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Abstract

A new performance and performability modeling tool is introduced in this paper. PENE-
LOPE is the first tool which incorporates evaluation and optimization algorithms. It is the
result of a combination between the performability modeling concept and Markov decision
theory. Different algorithms are adopted and included in the tool under the unifying paradigm
of reconfigurability as the basis for adaptation and optimization. In addition to transient and
steady-state performability measures, also transient and stationary control functions can be
computed and graphically presented. Model specification and specification of transient or sta-
tionary control functions can be separately performed and deliberately combined with each
other. Besides providing a new modeling paradigm, the tool supports model creation, exper-
imentation, storage and presentation of results by means of an easily usable interface and an

integrated model data base system.

1 Introduction

During the last decade there has been an increasing interest in performability
modeling [14]. The development of software tools supporting performability
modeling and analysis has been an active area of research.

Metaphor [4], developed 1984, was the first tool for performability modeling.
It addressed only a limited set of Markov models; input and output were textual.
The tool SPNP [2] is a stochastic Petri nets package, which supports specifi-
cation, generation, and solution of continuous time Markov chains (CTMCs).
Steady-state, transient, and cumulative performability measures, defined by
Markov reward models (MRMs), can be computed. The model description is
done via C. The tool UltraSAN [3] is based on stochastic activity networks. In
addition to numerical algorithms, UltraSAN provides also simulation methods.
Surf-2 [1] has been developed for dependability and performability evaluation.
Models can either be MRMs or generalized stochastic Petri nets. SPNP, Ultra-
SAN and Surf-2 provide an output in tabular form. Additionally, Surf-2 allows a
graphical representation of the results. Deterministic and general type time dis-
tributions are complementing exponential distribution in DSPNexpress [7] and
in other work. Many more tools do exist, most of them being covered in the
overview paper by Haverkort and Niemegeers [5].

This paper describes the new software package PENELOPE [10]. PENE-
LOPE is the first tool which incorporates evaluation and optimization al-
gorithms. It can be applied for the integrated computation of perfor-



mance/performability functions and of optimal control strategies. It constitutes
the implementation of the concept of a combination between performability mod-
eling and Markov decision theory [13].

In addition to transient and steady-state performability measures, also tran-
sient and steady-state control functions can be computed and graphically pre-
sented. Model specification and specification of transient or steady-state control
structure can also be separately performed and deliberately combined with each
other. This allows the immediate comparison of the impact of various control
strategies for a given model on the resulting performance measures.

The specification of control strategies is built on the paradigm of reconfigur-
ability [8, 9]. The intuition behind is, decisions must be made to reconfigure or
not to reconfigure a system from one state to another in order to optimize a given
performance/performability measure. The mapping of the reconfiguration op-
tions on internal model representations suitable for the optimization algorithms
and the application of appropriate algorithms is hidden from the user.

PENELOPE provides a friendly usable interface for model generation and
experimentation. In particular, the creation of model variations is supported as
well as the execution of series of experiments and the integrated presentation of
the results of those experiments. This includes the presentation of performability
functions and, in particular, the presentation of control strategies. No interfer-
ence of the user i1s necessary to prepare the graphical presentation of control
strategies and performability functions. The control functions are automatically
related to the original specification of reconfigurability options and series of ex-
periments. Thus, the execution of an optimization study can be considered as a
meta-experiment that comprises many single experiments which are related to
each other.

This paper 1s organized as follows. Section 2 contains a description of the
general functionality of PENELOPE. Section 3 illustrates by means of a simple
example important features of the tool, such as model generation, experiment
set-up and execution, or presentation of results. Section 4 concludes the paper.

2 Description of PENELOPE

PENELOPE is based on the theory of extended Markov reward models
(EMRMs) [8, 9]. Tt offers a modeling methodology that combines MRMs and
Markov decision processes [13].

PENELOPE allows to create parameterized models of arbitrary finite size
and to provide automatically the models with concrete values. To each pa-
rameter an arbitrary set of concrete values can be allocated. For each possible
combination of parameter values, PENELOPE performs an experiment. Whole
series of experiment can thus be easily specified and executed.

Additionally, PENELOPE offers the following functionalities: automated
checking of model consistency, mechanism for hierarchical and iterative mod-
eling, graphical preparation of experimental results, interactive preparation of
computed strategies, printing of models and results for documentation purposes.



