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Abstract. Malleable signature schemes (MSS) enable a third party
to alter signed data in a controlled way, maintaining a valid signature
after an authorized change. Most well studied cryptographic construc-
tions are (1) redactable signatures (RSS), and (2) sanitizable signatures
(SSS). RSSs allow the removal of blocks from a signed document, while
SSSs allow changing blocks to arbitrary strings. We rigorously prove
that RSSs are less expressive than SSSs: no unforgeable RSS can be
transformed into an SSS. For the opposite direction we give a black-box
transformation of a single SSS, with tightened security, into an RSS.

1 Introduction

Digital signatures are the IT-Security mechanism applied to detect integrity vi-
olations, as they become invalid on any change to the signed data. However,
this also prohibits third parties from changing signed data in an allowed and
controlled way. Applications where such an alteration is crucial, include secure
routing [2] or “blank signatures” [23]. An additional prevailing reason to allow for
subsequent changing or removing parts is the anonymization of personally identi-
fiable information (PII), e.g., in medical data [28, 39]. Apart from the important
privacy guarantee for the original data, it is often of paramount importance that
the action of modification requires no additional interaction with the original
signer. Hence, they are applicable in a wide area, e.g., in the Internet-of-Things
(IoT) or for cloud computing [30]. For example, consider the IoT: communication
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as part of the SECBIT project (www.secbit.de) and the European Community’s
Seventh Framework Programme through the EINS Network of Excellence under
grant agreement no 288021. This work was also partly supported by the German
Federal Ministry of Education and Research (BMBF) within EC SPRIDE and by
the Hessian LOEWE excellence initiative within CASED.

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Hermann De Meer, Henrich C. Poehls, Joachim Posegga and Kai Samelin. On the relation between redactable and sanitizable signatures schemes. In Proc. of the 6th Int’l Symposium on
Engineering Secure Software and Systems (ESSoS 2014), Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2014. The original publication is available at www.springerlink.com (to
appear).

See http://www.net.fim.uni-passau.de/papers/DeMeer2014a for full reference details (BibTeX, XML).



with the originating sensor for re-signing would dramatically increase commu-
nication costs. Also in the case of smart metering privacy [16], the originating
Smart meter must not know in what way the data it signed is later modified to
preserve the user’s privacy.

One cryptographically suitable approach to solve the above described “digital
document sanitization problem” [34] are malleable signature schemes. Malleable
signature schemes authorize certain changes to signed data such that the result-
ing changed message’s authenticity is still verifiable, i.e., it remains verifiable that
either none or only authorized changes have been applied to the signed message.
This authorized change can come in several facets: Let m = (m[1], . . . ,m[`]),
where ` ∈ N and m[i] ∈ {0, 1}∗, be a string m split up into ` parts we refer
to as blocks. First, redactable signature schemes (RSS) allow anyone to remove
blocks m[i] from m, without invalidating the signature. In particular, a redac-
tion of the block m[i], 0 < i ≤ ` leaves a blinded message m′ without m[i], i.e.,
m′ = (. . . ,m[i − 1],�,m[i + 1], . . . ). A visible � has a major impact on the
RSS’s privacy guarantees. For RSSs, it is required that anyone can derive a
signature σ′ which verifies for m′. Second, sanitizable signature schemes (SSS),
allow a sanitizer to change the admissible blocks, which are predefined by the
signer, into arbitrary strings m[i]′ ∈ {0, 1}∗. Hence, the sanitizer can generate a
verifiable message-signature pair (m′, σ′). Contrary to RSSs, in SSSs the san-
itizer holds its own secret key. Obviously, it must be verifiable that all changes
were endorsed by the signer in both concepts.

Motivation. When more and more data containers are digitally signed as a
countermeasure against attacks on their integrity and authenticity, it becomes
increasingly important to be able to remove contained sensitive data with lit-
tle impact on the integrity of the remaining data. In other words, signing data
becomes the standard solution to allow integrity checks, e.g., for data stored
on third-party storage servers in the cloud [30]. Current provably secure (un-
forgeable and private) solutions mostly focus on one out of two specific types
of malleable signature schemes, i.e., either on RSSs or SSSs, often stating the
other as related work, or even the same. At first sight, both approaches aim for
the same goal, i.e., changing signed data. In detail, SSSs only allow for alter-
ations of blocks, while RSSs only allow removal of complete blocks. Moreover,
SSSs require an additional key pair, while RSSs have public redactions. The
questions we answer in this paper is: What is the exact relation between both
types of malleable signature?

Findings. We prove that an RSS is not trivially a “special case” of SSS [8, 41,
42]. But first things first: Obviously an unforgeable SSS can emulate a standard
signature by disallowing any modifications by any sanitizer [42]. Second, we
note that a RSS for a message of n blocks, fulfilling privacy [7], can trivially
be constructed by deploying O(n2) standard digital signatures [7, 37]. Hence,
O(n2) SSSs are sufficient to construct one RSS. Thus, from a theoretical point
of view, SSSs directly imply the existence of RSSs. However, from a practical



point of view, such constructions are rather inefficient. Especially as RSS can be
constructed in O(n) for computation and storage [37]. We provide the security
definitions required to transform only a single invocation of an SSS into an
RSS. We prove that the existing security models are not sufficient to achieve
such a transformation. In particular, the resulting RSSs cannot fulfill the state-
of-the-art privacy definitions, as introduced in [7]. Note, for all transforms we
treat SSS and RSS as black-boxes and ignore the constructions’ details.

