
Non-Interactive Public Accountability
for Sanitizable Signatures

Christina Brzuska1, Henrich C. Pöhls2,4?, Kai Samelin3,4??

1 Darmstadt University of Technology, Germany & CASED
2 Chair of IT-Security

3 Chair of Computer Networks and Computer Communication
4 Institute of IT-Security and Security Law (ISL), University of Passau, Germany

brzuska@cased.de, {hp,ks}@sec.uni-passau.de

Abstract. Sanitizable signatures enable a designated party to modify
signed documents in a controlled way, while the derived signature still
verifies. In this paper, we introduce the notion of non-interactive and
public accountability. It allows a third party to determine whether a
message-signature pair was issued by the signer or the sanitizer. The orig-
inal notion of accountability does not satisfy European legal standards,
while non-interactive public accountability does. A contradictory secu-
rity goal is the indistinguishability of message-signature pairs from the
signer and the sanitizer, a.k.a. transparency. As state-of-the-art schemes
often satisfy transparency, they can only achieve a weaker notion of ac-
countability. We show that non-interactive public accountability does
not contradict privacy by proving that an existing scheme by Brzuska et
al. (BIOSIG ’09) satisfies both notions. We then extend the scheme to
also satisfy blockwise public accountability. Overall, for e-business appli-
cations within the EU, opting for non-interactive public accountability
can be preferable over transparency.

Keywords: Accountability, Sanitizable Signatures, Privacy, e-commerce

1 Introduction

Digital signatures protect the integrity and authenticity of data. In many set-
tings, digital signatures serve as a substitute for handwritten signatures on paper.
If they achieve the legal requirements, they are even recognized as equivalent [12].
Cryptographically, digital signatures detect malicious or accidental subsequent
changes and identify the signer by its public key. Hence, the verification of a
digital signature must fail, whenever the signed data was altered.

?Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project
??The research leading to these results was supported by “Regionale Wettbe-

werbsfähigkeit und Beschäftigung”, Bayern, 2007-2013 (EFRE) as part of the SECBIT
project (http://www.secbit.de) and the European Community’s Seventh Framework
Programme through the EINS Network of Excellence (grant agreement no. [288021]).

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Christina Brzuska, Henrich C. Poehls and Kai Samelin. Non-interactive public accountability for sanitizable signatures. In Proc. of the 9th European Workshop on Public Key Infrastructures,
Services and Applications (EuroPKI 2012), Volume 7868 of Lecture Notes in Computer Science (LNCS), pages 178–193. Springer-Verlag, Sep. 2012. This is an extended and revised version of the
original publication. The original publication is available at www.springerlink.com (August 2013).

See http://www.net.fim.uni-passau.de/papers/Brzuska2012a for full reference details (BibTeX, XML).

Legal requirements on digital signatures vary upon different countries. We focus
on the European Union (EU) directive for electronic signatures, as it covers the
entire EU and is technology neutral [12]. From a legal perspective, also non-
cryptographic solutions such as scanned handwritten signatures are considered
electronic signatures. Laborde points out, that the directive [12] “implicitly” [16]
endorses cryptographic digital signatures, such as RSA-PSS, for so-called ad-
vanced electronic signatures by “establishing requirements that, so far, can only
be fulfilled by using digital signatures” [16]. If public keys are certified and other
technical and organizational requirements set forth by law are met, the signatures
created by advanced signature schemes legally become advanced electronic sig-
natures based on qualified certificates and are granted Statutory Trust by the EU
electronic signature laws [12]. In a nutshell, only then they are “legally equivalent
to hand-written signatures”. Documents signed with aforementioned signatures
offer legally a high value of evidence and are hence economically valuable.

Contrary, applications such as secure routing or anonymization of medical
data [2] require controlled modification of signed data. Moreover, this type of
modification must not require any interaction with the signer, as this might
be inconvenient, impossible or legally forbidden. Miyazaki et al. [18] called this
constellation the “digital document sanitization problem”. An elegant crypto-
graphic solution are sanitizable signatures (SanSig) [2]. In a SanSig, the signer
signs a message m that is split into ` blocks, i.e., m = (m[1],m[2], . . . ,m[`]). For
each block m[i], the signer decides whether sanitization is admissible or not. A
designated party, called sanitizer, can replace each admissible block m[i] with
an arbitrary string m[i]′ ∈ {0, 1}∗ and create a new message m′. For m′, the
sanitizer derives a new signature σ′, without interaction with the signer, so that
(m′, σ′) verifies.

Cryptographic Transparency versus Legal Requirements. The crypto-
graphic security property of transparency says that it is impossible for third
parties to decide which party is accountable for a given signature-message pair.
We want to emphasize that the word “transparency” is not used in the legal
sense, but to describe a cryptographic property1: the sanitizer remains anony-
mous to the verifier. In other words, a verifier of a signature-message pair is
not able to decide, if the sanitizer has used the sanitizer secret key to generate
a new signature over the potentially sanitized message, or, if the message still
bears the original signature and was not touched. A related property is privacy:
a private SanSig hides all information about the original message. Transparency
hides the involvement of the sanitizer from the verifier and is desirable in cases,
where already the fact that sanitization has occurred leads to discrimination.