The mathematical background of EMRMs will be briefly presented in this
section as far as it is necessary to introduce the analysis techniques of our tool.
Let Z = {Z(t),t > 0} denote a CTMC with finite state space C. To each state
s € C a real-valued reward rate r(s), r : C — IR, is assigned, such that if the
CTMC is in state Z(t) € C at time ¢, then the instantaneous reward rate of the
CTMC at time t is defined as X (t) = rz(). In the time horizon [0,%) the total

reward Y (t) = fot X (r)d7 is accumulated. Note that X(¢) and Y () depend on
Z(t) and on an initial state. The distribution function ¥(y,?) = P(Y(t) < y) is
called the performability. For ergodic models the instantaneous reward rate and
the time averaged total reward converge in the limit to the same overall reward
rate lime_, oo E[X (t)] = limy_,oo TE[Y (t)] = E[X].

EMRMs provide a framework for the combined evaluation and optimization
of reconfigurable systems by introducing some new features for MRMs. A re-
configuration arc, which can be placed between an arbitrary Markov state and
any other state in a model, specifies an optional, instantaneous state transition
that can be controlled for optimization. Zero, one, or more reconfiguration arcs
may originate from any Markov state. The resulting strategy provides optimal
reconfiguration decisions for each option in the model. At every point of time a
different decision is possible for each reconfiguration arc. A strategy S(¢) com-
prises a tuple of decisions for all options in the model at a particular point of
time t, 0 <t < T. Strategies can be time dependent, S(¢), or time independent,
S =S(t).

The so-called branching states provide another feature of EMRMs. No time
1s spent in such states, but a pulse reward may be associated with them. The
introduction of branching states has motivation similar to the introduction of
immediate transitions to stochastic Petri nets [2].

Two types of methods are offered for computation of optimal strategies and
performance functions:

e Transient Optimization, where the expected accumulated reward
E[Yi(t)] is used as an optimization criterion. The algorithm which has
been introduced in earlier work [8, 9] is applied for an analysis within a
finite period of time [0,¢). Transient optimization for acyclic CTMC was
introduced and its correctness proved by Lee & Shin [6]. The algorithm
was adopted by de Meer [8] and extended to general CTMC. Additionally,
the correctness of EMRM aproach in terms of Markov decision processes

was proved. The algorithm is based on Taylor series’.

e Stationary Optimization, which is performed for an infinite time hori-
zon [0,00). As optimization criteria, we distinguish between time aver-
aged mean total reward in steady-state, E[X] = E[X;] = limy_,c0 TE[Y;(t)]
for all 4, where FE[X;] is independent of initial state ¢ for a particu-
lar strategy, and the conditional accumulated reward untid absorption,
E[Yi(00)] = limi oo E[Yi(t)], which is computed for non-ergodic models
containing absorbing and transient states. E[Y;(o0)] is dependent on initial

I Taylor series for transient analysis (without optimization) has also later been discussed by
Stewart [12].



state 7. The optimization itself is performed by deployment of variants of
value iteration or strategy ileration type methods [8], relying on numerical
algorithms such as Gaussian elimination, Gauss-Seidel iteration, succes-
sive over-relaxation (SOR), and the power method. All these methods are
implemented in the tool and can be deliberately chosen for a computation.

With X3 V5(c0), YZ»S(t)(t) denoting performability measures gained under
strategy S or S(t) respectively, a strategy S(t) is optimal, iff

E[Yis(t)(t)] > E[Yis(t) ()] ¥YS(¢) Vi  transient optimization,
E[XS] > E[X®]VS stationary optimization (ergodic),
E[Y3(c0)] > E[YS(c0)] VS Vi stationary optimization (nonergodic).

In addition to optimization, PENELOPE offers procedures for computations
of performability measures under fixed deliberately eligible strategies:
e Simulation, where model evaluations can be simulated under fixed strate-
gies.
e Transient analysis, where transient numerical evaluations can be carried
out under fixed transient or stationary strategies.

e Stationary analysis, where stationary numerical evaluations can be car-
ried out under fixed stationary strategies.

3 A Simple Example

3.1 Description

The features of PENELOPE will be demonstrated by means of a simple exam-
ple. In packet-switched networks there exists the special case that applications,
generating mixed traffic (data, video, voice etc.) with different quality-of-service
requirements, are communicating via a single switching node. This 1s a typical
situation in particular in a local-area environment, where the switch may be
used as a PBX(Private Branch Exchange). One of the most important prob-
lems to be solved with respect to traffic management is related to congestion
control. Congestion control for real-time traffic by selectively discarding packets
has been investigated by Schulzrinne et al. [11]. We adopt a similar scenario
in a simplified setting as depicted in Fig. 1(left). n classes of packet streams
are distinguished, where the classes differ from each other with respect to re-
sponse time limits and loss thresholds. Packets are continuously fed into the
system according to independent Poisson processes with arrival rates Ay, ..., A,.
The packets are processed with rate p using the service strategy first come first
served. The problem of congestion control through discarding of last arriving
packets will be investigated.