Contribution. This paper rigorously shows that RSSs do not imply SSSs:
no unforgeable RSS can be transformed into a secure SSS. While the converse
is true in general, we give a more detailed separation: one cannot construct a
fully secure RSS from a single SSS invocation, if one treats the used SSS as a
black-box. In detail, weakening the privacy definition of RSSs, while strength-
ening the security definitions of SSSs, a single invocation of such a strong SSS
can emulate a weaker RSS. This paper provides an algorithm for a general
transform: Any SSS that is (1) strongly private, (2) weakly immutable and (3)
weakly blockwise non-interactive publicly accountable can be transformed into
a weakly private RSS. We give formal definitions of all the security properties
in Sect. 2. Interestingly enough, it turns out that our definition of weak privacy
is fulfilled by many existing RSSs, which are considered not private following
the model by Brzuska et al. [7].

Related Work. SSSs have been introduced by Ateniese et al. [2] at ES-
ORICS ’05. Brzuska et al. formalized the most essential security properties [8].
These have later been extended for the properties of unlinkability [10, 12] and
(block/groupwise) non-interactive public accountability [11, 18]. Moreover, sev-
eral extensions and modifications like limiting-to-values [13, 27, 36], trapdoor
SSSs [15] and multi-sanitizer environments [14] have been considered.

RSSs were introduced in 2002 by Johnson et al. in [26]. In the same year,
Steinfeld and Bull introduced a similar concept as “Content Extraction Sig-
natures” [40]. Since then, RSSs have been subject to much research and got
extended to tree-structured data [7, 28] and to arbitrary graphs [29]. Samelin et
al. introduced the concept of redactable structure in [38]. The standard security
properties of RSSs have been formalized in [7, 17, 37]. Ahn et al. introduced the
notion of context-hiding RSSs [1]. Even stronger privacy notions have recently
been introduced in [3, 4]. However, the scheme by Ahn et al. only achieves the
less common notion of selective unforgeability [1]. Moreover, [1, 3, 4] are limited
to quoting, i.e., redactions are only possible at the beginning, or end resp., of a
list. There exists many additional work on RSSs. We do note that most of the
schemes are not fully private, e.g., [22, 24, 25, 31, 33]. Hence, a verifier can make
statements about the original message m, which contradicts the intention of an
RSS [7]. Most of these schemes achieve our notion of “weak privacy”.

Combinations of both approaches appeared in [22, 24, 25]. However, their
schemes do not preserve privacy [38]. While the work of Yum and Joong tries



to combine the two properties in [42], the authors are not aware of any work
considering relations between the notions.

Malleable signature schemes are usable in practice according to [35, 36].
We do note that there are also schemes aiming for calculating general func-

tions on signed data, e.g., [5, 6, 19]. In this work, we focus on the relation between
SSSs and RSSs.

2 Preliminaries and Security of SSS and RSS

For a message m = (m[1], . . . ,m[`]), we call m[i] ∈ {0, 1}∗ a block, where “,”
denotes a uniquely reversible concatenation of blocks or strings. The symbol
⊥ /∈ {0, 1}∗ denotes an error or an exception. For a visible redaction, we use the
symbol � /∈ {0, 1}∗, � 6=⊥.

Sanitizable Signatures. The used notation is adapted from [8].

Definition 1 (Sanitizable Signature Scheme). A SSS consists of at least
seven efficient (PPT ) algorithms SSS := (KGensig,KGensan,Sign,Sanit,Verify,
Proof, Judge):

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
public key, using the security parameter λ:

(pksig, sksig)← KGensig(1
λ), (pksan, sksan)← KGensan(1λ)

Signing. The Sign algorithm takes m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗, the
signer’s secret key sksig, the sanitizer’s public key pksan, as well as a de-
scription adm of the admissibly modifiable blocks, where adm contains the
number ` of blocks in m, as well the indices of the modifiable blocks. It out-
puts the message m and a signature σ (or ⊥, indicating an error):

(m,σ)← Sign(1λ,m, sksig,pksan,adm)

Sanitizing. Algorithm Sanit takes a message m = (m[1], . . . ,m[`]), m[i] ∈
{0, 1}∗, a signature σ, the public key pksig of the signer and the secret key
sksan of the sanitizer. It modifies the message m according to the modifi-
cation instruction mod, which contains pairs (i,m[i]′) for those blocks that
shall be modified. Sanit calculates a new signature σ′ for the modified message
m′ ← mod(m). Then Sanit outputs m′ and σ′ (or ⊥, indicating an error):

(m′, σ′)← Sanit(1λ,m,mod, σ,pksig, sksan)

Verification. The Verify algorithm outputs a decision d ∈ {true, false} ver-
ifying the validity of a signature σ for a message m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗ with respect to the public keys:

d← Verify(1λ,m, σ,pksig,pksan)