We now sketch how cryptographic transparency conflicts legal requirements and
point out that, fortunately, transparency is not needed in all practical applica-
tions of SanSigs. Assume a hospital’s accountant creates a bill for the patient’s

1 This nomenclature is in line with state-of-the-art work in SanSig.

insurance company. Accountancy only needs some information. Thus, the hospi-
tal can automatically omit or de-identify other medical data before passing the
record to the accountant. Such a sanitized patient record contains empty medi-
cal details which indicates sanitization. A transparent SanSig will try to prevent
the accountant from identifying the record as sanitized from only looking at
the signature and record. However, the accountant notices obvious sanitizations
through domain specific information, like omissions of names, anyway. So trans-
parency is neither required nor used in this scenario. Still, privacy is required, i.e.,
the patient’s sanitized medical data must not be recoverable by the accountant.
Second, transparency diminishes the legal value of the signature. Unfortunately,
as observed by Pöhls and Höhne [19], transparent SanSig do not fulfill the strict
legal requirements. Only if a SanSig allows detecting all changes instantly and
allows holding a single person accountable, the SanSig can offer a comparable
legal value of evidence as advanced digital signatures.

1.1 Non-Interactive Public Accountability

Accountability is required by all SanSig, and is independent of transparency [5].
By the very definition of transparency, transparent schemes cannot achieve non-
interactive public accountability. Instead, they achieve a weaker notion of inter-
active accountability, which requires the signer’s secret key to run the additional
algorithm Proof. If the signer does not participate in the protocol run, it is de-
clared accountable for the signature by Judge. In contrast, standard signature
schemes require no interaction to determine the signature’s origin. Verification
can be done non-interactively with the knowledge of the signer’s public key.

We show in Theorem 2 that it is insufficient to negate the property of trans-
parency, e.g., when one is able to correctly detect 3

4 of all sanitizer involvements,
the scheme is neither accountable, nor transparent. Moreover, a lack of trans-
parency does not guarantee security against malicious signers/sanitizers. Hence,
we require a mechanism to allow a third party to decide whether a sanitizer’s
secret key was involved in the signature generation or if only the signer’s secret
key was involved even in the presence of malicious signers/sanitizers. The key’s
involvement can then be linked to the corresponding parties and determine the
origin of the signature. This leads to our definition:

A sanitizable signature scheme satisfies non-interactive public accountabil-
ity, if and only if for a valid message/signature pair (m,σ), a third party
can correctly decide whether (m,σ) originates from the signer or from the
sanitizer without interacting with the signer or sanitizer.

Sometimes, it is not sufficient to only decide which party is accountable for the
entire signature-message pair. Recall the above example: non-interactive public
accountability detects that the medical record itself has changed — however,
if more than one entry of the medical record, each represented by one block,
is modifiable, a third party may need to know which blocks have undergone a

sanitization. Hence, to filter potentially sanitized from unchanged information,
we introduce accountability for each block m[i] of the received message. Con-
sider the following clarifying example: when medical records are anonymized to
pass them to the World Health Organization (WHO), the sanitizer is allowed to
replace names (and further identifying information). For de-identification [10],
the sanitizer replaces them with zeroes. Thus, generally, the sanitizer is allowed
to modify the name field. Now, a malicious sanitizer can exchange two patients’
medical records by swapping their names by sanitizing both medical records.
Damage is done when the swapped medical records in the hospital’s database
are consulted for the patients’ treatment. The accountability of existing trans-
parent SanSig allows discovering interactively with the signer that this attack
has taken place. Unfortunately, the real-life consequences may have occurred
already. When sanitization is allowed on multiple blocks knowing that some of
these blocks are still unchanged is also legally important. Our new blockwise
non-interactive public accountability property allows this:

A SanSig offers blockwise public accountability, if and only if for all valid
pairs (m,σ) and their blocks m[i], a third party can always correctly decide
if the given block/signature pair (m[i], σ) originates from the signer or from
the sanitizer.

1.2 State of the Art

Standard security properties of SanSigs were first introduced by Ateniese et al. [2]
and later formalized [5]. Brzuska et al. [7] introduce the concept of unlinkability, a
strong privacy notation which prohibits a third party from linking two messages.
Current techniques to assure computational notions of unlinkability require the
expensive use of group signatures [7] — known schemes for statistical notions
of unlinkability achieve the less common notion of selective unforgeability [1].
We thus focus on the security properties presented in [5]. In particular, unlike
Canard et al. [8, 9], the admissible blocks are an input to the signing algorithm.
Moreover, we focus on a setting of a single signer and a single sanitizer. Extending
our scheme to multiple sanitizers is straight forward as we do not need to fulfill
transparency. Note, unlinkability and public accountability are not mutually
exclusive. All known unlinkable schemes are also transparent [1, 7, 8].

A related concept are redactable signatures, introduced in [14, 22]. In these mal-
leable signature schemes, blocks cannot be modified; they can only be removed.
Security models and redactable signature schemes have been studied. Exem-
plary, refer to [4, 11, 15, 17, 20, 21, 23]. Approaches to combine redactable signa-
ture schemes and SanSigs appeared in [13]. In this paper, we focus on SanSigs,
as redactable signatures schemes have a different goal: They allow public redac-
tions and the remaining blocks are always unchanged and, hence the signer is
accountable for the remaining data.

