
PENELOPEdependability evaluation and the optimization of performabilityHermann de Meer and Hana �Sev�c��kov�aDepartment of Computer Science, TKRN, University of HamburgVogt-K�olln-Str. 30, 22527 Hamburg, Germanyemail: fdemeer@,sevcikov@ro2.ginformatik.uni-hamburg.deAbstractA new performance and performability modeling tool is introduced in this paper. PENE-LOPE is the �rst tool which incorporates evaluation and optimization algorithms. It is theresult of a combination between the performability modeling concept and Markov decisiontheory. Di�erent algorithms are adopted and included in the tool under the unifying paradigmof recon�gurability as the basis for adaptation and optimization. In addition to transient andsteady-state performability measures, also transient and stationary control functions can becomputed and graphically presented. Model speci�cation and speci�cation of transient or sta-tionary control functions can be separately performed and deliberately combined with eachother. Besides providing a new modeling paradigm, the tool supports model creation, exper-imentation, storage and presentation of results by means of an easily usable interface and anintegrated model data base system.1 IntroductionDuring the last decade there has been an increasing interest in performabilitymodeling [14]. The development of software tools supporting performabilitymodeling and analysis has been an active area of research.Metaphor [4], developed 1984, was the �rst tool for performability modeling.It addressed only a limited set of Markov models; input and output were textual.The tool SPNP [2] is a stochastic Petri nets package, which supports speci�-cation, generation, and solution of continuous time Markov chains (CTMCs).Steady-state, transient, and cumulative performability measures, de�ned byMarkov reward models (MRMs), can be computed. The model description isdone via C. The tool UltraSAN [3] is based on stochastic activity networks. Inaddition to numerical algorithms, UltraSAN provides also simulation methods.Surf-2 [1] has been developed for dependability and performability evaluation.Models can either be MRMs or generalized stochastic Petri nets. SPNP, Ultra-SAN and Surf-2 provide an output in tabular form. Additionally, Surf-2 allows agraphical representation of the results. Deterministic and general type time dis-tributions are complementing exponential distribution in DSPNexpress [7] andin other work. Many more tools do exist, most of them being covered in theoverview paper by Haverkort and Niemegeers [5].This paper describes the new software package PENELOPE [10]. PENE-LOPE is the �rst tool which incorporates evaluation and optimization al-gorithms. It can be applied for the integrated computation of perfor-
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mance/performability functions and of optimal control strategies. It constitutesthe implementation of the concept of a combination between performabilitymod-eling and Markov decision theory [13].In addition to transient and steady-state performability measures, also tran-sient and steady-state control functions can be computed and graphically pre-sented. Model speci�cation and speci�cation of transient or steady-state controlstructure can also be separately performed and deliberately combined with eachother. This allows the immediate comparison of the impact of various controlstrategies for a given model on the resulting performance measures.The speci�cation of control strategies is built on the paradigm of recon�gur-ability [8, 9]. The intuition behind is, decisions must be made to recon�gure ornot to recon�gure a system from one state to another in order to optimize a givenperformance/performability measure. The mapping of the recon�guration op-tions on internal model representations suitable for the optimization algorithmsand the application of appropriate algorithms is hidden from the user.PENELOPE provides a friendly usable interface for model generation andexperimentation. In particular, the creation of model variations is supported aswell as the execution of series of experiments and the integrated presentation ofthe results of those experiments. This includes the presentation of performabilityfunctions and, in particular, the presentation of control strategies. No interfer-ence of the user is necessary to prepare the graphical presentation of controlstrategies and performability functions. The control functions are automaticallyrelated to the original speci�cation of recon�gurability options and series of ex-periments. Thus, the execution of an optimization study can be considered as ameta-experiment that comprises many single experiments which are related toeach other.This paper is organized as follows. Section 2 contains a description of thegeneral functionality of PENELOPE. Section 3 illustrates by means of a simpleexample important features of the tool, such as model generation, experimentset-up and execution, or presentation of results. Section 4 concludes the paper.2 Description of PENELOPEPENELOPE is based on the theory of extended Markov reward models(EMRMs) [8, 9]. It o�ers a modeling methodology that combines MRMs andMarkov decision processes [13].PENELOPE allows to create parameterized models of arbitrary �nite sizeand to provide automatically the models with concrete values. To each pa-rameter an arbitrary set of concrete values can be allocated. For each possiblecombination of parameter values, PENELOPE performs an experiment. Wholeseries of experiment can thus be easily speci�ed and executed.Additionally, PENELOPE o�ers the following functionalities: automatedchecking of model consistency, mechanism for hierarchical and iterative mod-eling, graphical preparation of experimental results, interactive preparation ofcomputed strategies, printing of models and results for documentation purposes.