Proof. The Proof algorithm takes as input the security parameter, the secret
signing key sksig, a message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially many) additional message-signature
pairs {(mi, σi) | i ∈ N} and the public key pksan. It outputs a string π ∈



{0, 1}∗ (or ⊥, indicating an error):
π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N},pksan)

Judge. Algorithm Judge takes as input the security parameter, a message m =
(m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and a valid signature σ, the public keys of
the parties and a proof π. It outputs a decision d ∈ {Sig, San,⊥} indicating
whether the message-signature pair has been created by the signer or the san-
itizer (or ⊥, indicating an error): d← Judge(1λ,m, σ,pksig,pksan, π)

To have an algorithm actually able to derive the accountable party for a
specific block m[i], Brzuska et al. introduced the additional algorithm Detect [11].
The algorithm Detect is not part of the original SSS description by Ateniese
et al., since it is not required for the purpose of a SSS [2, 8]. However, we
require this algorithm later on to define (weak) blockwise non-interactive public
accountability (See Def. 6).

Definition 2 (SSS Detect). On input of the security parameter λ, a message-
signature pair (m,σ), the corresponding public keys pksig and pksan, and a block
index 1 ≤ i ≤ `, Detect outputs the accountable party (San or Sig) for block i
(or ⊥, indicating an error):

d← Detect(1λ,m, σ,pksig,pksan, i), d ∈ {San, Sig,⊥}

We require the usual correctness properties to hold. In particular, all gen-
uinely signed or sanitized messages are accepted, while every genuinely created
proof π by the signer leads the judge to decide in favor of the signer. For a
formal definition of correctness, refer to [8, 11]. It is also required by every SSS
that adm is always correctly recoverable from any valid message-signature pair
(m,σ). This accounts for the work done in [21]. Jumping ahead, we want to em-
phasize that an SSS with weak non-interactive public accountability requires
that Judge detects any sanitization on input of an empty proof π =⊥. Formal
definitions of the security properties in a game-based manner follow.

Redactable Signatures. The following notation is derived from [38].

Definition 3 (Redactable Signature Schemes). An RSS consists of four
efficient algorithms RSS := (KeyGen,Sign,Verify,Redact):

KeyGen. The algorithm KeyGen outputs the public key pk and private key sk of
the signer, where λ denotes the security parameter:

(pk, sk)← KeyGen(1λ)

Sign. The algorithm Sign gets as input the secret key sk and the message m =
(m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗: (m,σ)← Sign(1λ, sk,m)

Verify. The algorithm Verify outputs a decision d ∈ {true, false}, indicating
the validity of the signature σ, w.r.t. pk, protecting m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗: d← Verify(1λ,pk,m, σ)

Redact. The algorithm Redact takes as input the message m = (m[1], . . . ,m[`]),
m[i] ∈ {0, 1}∗, the public key pk of the signer, a valid signature σ and a



Experiment UnforgeabilityRSS,A(λ)

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ASign(1λ,sk,·)(pk)
let i = 1, . . . , q denote the queries to Sign

return 1, if

Verify(1λ, pk,m∗, σ∗) = 1 and
for all i = 1, . . . , q : m∗ /∈ span�(mi)

Fig. 1. Unforgeability for RSS

list of indices mod of blocks to be redacted. It returns a modified message
m′ ← mod(m) (or ⊥, indicating an error):

(m′, σ′)← Redact(1λ,pk,m, σ,mod)

We denote the transitive closure of m as span�(m). This set contains all
messages derivable from m w.r.t. Redact

As for SSSs, the correctness properties for RSSs are required to hold as
well. Thus, every genuinely signed or redacted message must verify. Refer to [7]
for a formal definition of correctness.

Security Models. This section contains the required security properties and
models. They are derived from [8, 21, 38], but have been significantly altered.
The requirement that adm is always correctly reconstructible is captured within
the unforgeability and immutability definitions. Note, following [8, 11, 12], an
SSS must at least be unforgeable, immutable, accountable and private to be
meaningful. Hence, we assume that all used SSSs fulfill these four fundamental
security requirements; if these requirements are not met, the construction is not
considered an SSS and the results of this paper are not directly applicable.
On the other hand, an RSS must be unforgeable and (weakly) private to be
meaningful [7].

Unforgeability. No one should be able to compute a valid signature on a message
not previously issued without having access to any private keys [7]. This is
analogous to the unforgeability requirement for standard signature schemes [20],
except that it excludes valid redactions from the set of forgeries for RSSs, while
for SSSs no alterations are allowed.

Definition 4 (RSS Unforgeability). We say that an RSS is unforgeable, if
for any efficient (PPT) adversary A the probability that the game depicted in
Fig. 1 returns 1, is negligible (as a function of λ).

Definition 5 (SSS Unforgeability). We say an SSS is unforgeable, if for
any efficient (PPT) adversary A the probability that the game depicted in Fig. 2
returns 1, is negligible (as a function of λ).