Brzuska et al. [6] provide an elegant construction that is provably secure and
in particular achieves privacy, but not transparency. We use their construction
as it can be used with existing standard RSA-based signature algorithms and
the signers and sanitizers public keys can be bound to identities by public-key
certificates. We show that their scheme achieves public accountability on the
message level, but it has not been mentioned as a separate property. We extend
their construction to also achieve blockwise public accountability.

1.3 Contribution and Outline

We formalize non-interactive public accountability on the message level as well
as blockwise in order to satisfy legal requirements for advanced electronic sig-
natures. We show that while non-interactive public accountability and trans-
parency are mutually exclusive, we do not gain anything from the mere absence
of transparency. We prove that the non-transparent scheme from [6] achieves
non-interactive public accountability and extend it to also provide blockwise
non-interactive public accountability. Moreover, the constructions fulfill standard
privacy and unforgeability requirements for sanitizable signatures as formalized
by Brzuska et al. [5]. Our detailed performance analysis shows that both con-
structions are usable in practice. Moreover, they fit well into the current public
key infrastructure when using a standard signature scheme and certified public
keys for signers and sanitizers.

1.4 Open Questions

We introduce public accountability and extended the notion to its blockwise
equivalent. For many features of malleable signature schemes, it remains de-
sirable to formalize the corresponding blockwise notion and provide provably
secure constructions. Moreover, extending the scheme to groups of blocks might
yield additional efficiency gains. Finally, it remains open research to show, if
and how unlinkable schemes with non-interactive public accountability can be
constructed.

2 Notations and Preliminaries

In this section, we shortly revisit the required algorithms and notation. We adapt
the nomenclature from [5]. For a message m = (m[1], . . . ,m[`]), we call m[i] a
block. , denotes a uniquely reversible concatenation, while ⊥ /∈ {0, 1}∗ denotes a
special symbol not contained in messages to indicate an error.

Definition 1 (Sanitizable Signature Scheme). Any SanSig consists of seven
PPT algorithms (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge), such that:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys consisting of a private
key and the corresponding public key:

(pksig, sksig)← KGensig(1
λ), (pksan, sksan)← KGensan(1λ)

Signing. The Sign algorithm takes as input the security parameter 1λ, a message
m ∈ {0, 1}∗, the signer’s secret key sksig, the sanitizer’s public key pksan, as
well as a description adm of the admissibly modifiable blocks. adm is a set
containing just those blocks’ indices which are modifiable by the sanitizer. It
outputs a signature σ and the message (or ⊥ on error):

(m,σ)← Sign(1λ,m, sksig,pksan,adm)

We assume that adm is always recoverable from any signature σ 6= ⊥ by the
sanitizer holding the secret key sksan that corresponds to pksan.

Sanitizing. Algorithm Sanit takes the security parameter, a message m ∈
{0, 1}∗, a modification instruction mod, a signature σ, the signer’s public
key pksig and the sanitizer’s secret key sksan. It modifies the message m ac-
cording to the modification instruction mod, which contains pairs (i,m[i]′)
for those blocks that shall be modified. Sanit generates a new signature σ′ for
the modified message m′ ← mod(m). Then Sanit outputs m′ and σ′ (or ⊥
in case of an error).

(m′, σ′)← Sanit(1λ,m,mod, σ,pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} indicating
the correctness of the signature σ for the message m with respect to the public
keys pksig and pksan. The security parameter is denoted by 1λ.

d← Verify(1λ,m, σ,pksig,pksan)

Proof. The Proof algorithm takes as input the security parameter, the signer’s
secret key sksig, a message m and a signature σ as well a set of (polynomially
many) additional message/signature pairs (mi, σi)i=1,2,...,k and the public
key pksan. It outputs a string π ∈ {0, 1}∗:

π ← Proof(1λ, sksig,m, σ, (m1, σ1), . . . , (mk, σk),pksan)

Judge. Algorithm Judge takes as input the security parameter, a message m and
a valid signature σ, the public keys of the parties and a proof π. It outputs
a decision d ∈ {Sig, San} indicating whether the message/signature pair has
been created by the signer or the sanitizer (or ⊥ in case of an error):

d← Judge(1λ,m, σ,pksig,pksan, π)

We require the usual correctness properties to hold. In particular, every gen-
uinely signed or sanitized message is accepted and genuinely created proofs by
the signer lead the judge to decide in favor of the signer. See [5] for a formal
definition of correctness. We emphasize that mod does not necessarily contain
the instruction to modify all blocks. Moreover, if (i,m[i]′) ∈ mod it might still be
that m[i]′ = m[i]. Jumping ahead, this difference is important for non-interactive
public accountability: it allows a sanitizer to be accountable for a block m[i]
without modifying it.

We define a SanSig with non-interactive public accountability to have an empty
Proof algorithm. This requires that Judge always correctly decides upon an empty
proof (π = ⊥). This simplifies the description, as Proof requires the signer’s
private key sksig. We use the notation m[adm] for the set of the admissible
blocks and m[fix] for the set of the fixed blocks. Ateniese et al. introduced a set
of desirable properties [2], later rigorously formalized by Brzuska et al. [5]. We
shortly re-state them:

– Immutability prevents the sanitizer from modifying non-admissible blocks.