The mathematical background of EMRMs will be brie
y presented in thissection as far as it is necessary to introduce the analysis techniques of our tool.Let Z = fZ(t); t � 0g denote a CTMC with �nite state space C. To each states 2 C a real-valued reward rate r(s), r : C ! IR, is assigned, such that if theCTMC is in state Z(t) 2 C at time t, then the instantaneous reward rate of theCTMC at time t is de�ned as X(t) = rZ(t). In the time horizon [0; t) the totalreward Y (t) = R t0 X(� )d� is accumulated. Note that X(t) and Y (t) depend onZ(t) and on an initial state. The distribution function 	(y; t) = P (Y (t) � y) iscalled the performability. For ergodic models the instantaneous reward rate andthe time averaged total reward converge in the limit to the same overall rewardrate limt!1E[X(t)] = limt!1 1tE[Y (t)] = E[X].EMRMs provide a framework for the combined evaluation and optimizationof recon�gurable systems by introducing some new features for MRMs. A re-con�guration arc, which can be placed between an arbitrary Markov state andany other state in a model, speci�es an optional, instantaneous state transitionthat can be controlled for optimization. Zero, one, or more recon�guration arcsmay originate from any Markov state. The resulting strategy provides optimalrecon�guration decisions for each option in the model. At every point of time adi�erent decision is possible for each recon�guration arc. A strategy S(t) com-prises a tuple of decisions for all options in the model at a particular point oftime t, 0 � t � T . Strategies can be time dependent, S(t), or time independent,S = S(t).The so-called branching states provide another feature of EMRMs. No timeis spent in such states, but a pulse reward may be associated with them. Theintroduction of branching states has motivation similar to the introduction ofimmediate transitions to stochastic Petri nets [2].Two types of methods are o�ered for computation of optimal strategies andperformance functions:� Transient Optimization, where the expected accumulated rewardE[Yi(t)] is used as an optimization criterion. The algorithm which hasbeen introduced in earlier work [8, 9] is applied for an analysis within a�nite period of time [0; t). Transient optimization for acyclic CTMC wasintroduced and its correctness proved by Lee & Shin [6]. The algorithmwas adopted by de Meer [8] and extended to general CTMC. Additionally,the correctness of EMRM aproach in terms of Markov decision processeswas proved. The algorithm is based on Taylor series1.� Stationary Optimization, which is performed for an in�nite time hori-zon [0;1). As optimization criteria, we distinguish between time aver-aged mean total reward in steady-state, E[X] = E[Xi] = limt!1 1tE[Yi(t)]for all i, where E[Xi] is independent of initial state i for a particu-lar strategy, and the conditional accumulated reward until absorption,E[Yi(1)] = limt!1E[Yi(t)], which is computed for non-ergodic modelscontaining absorbing and transient states. E[Yi(1)] is dependent on initial1Taylor series for transient analysis (without optimization) has also later been discussed byStewart [12].



state i. The optimization itself is performed by deployment of variants ofvalue iteration or strategy iteration type methods [8], relying on numericalalgorithms such as Gaussian elimination, Gauss-Seidel iteration, succes-sive over-relaxation (SOR), and the power method. All these methods areimplemented in the tool and can be deliberately chosen for a computation.With XS, Y Si (1), Y S(t)i (t) denoting performability measures gained understrategy S or S(t) respectively, a strategy Ŝ(t) is optimal, i�E[Y Ŝ(t)i (t)] � E[Y S(t)i (t)] 8S(t) 8i transient optimization,E[XŜ] � E[XS] 8S stationary optimization (ergodic),E[Y Ŝi (1)] � E[Y Si (1)] 8S 8i stationary optimization (nonergodic).In addition to optimization,PENELOPE o�ers procedures for computationsof performability measures under �xed deliberately eligible strategies:� Simulation, where model evaluations can be simulated under �xed strate-gies.� Transient analysis, where transient numerical evaluations can be carriedout under �xed transient or stationary strategies.� Stationary analysis, where stationary numerical evaluations can be car-ried out under �xed stationary strategies.3 A Simple Example3.1 DescriptionThe features of PENELOPE will be demonstrated by means of a simple exam-ple. In packet-switched networks there exists the special case that applications,generating mixed tra�c (data, video, voice etc.) with di�erent quality-of-servicerequirements, are communicating via a single switching node. This is a typicalsituation in particular in a local-area environment, where the switch may beused as a PBX(Private Branch Exchange). One of the most important prob-lems to be solved with respect to tra�c management is related to congestioncontrol. Congestion control for real-time tra�c by selectively discarding packetshas been investigated by Schulzrinne et al. [11]. We adopt a similar scenarioin a simpli�ed setting as depicted in Fig. 1(left). n classes of packet streamsare distinguished, where the classes di�er from each other with respect to re-sponse time limits and loss thresholds. Packets are continuously fed into thesystem according to independent Poisson processes with arrival rates �1; :::; �n.The packets are processed with rate � using the service strategy �rst come �rstserved. The problem of congestion control through discarding of last arrivingpackets will be investigated.Keeping it as simple as possible, a system with n = 2 arrival streams will beconsidered. The di�erent response time limits2 of both classes are assumed to be2We de�ne response time as waiting time plus service time.
