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Abstract. Due to the lack of appropriate grid communication infras-
tructure, many energy providers can only measure a very limited subset
of their PV plants and therefore have only limited knowledge of the power
flow inside their grid. Existing approaches to estimate the total amount
of PV energy produced at present time (“nowcasting”) require external
data such as sun radiation or temperature that are often not available on-
line. Using approximate computational algebra, we construct polynomial
models to derive grid-specific formulae estimating the PV power provi-
sioning without the need of additional data. We evaluate our approach
based on real data from a German energy provider and demonstrate the
accuracy of the derived models. Besides nowcasting, two additional ap-
plication scenarios, snapshot provisioning and simulation of power flow,
are discussed.

1 Introduction

Recently, many European countries integrate huge amounts of renewable based
power sources into the grid. They intend to reduce dependencies on fossil sources
like coal, oil, and nuclear resources. Some countries like Germany, Italy, and Bel-
gium even aim at completely eliminating these dependencies on nuclear power.
In many other European countries political ambitions are similar, since many
countries now bolster the integration and utilization of renewables and debate
nuclear power phase-outs.

Mainly driven by political objectives, the amount of renewable energy sources
that are fed into the power grid heavily increased in Germany lately. The Ger-
man government advocates the integration of renewable based power generation
in favor of reducing dependencies on nuclear power sources. In 2011, the German
government announced their objective to shut down all German nuclear power
stations by 2022. For this reason, large arrays of wind turbines and solar panels
have been installed. In addition to that, the German government assured mon-
etary incentives to citizens that install photo-voltaic panels on their residence’s

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Michael T. Beck, Hermann De Meer, Stefan Schuster and Martin Kreuzer. Estimating photo-voltaic power supply without smart metering infrastructure. In Proc. of the 2nd Int’l Workshop
(E2DC2013), Volume 8343 of Lecture Notes in Computer Science (LNCS), pages 25–39. Springer-Verlag, May 2013. The original publication is available at www.springerlink.com (2013).

See http://www.net.fim.uni-passau.de/papers/Beck2013b for full reference details (BibTeX, XML).



roof. Most of these private power plants are rather small in size and only pro-
duce a limited amount of power. However, many citizens decided to participate
in the initiative due to monetary incentives granted. So in total, across Germany,
photo-voltaic power production rapidly increased (and is still continuously in-
creasing) within the power grid.

Traditionally, the power grid was not intended to cope with the integration of
large amounts of highly fluctuating energy sources. Therefore, the main challenge
with power plants that are based on renewables like wind or solar radiation is
that power production is highly fluctuating and, in general, hard to predict.
Fluctuations, however, directly influence and destabilize the frequency in the
grid, if the energy provider can not cope with them in terms of adapting its
other power plants in-time or (with respect to demand/response mechanisms)
negotiating with flexible customers. In this case, the energy provider has to
fall back to (negative or positive) balancing reserve power which comes with
very high costs. For these reasons, precise prediction of energy that is expected
to be available in the (near) future is essential for the energy provider due to
economical and ecological reasons.

Photo-voltaic power generation is drastically increasing in Germany. During
the year 2010, approximately 7 GWpeak of solar power plants were installed,
which, at that time, rapidly increased the total available capacity by 70%. Power
generated by these new photo-voltaic power plants was often underestimated
by the distribution system operators (DSOs). In Germany, this became most
conspicuous in September 2010, where an unexpected imbalance of +7 GW
occurred for several hours. The German DSOs were not able to predict this
rapidly increasing amount of positive imbalance, as they underestimated the
impact of the newly installed panels. Thus, adaption of their power plants could
not be performed in time. Since overproduction exceeded all of the available
negative balancing reserve power (4300 MW), a huge amount (∼2800 MW) had
to be paid to other countries. This resulted in high costs and almost in a break
down of the grid [1] [2].

The reason for these kinds of underestimations lies in the current infrastruc-
ture of the grid. Energy providers just have started to upgrade grid infrastruc-
ture. This includes, but is not limited to additional power lines and commu-
nication channels. In almost every part of Germany (and also in many other
European countries), smart metering devices have not yet been deployed due
to excessive additional expenses and efforts. This also means that most of the
photo-voltaic panels can not be measured directly. In fact, approximately 75%
of a total of 900.000 photo-voltaic power plants can not be measured directly
due to technical limitations [2].