– Unforgeability assures that third parties cannot produce a signature for a
message not issued by the signer nor by the sanitizer. This is similar to the
unforgeability requirements of standard signature schemes.

– Privacy and its extension unlinkability [7] inhibit a third party from learning
anything about the original message. For example, from a sanitized medical
record, one cannot retrieve any additional information besides what is given.

– Transparency says that it should be computationally hard for third parties
to decide which party is accountable for a given signature-message pair.

– Accountability allows a judge to settle disputes over the origin of a message.
The judge may request additional information.

Non-interactive public accountability negatively impacts only on transparency.
The definition of transparency given by Brzuska et al. [5] is as follows:

Definition 2 (Transparency). A sanitizable signature scheme SanSig is
proof-restricted transparent if for any efficient algorithm A the probability that
the experiment TransparencySanSigA (λ) given in Fig. 1 returns 1 is negligibly close
to 1

2 (as a function of λ). The idea is that the adversary must decide if a given
message/signature pair has been created by Sign or Sanit.

By this very definition, transparency prohibits any public form of accountabil-
ity, which requires that third parties can immediately decide whether a message
has been issued by the signer or the sanitizer. Transparency is desirable in some
cases, but not essentially required in all constellations. It becomes even obso-
lete when sanitization is detectable solely from obvious changes to the message.
On the contrary, transparency prevents certain usages, as it reduces the legal

Experiment TransparencySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)(pksig, pksan)

where oracle Sanit/Sign for input mk,modk,admk
if modi 6⊆ adm, return ⊥
if b = 0: first compute σk ← Sign(1λ,mk, sksig, pksan,admk),

then compute (m′k, σ
′
k)← Sanit(1λ,mk,modk, σk, pksig, sksan),

if b = 1: first compute m′k ← modk(mk),

then compute σ′k ← Sign(1λ,m′k, sksig, pksan,admk),
finally return (m′k, σ

′
k).

return 1 if a = b and A has not queried any (mk, σk) output by Sanit/Sign to Proof.

Fig. 1. Security Game for Transparency

value of evidence. Hence, in these cases non-interactive public accountability is
preferable.

3 Non-Interactive Public Accountability

In this section, we introduce two variants of non-interactive public accountability.
First, we give the formal definition of message level public accountability and
second, we provide the formal definition of blockwise public accountability.

3.1 Non-Interactive Public Accountability on Message Level

Our definition of public accountability is derived from the two accountability
definitions from Brzuska et al. [5]. In particular, Brzuska et al. considers sani-
tizer accountability and signer accountability separately. We have merged both
definitions by defining that the Proof algorithm always returns ⊥. Brzuska et
al.’s accountability requires the signer’s participation to generate the proof π
using its private key sksig. In our case, the signer must not be involved, as Judge
is correctly deciding on an empty proof π. In particular, Judge ignores the proof
π. Hence, Judge becomes a public and non-interactive algorithm.

Definition 3 (Non-Interactive Public Accountability). A sanitizable sig-
nature scheme SanSig is non-interactive publicly accountable, if Proof = ⊥ and
if for any efficient algorithm A the probability that the experiment
PubaccountabilitySanSigA (λ) given in Fig. 2 returns 1 is negligible (as a function of
λ). The basic idea is that an adversary, i.e., the sanitizer or the signer, has to
be able to make the Judge decide wrongly on an empty proof π.

By inspection of the definitions, we obtain the following theorem:

Theorem 1. Let SanSig = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge)
with Proof = ⊥, then SanSig is accountable, if SanSig is publicly accountable.

Experiment PubaccountabilitySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)
Let (mi,admi, pksan,i) and σi for i = 1, 2, . . . , k

be the queries and answers to and from oracle Sign
return 1 if

(pk∗,m∗) 6= (pksan,i,mi) for all i = 1, 2, . . . , k, and

Verify(1λ,m∗, σ∗, pksig, pk∗) = true, and

Judge(1λ,m∗, σ∗, pksig, pk∗,⊥) = Sig

Let (mj ,modj , σj , pksig,j) and (m′j , σ
′
j) for j = 1, 2, . . . , k′

be the queries and answers to and from oracle Sanit
return 1 if

(pk∗,m∗) 6= (pksig,j ,m
′
j) for all j = 1, 2, . . . , k′, and

Verify(1λ,m∗, σ∗, pk∗, pksan) = true, and

Judge(1λ,m∗, σ∗, pk∗, pksan,⊥) = San

return 0.

Fig. 2. Public Accountability

Experiment BlockpubaccountabilitySanSigA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)

Let (mi,admi, pksan,i) and σi for i = 1, 2, . . . , k

be the queries and answers to and from oracle Sign
return 1 if

Verify(1λ,m∗, σ∗, pksig, pk∗) = true, and
for all mi with pksan,i = pk∗, there exists a q s.t.

Detect(1λ,m∗, σ∗, pksig, pk∗, q) = Sig

and (q,mi[q]) ∈ modi.
Let (mj ,modj , σj , pksig,j), (m′j , σ

′
j) for j = 1, . . . , k′

be the queries and answers to and from oracle Sanit
return 1 if

Verify(1λ,m∗, σ∗, pk∗, pksan) = true, and
for all mj with pksig,j = pk∗, there exists a q s.t.

