Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.

Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by

these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[] Hermann De Meer and Oliver-Rainer Duesterhoeft. Controlled stochastic petri nets. In Proc. of the 16th IEEE Symposium on Reliable Distributed Systems (SRDS 1997), pages 18-25. IEEE Computer
Society, Oct. 1997.

See http://www.net.fim.uni-passau.de/papers/DeMeer1997a for full reference details (BibTeX, XML).

Controlled Stochastic Petri Nets

Hermann de Meer and Oliver-Rainer Dusterhoft
Department of Computer Science — University of Hamburg
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany

{demeer, lduester } @informatik.uni-hamburg.de

Abstract - A new framework for the extension of
stochastic Petri nets (SPNs) is introduced in this pa-
per. SPNs are extended by elements providing means
for a dynamic optimization of performability measures.
A new type of transition is defined offering a feature for
specification of controlled switching, called reconfigura-
tion, from one marking of a SPN to another marking.
Optional reconfiguration transitions are evaluated in or-
der to optimize a specified reward or cost function. The
result of an analysis is provided in the output of a nu-
merical computation, in the form of a graphical presen-
tation of an optimal, marking dependent control strat-
egy and the resulting performability measure when ap-
plying the optimal strategy. The extended SPNs are
called COSTPNs (COntrolled STochastic Petri Nets).
COSTPNs are mapped on EMRMs (Extended Markov
Reward Models) for a numerical analysis. Computa-
tional analysis is possible with algorithms adopted from
Markov decision theory, including transient and station-
ary optimization. The scope of this paper is to introduce
the new control structure for SPNs and to present an al-
gorithm for the mapping of COSTPNs on EMRMs.

Keywords: Stochastic Petri nets, performability, dy-
namic optimization, extended Markov reward models,
Markov decision theory.

1 Introduction

In the early eighties Petri nets were extended with the
notion of time, for example by Molloy [10]. Marsan et
al. promoted SPN for the modeling and performability
analysis [9]. SPNs were extended to stochastic reward
nets (SRNs) by Trivedi, Ciardo and Muppala [13]. Many
more approaches and tools relating to SPNs do exist,
most of them being covered in the overview paper by
Haverkort and Niemegeers [6].

Often, it has been advocated, for instance by Kramer
and Magee, that large scale and distributed systems
should be provided with techniques allowing dynamic re-
configuration in the presence of environmental changes
that affect their running conditions [7]. Adaptation
seems to be a particularly promising approach for the
management of communication systems with multimedia

applications, as these impose challenging computational
and timing requirements on resources [5]. But strate-
gic knowledge is required in order to execute adaptation
and reconfiguration actions in a most effective manner.
It has been argued that quantitative modeling support
could provide useful guidelines for required control deci-
sions in this respect [2].

The extension of SPNs with features directly provid-
ing decision support for such adaptation and reconfigu-
ration tasks seems to be a promising approach, due to
the wide acceptance of SPNs for performability model-
ing. The proposed new control structure provides means
for a specification of optional reconfigurations on the rel-
atively high level of SPNs. As the result of an application
of a numerical evaluation procedure, control strategies
are computed that allow the optimization of a specified
performability measure. The resulting strategies can be
directly applied to control adaptation and reconfigura-
tion.

For a numerical analysis, COSTPN have to be
mapped on a model representation that allows the appli-
cation of some optimization and evaluation algorithms.
We propose to use EMRMs, which were originally in-
troduced in previous work [2, 3], for this purpose. Al-
gorithms from Markov decision theory were adopted to
provide techniques for transient and stationary opti-
mization of performability measures. For the mapping
of COSTPNs on EMRMs, it is necessary to modify the
standard algorithm applied in the generation of extended
reachability graphs (ERGs) in ordinary SPN analysis.
Besides this algorithm, it is finally shown how EMRMs
can be constructed from the modified ERGs.

The features of the modeling tool, which provides a
usage-friendly environment for optimization and compu-
tational experimentations, are beyond the scope of this
paper [4].