Therefore, in the age of renewable energy sources, energy providers have to
monitor grid stability, e.g., by estimating the amount of power provided by the
photo-voltaic plants that can not be measured directly. Being able to obtain more
accurate information, energy providers can react more precisely to discrepancies,
which leads to an increase in overall, trans-regional grid stability.



In this paper, we introduce a novel nowcasting methodology to estimate the
total available photo-voltaic power by mathematically analyzing correlations of
power provisioning characteristics. In contrast to others, our approach does not
depend on external information like solar radiation or additional information
on the type and alignment of panels. Therefore, our approach is expected to
be more accurate, especially in regional contexts. Furthermore, we are confident
that accuracy of existing forecasting algorithms can be significantly improved
by also taking into account the hidden interdependencies of PV plants. This
is especially interesting for demand/response mechanisms that are subject of
current research: Instead of just tailoring energy provisioning to the demand,
demand/response mechanisms are currently also integrated into grid infrastruc-
tures: In case of power shortages/surplus, energy demand of flexible customers
can be reduced by notifying them to adapt power consumption accordingly. Up
to now, demand/response mechanisms have been deployed for major customers
like big factories only, since they show the most potential of power adaption
capabilities.

However, current research also focuses on integrating mid-size consumers like
data centres into the grid (or even small customers like private homes)[3] 4. Since
data centres are expected to be able to adapt power demand much more fine-
grained than factories, more accurate information of power surplus/shortage is
becoming more and more important. Using nowcasting techniques, a snapshot of
the current state of the grid can be derived, which is a valuable input for these
adaption mechanisms.

We run our evaluation on data provided by an energy provider located in
Bavaria, Germany. First results show that the approach seems to be quite promis-
ing, even for small-scale grids and small geographical distances between power
plants.

2 Background

The integration of renewable power sources into traditional power grids comes
with several difficulties and challenges, since they notably differ from traditional,
fossil based power sources. During the day, power quality needs to be maintained
in the grid continuously for the grid to remain stable. High power quality means
that voltage and frequency do not (or only within very tight boundaries) vary
from specific values. Disruptions and disturbances caused by unforeseen effects
have to be avoided by all means to ensure that power provisioning is working
properly and to avoid grid failure [4]. Traditionally, this has to be ensured by the
responsible energy provider by switching off unneeded power plants in time in
case there is additional power fed into the grid by renewable power sources. Sim-
ilarly, the energy provider has to react timely if these additional power sources

4 The All4Green project, which is funded by the European Union, aims at integrating
data centres into the smart grid. It introduces new service level agreements for data
centres (and also for its end users) to define the degree of flexibility in terms of quality
of service. For further information, please refer to http://www.all4green-project.eu



disappear. A major challenge in this respect is that adapting these ”’traditional”‘
power sources has to be done quickly, i.e., as fast as the renewables appear or
disappear. Therefore, energy providers have to carefully plan ahead hours of
operation of their power plants, since provisioned power has to match demands.

For this reason, energy providers have to take weather forecasts into account,
which introduce uncertainties in terms of predictability. Predictability, however,
is of significant importance for the energy provider for operating economically
and ecologically. Power that is provided by various kinds of power plants always
relies on constraints that come with these differing power plants and the power
sources they use. For example, due to technical reasons, several models of diesel
generators can only be used for a limited number of times a year; nuclear power
plants can not provide power immediately after they are switched on. Thus, in
general, there are four types of power plants that distinguish in reactiveness,
ecologic footprint, and economic costs:

1. Base Load Power Plants:
Power plants delivering high amounts of inflexible energy. They are inflexi-
ble in terms of reactiveness, but power provisioning in general is relatively
cheap. These power plants can not be used to cover Medium Load, nor can
they compensate quickly fluctuating power sources.
Examples: nuclear power plants, coal power plants