Detect(1λ,m∗, σ∗, pk∗, pksan, q) = San

and (q,m′j [q]) /∈ modj
return 0.

Fig. 3. Blockwise Public Accountability

Proof. In an accountable SanSig, invocation of Judge is public, but needs the
proof π generated using secret key sksig as input to Proof. A correctly working
Judge gives the correct answer with overwhelming probability on input of a
correct proof π. In a non-interactive public accountability scheme, the invocation
of Proof outputs ⊥. Nonetheless, the public Judge gives the correct answer with
overwhelming probability on the input of π = ⊥. Iff the non-interactive public
accountability scheme’s Judge is correct, the scheme is therefore still accountable.

Intuitively, one might expect that in the absence of transparency it is easy to
determine which party issued a message/signature pair. This line of reasoning
is, however, incorrect, as the following theorem shows.

Theorem 2. There exist a SanSig which achieves neither transparency nor non-
interactive public accountability.

Proof. We prove the theorem by giving a concrete example. Let SanSig1 be a
transparent SanSig. We alter the algorithms as follows: when signing, the signer
appends a 0 to the signature. The sanitizer, when sanitizing, appends a 1 to
the signature. Clearly, signatures from honest signers can be easily distinguished
from signatures of honest sanitizers. However, a malicious sanitizer (signer) could
append 0 instead of 1 (1 instead of 0) and thus, a third party fails to correctly
determine the origin of a signature without executing Proof and Judge.

To separate the two notions even for honest signers and sanitizers, we can alter
the above example to having the sanitizer append a random bit. Now, deter-
mining the correct origin of a sanitizer’s signature succeeds with probability 1

2 ,
which breaks transparency, that requires it to be negligibly close to 0. Also, the
probability of 1

2 does not satisfy public accountability, that requires it to be
negligibly close to 1.

3.2 Blockwise Non-Interactive Public Accountability

Theorem 3. Every blockwise non-interactive publicly accountable sanitizable
signature scheme is also publicly accountable. All other properties are preserved.

Proof. (sketch) One sanitized block is enough to hold the sanitizer accountable
for the complete message. Hence, we define Judge to indicate the sanitizer’s
involvement, when detecting at least one sanitized block; and to indicate the
signer’s sole involvement otherwise.

For the following formal definition of blockwise public accountability, we intro-
duce the algorithm Detect. It takes as an input the security parameter, a message
m, a valid signature σ as well as the sanitizer’s public key pksan and the signer’s
public key pksig. Most notably, it also takes as an input a block index i and then
returns San or Sig, indicating which party signed the ith block.

Detect. On input of the security parameter 1λ, a valid message/signature pair
(m,σ), the corresponding public keys pksig and pksan, and the block index i,
Detect outputs the accountable party (San or Sig) for block i.

d← Detect(1λ,m, σ, pksig, pksan, i), d ∈ {San, Sig}

Definition 4 (Blockwise Non-Interactive Public Accountability). A
sanitizable signature scheme SanSig together with an algorithm Detect is publicly
accountable, if Proof = ⊥ and if for any efficient algorithm A the probability that
the experiment BlockpubaccountabilitySanSigA (λ) given in Fig. 3 returns 1 is negli-
gible (as a function of λ). The basic idea is that an adversary, i.e., the sanitizer
or the signer, has to be able to make the Judge decide wrongly on any block given
an empty proof.

4 Constructions

The first construction is non-interactive publicly accountable, while the second
one achieves blockwise non-interactive public accountability. Note, both con-
structions still satisfy privacy, immutability and unforgeability.

4.1 Construction 1: Non-Interactive Public Accountability

Brzuska et al. [6] give a construction that achieves all properties defined in [5]
except for transparency. Building on Th. 1, we conclude that their construction
also features non-interactive public accountability. The main construction idea
is that the signer signs the fixed parts of the message and additionally, the whole
message is signed by the signer or the sanitizer, see Fig. 4 for an overview.

Construction 1 (Non-Interactive Publicly Accountable SanSig)
Let S = (SKGen,SSign,SVerify) be an unforgeable signature scheme. Define
the sanitizable signature scheme SanSig = (KGensig,KGensan,Sign,Sanit,Verify,
Judge) as follows:

Key Generation: Algorithm KGensig generates on input 1λ a key pair (pksig, sksig)

← SKGen(1λ) of the underlying signature scheme S, and algorithm KGensan
for input 1λ analogously returns a pair (pksan, sksan)← SKGen(1λ).

Signing: Algorithm Sign on input m ∈ {0, 1}∗, sksig,pksan,adm computes

σfix ← SSign(sksig, (0,m[fix],adm,pksan)),

σfull ← SSign(sksig, (1,m,pksan,pksig))

using the underlying signing algorithm. It returns (m,σ) = (m, (σfix, σfull,adm)).