Experiment UnforgeabilitySSS,A(λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(m∗, σ∗)← ASign(1λ,·,sksig,··· )Proof(1λ,·,sksig,··· ),Sanit(1λ,··· ,sksan)(pksig, pksan)
let (mi,admi, pksan,i) and σi for i = 1, 2, . . . q
denote the queries/answers to/by the oracle Sign,
let (mj ,modj , σj , pksig,j) and (m′j , σ

′
j) for j = q + 1, . . . , r

denote the queries/answers to/by the oracle Sanit.
return 1, if

Verify(1λ,m∗, σ∗, pksig, pksan) = true and
for all q = 1, . . . q : (pksan,m

∗,adm∗) 6= (pksan,i,mi,admi) and
for all j = q + 1, . . . , r : (pksig,m

∗,adm∗) 6= (pksig,j ,mi,admi)

Fig. 2. Unforgeability for SSS

Experiment WBlockPubAccSSS,A(λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(m∗, σ∗)← ASign(1λ,·,sksig,pksan,·),Proof(1
λ,·,sksig,··· ,pksan)(pksan, sksan, pksig)

let (mi,admi) and (mi, σi) for i = 1, . . . , k be queries/answers to/by Sign
return 1, if

Verify(1λ,m∗, σ∗, pksig, pksan) = true and

∃q, s.t. Detect(1λ,m∗, σ∗, pksig, pksan, q) = Sig and
for all i = 1, . . . , k : (m∗[q], σ∗) 6= (mi[q], σi).

return 0

Fig. 3. Weak Blockwise Non-Interactive Public Accountability for SSS

Weak Blockwise Non-Interactive Public Accountability. The basic idea is that an
adversary, i.e., the sanitizer, has to be able to make the Detect algorithm accuse
the signer, if it did not sign the specific block. Moreover, in our definition, the
signer is not considered adversarial, contrary to Brzuska et al. [11]. An example
for a weakly blockwise non-interactive publicly accountable SSS is the scheme
introduced by Brzuska et al. [11]. We explain the reasons for our adversary model
after the introduction of all required security properties. Note, pksan is fixed for
the oracles. For SSSs, we also have sanitization and proof oracles [8].

Definition 6 (SSS Weak Blockwise Non-Interactive Public Account-
ability). A sanitizable signature scheme SSS is weakly non-interactive publicly
accountable, if Proof = ⊥, and if for any efficient algorithm A the probability
that the experiment given in Fig. 3 returns 1 is negligible (as a function of λ).

Privacy. No one should be able to gain any knowledge about sanitized parts
without having access to them [8]. This is similar to the standard indistinguisha-
bility notion for encryption schemes. The basic idea is that the oracle either signs
and sanitizes the first message (m0) or the second (m1), while the resulting mes-
sage must be the same for each input. The adversary must not be able to decide
which input message was used.



Experiment PrivacySSS,A(λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(1λ,sksig,··· ),Proof(1λ,sksig,··· ),LoRSanit(··· ,sksig,sksan,b),Sanit(1λ,··· ,sksan)(pksig, pksan)

where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) 6= mod1(m1), return ⊥
if mod0 6⊆ adm ∨ mod1 6⊆ adm, return ⊥
let (m,σ)← Sign(1λ,mb, sksig, pksan,adm)

return (m′, σ′)← Sanit(1λ,m,modb, σ, pksig, sksan)
return 1, if a = b

Fig. 4. Standard Privacy for SSS

Definition 7 (SSS Standard Privacy). We say that an SSS is (standard)
private, if for any efficient (PPT) adversary A the probability that the game
depicted in Fig. 4 returns 1, is negligibly close to 1

2 (as a function of λ).

The aforementioned privacy definition [8] only considers outsiders as adver-
sarial. However, we require that even insiders, i.e., sanitizers, are not able to win
the game. Note, the key sksan is not generated by the adversary, only known
to it. We explain the need for this alteration after the next definitions. For our
definition of strong privacy, the basic idea remains the same: no one should be
able to gain any knowledge about sanitized parts without having access to them,
with one exception: the adversary is given the secret key sksan of the sanitizer.
This notion extends the definition of standard privacy (Fig. 4) to also account
for parties knowing the secret sanitizer key sksan. In a sense, this definition cap-
tures some form of “forward-security”. Examples for strongly private SSSs are
the schemes introduced by Brzuska et al. [9, 11, 12], as their schemes are per-
fectly private. As the adversary now knows sksan, it can trivially simulate the
sanitization oracle itself.

Definition 8 (SSS Strong Privacy). We say that an SSS is private, if for
any efficient (PPT) adversary A the probability that the game depicted in Fig. 5
returns 1, is negligibly close to 1

2 (as a function of λ).