2. Medium Load Power Plants:
These power plants can react quicker than Base Load Power Plants to chang-
ing demands. I.e., they can cover the lack of energy that was forecasted to
be provided by a photo-voltaic plant if the changed weather conditions were
predicted hours or several minutes before. However, Medium Load Power
Plants can not be used to cover on-demand events.
Examples: combined gas and steam energy generators

3. Peak Load Power Plants:
Peak Load Power Plants react quickly and almost in-time to unforeseen
changes. However, the usage of these plants is costly and in general also
involves high CO2 emissions.
Examples: diesel generators and gas turbines

4. Plants relying on uncontrollable power sources:
Power plants that are not controllable in terms of power provisioning times.
These power plants depend on renewable energy sources like sun or wind.
Since these sources are highly fluctuating and their local availability and
disappearance are hard to predict, huge amounts of additional power might
rapidly disappear in the grid, so the energy provider has to adapt power
provisioning of its other plants in-time. Weather forecasting techniques are
an essential tool for reasonable, economically arrangement.

Thus, grid stability is a complex task, and power demands and power supply
have to be planned carefully. For this reason, the European grid is not just a col-



lection of individual, national (or even local) grids, but is highly interconnected.
This allows to transfer cheap energy (that is currently available in the south of
Europe, for example) to the north, if it is not needed. In general, this also helps
to stabilize the grid, since partners can help compensating local instabilities. I.e.,
a local energy provider is connected to its preceded energy provider. The pre-
ceded provider might also provide a major contribution to the energy supplied
locally, usually within stipulated bounds.

As a consequence of integrating fluctuating renewable sources like solar power
plants and wind turbines, energy providers have to cope with two main chal-
lenges: Power Shortage and Power Surplus.

1. Power Shortage
Power shortage is often caused by special mainstream events (e.g., football
matches), changing weather conditions (sudden drop of renewable energy
due to upcoming, sky-covering clouds or reduced wind), or due to seasonal
conditions (e.g., heating in winter, usage of air-conditioning during summer
months). To cover power shortages, economically and ecologically expensive
peak load power generation has to be activated, or additional power needs
to be bought from third-party suppliers (that might even reside in a foreign
country). Otherwise, the grid will become unstable and break down.
Basically, there are two reasons for a power shortage: Failures or forecast
deviations. In case of a power plant’s breakdown, power supply suddenly
drops within the grid and other plants have to compensate the lack of power
generation. The same happens if there are forecast deviations, i.e., if fore-
casted reneable based energy generation differs significantly from their real
power supply. Figure 1a depicts a shortage at 12pm. The maximum amount
of power supplied from the preceded energy provider exceeds the stipulated
bounds and the lack of power can not be compensated by own power plants.
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Fig. 1: Deviations of power supply and power demand



2. Power Surplus
If more power is available than demanded, the energy provider has to deal
with power surplus. This can be caused by sudden increases of uncontrollable
power plants (e.g., wind and no clouds) or the fact that power demand is de-
creasing (e.g., on sunny Sundays or holidays, where industrial production is
paused and people go outside). In this case, power plants have to be switched
off (either completely or partly). Sometimes, unneeded power resources even
have to be sold to third party suppliers/foreign countries, mostly with neg-
ative prices. Otherwise, a power surplus will lead to grid instability.
Reasons for a power surplus are similar to the ones described for power
shortages: One reason is that there are failures, i.e., on the side of a (big)
customer. In this case, power demand suddenly decreases and power plants
have to be adapted accordingly. Another reason is that there might be devi-
ations from forecasts so that power plants could not be arranged accordingly
in time. Figure 1b depicts a surplus of energy: At around 4pm, there is more
energy generated by, e.g., solar power plants than needed.

3 Related Work

Up to now, research has investigated in two closely related, but still different
areas in this field: Forecasting and Nowcasting techniques. Forecasting aims at
predicting the available amount of power provisioning that will be available in
the future. Based on weather forecasts, energy providers can estimate how much
energy will probably be available within the next couple of hours (or even days).
Then, based on this information, they can derive how much additional energy
they have to buy from third party suppliers or on the stock market – or, in case
of a power surplus, how much energy they have to sell.