In Sec. 2, we briefly repeat the concept of EMRM.
The new control structure of COSTPN is introduced
in Sec. 3. The full mapping algorithm of COSTPN on
EMRM is discussed in detail in Sec. 4. Sec. 5 is used to
demonstrate the applicability of COSTPNs on an opti-
mization problem by means of example. Sec. 6 concludes
the paper.



2 EMRM

Performability modeling makes extensive use of Markov
reward models (MRMs). Let 7 = {Z(t),t > 0} denote
a continuous time Markov chain with finite state space
1. To each state s € 2 a real-valued reward rate r(s),
r : Q — IR, is assigned, such that if the Markov chain
is in state Z(t) € Q at time ¢, then the instantaneous
reward rate of the Markov chain at time ¢ is defined as
X(t) = rz(). Inthe time horizon [0, ...t) the total reward

Y(t) = fot X (r)dr is accumulated. Note that X (¢) and
Y (t) depend on Z(t) and on an initial state € €. The
probability distribution function ¥(y,t) = P(Y(¢) < y)
is called the performabiity. For ergodic models the in-
stantaneous reward rate and the time averaged total re-
ward converge in the limit to the same overall reward
rate B[X] = limy_oo E[X(t)] = limy00 $E[Y ()]. The
introduction of reward functions provides a framework
for a formal def. of a “yield measure” or a “loss measure”
being imposed on the model under investigation.

EMRMs provide a framework for the combined eval-
uation and optimization of reconfigurable systems by in-
troducing some new features for MRMs [2, 3]. EMRMs
are the result of a marriage between Markov decision
processes and performability techniques. A reconfigura-
tion arc, which can originate from any Markov state of
a model, specifies an optional, instantaneous state tran-
sition that can be controlled for an optimization. The
resulting strategy is commonly time-dependent. The so
called branching states provide another feature of EM-
RMs. No time is spent in such states, but a pulse re-
ward may be associated with them. The introduction of
branching states has motivation similar to the introduc-
tion of immediate transitions to stochastic Petri nets [9],
so that branching states also are called vanishing states.

Reconfiguration arcs denote options to reconfigure
from one state to another. At every point of time a dif-
ferent decision is possible for each reconfiguration arc.
A strategy S(t) comprises a tuple of decisions for all
options in the model at a particular point of time ¢,
0 <t < T. Strategies can be time dependent, S(¢), or
time independent, S = S(t). A strategy S(t) Is consid-
ered optimal if the performability measure under strat-
egy S(t) is greater equal than the performability mea-
sure under any other strategy S(¢). With X5, Yis(t)(t),
Y3 (00) denoting the overall reward rate, the conditional
accumulated reward and the accumulated reward until
absorption gained under strategy S or S(t) respectively,
a strategy S or S(t) Is optimal, iff

o B0 > BP0 vs(e) vie @

for transient optimization.

o E[X5]> E[XS]VS

for stationary optimization (ergodic).

o B[YS(00)] > E[YS(x)] VS Vi € Q

for stationary optimization (nonergodic).

For the optimization approach we refer back to the per-
formability framework and provide two types of methods
for the computation of optimal strategies and perfor-
mance functions:

Transient optimization, where the expected accu-
mulated reward E[Y;(¢)] is used as an optimization cri-
terion. The algorithm for an analysis within a finite
period of time [0, 7") has been introduced in earlier work
[2, 3] and is derived from Euler’s method for the nu-
merical solution of ordinary differential equations [12].
It extends an approach of Lee and Shin [11], who had
introduced and proved the correctness of transient op-
timization for acyclic CTMCs (continuous time Markov
chains), to general-type CTMCs.