In a weakly private RSS, a third party can derive which parts of a message
have been redacted without gathering more information, as redacted blocks are
replaced with �, which is visible. The basic idea is that the oracle either signs
and sanitizes the first message (m0) or the second (m1). As before, the resulting
redacted message m′ must be the same for both inputs, with one additional
exception: the length of both inputs must be the same, while � is considered
part of the message. For strong privacy, this constraint is not required. We want
to emphasize, that Lim et al. define weak privacy in a different manner: they
prohibit access to the signing oracle [31]. Our definition allows for such adaptive



Experiment SPrivacySSS,A(λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(1λ,·,sksig,pksan,·),Proof(1

λ,sksig,··· ,pksan),LoRSanit(··· ,sksig,sksan,b)(pksig, pksan, sksan)
where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) 6= mod1(m1), return ⊥
if mod0 6⊆ adm ∨ mod1 6⊆ adm, return ⊥
let (m,σ)← Sign(1λ,mb, sksig, pksan,adm)

return (m′, σ′)← Sanit(1λ,m,modb, σ, pksig, sksan)
return 1, if a = b

Fig. 5. Strong Privacy for SSS

Experiment WPrivacyRSS,A(λ)

(pk, sk)← KeyGen(1λ)
b← {0, 1}
d← ASign(1λ,sk,·),LoRRedact(··· ,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) 6= mod1(m1), return ⊥
Note: redacted blocks are denoted �, which are considered part of m

(m,σ)← Sign(1λ, sk,mb)

return (m′, σ′)← Redact(1λ, pk,m, σ,modb).
return 1, if b = d

Fig. 6. Weak Privacy for RSS

queries. Summarized, weak privacy only makes statements about blocks, not
the complete message. See [28] for possible attacks. Weakly private schemes,
following our definition, are, e.g., [22, 28]. In their schemes, the adversary is able
to pinpoint the indices of the redacted blocks, as � is visible.

Definition 9 (RSS Weak Privacy). We say that an RSS is weakly private,
if for any efficient (PPT) adversary A the probability that the game depicted in
Fig. 6 returns 1, is negligibly close to 1

2 (as a function of λ).

The next definition is similar to weak privacy. However, redacted parts are
not considered part of the message.

Definition 10 (RSS Strong Privacy). We say that an RSS is strongly pri-
vate, if for any efficient (PPT) adversary A the probability that the game de-
picted in Fig. 7 returns 1, is negligibly close to 1

2 (as a function of λ). This is
the standard definition of privacy [7].

Immutability. The idea behind immutability is that an adversary generating the
sanitizer key must only be able to sanitize admissible blocks. Hence, immutability
is the unforgeability requirement for the sanitizer.



Experiment SPrivacyRSS,A(λ)

(pk, sk)← KeyGen(1λ)
b← {0, 1}
d← ASign(1λ,sk,·),LoRRedact(··· ,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) 6= mod1(m1), return ⊥
Note: redacted blocks are not considered part of the message

(m,σ)← Sign(1λ, sk,mb)

return (m′, σ′)← Redact(1λ, pk,m, σ,modb).
return 1, if b = d

Fig. 7. Strong Privacy for RSS

Experiment ImmutabilitySSS,A(λ)

(pksig, sksig)← KeyGen(1λ)

(m∗, σ∗, pk∗)← ASign(1λ,·,sksig,·,·),Proof(1λ,sksig,··· )(pksig)
let (mi,admi, pksan,i) and σi for i = 1, . . . , q be queries/answers to/by Sign
return 1, if:

Verify(1λ,m∗, σ∗, pksig, pk
∗) = true and

for all i = 1, 2, . . . , q : (pk∗,m∗[ji],adm
∗) 6= (pksan,i,mi[ji],admi) and

if (m∗[ji],admi, pksan,i) 6= (mi[ji],admi, pksan,i), also ji /∈ admi
where shorter messages are padded with ⊥

Fig. 8. Immutability for SSS

Definition 11 (SSS Immutability). A sanitizable signature scheme SSS is
immutable, if for any efficient algorithm A the probability that the experiment
from Fig. 8 returns 1 is negligible (as a function of λ) [8].

For weak immutability, an adversary knowing, but not generating, the san-
itizer key must only be able to sanitize admissible blocks. Hence, once more,
pksan is fixed.

Definition 12 (SSS Weak Immutability). A sanitizable signature scheme
SSS is weakly immutable, if for any efficient algorithm A the probability that
the experiment given in Fig. 9 returns 1 is negligible (as a function of λ).

Interestingly, weak immutability is enough for our construction to be un-
forgeable, while for an RSS used in the normal way, this definition is obviously
not suitable at all due to accountability reasons. We omit the security parameter
λ for the rest of the paper to increase readability.

Implications and Separations. Let us formulate our first theorems:

Theorem 1. There exists an RSS which is only weakly private.



Experiment WImmutabilitySSS,A(λ)

(pksig, sksig)← KeyGen(1λ)

(pksan, sksan)← KeyGen(1λ)

(m∗, σ∗)← ASign(1λ,·,sksig,pksan,·),Proof(1
λ,sksig,··· ,pksan,·)(pksig, pksan, sksan)

let (mi,admi) and σi for i = 1, 2, . . . q be queries/answers to/by Sign
return 1, if:

Verify(1λ,m∗, σ∗, pksig, pksan) = true and
∀i, i = 1, 2, . . . , q : (m∗[ji],adm

∗) 6= (mi[ji],admi) and
if (m∗[ji],admi) 6= (mi[ji],admi), also ji /∈ admi
where shorter messages are padded with ⊥

Fig. 9. Weak Immutability for SSS

Proof. See [22, 24, 25, 31] for examples.