Keeping it as simple as possible, a system with n = 2 arrival streams will be
considered. The different response time limits? of both classes are assumed to be

2We define response time as waiting time plus service time.



Figure 1: A queueing system with n classes of arriving packets (left) and the baseline model
as an EMRM (right).

proportional to the mean service time L+ with different factors. The first class is
loss-tolerant but more delay-sensitive. While having no limit for losses, the mean
response time limit of these packets is assumed to be 2 time units. There is no
use 1n keeping class one packets if their expected response time is larger than
that, that is, if there are already at least two packets in queue upon their arrival.
The second class is highly loss-sensitive, no packet of this class may get lost. The
less restrictive mean response time limit, on the other hand, is assumed to be %
units of time. Packets of the second class can be accepted as long as there are
at most two packets in the queue ahead of them. Since loss of class two packets
cannot be tolerated, service is assumed to be immediately stopped if such an
event occurs. The admission policies, optimizing different reward functions, will
be studied in this simple example for purpose of demonstrating the features of
the tool.

The baseline model is depicted as an EMRM in Fig. 1(right). In states Nj,
Jj €40,1,2,3}, j packets are in the system. In states R;, i € {1,2}, ¢ packets are
in the system and the last arriving packet is a packet of the first class. Whenever
the system is in state R;, a decision has to be made whether the last arriving
packet should be dropped or not. In case of a positive decision the system is
reconfigured to the corresponding state N;_;. The reconfiguration options are
graphically indicated by dashed lines in the EMRM of Fig. 1(right). If loss of a
second class packet occurs, then the absorbing state A is reached and all further
arriving packets, regardless of their class, are considered to be lost. First, we
will investigate the strategy, which maximizes the mean throughput in terms of
the number of packets served in finite time or before service interruption occurs.
Then, the strategy which minimizes the expected number of lost packets and
differences in the strategies will be discussed.

In PENELOPE the resulting model can be easily created with the help of
the graphical model editor as illustrated by Fig. 2, which is provided as part of
the user interface.

E[Y;i(t)], as a measure of accomplishment, is used as a criterion of optimiza-
tion. Series of experiments for different reward structures will be investigated.
It is interesting to compare the impact of various control strategies on the re-
sulting performance measures. As it will turn out, transient strategies yield
better performance results than stationary strategies do. In addition, the differ-
ence will be investigated between using the mean accumulated reward in finite
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Figure 2: Model editor of PENELOPE.

time as an optimization criterion and applying the mean accumulated reward
until absorption as a criterion.

3.2 Experiments
3.2.1 Maximization of Throughput

To specify the throughput per unit of time, the reward rate is defined as the
service rate times the number of active processors in each state. The resulting
reward structure is attached to Fig. 2. The set of parameters is summarized in
Tab. 1. Users can define parameter values either directly in the model editor or
in the parameter set editor, which allows one to explicitly specify an arbitrary set
of concrete values to be substituted for formal parameters. One can equivalently
specify parameter value-ranges and step widths, where for each of the resulting
values a computation will automatically be executed. Usage of the parameter
set editor is exemplified by Fig. 3(left).

| parameter | value | meaning |
A1 0.02 arrival rate of the class 1
Ag 0.02 arrival rate of the class 2
I [0.01,...,0.13] | service rate

Table 1: Set of parameters.

Using the experiment editor, which is shown in Fig. 3(right), complete series
of experiments can be specified and executed.

Transient Optimization In our example transient optimization is performed
in the time horizon [0,6000). Assuming one unit of time corresponding to
10 msec, the total arrival rate A; + A2 results in 1 packet/250 msec= 4/sec.
The time horizon would cover 1 min. The resulting dynamic control strategy,
which maximizes the throughput, is depicted in Fig. 4(left). With respect to
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Figure 3: Parameter set editor (left) and experiment editor (right).

state Ro, the two-dimensional decision space, given by the covered set of pa-
rameter values of p and the considered time interval, is partitioned into two
regions, which are divided by the curve with the label "Ry — N’ attached to it.
In the region above the curve the indicated strategy applies: A message of class
one should be discarded in favor of potentially arriving class two messages. If,
however, conditions are given such that the current situation is classified to be
in the region underneath the curve, the alternative strategy should be applied
in state Ra and class one message should not be discarded in order to maximize
the overall throughput. The region is indicated by label "Ry — R’

With respect to state R, the two-dimensional decision space comprises a
single region. Neither time nor service rate affect the curve labeled Ry — Ry’.
This means that the strategy "do not discard the last arriving packet in state Ry’
is applied in the whole decision space.