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state reward rateN0 0Ni �Rj �A 0i 2 f1; 2; 3g; j 2 f1; 2gFigure 2: Model editor of PENELOPE.time as an optimization criterion and applying the mean accumulated rewarduntil absorption as a criterion.3.2 Experiments3.2.1 Maximization of ThroughputTo specify the throughput per unit of time, the reward rate is de�ned as theservice rate times the number of active processors in each state. The resultingreward structure is attached to Fig. 2. The set of parameters is summarized inTab. 1. Users can de�ne parameter values either directly in the model editor orin the parameter set editor, which allows one to explicitly specify an arbitrary setof concrete values to be substituted for formal parameters. One can equivalentlyspecify parameter value-ranges and step widths, where for each of the resultingvalues a computation will automatically be executed. Usage of the parameterset editor is exempli�ed by Fig. 3(left).parameter value meaning�1 0.02 arrival rate of the class 1�2 0.02 arrival rate of the class 2� [0:01; :::;0:13] service rateTable 1: Set of parameters.Using the experiment editor, which is shown in Fig. 3(right), complete seriesof experiments can be speci�ed and executed.Transient Optimization In our example transient optimization is performedin the time horizon [0; 6000). Assuming one unit of time corresponding to10 msec, the total arrival rate �1 + �2 results in 1 packet=250 msec= 4/sec.The time horizon would cover 1 min. The resulting dynamic control strategy,which maximizes the throughput, is depicted in Fig. 4(left). With respect to



Figure 3: Parameter set editor (left) and experiment editor (right).state R2, the two-dimensional decision space, given by the covered set of pa-rameter values of � and the considered time interval, is partitioned into tworegions, which are divided by the curve with the label 'R2 ! N1' attached to it.In the region above the curve the indicated strategy applies: A message of classone should be discarded in favor of potentially arriving class two messages. If,however, conditions are given such that the current situation is classi�ed to bein the region underneath the curve, the alternative strategy should be appliedin state R2 and class one message should not be discarded in order to maximizethe overall throughput. The region is indicated by label 'R2 ! R2'.With respect to state R1, the two-dimensional decision space comprises asingle region. Neither time nor service rate a�ect the curve labeled 'R1 ! R1'.This means that the strategy 'do not discard the last arriving packet in state R1'is applied in the whole decision space.The curves, also referred to as switching curves, represent for each state theinstants of time where the strategy switches with respect to the remaining time.For example, if the service rate is � = 0:08, that is, 1 packet=125 msec, and ifthe time to go is 500 units, that is, 5 sec, an arriving packet of the �rst classshould be accepted. The point (0:08; 500) is located in the region R2 ! N1and R1 ! R1. The throughput would decrease by dropping a packet in such asituation. The strategy reveals the following monotony: the smaller the servicerate, the less packets of the �rst class are accepted. Of course, the loss risk of asecond class message is higher with a decreasing service rate.In Fig. 5, the throughput for the initial states N0, N1, N2, and N3 is depictedas a function of the service rate. The reward functions are computed assumingthe optimal strategy. The throughput behaves in a way which might be an-ticipated: the higher the service rate, the higher the throughput. In the rightpart of Fig. 5, it is to be seen that the system reaches the highest throughputwith the initial state N1. Note that in PENELOPE one can arbitrarily selectstrategy/performance curves to be graphically presented. In Fig. 5, four curveswere selected.
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exibilityof the modeling tool and provides means for veri�cation of the numerical results.3.2.2 Minimization of LossesThe optimal strategy, which minimizes the mean number of lost class one pack-ets, will be investigated. In order to do that, we have to modify the modelfrom Fig. 1(right) slightly. In Fig. 7 branching states I0, I1, and I2 were added.The new resulting reward structure is summarized in table which is attachedto Fig. 7. We assign the reward (cost) rate �1 to states in which arriving classone packets get lost, that is, if there are at least two messages ahead, or if theabsorbing state has already been reached. Furthermore, if a recon�guration is
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is dropped. This is captured by pulse rewards 1, that are assigned to branch-ing states I0 and I1. The pulse reward assigned to state I2 corresponds to theexpected number of lost class one packets, being in the system at the momentof service disruption. Note that a minimization of E[Yi(t)] can be realized inPENELOPE by specifying negative reward rates.
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the impact of di�erent control strategies on resulting performance or performa-bility functions. While series of experiments are 
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