Theorem 2. Every SSS which is immutable, is also weakly immutable.

Proof. Trivially implied: A generates the sanitizer key pair honestly.

Theorem 3. There exists an SSS which is private, but not strongly private.

Th. 3 is proven in App. B.

Definition of a Secure RSS and a Secure SSS. We want to explicitly
emphasize that accountability, as defined for SSSs in [8], has not been defined for
RSSs yet, as Redact is a public algorithm. Hence, no secret sanitizer key(s) are
required for redactions. To circumvent this inconsistency, we utilize a standard
SSS and let the signer generate the sanitizer key sksan, attaching it to the public
key of the signer. This also explains why pksan is fixed in our security model.
If any alteration without sksan is possible, the underlying SSS would obviously
be forgeable. As we have defined that this is a non-secure SSS, we omit this
case. Hence, the secret sksan becomes public knowledge and can be used by every
party. This is the reason why the adversary only knows sksig, but cannot generate
it. We require these, at first sight very unnatural, restrictions to stay consistent
with the standard model of SSSs as formalized in [8]. Moreover, the signer is
generally not considered an adversarial entity in RSSs [7]. If other notions or
adversary models are used, the results may obviously differ. In App. A, we show
that any SSS which only achieves standard privacy, is not enough to construct
a weakly private RSS and additional impossibility results.

3 Generic Transformation

This section presents the generic transform. In particular, we provide a generic
algorithm which transforms any weakly immutable, strongly private, and weakly
blockwise non-interactive publicly accountable SSS into an unforgeable and
weakly private RSS.



Outline. The basic idea of our transform is that every party, including the
signer, is allowed to alter all given blocks. The verification procedure accepts
sanitized blocks, if the altered blocks are �. � is treated as a redacted block.
Hence, redaction is altering a given block to a special symbol. As we have defined
that an SSS only allows for strings m[i] ∈ {0, 1}∗, we need to define � := ∅
and m[i] ← 0, if m[i] = ∅ and m[i] ← m[i] + 1 else to codify the additional
symbol �. Here, ∅ expresses the empty string. Hence, we remain in the model
defined. Moreover, this is where weak blockwise non-public interactive public
accountability comes in: the changes to each block need to be detectable to
allow for a meaningful result, as an SSS allows for arbitrary alterations. As �
is still visible, the resulting scheme is only weakly private, as statements about
m can be made. This contradicts our definition of strong privacy for RSSs.
Moreover, as an RSS allows every party to redact blocks, it is obvious that
sksan must be known to every party, including the signer. Therefore, we need a
strongly private SSS to achieve our definition of weak privacy for the RSS, as
proven in App. A.

Construction 1 Let SSS := (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge,
Detect) be a secure SSS. Define RSS := (KeyGen,Sign,Verify,Redact) as fol-
lows:

Key Generation: Algorithm KeyGen generates on input of the security param-
eter λ, a key pair (pksig, sksig) ← SSS.KGensig(1λ) of the SSS, and also a

sanitizer key pair (pksan, sksan) ← SSS.KGensan(1λ). It returns (sk,pk) =
(sksig, (sksan,pksan,pksig))

Signing: Algorithm RSS.Sign on input m ∈ {0, 1}∗, sk,pk, sets adm = (1, . . . , `)
and computes σ ← SSS.Sign(1λ,m, sksig,pksan,adm). It outputs: (m,σ)

Redacting: Algorithm RSS.Redact on input message m, modification instruc-
tions mod, a signature σ, keys pk = (sksan,pksan,pksig), first checks if σ
is a valid signature for m under the given public keys using RSS.Verify.
If not, it stops outputting ⊥. Afterwards, it sets mod′ = {(i,�) | i ∈
mod}. In particular, it generates a modification description for the SSS
which sets block with index i ∈ mod to �. Finally, it outputs (m′, σ′) ←
SSS.Sanit(1λ,m,mod′, σ,pksig, sksan)

Verification: Algorithm RSS.Verify on input a message m ∈ {0, 1}∗, a signature
σ and pk first checks that adm = (1, . . . , `) and that σ is a valid signature
for m under the given public keys using SSS.Verify. If not, it returns false.
Afterwards, for each i for which SSS.Detect(1λ,m, σs,pksig,pksan, i) returns
San, it checks that m[i] = �. If not, it returns false. Else, it returns true.
One may also check, if sksan is correct and that all m[i] are sanitizable, if
required.

Theorem 4 (Our Construction is Secure). If the utilized SSS is weakly
blockwise non-interactive publicly accountable, weakly immutable and strongly
private, the resulting RSS is weakly private, but not strongly, and unforgeable.

Th. 4 is proven in App. B.



As RSSs allow for removing every block, we require that adm = (1, . . . , `).
This rules out cases where a signer prohibits alterations of blocks. This con-
straint can easily be transformed into the useful notion of consecutive disclosure
control [32, 38].