Sanitizing: Algorithm Sanit on input message m, modification instructions mod,
a signature σ = (σfix, σfull,adm), keys pksig and sksan first checks that
mod is admissible according to adm and that σfix is a valid signature for
message (0,m[fix],adm,pksan) under key pksig. If not, it stops outputting
⊥. If no error occurred, it generates the modified message m′ ← mod(m)
and computes

σ′full ← SSign(sksan, (1,m
′,pksan,pksig))

and outputs (m′, σ′) = (m′, (σfix, σ
′
full,adm)).

Verification: Algorithm Verify on input a message m ∈ {0, 1}∗, a signature
σ = (σfix, σfull,adm) and public keys pksig, pksan first checks that σfix is a
valid signature for message (0,m[fix],adm,pksan) under key pksig. Return
1, if either SVerify(pksig, (1,m,pksan,pksig), σfull) or SVerify(pksan, (1,m,
pksan,pksig), σfull) verifies. If so, it outputs 1, declaring the entire signa-
ture as valid. Otherwise it returns 0.

Proof: The Proof algorithm always returns ⊥

Judge: Judge on input m,σ,pksig,pksan and ⊥ parses σ as (σfix, σfull,adm)
and outputs Sig if SVerify(pksig, (1,m,adm,pksan), σfull) = 1, else if
SVerify(pksan, (1,m,pksan,pksig) = 1 then it returns San. Note, at least one
of these two verifies, because Judge is only run on valid pairs (m,σ).

Theorem 4. If the underlying signature scheme S is UNF-CMA, then the
scheme in Construction 1 is unforgeable, immutable, private, accountable and
non-interactive publicly accountable.

Proof. The first four properties are proven in [6], and thus, by Th. 1, Construc-
tion 1 is also non-interactive publicly accountable, as Proof returns ⊥. ut

4.2 Construct. 2: Blockwise Non-Interactive Public Accountability

The basic idea of our second construction is depicted in Fig. 5. It satisfies block-
wise non-interactive public accountability. Each message first gets a unique ran-
dom message identifier tag to prevent mix and match attacks. The signer then
signs the fixed blocks together with tag. Additionally, he binds each of the
modifiable blocks separately to the fixed message part and tag via a blockwise
signature. To replace a block, the sanitizer removes the existing blockwise signa-
ture and re-signs it using sksan. However, a malicious signer could re-use his tag
and include blocks from previous messages which bear a sanitizer’s signature. To
prevent this, the sanitizer additionally binds m[i]′ to a new random tag tag′.

Construction 2 (Blockwise Non-Interact. Publicly Acc. SanSig) Let S =
(SKGen,SSign,SVerify) be a regular signature scheme. Define the sanitizable sig-
nature scheme SanSig = (KGensig,KGensan,Sign,Sanit,Verify, Judge,Detect) as
follows:

Key Generation: Algorithm KGensig generates on input of the security param-
eter 1λ a key pair (pksig, sksig) ← SKGen(1λ) of the underlying signature

scheme, and algorithm KGensan for input 1λ analogously returns a pair
(pksan, sksan)← SKGen(1λ).

Signing: Algorithm Sign on input m ∈ {0, 1}∗, sksig,pksan,adm draws a random
tag tag and computes for all fixed blocks m[fix]

σfix ← SSign(sksig, (0,m[fix],adm,pksan,tag))

and for each block m[i] with i ∈ adm, it computes

σ[i]← SSign(sksig, (i,m[i],pksan,pksig,tag,⊥)).

It returns (m,σ) = (m, (σfix, (σi)i∈adm,adm,tag,⊥)).

Sanitizing: Algorithm Sanit on input a message m, modification instruction
mod, a signature σ = (σfix, (σi)i∈adm,adm,tag), keys pksig and sksan first
verifies that the signature-message pair is valid by running Verify. If not, it
stops and returns ⊥. It generates m′ = mod(m).
If the changed m′ does not conform to adm, it stops and returns ⊥. It then
draws a random tag tag′ and for each (i,m[i]′) in mod and computes

σ[i]′ ← SSign(sksan, (i,m[i]′,pksan,pksig,tag,tag
′))

For each (i,m[i]) ∈ adm \ mod, it sets σ[i]′ := σ[i]. It then outputs m′

together with σ′ = (σfix, (σi)
′
i∈adm,adm,tag,tag

′).

Verification: Algorithm Verify on input a message m ∈ {0, 1}∗, a signa-
ture σ = (σfix, (σi)i∈adm,adm,tag,tag

′) and public keys pksig, pksan first
checks that SVerify(pksig, (0,m[fix],adm,pksan,tag), σfix) = 1, hence σfix
is a valid signature. For each block m[i] with i ∈ adm it checks that at

least one of the algorithms SVerify(pksig, (i,m[i],pksan,pksig,tag,⊥), σ[i])
or SVerify(pksan, (i,m[i],pksan,pksig,tag,tag

′), σ[i]) returns 1. If so, it out-
puts 1. Otherwise it returns 0, indicating an invalid signature.

Detect: The Detect algorithm on input (m,σ,pksig,pksan, i) returns Sig if
SVerify(pksig, (i,m[i],pksan,pksig,tag,⊥), σi) = 1 and San if SVerify(pksan,
(i,m[i]′,pksan,pksig,m[fix],tag,tag′), σi) = 1. Note, at least one of the
verifications succeeds, as Detect is only queried for valid pairs (m,σ).