Therefore, prediction methods are used for estimating the demanded amount
of power. In this case, forecasting mostly focuses on inter-day predictions, i.e.,
on expected weather conditions for the next day, or even on intra-day to predict
weather changes within the next few hours. However, from the energy provider’s
perspective, short-term forecasting techniques are getting more and more attrac-
tive. This is mainly due to the rapid integration of photo-voltaic panels in several
parts of Europe. Weather forecasting is highly complex and, therefore, prediction
of available energy is very error prone in this case. Especially, forecasting of di-
rect sunlight beam is much more inaccurately to perform than global irradiance.
Several approaches have been proposed to predict future weather conditions.
Also, based on weather forecasting, several methods have been introduced to
estimate the actual amount of power that will be provided by solar panels or
wind turbines. [5] evaluates and compares several of them.

In general, since both forecasting approaches (weather forecasting, and, based
on this, power forecasting) are highly unreliable, the real amount of power pro-
vided by renewable sources can differ significantly from the predicted values.
Several Demand/Response protocols like OpenADR guarantee incentives to the



customers that are willing to support the energy provider by adapting their
power consumption accordingly. These incentives should be based on the current
state of the grid, i.e., power consumption that needs to be decreased/increased.
However, in many European countries like Germany, grid infrastructure is not
ready for the integration of a more complex communication system, i.e., Smart
Metering. Therefore, the real amount of currently available photo-voltaic power
can not be determined exactly, since measurement data can not be sent to the
energy provider. Therefore, Saint-Drenan et al. propose a novel approach to
estimate the amount of photo-voltaic power based on sattelite data [2].

In this paper, we propose another nowcasting approach to detect hidden
dependencies derived solely from a subset of photo-voltaic power plants. We aim
to provide a methodology to derive models that are accurate even for small-scale
grids and small geographical distances.

4 Estimating Available Photo-Voltaic Supply in the Grid

We aim at deriving grid-specific formulae to estimate the amount of power fed
into the grid by power plants that can not be measured continuously. The ap-
proach currently used by German energy providers to estimate this amount
assumes a linear relation to the amount of energy which is produced by a small
number of directly measured PV plants [6]. However, as discussed in [2], the
situation is more complicated: Due to certain characteristics of PV plants (e.g.,
module orientation) the correlation of produced PV energy between different
PV plants is in general rather low. Assuming not linear but more generally
polynomial relations between PV plants, we therefore suggest in the following
an approach based on ideas coming from algebraic geometry and evaluate it
against data obtained by a real power grid, located in Bavaria, Germany. After
discussing the results we describe possible application scenarios.

4.1 Mathematical Background

Our modeling approach is based on the so called extended ABM algorithm (see
[7]), an advancement of a group of algorithms that were developed to obtain
polynomial descriptions of physical systems (see [8], [9]) The common assump-
tion hereby is, that a certain set of measured data contains polynomial relations
that describe the system under consideration. The goal is to exhibit these re-
lations. The approach is purely data driven since only the data itself and no
further assumptions are used to construct the desired models.

To make this idea precise, let X = {p1, . . . , ps} ⊂ Rn be a finite set of s mea-
sured data points, e.g., the power production of n different PV plants, measured
at s points in time. The relations in question are polynomials f ∈ R[x1, . . . , xn]
which vanish ε-approximately on X for a given ε ≥ 0, i.e., (f/||f ||)(p) ≈ε 0 for
each p ∈ X. Here, || · || denotes the Euclidean norm of the coefficient vector of
f and a ≈ε b holds for two real numbers a and b iff |a − b| ≤ ε. The threshold



number ε thereby reflects the noise present in the data. Consider for instance
the set

X = {(0, 0), (1, 0.98), (2, 4.01), (3, 8.9), (4, 16.02)} ⊂ R2 (1)

of 5 data points in the plane. Then the polynomial f = y−x2 ∈ R[x, y] vanishes
0.1-approximately on X.