4 Conclusion and Future Work

This paper presents a method to transform a single instantiation of an SSS into
an RSS. In detail, if we use one SSS instantiation, an emulation of an RSS
can only be achieved, if the SSS’s security is strengthened, raising it above
the existing standard. The resulting emulated RSS offers only weaker privacy
guarantees. Moreover, we have argued rigorously that the opposite implication is
not possible. Thus, noRSS can be transformed into an unforgeable SSS. Hence,
RSSs and SSSs are indeed two different cryptographic building blocks, even if
they achieve to define and delegate authorized modifications of signed messages.
Currently, the number of SSSs achieving the new security requirements needed
to securely emulate an RSS is still low.

For the future, we suggest to focus on implementing and standardizing an
SSS secure enough to emulate RSSs, to have one universal building block. In
the meantime we advice to use dedicated RSS algorithms if only redactions are
needed and a SSS algortihm. Of course, you are advised to check current work
to ensure the cryptographic strength of the constructions.

Cryptographically, remaining open questions are: how to formally define ac-
countability for RSSs, to identify if the interesting privacy properties of unlink-
ability for SSS [10, 12] will carry forward when transformed into an RSS, and
to further research how RSS and SSSs can be combined.
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36. H. C. Pöhls, K. Samelin, and J. Posegga. Sanitizable Signatures in XML Signature
- Performance, Mixing Properties, and Revisiting the Property of Transparency.
In ACNS, volume 6715 of LNCS, pages 166–182. Springer, 2011.
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38. K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. Redactable
signatures for independent removal of structure and content. In ISPEC, volume
7232 of LNCS, pages 17–33. Springer, 2012.

39. D. Slamanig and S. Rass. Generalizations and extensions of redactable signatures
with applications to electronic healthcare. In Communications and Multimedia
Security, pages 201–213, 2010.

40. R. Steinfeld and L. Bull. Content extraction signatures. In ICISC. Springer Berlin
/ Heidelberg, 2002.

41. T. H. Yuen, W. Susilo, J. K. Liu, and Y. Mu. Sanitizable signatures revisited. In
CANS, pages 80–97, 2008.

42. D. H. Yum, J. W. Seo, and P. J. Lee. Trapdoor sanitizable signatures made easy.
In ACNS, ACNS’10, pages 53–68, Berlin, Heidelberg, 2010. Springer.

A Requirements to Transform a SSS into a RSS

In this section, we show that standard private SSSs are not enough to build
weakly private RSSs. Moreover, we prove that weak blockwise non-interactive
public accountability is required to build an unforgeable RSS. To formally ex-
press this intuitive goals, we need Theorems 5 and 6.

Theorem 5 (Any non strongly private SSS results in a non-weakly
private RSS). If the transformed SSS is not strongly private, the resulting
RSS is not weakly private.

Proof. Let A be an adversary winning the strong privacy game as defined in
Fig. 5. We can then construct an adversary B, which wins the weak privacy
game as defined in Fig. 6, using A as a black-box:

1. B receives the following keys from the challenger: pksan, sksan, pksig and for-
wards them to A



2. B simulates the signing oracle using the oracle provided
3. Eventually, A returns its guess b∗

4. B outputs b∗ as its own guess

Following the definitions, the success probability of B equals the one of A. This
proves the theorem.

Theorem 6 (No Transform can Result in a Strongly Private RSS).
There exists no algorithm which transforms a secure SSS into a strongly private
RSS.

Proof. Once again, every meaningful SSS must be immutable, which implies
weak immutability due to Th. 2. Hence, we do not make any statements about
schemes not weakly immutable. We show that any transform T achieving this
property uses a SSS ′ which is not weakly immutable. Let RSS ′ denote the
resulting RSS. We can then derive an algorithm which uses RSS ′ to break the
weak immutability requirement of the underlying SSS in the following way:

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to A

2. A transforms the SSS into RSS ′ given the transform T
3. A calls the oracle SSS.Sign with a message m = (1, 2)
4. A calls RSS ′.Redact with mod = (1)
5. If the resulting signature σ does not verify, abort
6. A outputs (m′, σSSS) of the underlying SSS

As `m 6= `mod(m), (mod(m), σSSS) breaks the weak immutability requirement
of the SSS. Moreover, as hiding redacted parts of a message is essential for
strong privacy, no algorithm exists, which transforms a weakly immutable SSS
into a strongly private RSS, as adm needs to be correctly recoverable. This
proves the theorem. This concrete example is possible, as we only use required
behavior.

Theorem 7 (Weak Blockwise Non-Interactive Public Accountability
is Required for any Transform T ). For any transformation algorithm T ,
the utilized SSS must be weakly blockwise non-interactive publicly accountable
to result in an unforgeable RSS.

Proof. Let RSS ′ be the resulting RSS from the given SSS. Perform the fol-
lowing steps to show that the used SSS is not weakly blockwise non-interactive
publicly accountable. In particular, let A be an adversary winning the unforge-
ability game, which is used by B to break the weak blockwise non-interactive
public accountability of the used SSS.