Stationary optimization, which is performed for
an infinite time horizon [0, 00). As optimization criteria,
we distinguish between time averaged mean total reward
in steady-state, E[X] = E[X;] = limy_oo +E[Y;(t)] for
all 7, where E[X] is independent of initial state i for a se-
lected strategy, and the conditional accumulated reward
until absorption, E[Y;(00)] = lim_ e E[Y;(t)], which is
computed for non-ergodic models containing absorbing
states. In the latter case, E[Y;(o0)] can be dependent on
an initial state ¢. The optimization itself is performed
by deployment of variants of value iteration or strategy
iteration type methods [2], relying on numerical algo-
rithms such as Gaussian elimination, Gauss-Seidel iter-
ation, successive over-relaxation (SOR), or the Power-
Method. All these methods are implemented and can
be deliberately chosen for a computation or they are by
default automatically selected, thereby adapting to the
actual model structure.

3 COSTPN

For a dynamic optimization of performability measures,
a new feature is introduced to SPN. It comprises a con-
trol structure that allows one to specify a controlled
switching between markings of a SPN. Such a controlled
switching is interpreted as a reconfiguration in the mod-
eled system. A reconfiguration is modeled by the firing
of a new type of transition, called a reconfiguring transi-
tion. The introduction of reconfiguring transitions leads
to a new modeling tool, called COSTPN, and provides a
way to combine the classical performability modeling of
SPNs with the option to dynamically optimize measures.

In the following, we discuss the enabling and the fir-
ing rule of reconfiguring transitions for COSTPN first.
Then, the formal def. of COSTPN is presented. The for-
mal def. reflects the properties of the enabling rule of re-
configuring transitions. The enabling rule of reconfigur-
ing transitions is applied in the model generation phase,



in which an EMRM is constructed from the COSTPN.
In the model evaluation phase, in which the constructed
EMRM is computationally analyzed, the firing rule of
reconfiguring transitions is applied in order to optimize
a given performability measure.

3.1 Enabling and firing rule of reconfig-
uring transitions

The markings of a SPN are partitioned in two types,
vanishing markings and tangible markings. In vanishing
markings of a SPN, immediate transitions are enabled
and can fire, no time is spent in these markings. Imme-
diate transitions have always higher priority than timed
transitions. The other markings of a SPN are called
tangible markings. In tangible markings, timed transi-
tions can be enabled and can fire. A tangible marking is
called absorbing, if no timed transition is enabled in it.
We adopt these definitions to COSTPN.

The newly introduced control mechanism can only be
applied in tangible markings, but reconfiguration itself is
assumed to be instantaneously performed. These prop-
erties are reflected by the enabling rule of reconfiguring
transitions. Reconfiguring transitions are only enabled
in tangible markings. The conditions for the enabling of
reconfiguring transitions are the same as the conditions
for the enabling of timed transitions. In particular, im-
mediate transitions have higher priority than reconfig-
uring transitions.

The firing rule of reconfiguring transitions is based
on the aim to optimize a performability measure, which
is defined through a reward structure. Reconfiguring
transitions are enabled together with timed transitions
and the conflict between enabled reconfiguring transi-
tions and enabled timed transitions is solved in order to
optimize a performability measure. Whenever the mod-
eled system resides in a tangible marking, in which a
reconfiguring transition is enabled, the following options
are given. One option is to instantaneously reconfigure
to the marking which is reached through the firing of the
enabled reconfiguring transition; no timed transition can
fire in the current marking in this case. Another option
is to stay in the current marking and not to fire the en-
abled reconfiguring transition, so that the enabled timed
transitions can fire in the current marking in their usual
manner. The decision, which option to select, i.e., the
optimal one, is based on the comparison of optimization
criteria as described in Sec. 2. The optimization crite-
rion is computed for all options and the one with the
highest expected reward is selected.

More than one reconfiguring transition can be enabled
in a tangible marking. In this case, the number of op-
tions corresponds to the number of enabled reconfiguring
transitions plus one. Every firing of an enabled recon-
figuring transition corresponds to one option and not to

fire an enabled reconfiguring transition is another op-
tion. The decision, which of these options to select, is
based on the comparison of optimization criteria.