The curves, also referred to as switching curves, represent for each state the
instants of time where the strategy switches with respect to the remaining time.
For example, if the service rate is u = 0.08, that is, 1 packet/125 msec, and if
the time to go is 500 units, that is, b sec, an arriving packet of the first class
should be accepted. The point (0.08,500) is located in the region Ra — N
and R; — R;. The throughput would decrease by dropping a packet in such a
situation. The strategy reveals the following monotony: the smaller the service
rate, the less packets of the first class are accepted. Of course, the loss risk of a
second class message is higher with a decreasing service rate.

In Fig. 5, the throughput for the initial states Ny, N1, N2, and N3 is depicted
as a function of the service rate. The reward functions are computed assuming
the optimal strategy. The throughput behaves in a way which might be an-
ticipated: the higher the service rate, the higher the throughput. In the right
part of Fig. 5, it is to be seen that the system reaches the highest throughput
with the initial state N;. Note that in PENELOPE one can arbitrarily select
strategy /performance curves to be graphically presented. In Fig. 5, four curves
were selected.
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Figure 4: Transient strategies for maximizing the throughput (left) and difference graph of
throughput computed under different strategies (right).

In what follows, the impact of arrival rates Ay and As on the optimal con-
trol strategy will be investigated, while g = 0.04 will be kept fixed. For the
computations relating to the left part of Fig. 6, the arrival rate A; of class one
messages 1s varied, while As = 0.02 is kept fixed. In the right part, the arrival
rate Ay of the second class messages is varied, while Ay = 0.02 is kept fixed. It
is interesting to note that the strategy switching curves decrease with increasing
arrival rates in both cases. But the strategy as a function of A2 18 much more
sensitive to an increase of the parameter value than in the first case. If A5 is
significantly larger than A; the option to discard class one message in state Ra
i1s "nearly always” selected. Note that in state R; a message should never be

discarded.

Stationary Optimization The stationary optimization is performed for the
same parameter set as in Tab. 1. The strategy iteration with Gauss-Seidel

| service rate | strategy |
[001,,013] Ri— R
Rz — N1

Table 2: Optimal stationary strategy.

computation method is chosen due to the small size of the model. E[Y;(c0)]
is used as a criterion of optimization. The resulting strategy is summarized
in Tab. 2. It applies for the whole interval of considered service rates. If one
compares the stationary strategies in Tab. 2 with the transient strategies in
Fig. 4(left), it can be seen how they relate to each other. In the long run
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Figure 5: Throughput as a function of the service rate.

messages should always be discarded in state R and never in state R;. But in
state Rs the optimal strategy is strongly time-dependent for shorter periods of
time.

Transient Analysis PENELOPE allows to save and modify computed
strategies, or to create arbitrary new strategies, and to apply them in compu-
tations. Using this feature, it is possible to execute series of experiments under
different strategies and to compare their impact on performance. To compare,
for example, the impact of optimal transient strategies (OTS) and optimal sta-
tionary strategies (OSS) on the performance in our scenario, a transient analysis
under the OSS from Tab. 2 is performed.

For easy comparison of the results, we use another feature of PENELOPE:
the provisioning of difference graphs, which can be derived by combining arbi-
trary experiments. In Fig. 4(right), a difference graph for states Ny, N2, and N3
is depicted. Each point of this graph is a result of a subtraction a — b, where a 1s
the throughput computed under the OTS (Fig. 4 left), and & is the throughput
computed under the OSS (Tab. 2) for corresponding service rates. As is to be
seen from Fig. 4(right), no difference in performance can be observed for service
rates p < 0.04, that is, if 22222 > 1. The relative high load causes the system
to reach the absorbing state quickly, regardless of the type of optimization being
applied. Therefore, the mean accumulated throughput of the system in the time
horizon [0, 6000) is equal to the mean throughput until absorption in both cases.
If the service rate becomes sufficiently large, ¢ > 0.04, the difference strongly
increases. In other words, the higher the service rate, the better the resulting
performance becomes when adopting the OTS as opposed to the OSS.

Simulation PENELOPE also provides simulation as a method of evaluation.
Under fixed deliberately eligible strategies the behavior of the system can be sim-
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ulated for a fixed time horizon. The simulation component enhances flexibility
of the modeling tool and provides means for verification of the numerical results.