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to B

2. B forwards all received keys to A
3. A transforms the SSS into RSS ′ given the transform T



4. Any calls to the signing oracle by A are answered genuinely by B using its
own signing oracle

5. Eventually, A returns a tuple (m,σRSS) to B
6. If the resulting signature does not verify or does not win the unforgeability

game, A and therefore also B abort
7. B outputs the underlying message-signature pair (m′, σSSS′)

Following Fig. 3, (m′, σSSS′) breaks the weak blockwise non-interactive public
accountability requirement of the SSS, as there exists a block, which has not
been signed by the signer, while the signer is accused by Detect. Moreover, the
success probabilities are equal. The contrary, i.e., if the SSS used is not weakly
blockwise non-interactive publicly accountable, the proof is similar. To achieve
the correctness requirements, our accountability definition must hold blockwise.

Theorem 8 (No Unforgeable RSS can be Transformed into an SSS).
There exists no transform T , which converts an unforgeable RSS into an un-
forgeable SSS.

Proof. Let SSS ′ be the resulting SSS. Now perform the following steps to ex-
tract a valid forgery of the underlying RSS:

1. The challenger generates a key pair for an RSS. It passes pk to A.
2. A transforms RSS into SSS ′ given the transform T
3. A calls the oracle RSS.Sign with a message m = (1, 2) and simulates
SSS ′.Sign with adm = (1)

4. A calls SSS ′.Sanit with mod = (1, a), a ∈R {0, 1}λ.
5. If the resulting signature does not verify, abort
6. Output the resulting signature σRSS of the underlying RSS

As (a, 2) /∈ span�(m), ((a, 2), σRSS) is a valid forgery of the underlying RSS.
Note, this concrete counterexample is possible, as only required behavior is used.

B Proofs of Theorem 3 and 4

Th. 3: There exists an SSS which is private, but not strongly private.

Proof. We do so by modifying an arbitrary existing strongly private SSS. Let
SSS = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) be an arbitrary private
SSS. We alter the scheme as follows:

– KGen′sig := KGensig
– KGen′san := KGensan, while an additional key pair for a IND-CCA2-secure

encryption scheme ENC is generated.
– Sign′ is the same as Sign, but it appends the encryption e of a digest

of original message to the final signature, i.e., σ′ = (σ, e), where e ←
ENC(pksan,H(m)) and H some cryptographic hash-function.

– Sanit′ is the same as Sanit, while it first removes the encrypted digest from
the signature, appending it to the resulting signature.



– Verify′, Proof′ and Judge′ work the same as their original counterparts, but
removing the trailing e from the signature before proceeding.

Clearly, a sanitizer holding the corresponding secret key for ENC, can distinguish
between messages generated by the signer and the sanitizer using the information
contained in the signature σ. Without sksan, this information remains hidden due
to the IND-CCA2 encryption.

Th. 4: Our Construction is Secure. We have to show that the resulting
RSS is unforgeable and weakly private, but not strongly.

Proof. We prove each property on its own.

I) Unforgeability. Let A be an algorithm breaking the unforgeability of the
resultingRSS. We can then construct an algorithm B which breaks the weak
blockwise non-interactive public accountability of the utilized SSS. To do
so, B simulates A’s environment in the following way:
1. B receives pksan, sksan, pksig and forwards them to A
2. B forwards every query to its own signing oracle
3. Eventually, A outputs a tuple (m∗, σ∗)
4. If (m∗, σ∗) does not verify or is trivial, abort
5. B outputs (m∗, σ∗)
m cannot be derived from any queried message, with the exception of m[i] =
� for any index i. Hence, ∃i : m[i] 6= �, which has not been signed by the
signer. The accepting verification requires that Sig = Detect(1λ,m∗, σ∗, pksig, pksan).
Therefore, (m∗, σ∗) breaks the weak blockwise non-interactive publicly ac-
countability. The success probability of B equals the one of A.

II) Weak Privacy. To show that our scheme is weakly private, we only need to
show that an adversary A cannot derive information about the prior content
of a contained block m[i], as � is considered part of the resulting message
m′ and all other modifications result in a forgeable RSS. Let A winning the
weak privacy game. We can then construct an adversary B which breaks the
strong privacy game in the following way:
1. B receives pksan, sksan, pksig and forwards them to A
2. B forwards every query to its own oracles
3. Eventually, A outputs its guess b∗

B outputs b∗ as its own guess. The oracle requires that mod1(m1) = mod(m2),
disregarding �. Note, the messages are the same. Hence, the success proba-
bility of B is the same as A’s. This proves the theorem.

III) No Strong Privacy. Due to the above, we already know that our scheme is
weakly private. Hence, it remains to show that it is not strongly private. As
a redaction leaves a visible special symbol, i.e., �, an adversary can win the
strong privacy game in the following way: Generate two messages m0,m1,
where m1 = (m0, 1). Hence, `0 < `1, while m0 is a prefix of m1. Afterwards,
it requests that m1[`1] is redacted, i.e., mod1 = (`1) and mod0 = (). Hence, if
the oracle chooses b = 0, it will outputm2 = m0 and for b = 1,m2 = (m1,�).
Hence, the adversary wins the game, as (m1,�) 6= m0.