3.2 Definition of COSTPN

Before defining COSTPNSs in detail, some abbreviations
are introduced. RS denotes the reachability set of a
COSTPN, where a reachability set is the set of all mark-
ings which can be reached through the firing of tran-
sitions from an initial marking My. RG denotes the
reachability graph of a COSTPN. RG is a directed graph
(N,A), where the set of nodes N corresponds to the set
of markings in the reachability set RS and the set of
arcs A is defined by the reachability relation between the
markings in RS. RS and RG are generated according
to the enabling pattern immanent in a COSTPN. ERG
denotes the extended reachability graph of the COSTPN.
The EFRG is transformed from the RG in order to gen-
erate an EMRM. In this transformation the stochastic
elements, like rates and probabilities, of the COSTPN
are used to transform the transitions of the RG into
transitions of a Markov chain.

The formal def. of COSTPNs can now be presented:
Let COSTPN = (PN, Ty,T5, T3, W, Pr, Rew), where
PN =(P,T,1,0, H, My) is the underlying Petri net.

P : Set of places, T'= T} UT5 U T35 : Set of transitions,
I CP x T x IN:Set of input arcs with multiplicity,
O CT x P x IN: Set of output arcs with multiplicity,
H C P xT x IN : Set of inhibitor arcs with multiplicity,
My : initial marking.

Ty CT with Ty NTy = 0 and T3 NT5 = @. T3 is the set
of timed transitions.

Ty CT with Ty NTy = 0 and T NT5 = @. Th is the set
of immediate transitions.

T35 CT with T35NTy = 0 and T3 NTy = @. T3 is the set
of reconfiguring transitions.

W (Th UTs) — IR. W(t;) is the (marking-dependent)
firing rate, if ¢; is timed, and the (marking-dependent)
firing weight, if ¢; is immediate.

Pr T — IN. Pris the priority function that maps tran-
sitions onto natural numbers. The priority level of timed
and reconfiguring transitions is always set to 0 and the
priority level of immediate transitions is always greater
than 0.

Rew : RS — IR defines the reward structure of a
COSTPN, that assigns a reward rate or a pulse reward
to any marking of a COSTPN.

By means of the defined priority function Pr the for-
mal def. of COSTPN reflects the properties of the en-
abling rule of reconfiguring transitions. The priority
level of reconfiguring transitions is always lower than
the priority level of immediate transitions. The recon-
figuring transitions have the same priority as the timed



transitions. The enabling conditions for reconfiguring

transitions are the same as timed transitions.

The firing rule of reconfiguring transitions is applied
in the model evaluation phase of a COSTPN in order to
optimize a given performability measure.

3.3 Example of a COSTPN

A simple COSTPN example helps to clarify the basic
definitions. Models of on-off sources have been widely
applied for the evaluation of continuous media streams
in distributed systems (in particular for voice commu-
nication). We adopt such a setting and include some
provisions for performance optimization.

Often, multimedia streams are modeled in such a way
that periods of silence, when no data is provided, alter-
nate with active phases, when data is generated and sent
over a communication network. To avoid network and
end-systems congestion effects, traffic control must be
applied as an effective measure.

It is assumed that on-periods and off-periods are de-
scribed by independent, exponentially distributed ran-
dom variables with parameters A and J, respectively.
Each multimedia source in an on-period with average
duration 1/X sends out data packets with rate p. The
congestion state of the underlying network is reflected
by means of parameter v, indicating that the mean time
between overload events is a function of 1/+. In a smaller
setting, like a local area network, it would likely cause
further harm to add on more intensive data load on the
network. Therefore, it is suggested to control locally the
addition of further multimedia sources.

It is reasonable to assume a service provider would
be interested in applying a strategy which maximizes
the number of delivered data units in presence of an
unreliable network due to congestion effects. According

| parameter | meaning |
1/6 mean off-period duration
1/A mean on-period duration
p data transmission rate
1/f(n, ) mean time between overload with
n active sources and network state =y

Table 1: Parameters of the COSTPN.

to the nature of multimedia applications which require
to obey strict timing requirements, it is assumed that
the occurrence of an overload situation would result in
an unrecoverable interruption of service.