To construct polynomials as desired, Limbeck [7] suggests the Approximate
Buchberger-Möller (ABM) algorithm, a new combination of the Buchberger-
Möller algorithm for border bases (cf. [9], [10]) and the singular value decompo-
sition, to compute the ε-approximate kernel of certain evaluation matrices: Given
a set of data points p1, . . . , ps ∈ Rn and a threshold number ε ≥ 0, the ABM
algorithm constructs a finite set G = {f1, . . . , ft} ⊂ R[x1, . . . , xn] of polynomials
that vanish ε-approximately on X. The Buchberger-Möller algorithm reduces the
problem of finding polynomials that evaluate the given points exactly to zero to
the problem of computing the kernel of linear mappings that come from evalu-
ating just terms at every given point. In the approximate setting the question
to compute the approximate kernel of those evaluation matrices is answered by
the well organized exploitation of singular value decompositions.

The situation just described is homogeneous in the sense that we ask for
polynomial equations with right-hand side ≈ε 0. If we allow a non-zero right-
hand side, we accordingly ask a more general question, which we can regard as
the inhomogeneous case. To this end, consider the tuple Ξ = (p1, . . . , ps) of s
data points pi ∈ Rn and assume that Q = (q1, . . . , qs) ∈ Rs is a tuple of fur-
ther data points. The goal is now to construct polynomials f ∈ R[x1, . . . , xn]
such that f(pi) ≈ε qi for all i = 1, . . . , s, or in other words, such that each f
evaluates ε-approximately to Q on Ξ. An algorithmic solution to this problem is
given by the extended approximate Buchberger-Möller algorithm (extended ABM,
[7]). Given data points p1, . . . , ps ∈ Rn combined in the tuple Ξ = (p1, . . . , ps),
a threshold number ε and a tuple Q = (q1, . . . , qs) ∈ Rs, the algorithm con-
structs a finite set G ⊂ R[x1, . . . , xn] of polynomials such that each f ∈ G
evaluates ε-approximately to Q on Ξ. To modify our example from above,
we consider the tuple Ξ = (0, 1, 2, 3, 4) of the points 0, . . . , 4 ∈ R together
with Q = (0, 0.98, 4.01, 8.9, 16.02) ∈ R5. Then, for instance, the polynomial
f = x2 ∈ R[x] vanishes 0.1-approximately to Q on Ξ.

An important feature of all algorithms we previously mentioned, and the ex-
tended ABM in particular, is that they compute in general more than just one
model polynomial. Secondly, since the extended ABM proceeds degree by degree,
the constructed polynomials are of lowest degree among all ε-approximately van-
ishing polynomials. As a third feature we note, that the constructed polynomials
are numerically stable with respect to perturbations in the input data set X.

4.2 Modeling

For evaluating this mathematical approach in the context of photo-voltaic power
supply, we build our investigation on real data obtained from a power grid oper-
ated by a German energy provider, Stadtwerke Passau GmbH (SWP). SWP is a



local energy provider in Bavaria, Germany. More than 50% of energy generated
by SWP’s power plants is based on solar resources. This is why SWP seems to
be a good choice for evaluating our approach. The size of the grid is 7 square
kilometers large. This grid connects around 800 small scale photo-voltaic plants,
which have a capacity of about 23 MWp. Most of these photo-voltaic power
plants can not be measured directly: only 8 power plants are directly accessible
by SWP.

Based on measurement results, we observed huge impacts of local weather
effects on the amount of provided solar energy. However, no direct linear corre-
lations between individual photo-voltaic power plants can be defined, due to the
nature of photo-voltaic power generation. Since characteristics of power plants
differ significantly, their relations are not expressible by linear models. These
characteristics, e.g., efficiency, age, size, etc., have a high impact on the power
provisioning, but there might also be other factors (e.g., local conditions) that
are not obvious. Nonetheless, we assume that there might be some “hidden” non-
linear correlations between power plants’ generation patterns. This assumption
might be realistic, since weather conditions for these plants are expected to be
similar and sun irradiance does not differ significantly between their geograph-
ical locations. But instead of introducing a complex model that covers all of
these parameters, we propose a methodology to derive such correlations based
on mathematical analysis of power provisioning data. The analysis is purely
based on power provisioning patterns obtained from photo-voltaic power plants
of SWP and does not depend on any other, additional data. This means that
no assumptions on weather conditions, irradiation, geographical positions and
so on are being made for the evaluation. For our analysis, we use the extended
ABM algorithm which detects dependencies that are approximately polynomial.
If there are any correlations between power provisioning data obtained from
power plants, these are detected by the algorithm.

