 6.
Some of the following algorithms sort the list of

servers and VMs before the execution of the allocation

algorithm. The sorting is done based on a sorting factor

that is assigned to each server or VM, respectively. The
definitions 4 and 5 define the sorting factors for servers

and VMs.

Definition 4 (Sorting Factor for Servers) Let S =

{s1, ..., sn} be a set of n vectors that represent n cor-
responding servers. The amount of CPU, RAM, HDD

and NIC resources of a server si are represented by

the 4 components of its representing vector: si =

(sCPU
i , sRAM

i , sHDD
i , sNIC

i ). Furthermore, let fmax
i be

the power consumption of si when all its resources are

fully utilized. Then the sorting factor ssorti of the server

si is given by: ssorti = (sCPU
i ·wCPU + sRAM

i ·wRAM +
sHDD
i · wHDD + sNIC

i · wNIC)/f
max
i

Thereby, wCPU , wRAM , wHDD, wNIC are weights

for the CPU, RAM, HDD and NIC part of the formula.

The weights reflect for how much energy consumption a
specific resource is responsible. Therefore we choose as

weights wCPU = 4, wRAM = 1, wHDD = 1, wNIC = 1.

Definition 5 (Sorting Factor for VMs) Let V =

{v1, ..., vm} be a set of m VMs. Furthermore, let vCPU
i ,

vRAM
i , vHDD

i and vNIC
i denote the required CPU,

RAM, HDD and NIC resources of the VM vi. Then

the sorting factor vsorti of a VM vi is given by

vsorti =
vCPU
i

∑m
j=1 v

CPU
j

· wCPU +
vRAM
i

∑m
j=1 v

RAM
j

· wRAM+

vHDD
i

∑m

j=1 v
HDD
j

· wHDD +
vNIC
i

∑m

j=1 v
NIC
j

· wNIC

Thereby, wCPU , wRAM , wHDD, wNIC are again the

weights for the CPU, RAM, HDD and NIC part of the
formula.

5.1 Algorithm for Optimal Allocation

The optimal algorithm computes a VM allocation that

exactly fulfills all 3 requirements on an energy- and

performance-aware virtual machine allocation, as de-

fined in Section 4. However the computation of the op-
timal solution is NP-hard. Therefore the algorithm for

optimal VM allocation can only be applied to small sce-

narios with few servers and VMs. The algorithm com-
pares the overall power consumption of all possible al-

locations and chooses the one with the lowest power

consumption. The exact operation of the algorithm is
given in Algorithm 1.

Algorithm 1 Optimal VM Allocation
Input: serverList, vmList

Output: Optimal VM allocation stored in
optimalAllocation

vm← vmList.removeF irst()
for all s ∈ serverList do

if vm fits in s then
s.add(vm)
if vmList = ∅ and newAllocation.power() <

optimalAllocation.power() then
optimalAllocation := newAllocation

end if
else

optimal(serverList, vmList)
end if
s.remove(vm)

end for
vmList.add(vm)

The runtime of Algorithm 1 is in O(mn), since there

are mn different possible allocations of n VMs to m
servers.

5.2 Best from Random Allocation

Algorithm 2 computes 1000 random valid allocations

that consider VM requirements and do not overload

the servers. For each allocation the power consumption

is computed. The allocation causing the lowest power
consumption is taken as solution. The pseudo code for

the BestFromRandom heuristic is given in Algorithm

2.
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Algorithm 2 BestFromRandom Heuristic
Input: serverList, vmList

Output: Best VM allocation stored in bestAllocation

bestAllocation := allocateRandomly()
for i = 1→ 1000 do

vmList.shuffle()
for all v ∈ vmList do

vmList.remove(v)
while vm does not fit in s do

s = serverList.getNext()
s.add(vm)

end while
end for
if newAllocation.power() < bestAllocation.power()
then

bestAllocation := newAllocation

end if
end for

The complexity of the BestFromRandom Heuristic

is O(n · m). The cost of vmList.shuffel() (line 5) is
O(n). Then the list of VMs is traversed and for each

VM a server in serverList has to be found. In the worst

case, for each VM the whole serverList has to be tra-
versed. This costs O(n · m). The whole procedure is

repeated 1000 times so that the overall complexity is

1000 · (O(n) +O(n ·m)) = O(n ·m).

5.3 Greedy Heuristic

The approach of the Greedy Heuristic is to sort the VMs

according their sorting factor that indicates the ’size’ of
the VM. Size in this context means the resource usage

and the contribution to the overall power consumption

that are combined in the sorting factor. The VMs are
sorted in decreasing order. The ’biggest’ VM v is then

removed from the list and the increase of the power con-

sumption of each server s ∈ serverList is calculated in
case v would be allocated to s. v is then allocated to the

server with the lowest increase of power consumption.