The described scenario is reflected by the COSTPN
depicted in Fig. 1. Letting n < k denote the number of
multimedia sources in on-period, the mean time between
overload events is described by a function of n and ~ as

i T
N/ izl/
?@W
I /E
Bt

| transition | priority | firing rate/weight | type |
t 0 #p2 x 6 timed
ta 0 #ps * A timed
ts 0 f(#ps,7v) timed
ri,r2 0 — reconfiguring
7 1 1 immediate
1o 2 1 immediate
| place | meaning |
P1 multimedia sources excluded from transmission
P2 multimedia sources in off-period
Ps multimedia sources in on-period
Pa condition place : failure in the system

Figure 1: COSTPN for the modeled system.

1/f(n,v). The states of multimedia sources are repre-
sented by tokens in the places p1, ps and ps. Appearance
of a token in p4 indicates a failure of the network. Each
token in place ps models a multimedia source being in
off-period and each token in place p3 models a multime-
dia source in on-period. So the value of n is the number
of tokens in place ps (#ps3). Transitions ¢; and 2 model
the intermittent behavior between off- and on-periods.
The firing of transition 3 represents a possible failure
of the network due to congestion effects. All tokens are
removed from ps if such an event occurs. If a token ap-
pears in the absorbing place p4, all remaining tokens are
also removed from p; and ps, via the firing of immedi-
ate transitions #; and i, such that all applications are
immediately stopped.

The reconfiguring transitions 7, and r; are used to
control admission to the system. As long as the maxi-
mum number k of sources is not exceeded, sources can
be deliberately admitted to or removed from the system
while being in off-period. A token in place p; represents
a source excluded from transmission. There is a trade-off
to be considered between the number of active sources,
as a measure of return to a service provider, and the
risk of service disruption due to overload. The risk of
failure increases as a function of the number of sources
imposing load on the network while being in on-period.

Controlling admission of active sources in such way



that the total number of transmitted data units is max-
imized, is the goal of our example study in Sec. 5.

4 Construction of an EMRM

In the following we briefly repeat the well-known algo-
rithm to generate a MRM from a SPN [13]. We point out
the differences of that algorithm to the one proposed for
generating EMRMs from COSTPNs. To complete this
sec., the algorithm is presented in detail.

4.1 Sketch of the SPN — MRM algo-

rithm
To generate a MRM from a SPN the following algorithm
can be used:

1. Generation of the RG of the SPN according to the
enabling rule.

2. Transformation of the RG into an £ RG by replacing
the transition names labeling the arcs by the firing
rate (timed transition) or by the ratio of the firing
weight (immediate transition) to the firing weights of
all enabled immediate transitions.

3. Association of the defined reward structure of the
SPN to the states of the FR(G. Pulse rewards as-
signed to vanishing states are only allowed if steady-
state analysis is applied.

4. Elimination of vanishing states, where no absorbing
loops of vanishing states may exist. The existence of
such a loop implies a stochastic discontinuity.

5. Transformation of the transition matrix U into an in-
finitesimal generator matrix Q of the MRM.

Q. = Ui, ifi#Fg
v - ZVk,k;ﬁ] Up fi=yg
4.2 Extensions to the basic algorithm

The main differences between the algorithm SPN —
MRM and COSTPN — EMRM are as follows:

1. COSTPN has different enabling rules.

2. During the transformation of a RG into an EFRG the
arcs labeled with reconfiguring transitions must be
transformed into reconfiguration arcs.

3. Pulse rewards are generally allowed at vanishing
states, even if transient analysis is performed.

4. For EMRM not all vanishing states need to be elim-
inated. Only vanishing loops must be eliminated.
Vanishing loops are not allowed in EMRMs in the cur-
rent implementation [8]. The pulse rewards assigned
to vanishing states must be transformed before the
loops can be eliminated.

5. The transformation of the transition matrix U of the
ERG into an infinitesimal generator matrix Q has not
to be done, because EMRMs may deliberately contain
vanishing states with pulse rewards attached to them.