Using the extended ABM algorithm, we aim to answer the following questions:

1. Is it, in principle, possible to model some of the photo-voltaic plants in terms
of the others?

2. How many different PVs do we need to express the others?

3. How good are the approximations, especially with respect to the number of
omitted PVs?

4. Can we observe local effects? Can we explain why some models are in par-
ticular good, by looking at the closeness of some PVs?

For this purpose, we observed local weather conditions and traced power sup-
ply patterns of all eight directly measured photo-voltaic power plants of SWP
for three consecutive days: The first two days are characterized by a highly fluc-
tuating solar irradiation, the third day had a continuously clear sky except early



Fig. 2: Normalized measured data of eight PV power plants, taken on three
consecutive days from 29 October, 2012 to 31 October, 2012.



morning and evening hours, see Figure 2. To build models using the extended
ABM, we proceed as follows.

1. Data selection:
Divide the data into two sets, a training set and a validation set. In our case,
we took the data of one day for training and the other two days for evaluation.

2. Target selection:
For both the training and validation sets, divide the set of PV plants into
two groups, a group of source data that will provide the input data X and
a group of target data each of which serves as the right-hand side Q in the
input of the extended ABM.

3. Preprocessing:
Typical preprocessing steps consist, e.g., of removing invalid data, filtering
and normalization. For the present three days, we removed the values for
those times, where the PV plants did not produce any energy and normal-
ized the remaining data series.

4. Model building:
Use the training data as input for the extended ABM and obtain a set of
polynomials G, the set of model candidates.

5. Model selection:
Using the validation source data from the two selection steps above, evaluate
each polynomial and compute its residual error with respect to the validation
target. Select the polynomial with the least residual error.

4.3 Results

We applied the method described in the previous section to the data provided by
eight directly measured PV systems between 29 October, 2012 and 31 October,
2012. For further reference, we name these eight plants by the letters A to H.
The data is measured in intervals of 15 minutes. Since we considere only the
time between 7:30 and 15:45, omitting early morning and evening hours where
the stations did not produce energy, we receive for each day and each plant 34
data points, measuring the current power production.

Due to the structural similarity of the 8 data series of 31 October, which was
a clear day, we did not use that data for training but instead made two different
runs: Run 1 using the data from 29 October and Run 2 using the data from 30
October as training set. Table 3 gives an overview of Run 2. We denote by m
the number of PV plants that we use as target data, i.e., that we try to model
in terms of the remaining 8−m PV plants. There are sm :=

(
8
m

)
possible ways

to select those PV plants and in each run we built models for all sm possible
selections. Thereby, m ranged from 1 to 7, since we need at least one source data
set. For m = 6 and m = 7 we did not get any reasonable model, the results are
therefore omitted.



Table 3: Error statistics for Run 2, standard deviation in parenthesis.

m Avg. # models Avg. best error Avg. mean error Best error

1 56.0 (20.8) 1.7 (3.7) 4.4 (8.0) 0.21
2 47.6 (15.0) 2.8 (6.0) 11.7 (32.3) 0.89
3 36.6 (10.6) 4.5 (10.7) 30.3 (140.4) 1.54
4 25.1 (6.2) 12.5 (59.9) 105.4 (901.0) 2.28
5 15.8 (3.3) 161.8 (1456.6) 1354.7 (13767.4) 4.77

Table 4: Target PV plants for which best residual errors were obtained.

m 1 2 3 4

Run 1 C E,F D,E, F C,D,E,H
Run 2 C D,F B,E, F B,C,D, F

Fixing m and one of the sm selections, we get three numbers that we use to
characterize the models of the given selection: (1) the number of models returned
by the AVI, (2) the least (i.e., best) residual error of these models and (3) the
mean residual error of these models. Averaging those three values over all sm
selections gives the results of the second, third and fourth column of Table 3.
The respective standard deviations are given in parenthesis. The last column
shows the overall best error among all selections.