Proof: The Proof algorithm always returns ⊥

Judge: The algorithm Judge on input m,σ,pksig,pksan verifies that the signature
is valid using Verify. If not, it aborts returning ⊥. If the signature is valid,
Judge returns Sig, if Detect marks all message blocks as Sig, otherwise San.

m[fix] = m[2] m[6] m[7]

m[adm] = m[1] m[3] m[4] m[5] m[8]

pksig (σFIX)

pksig/pksan (σFULL)

Fig. 4. Construction 1: Blocks 2,6,7
fixed and signed by signer; Complete
m signed by either signer or sanitizer.

0, pksan,tag, pksig, i,m[i]

pksig (σFIX)

If m[i] is
admissible:

pksig/pksan (σ[i])

If m[i] is
immutable:

part of σfix

Fig. 5. Construction 2: Blockwise Pub-
lic Accountability due to the blockwise
signatures σ[i] (tag′ not shown)

Theorem 5. If the underlying signature scheme S is UNF-CMA, then the
scheme in Construction 2 is unforgeable, immutable, private, accountable and
blockwise non-interactive publicly accountable.

Proof. Blockwise non-interactive public accountability implies non-interactive
public accountability and accountability; the latter implies unforgeability [5]. It
is thus sufficient to prove privacy, immutability and blockwise non-interactive
public accountability. Privacy holds information-theoretically, as the original
content of the modified message blocks is not used by the algorithm. The proof
for immutability can be done analogously as for Construction 1, only the ad-
ditional tag needs to be taken into account. However, tag does not affect the
analysis. It remains to prove blockwise non-interactive public accountability.

Assume, there is an efficient adversaryA against blockwise non-interactive public
accountability. Then, we construct an efficient adversary B against the UNF-
CMA of the underlying signature scheme as follows. The adversary B gets as

input a public key pk and flips a coin b. If b = 0, it sets pksig := pk and runs SKGen
to generate (pksan, sksan). If b = 1, it sets pksan := pk and runs SKGen to generate
(pksig, sksig). Subsequently, to simulate the oracles for A, the algorithm B runs
the algorithms Sign and Sanit according to the specification with the exception
that whenever a signature is generated under the secret key sk corresponding to
pk, the adversary B does not generate the signature itself, but instead, it queries
its signing oracle. In the end, the adversary A outputs a triple (pk∗,m∗, σ∗),
from which B extract a valid signature as follows – we distinguish between two
cases, a malicious sanitizer attack and a malicious signer attack. The probability
that the simulation was done for the wrong case, is exactly 1

2 .

Malicious Sanitizer.

I) The tag tag∗ in (m∗, σ∗, pk∗) has never been returned by the signing oracle.
B returns (0,m[fix]∗,adm∗, pk∗san,tag

∗,⊥) together with σ∗fix as its forgery.

II) The tag tag∗ used in (m∗, σ∗, pk∗) has been returned by the signing oracle
in the ith query. If pk∗san 6= pksan,i then (0,m[fix]∗,adm∗, pk∗san,tag

∗,⊥)
together with σ∗fix is output. Else, there is a q with mi[q] 6= m∗[q], but the
local signature σ∗[q] verifies under the signers public key pksig. The adversary
B returns σ∗[q] together with (q,m∗[q], pk∗san, pksig,tag

∗,⊥).

Malicious Signer.

I) The tag tag′∗ used in (m∗, σ∗, pk∗) has never been returned by the sani-
tizing oracle. Then, B searches for a q where the local signature σ∗[q] ver-
ifies under the sanitizer’s public key pksan and returns σ∗[q] together with
(q,m∗[q], pk∗san, pksig,m[fix],tag∗,tag′∗).

II) The tag tag′∗ used in (m∗, σ∗, pk∗) has been returned by the sanitizing oracle
in the jth query. If pk∗sig 6= pksig,j then (q,m∗[q], pk∗san, pksig,m[fix],tag∗,

tag′∗) together with σ∗[q] is output, for a q, where σ∗[q] is a valid signature
under pksan. Else if pk∗sig = pksig,j , then there is a q with m′j [q] 6= m∗[q], but

the local signature σ∗[q] verifies under the sanitizer’s public key pksig. The
adversary B returns σ∗[q] together with (q,m∗[q], pk∗san, pksig,tag

∗).

Analysis. We omit the loss in success probability that might occur via tag
collisions, as tag ∈ {0, 1}λ. The adversary B has then a success probability
which is 1

2 the success probability of A. If B guesses correctly whether it should
embed the key for a malicious sanitizer or a malicious signer attack, then B is
successful, whenever A is, because the messages output by B were not queried
by B to its signing oracle before. In detail, if the tag has never been returned
by the oracle, then the message is clearly fresh. Else, if the tag has been output
to A, then it has not been signed together with the corresponding block. Hence,
the message is fresh w.r.t. the block and thus also a successful forgery. ut

KeyGen Sign Sanit (10% of |adm|) Verify Detect
HHH

HH|adm|
`

10/50/100 10 50 100 10 50 100 10 50 100 10 50 100

10% of ` 18,649 200 187 200 101 102 101 9 10 13 11 11 13

50% of ` 18,649 187 165 187 104 101 111 12 9 10 9 11 12

90% of ` 18,649 165 200 165 102 99 98 8 10 14 11 12 16
Table 1. Median Runtime Scheme 1; All in ms