Algorithm 3 Greedy Heuristic
Input: serverList, vmList

Output: Best VM allocation stored in serverList

for all v ∈ vmList do
v.calculateSortingFactor

end for
v.sortDecreasing()
for all v ∈ vmList do

for all s ∈ serverList do
/* How much does the power consumption of server s
increase? */
deltaPs = s.additionalPower(v)

end for
/* place v on server smin with smallest deltaP */
smin.add(v)

end for

Sorting vmList can be done in O(n log n). Then the

list of VMs has to be traversed in O(n) and for each
VM the list of servers has to be traversed too. The

cost for this is O(n ·m). The overall complexity of the

Greedy Heuristic is O(n log n)+O(n ·m). O(n log n) ⊂
O(n·m) since m, the number of servers, is usually much

greater than log n. Therefore the overall complexity is

2 ·O(n ·m) = O(n ·m)

5.4 Modified FirstFit Heuristic

The ModifiedFirstFit Heuristic is similar to the Greedy

Heuristic. It first sorts the VMs and servers according
their sorting factors. The VMs are sorted in decreasing,

the servers in increasing order. The first VM in the list

is then removed. It is allocated to the first server in
the sorted list of the servers where it fits. With other

words, the most expensive VM, in terms of resource and

power usage, is allocated to the most energy-efficient
and ’smallest’ server. The algorithm for the Modified-

FirstFit Heuristic is given in Algorithm 4

Algorithm 4 ModifiedFirstFit Heuristic
Input: serverList, vmList

Output: Best VM allocation stored in serverList

for all v ∈ vmList do
v.calculateSortingFactor

end for
v.sortDecreasing()
for all s ∈ serverList do

s.calculateSortingFactor

end for
s.sortIncreasing()
for all v ∈ vmList do

for all s ∈ serverList do
if v fits in server s then

s.add(v)
break

end if
end for

end for

The runtime of the ModifiedFirstFit Heuristic is

O(n log n) +O(m logm) for the sorting of vmList and
serverList and in the worst case O(n ·m) for the VM

allocation, when for each VM the whole list of servers

has to be traversed. The overall complexity is O(n ·m).

6 Evaluation

6.1 Evaluation of the Performance Degradation

Functions

We evaluate the performance degradation functions of

Section 3 in two different evaluations. First, we evaluate
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the performance degradation function pno virt that does

not consider virtualization. Second, we evaluate pvirt
which is a modification of pno virt that considers the

overhead caused by encapsulating a service within a

VM.

Figure 5 shows the evaluation of the performance
degradation function pno virt. A randomly chosen num-

ber of processes with random load generation are run

in parallel on a single server (Intel Xeon E5420, 2.5
GHz, 16GB RAM). No virtualization is applied, the

processes are ordinary Linux processes. In the figure,

the measured and predicted performance degradation
of 16 randomly chosen samples is compared. The mean

error of the predictions of pno virt is 4.99% with a vari-

ance of 0.56%.

Fig. 5 The measured and predicted performance degrada-
tions of v in 16 random measurements (non-virtualized sce-
nario)

Figure 6 shows the evaluation of the performance

degradation function pvirt. Also in this case, a randomly

chosen number of processes with random load gener-
ation are consolidated on a single server (Intel Xeon

X5650, 2.67 GHz, 20GB RAM). However, this time the

processes are encapsulated in a VM so that each pro-

cess has its own VM. For 12 randomly chosen samples,
Figure 6 shows the measured performance degradations

and compares them to the results of the prediction func-

tions pno virt and pvirt. Since pno virt does not consider
the overhead caused by the virtualization, it perma-

nently underestimates the performance degradation. It

can be seen that the error of pno virt grows if the mea-
sured performance degradation is high. This is usually

the case when there are multiple VMs consolidated on

the same server or the load of the VMs is high. In both

cases the overhead caused by the virtualization grows.
On the other hand, pvirt extends pno virt by a correc-

tion factor for the virtualization that considers both,

the number of VMs and the load generated by the VMs.

The mean error of the predictions of pvirt is 4.71% with

a variance of 0.2%.

Fig. 6 The measured and predicted performance degrada-
tions of v in 12 random measurements (virtualized scenario)

The evaluation shows that the model for the per-

formance degradation of CPU-intensive applications
works for both virtualized and non-virtualized environ-

ments. Furthermore the evaluation was carried out on

servers with different CPU types which affirms the ap-
plicability of the model.