To make the computations comparable, we used a value of ε = 0.1 throughout
all computations. It is important to note that the value of ε must not be confused
with the residual errors discussed above. The value of ε guarantees bounds within
the training data while the residual error is a measure to compare validation data.
It is also not surprising that the number of models decreases with increasing m.
The reason is that the polynomials are constructed within R[xi1 , . . . , xi8−m

] (with
ik ∈ {A, . . . ,H}) and therefore the number of terms per degree also decreases.

Table 4 shows the selection of target PV stations for the best model of Run
1 and Run 2, respectively. The PV stations B, C, E, F and H are all located
within a radius of 1 km. Together with D they lie within a radius of 2 km.
Further away are plants A and G, a radius of 3.5 km is required to surround
all 8 PV plants. The results meet out expectation that close-by plants can more
easily be modeled by each other.

The question how good the constructed models are depends on the demands
of a concrete application and their particular requirements. We consider the
models for m = 1, . . . , 4 as good both with respect to the overall residual error
as well as with respect to the coverage of the dynamics of the system. Figure 5
shows that the two quite distinct dynamics of 30 October and 31 October are
covered equally well.

All computations were executed on a 2.26 GHz Intel Core 2 Duo laptop using
the computer algebra system ApCoCoA [11]. On average, a call of the extended
ABM on a 34× 4 input matrix took 0.021 seconds.



fF = −1.04xAxB + 0.62x2
C + 0.40x2

G − 1.2xBxG − 1.38xCxH − 0.81xGxH + 3.31x2
H

+ 0.37xA + 1.43xB + 0.81xC − 0.06xG − 1.52xH + 0.02 ∈ R[xA, xB , xC , xG, xH ]

Fig. 5: Best model for PV plant F in Run 1, m = 3 and its evaluation for the
validation sets.



4.4 Application Scenarios

We consider two application scenarios for the modeling approach described in
the last section: Snapshot provisioning and simulation.

1. Snapshot provisioning
A snapshot of the amount of power available in the grid or smaller sub-areas
can help power providers or large consumers such as data centers to adapt
feed or consumption parameters, thereby improving load balancing or opti-
mizing economical goals. In this scenario, a small number of PV plants is
directly measured and this data is available on-line. The data of PV plants
that are not measured on-line is derived by their corresponding model poly-
nomials. To compute these polynomials, an initial calibration phase is nec-
essary: Over a certain period of time, data for every PV station in question
is collected. From this data, the model polynomials are constructed.

2. Simulation of power flow
As a straight forward variation of the first scenario, model polynomials once
constructed can be used to simulate certain aspects of the grid: Varying the
data used as input, one explores the behavior of the grid under different
circumstances. Power flow analysis is a substantial tool for grid operators to
ensure grid stability. By taking into account these interdependencies, simu-
lation results are expected to become more accurate.

5 Conclusion and Future Work

We introduced a methodology to build models of the production of photo-voltaic
power plants. In contrast to other approaches, these models also aim to be suited
for small-scale areas in a small scale power grid, in addition to larger-scale sce-
narios. Furthermore, no external data like sun radiation or justification of the PV
panels are required. The models can be used by energy providers to determine
available power generated by photo-voltaic power plants (state estimation) that
are not directly connected to the communication infrastructure. This snapshot
of the grid’s status can be used for monitoring purposes.

The resulting models met our expectation with respect in two directions:

– According to evaluation results, the approach seems to be quite promising
with respect to geographically close-by PV plants.

– The selection of the model plants is sufficiently independent on the choice of
training data.

We are confident that there is still great potential to further enhance the
approach. Future work is dedicated to enhance the model by considering geo-
graphical locations of power plants. Since our evaluation results imply that mod-
eling results for close-by PV plants lead to more precise results, this additional,
domain-specific knowledge could lead to accuracy improvements. Furthermore,



we think that our methodology leads to improvements in accuracy of power fore-
cast methods. Current models do not analyze hidden interdependencies of PV
plants and do not consider them for forecasting available power. This will be
subject of future work.
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