KeyGen Sign Sanit (10% of |adm|) Verify Detect
H
HHHH|adm|

`
10/50/100 10 50 100 10 50 100 10 50 100 10 50 100

10% of ` 18,649 565 2,301 4,569 110 462 932 24 68 126 38 136 301

50% of ` 18,649 506 2,127 4,157 454 2,291 5,029 29 86 182 55 222 340

90% of ` 18,649 547 2,069 4,164 443 2,106 4,266 27 84 187 53 189 385
Table 2. Median Runtime Scheme 2; All in ms

5 Performance Measurements

We implemented both schemes to demonstrate their practical usability. All tests
were performed on an Intel T8300 Dual Core @2.40 GHz and 4 GiB of RAM,
running Ubuntu Version 10.04 LTS (64 Bit) and Java version 1.6.0 26-b03. We
utilized a single thread to calculate the signatures; an improvement would be
to parallelize signature calculations. The source code is available upon request.
We took the median of 100 runs. The signature is an RSA-PSS with a key size
of 4096 Bit. Other signatures can be used as well to save space, e.g., aggregate
signature schemes [3]. For the tests, we applied our algorithms to messages with
10, 50 and 100 blocks. For any block count, we varied the amount of admissible
blocks from 10% to a maximum of 90%, and we sanitized always 10% of the
admissible blocks. The results in Tab. 1 and Tab. 2 show that our schemes keep
reasonably performant with a high security parameter size and high block counts.

References

1. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096,
2011. eprint.iacr.org/.

2. G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable Signatures.
In ESORICS, pages 159–177, 2005.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In EUROCRYPT, pages 416–432, 2003.

4. C. Brzuska, H. Busch, O. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable

Signatures for Tree-Structured Data: Definitions and Constructions. In ACNS,
pages 87–104. Springer, 2010.

5. C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert,
D. Schröder, and F. Volk. Security of Sanitizable Signatures Revisited. In Proc.
of PKC 2009, pages 317–336. Springer, 2009.

6. C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Sanitizable signatures:
How to partially delegate control for authenticated data. In Proc. of BIOSIG,
volume 155 of LNI, pages 117–128. GI, 2009.

7. C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability of sanitizable
signatures. In PKC, pages 444–461, 2010.

8. S. Canard, A. Jambert, and R. Lescuyer. Sanitizable signatures with several signers
and sanitizers. In AFRICACRYPT, pages 35–52, 2012.

9. S. Canard, F. Laguillaumie, and M. Milhau. Trapdoor sanitizable signatures and
their application to content protection. In ACNS, pages 258–276, 2008.

10. R. M. Caplan. HIPAA. health insurance portability and accountability act of 1996.
Dent Assist, 72(2):6–8, 1997.

11. E.-C. Chang, C. L Lim, and J. Xu. Short Redactable Signatures Using Random
Trees. CT-RSA ’09, pages 133–147, Berlin, Heidelberg, 2009. Springer-Verlag.

12. EC. Directive 1999/93/EC from 13 December 1999 on a Community framework
for electronic signatures. Official Journal of the EC, L 12:12–20, 2000.

13. T. Izu, N. Kunihiro, K. Ohta, M. Sano, and M. Takenaka. Isa. chapter Sanitizable
and Deletable Signature, pages 130–144. Springer-Verlag, Berlin, Heidelberg, 2009.

14. R. Johnson, D. Molnar, D. Song, and D.Wagner. Homomorphic signature schemes.
In CT-RSA, pages 244–262. Springer, Feb. 2002.

15. A. Kundu and E. Bertino. Structural Signatures for Tree Data Structures. In Proc.
of PVLDB 2008, New Zealand, 2008. ACM.

16. C.M. Laborde. Electronic Signatures in International Contracts, volume 4982.
Peter Lang, 2010.

17. K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, S. Tezuka, and
H. Imai. Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. IEICE Transactions, 88-A(1):239–246, 2005.

18. K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, and H. Yoshiura.
Digital documents sanitizing problem. Technical report, IEICE, 2003.

19. H. C. Pöhls and F. Höhne. The role of data integrity in EU Digital Signature
legislation - achieving Statutory Trust for Sanitizable Signature Schemes. In Proc.
of STM 2011, LNCS. Springer, 2012.

20. K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. On Structural
Signatures for Tree Data Structures. In ACNS, volume 7341 of LNCS, pages 171–
187. Springer-Verlag, 2012.

21. K. Samelin, H. C. Pöhls, A. Bilzhause, J. Posegga, and H. de Meer. Redactable
signatures for independent removal of structure and content. In ISPEC, volume
7232 of LNCS, pages 17–33. Springer, 2012.

22. R. Steinfeld and L. Bull. Content extraction signatures. In ICISC, volume 2288,
pages 163–205. Springer, 2002.

23. Z.-Y. Wu, C.-W. Hsueh, C.-Y. Tsai, F. Lai, H.-C. Lee, and Y. Chung. Redactable
Signatures for Signed CDA Documents. J. of Med. Systems, pages 1795–1808,
2012.