The elimination of the vanishing loops is implemented
by the following algorithm:

1. Identify all vanishing loops in the EFR(G. This can
be accomplished by using standard graph search
algorithm for identifying strongly connected struc-
tures [1].

2. Identify all subgraphs containing a vanishing loop.
Such a subgraph contains the vanishing states of the
vanishing loop, entrance states z.,, from which the
loop is entered, and exit states ze., to which the loop
is left. A subgraph is described by the following tran-
sition matrix:

CD
Usubgraph with loop =— ( EF )

(Submatrix C contains the probabilities of transitions between van-
ishing states within the loop. Submatrix D contains the probabil-
ities of transitions from each vanishing state of the loop to each
exit state. Submatrix E contains rates and probabilities of transi-
tions from each entrance state to each vanishing state in the loop.
Matrix E also contains the reconfiguring transitions from Markov
entrance states to each vanishing state in the loop. Since tran-
sitions between entrance and exit states need not be considered
in the loop elimination procedure, submatrix F contains only zero

elements.)

3. FOR every subgraph, Ususgraph with toop , containing
a vanishing loop DO:

(a) FOR any reconfiguring transition through which
the loop can be reached DO:
Replace the reconfiguring transition so that the
loop cannot be reached through it. A new vanish-
ing state is inserted so that the reconfiguring tran-
sition leads to the new vanishing state, from which
the loop is reached with probability 1.

(b) Determine the set of all pairs of states {(zen, %ex)},
where the loop 1s entered from entrance state z,
and left to exit state z.,.

(c) FOR every such pair (zep, zep) DO:

Compute the expected accumulated reward Rep er
for the passage from z., to z., only passing
through states of the loop, under the condition that
the loop is entered from z., and left to z.,:

Rloop * loop
(1 = qroop)?

Ren—)e.r

1—- Qloop

Ren,e.r =

e Ren_yer: pulse reward of the direct paths from
Zew 1O Zen . No state 1s visited more than once on
these paths.



® (loop: probability of passing through the loop
(¢ioop < 1, no absorbing loops are admissible in

a valid ERG).

® Ry,0p: pulse reward gained by passing through
the loop exactly once.

Note that Rep o = 0V (2en, %ex), if no pulse reward

is attached to any vanishing state of the loop.

(For a derivation of Ren, er consider the following infinite sum,
which converges:

Renoves +
(Ren—sex + Rioop) * Gioop +
(Ren—ee + 2% Ricop) * Qioop + - --

Renjex =

The first term is the reward accumulated on direct paths from
Zen 1O Zerx. The second term is the reward accumulated on
paths from zen to Zer passing through the loop exactly once.
The third term is the reward accumulated on paths from z., to

Zew passing through the loop twice, and so on.)

(d) Eliminate the loop from U,ubgraph withioop BY ap-
plying the standard algorithm [13]:

—1
Usubgraph without loop = E « (I - C) * D.

(I is the identity matrix with the dimension of C.)

(e) For every pair of states (zen,Zzer), for which
Renew # 0, a new state z, is generated, which
is associated with computed reward Rep er. 2y is
inserted between the pair of state (zepn, zep). The
transition from z., to ze; is replaced by a transi-
tion from z., to z,. The rate/probability of this
new transition is the same as of the transition from
Zen YO Zeg, Which results from the elimination of the
loop in step (d). From z, a transition leads to ze,
with probability 1.

(f) Replace Usubgraph with toop 10 the ERG by the sub-
graph computed in the steps (a) till (e).

4.3 Summary of the extended algorithm

The COSTPN — EMRM generation algorithm can be
summarized as follows:

1. Create the RG according to the enabling rule of
COSTPN as described in Sec. 3.

2. Transform the RG into an F RG by replacing the tran-
sition names/arcs as follows:

e Replace the name of a timed transition by its firing
rate.

e Replace the name of an immediate transition by
the ratio of its firing weight to the firing weights of
all enabled immediate transitions.

e Replace the arc of a reconfiguring transition by a
reconfiguration arc.