6.2 Simulation

To produce meaningful results and to evaluate the al-

gorithms in a larger scale scenario, a discrete event sim-

ulation was used. This way, it was possible to test each

algorithm under exactly identical conditions. However,
to limit simulation complexity, the following assump-

tions were made:

– The infrastructure uses a shared storage system for
VMs, i.e. data that has to be transfered during mi-

grations is limited to the memory size of the VMs.

– The servers are interconnected with Gigabit Ether-

net connections.
– Servers are divided into three performance classes:

small, medium and large. Each of these classes offers

a certain performance level, however each class is in
turn subdivided into three energy-efficiency levels:

low, medium and high. Energy efficiency of a server

is considered higher the closer its power consump-
tion is to energy proportionality, meaning linearly

increasing with its load.

– The resource demand of services is limited to CPU

and RAM dimensions in the simulation.
– As an abstraction VM memory demands have to be

satisfied from physical RAM, virtual memory is not

considered.
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– VMs are migrated sequentially, virtual machines

waiting for migration enter a queue and continue
running on their current host until migration is com-

pleted.

– VM resource demand is constant during its runtime.

6.3 Evaluated algorithms

Following is a short description of the algorithms that
were evaluated in the simulation. For all algorithms, the

energy consumption of the infrastructure optimized by

the algorithm was compared.

– Load balancing

To acquire a baseline power consumption, the vir-

tual machines were distributed in a load balancing
pattern. More detailed, the VMs from the pool were

sequentially placed on the server which showed the

least utilization after VM placement.

– Maximum density consolidation

This represents a common consolidation strategy,

where servers are utilized to the maximum in order

to minimize the number of running physical servers.
Servers are sorted by their VM hosting capabilities,

with the most powerful servers being at the front of

the list. After that, for each VM the list of servers is
traversed until the first server is found which is able

to host the current VM. The VM is then allocated

to this server.

– Exhaustive optimal allocation

This algorithm implements a naive optimal alloca-

tion by evaluating all possible mappings of virtual

machines to physical servers. From all possible map-
pings, the energy minimal mapping is chosen.

– Greedy heuristic

The greedy heuristic, as described in Algorithm 3,
tries to minimize the power consumption increase

for each newly allocated VM. The VMs are ordered

according to their sorting factor. Then, the increase

in power consumption that arises from the simulated
allocation of the current VM to each server is eval-

uated. The VM is then allocated to the server that

shows the smallest power consumption increase.
– Modified first fit

This algorithm is an adaption of the first fit de-

creasing algorithm. First the VMs are ordered in
decreasing, the servers in increasing order accord-

ing to their respective sorting factors. Then, for each

VM the servers are traversed in order until the first

server which can host the current VM is found. The
VM is then allocated to this server.

– Best from random allocation

This algorithm evaluates the power consumption

of a fixed number of random VM allocations. In

the simulation, 1000 random allocations were per-
formed. In case the energy-minimal of these alloca-

tions is more energy saving than the current alloca-

tion, it was performed.

6.3.1 Simulation Scenario Setup

The simulation was programmed using the Desmo-J

framework5. Desmo-J is a Java based discrete event

simulation framework. To evaluate the different algo-
rithms, multiple simulation scenarios were set up. Espe-

cially since large differences in algorithm runtime have

to be expected, the scenarios have to vary in the num-

ber of physical servers and VMs. To compare the differ-
ent heuristics to the optimal solution, a small problem

instance was used. Additionally, for the non optimal al-

gorithms, nine larger scale scenarios with 18, 36 and
72 physical servers and 10,20 and 40, 20,40 and 80 and

40,80 and 160 VMs respectively were evaluated. To keep

the simulation as generic as possible non homogeneous
hardware is assumed, server specifications belong to a

class small, medium or large, which differ in the number

of CPUs and size of memory. All CPUs and RAM sticks

are assumed to be of the same type. Each server class
is subdivided into three energy efficiency classes: low,

medium and high. These classes mainly differ in their

energy proportionality, meaning that the difference of
idle power and maximum power is higher. A similar

number of all server types is assumed for the simula-

tion. The VM resource demand is randomly assigned,
with a uniform distribution in CPU demand (between

0.1 and 4.0 GHz) and RAM demand (between 0.5 and

4.0 GB). The maximum allowed performance degrada-

tion of a virtual machine is assigned following a normal
distribution with mean 50 and a standard deviation of

25. The random specifications of the VMs are created

once for each scenario and then used for the evaluation
of all algorithms. The simulated time is set to 24 hours,

with the optimizer running every 10 minutes. For server

power consumption modeling, the linear, CPU utiliza-
tion based model proposed by Fan et al. [8] was used.