3.2.2 Minimization of Losses

The optimal strategy, which minimizes the mean number of lost class one pack-
ets, will be investigated. In order to do that, we have to modify the model
from Fig. 1(right) slightly. In Fig. 7 branching states Iy, I, and I were added.
The new resulting reward structure is summarized in table which 1s attached
to Fig. 7. We assign the reward (cost) rate A; to states in which arriving class
one packets get lost, that is, if there are at least two messages ahead, or if the
absorbing state has already been reached. Furthermore, if a reconfiguration is

| state | reward rate |

N; 0
N N
Ry 0
Ry A1
I; 1
Iy 2p1p2 + pi
A A1

i€4{0,1}, 5 €1{2,3},
= =l =1- = 22
P A1tAra P2 P PV

Figure 7: The modified EMRM model.

executed from state R; to state [;_1, ¢ € {1,2}, one packet of the first class



is dropped. This is captured by pulse rewards 1, that are assigned to branch-
ing states Iy and I;. The pulse reward assigned to state I, corresponds to the
expected number of lost class one packets, being in the system at the moment
of service disruption. Note that a minimization of E[Y;(¢)] can be realized in
PENELOPE by specifying negative reward rates.
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Figure 8: OTS for minimization of lost packets (left) and mean total loss under this OTS
(right).

The OTS is depicted in the left part of Fig. 8. If the system is in the state
Ry then the strategy is the same as the one of the throughput model: Packets
of class one are accepted for the whole time horizon and for all values of the
considered service rate parameter interval. If the system is in the state Ra,
however, two overlapping effects are observed.

If the service rate is relatively small, or equivalently, the load relatively high,
it can be observed that the smaller the service rates the less it pays off to discard
a packet. This is due to the fact that the absorbing state will be reached very
quickly under that load condition. For service rates u < 0.04, packets will
therefore never be discarded if the total loss is to be minimized.

A reverse effect dominates for larger values of p: The higher the service rate,
the less the expensive discarding is performed. The risk of reaching the absorbing
state decreases with an increasing service rate. It becomes more and more likely
that the queue will shrink again before next arrival of a class two message.
The overlapping of reverse effects results in a minimum of the switching curve
Rs — I, which partitions the decision space into regions, where alternative
strategies apply, at p & 0.055.

The right part of Fig. 8 shows the total loss in time horizon [0,6000) as a
function of the service rate for the initial states Ny, Ny, No, and N3. With
increasing service rate the E[Y;(t)] decreases. Tt is also evident, that the less
packets are initially in the queue, the less packets get lost.
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It is also interesting to investigate the impact of the OTS, minimizing the
total loss, on the performance in terms of mean accumulated throughput. We
refer back to the parameter set summarized in Tab. 1 and select again the time
horizon [0,6000) for transient analysis. With the throughput model (Fig. 1
right) and the attached reward structure from Fig. 2, a transient analysis under
the strategy from Fig. 8(left), which minimizes losses, is performed. Since this
strategy is not optimal for the throughput model, the resulting performance is
poorer than the one in Fig. 5, gained under the optimal strategy. The difference
graph is depicted in the left part of Fig. 9. Each point is a result of a subtraction
a—b, where a is the throughput computed under the transient strategy, which is
optimal for the throughput model (Fig. 4 left), and b is the throughput computed
under the transient strategy, which is optimal for the loss model (Fig. 8 left).

The right part of Fig. 9 shows results from a reverse experiment. The baseline
model is the model from Fig. 7, with the attached reward structure. a is the
mean accumulated loss computed under the transient strategy, which is optimal
for the loss model (Fig. 8 left), and b is the mean accumulated loss computed
under the transient strategy optimal for the throughput model (Fig. 4 left).

4 Conclusions

We have presented a new modeling tool which can be used for the combined
optimization and evaluation of reconfigurable systems. The important features
of PENELOPE have been introduced by means of example. In particular, it
was demonstrated how transient optimization techniques and optimization until
absorption can be applied for congestion control problems by providing selective
packet discarding strategies. It was shown how model structures and optimiza-
tion strategies could be easily combined with each other in order to compare



the impact of different control strategies on resulting performance or performa-
bility functions. While series of experiments are flexibly accomplished with a
minimum of user interference, complex control strategies can be presented in an
abstract way directly relating to a series of input models. The specification of
control options is based on the paradigm of reconfigurability. A knowledge of
details of the underlying algorithms is therefore not necessary in order to apply
optimization techniques.

For the sake of completeness we may mention that the largest optimization
models which were investigated with our tool had a size in the order of some
100,000 states.

Continuing effort is made to improve the interface further and to extend the
class of implemented numerical optimization algorithms.
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