3. Associate the reward structure of the COSTPN to the
states of the FRG.

4. Eliminate all vanishing loops by applying the algo-
rithm described above. Absorbing vanishing loops are
not allowed in the FRG.

The resulting EMRMs can be directly analyzed by the
implemented numerical algorithms [2].

5 An example study

5.1 The COSTPN model

We refer back to the example introduced in Sec. 3.3. To
keep the example simple, the maximum number of multi-
media sources is limited to 3. A non-linear dependence
of the congestion probability on the number of active
sources is assumed: f(n,v) = (#ps)? * v. The per-
formability measure we want to use as the optimization
criterion in the example study is the number of delivered
data units in a given time interval. The reward function
Rew specifies this performability measure by assigning
the reward rate #ps#* p to each tangible marking M and
the pulse reward 0 to each vanishing marking M of the
COSTPN.

_ #ps xp if M is tangible
Rew(M) = { 0 if M is vanishing

The reward rate reflects that a multimedia source in on-
period (a corresponding token is in place p3) generates
data units with rate p and sends these over a communi-
cation network.

5.2 The EMRM model

As a prerequisite for optimization, an EMRM must be
generated from the COSTPN.

First the RG of the COSTPN is generated from
the COSTPN. The RG contains tangible and vanishing
markings. The marking names M (#p1, #p2, #ps, #P4)
code the corresponding markings of the COSTPN, where
F£p; 1s the number of tokens in place p;.

Finally, the FRG in Fig. 2 is derived from the RG.
The nodes, which are derived from vanishing markings,
are called vanishing states, and the nodes, which are de-
rived from tangible markings, are called Markov states.
The states of the FRG are denoted by zas in order to
indicate the correspondence of the EFRG states to the
markings M of the COSTPN. The vanishing states are
presented by dots and Markov states are presented by
circles. According to the given algorithm, the reward
rates are attached to the Markov states and the pulse



rewards are attached to the vanishing states. The re-
ward rates and pulse rewards are given in Fig. 2. The
dashed arcs in the FRG represent the reconfiguration
arcs. The arcs originating from Markov states are la-
beled with the firing rates of corresponding timed tran-
sitions. The arcs originating from vanishing states are
labeled with a transition probability. In our example, no
vanishing loop is included in the FRG. Therefore, step
4 of the generation algorithm need not to be executed.

The resulting FRG corresponds to an EMRM and
can be directly analyzed by the implemented numerical
algorithms.

ZM(0,3,0,0)

Al |36

{jwo,zlo)
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Legend: ------ = reconfiguration arc . vanishing state Q Markov state

| state (zar) | Rew(M) |

state (zar) | Rew(M) |

ZM(2,0,1,0) 14 ZM(1,0,2,0) 2%p

Z1M(1,1,1,0) 4 ZM(0,1,2,0) 2*p

ZM(0,2,1,0) P ZM(0,0,3,0) 3% p
others 0

Figure 2: ERG of the COSTPN in Fig. 1.

5.3 The results

A transient optimization study is presented in this sec.
The investigated time horizon covers the interval [0, T),
T = 1000, and the studies are executed with the parame-
ters § = 0.25, A = 0.4, p = 0.4 and v = [0.00001, 0.03].
The sending rate p of each active multimedia source is
set equal to A. As a result of this simplification, the
number of transmitted packets equals the total number
of completed on-phases.

The resulting transient control strategies are graph-
ically represented in Fig. 3. The whole control space
is separated into regions, where certain optimal strate-
gies do apply. The boundaries between the regions cor-
respond to curves which mark the instants of optimal
strategy switches. The strategies are depicted as a func-
tion of the network congestion parameter v and of time.
Time is represented in a reverse pattern, namely as the

1
remaining time

800 1
700
600 2
500
400
300

W

200 %
100 x x
0

1605 1604 1603 ez ™

Figure 3: Transient optimization strategies.

remaining time t’ = T — ¢, where T is the time horizon
and t 1s the elapsed time. The reason for the decision
space being divided into three disjunctive regions is that
each one represents a class of related decisions. This
results from the fact that in principle there are three
types of optimal configurations: 1, 2, or 3 sources ac-
tively transmitting data packets. In each marking of the
COSTPN, in which a reconfiguring transition is enabled,
an optimal decision is provided in relation to the three
identified regions.