6.4 Results

Figure 7 shows a comparison of the evaluated algo-

rithms against the optimum allocation, in terms of both
energy consumption of the infrastructure and algorithm

execution time. It is noteworthy that the numbers in

Figure 7 show the results only for a small problem size,

5 http://desmoj.sourceforge.net/home.html
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as an optimal solution was not computable for high

numbers of servers or VMs.
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Fig. 7 Algorithm performance compared to optimal solution

Figure 7 shows that in the evaluated simulation

only the maximum density consolidation and the greedy
heuristic approximate the optimal solution with a qual-

ity > 0.5. However, the execution time of the optimal

solution is more than 1000% higher than for any of the
heuristics. The execution time of the optimal solution

algorithm quickly approaches an infeasible duration at

small problem instances of around 10 VMs. When av-
eraging the results for bigger problem instances, the

overall performance of the algorithms becomes clearer.

This is shown in Figure 8.

Fig. 8 Average heuristics performance

The results show that both heuristics that explicitly

aim at energy savings can perform significantly better
than their competitors. On average the greedy heuris-

tic performs best in terms of finding an energy saving

allocation. The modified first fit scores nearly similar.

Compared to the widely used maximum density con-
solidation, the greedy heuristic offers an additional en-

ergy saving potential of more than 30%. However, as

expected the higher energy savings come at the price

of higher performance degradation. It has to be men-

tioned though that all algorithms keep the performance
degradation constraints of all virtual machines. Certain

algorithms, e.g. Load Balancing, just do not exploit the

allowed degradation to its maximum. Using the greedy
algorithm as an example, Figure 9 shows the tradeoff

between performance and energy savings. Especially in

the range from 0 − 50% a relaxation of performance
degradation constraints leads to a significant increase

in energy savings of more than 50%. A further relax-

ation does not yield significant increases in energy sav-

ing potential.
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Fig. 9 Energy consumption depending on the maximum al-
lowed performance degradation

7 Conclusion and Future Work

Recent research has often been applying virtualiza-
tion and consolidation approaches to save energy in

data center environments. However, the suggested ap-

proaches are often limited to an application in homoge-
neous server environments. Even in heterogeneous ones,

energy savings are usually achieved by minimizing the

number of powered-on servers, which is not necessar-

ily an optimal solution with respect to energy con-
sumption. The main drawback of current approaches

is the negligence of performance constraints of single

services. Performance constraints can be violated when
multiple services are consolidated on the same physi-

cal server. This paper has introduced a model that ad-

dresses the drawbacks of previous approaches. The pre-
sented model describes the energy- and performance-

aware VM allocation in heterogeneous server environ-

ments as a variant of the multidimensional vector pack-

ing problem. Traditional vector packing is a well-known
method to model task allocation problems. However,

in order to apply vector packing to model energy-

and performance-aware VM allocation in heterogeneous
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server environments, the traditional vector packing has

been extended by a model for performance degradation
of services and a model for server power consumption.

In the paper a Greedy heuristic and a Modified First-

Fit heuristic have been described which approximate an
energy-optimal and performance-aware VM allocation.

The presented approach assumes a round robin process

scheduler, CPU-intensive services, and response time
as performance metric. As future work it would be in-

teresting to analyze the impact of different scheduling

strategies on the performance degradation of a service.

A further extension would be the development of per-
formance degradation models for different performance

metrics. This would allow for using service-dependent

performance metrics, e.g., based on service level agree-
ments between data center operators and customers.
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9 Appendix

Table 1 gives an overview on the used symbols and de-

scribes them.

Symbol Description

V Set of virtualized services
v Virtualized service
S Set of servers
vCPU (s) CPU-cycles required by v when allo-

cated to s

vRAM (s) Amount of RAM required by v when
allocated to s

vHDD(s) I/O rate required by v when allo-
cated to s

vNIC(s) Bandwidth required by v when allo-
cated to s

v 4-dimensional vector representing a
virtualized service

s 4-dimensional hyper bin representing
a server

α Function assigning a server to a VM
a Function assigning a bin to a vector
Sa Set of non-empty bins regarding the

assignment with a

V s Set of vectors assigned to s
vs

sum
Sum of the vectors assigned to s

fs Cost function assigned to bin s
fs Power consumption function of

server s

pows Power consumption function of the
server s

fa
mig Function computing the power con-

sumption overhead for the migration
of a VM under a

vsize Amount of data that has to be mi-
grated when v gets reallocated

d Available data rate for migration
T Time interval between two realloca-

tions
I Set of items
l(i), i ∈ I Size of the item i

B Set of bins with dimension 1
lbin Size of the bins in B

ib Item that is packed into the bin b

p(v, s) Function estimating the performance
degradation of a VM v when it is run-
ning on a server s

v# Number of VMs consolidated on the
same CPU

sCPU CPU load of the server s

vCPU The required CPU cycles of v

Table 1 List of symbols and their descriptions