To give an example, the curve between the regions 2
and 3 in Fig. 3, indicates the boundary where the op-
timum number of on-sources switches from 2 to 3 with
respect to ¢ and y. Marking M (1,0,2,0), for example,
denotes the system state with two sources in on-period
(#ps = 2) and one source excluded from transmission
(#p1 = 1). If the current situation in relation to ¢’ and
~ is classified to be in the region above the curve, no
additional source should be added with respect to the
marking. In terms of our COSTPN, the reconfiguring
transition r1 must not fire under these conditions. If the
current situation is classified to be in the region below
the curve, the alternative decision applies: The origi-
nally excluded source should also be allowed to transmit
data over the network in order to maximize the total re-
ward. In terms of our COSTPN, the reconfiguring tran-
sition 7, does fire under these conditions of congestion
parameter v and time t’. Relating the results to some
numbers, for a given level of congestion v = 1073, say,
a third source should be kept switched off as long as the
remaining time is approximately more than 310 units of
time. If less time remains for the current application,
the third source should be admitted to service.

In summary, the overall interpretation of the com-
puted strategy graph is that for sufficiently small values
of v, v < 3% 10™*, the modeled system reconfigures to
states in which as many multimedia sources as possi-
ble should be on, irrespective of time. In the interval
[3%107* < 4 < 1073) the strategy becomes highly time-
dependent: In the long run only two sources should be



accepted, while for shorter periods of remaining time
three sources should be admitted. For congestion condi-
tions ¥ > 1073 three different optimal strategies apply,
depending on the current instant of time: In the long run
one multimedia source would be optimal, intermediately
two, and finally three. The explanation for this behavior
is obvious. The greater the value of v the greater is the
risk of an overflow event. Due to the finite time horizon
the risk of occurrence of an overflow event is the smaller
the closer the end of an application is.

In what follows, the effect of transient versus station-
ary optimization is compared. We choose the stationary
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Figure 4: Stationary strategies (left) and difference in
performability: transient vs. stationary (right).

strategies as shown in Fig. 4. A strategy is called sta-
tionary, if it is constantly applied, irrespective of time.
To relate the impact of the strategies to each other, the
chosen stationary strategies are applied in the same finite
horizon, [0, 1000), as the transient ones. As a result, the
difference in the gained overall reward can be compared
in the right part of Fig. 4. For the parameter range where
the strategies are highly time-dependent, in particular in
the interval (1.5%x107* < v < 1072), the transient strate-
gies substantially outperform the stationary strategies.
For v < 1.5 % 10~* the strategies are identical and there-
fore no difference results in the overall performance. A
similar argument applies when v > 1072,

6 Conclusion

We have introduced controlled stochastic Petri nets that
can be applied for simultaneous evaluation and optimiza-
tion of performability models. A new type of transition
was defined, providing the means for a specification of
optional reconfigurations on the level of stochastic Petri
nets. Different algorithms are adopted under the unify-
ing high-level paradigm of reconfigurability, as the ba-
sis for a computation of adaptation and optimization
strategies. Both transient and stationary strategies can
be computed and used as a rich basis for control deci-
The algorithm for a mapping of COSTPNs on

slons.

EMRMs, on which the optimization algorithms can be
directly applied, was discussed in detail. The applicabil-
ity of COSTPNSs to an optimization problem was demon-
strated by means of an example.

Further studies are necessary to fully incorporate
COSTPNs into our tool environment, which provides
an easily usable interface for generation, execution, and
evaluation of a series of optimization experiments [4].
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