
A Distributed, Parallel, and Generic
Virtual Network Embedding Framework

Michael Till Beck∗‡, Andreas Fischer∗, Hermann de Meer∗
∗University of Passau, Passau, Germany

{michael.beck,andreas.fischer,demeer}@uni-passau.de
‡Stadtwerke Passau GmbH, Passau, Germany

Juan Felipe Botero, Xavier Hesselbach
Universitat Politécnica de Catalunya, Barcelona, Spain

{jfbotero,xavierh}@entel.upc.edu

Abstract—One of the main challenges of network virtualization
is the mapping of virtual network demands to physical network
resources, commonly known as the virtual network embedding
(VNE) problem. This paper introduces DPVNE, a distributed,
parallel and generic VNE framework. DPVNE can be used
1) to run various cost-reducing embedding algorithms 2) in a
distributed way. Thereby, computational load for embedding
multiple virtual networks is spread across the substrate network
reducing workload of individual nodes and 3) enabling the
embedding of multiple virtual networks in parallel. DPVNE,
in contrast to existing distributed algorithms, 4) achieves lower
message overhead and, despite of being distributed, 5) keeps
embedding costs comparable to those of centralized approaches.

I. INTRODUCTION

To overcome the inflexibility of the current Internet, network
virtualization (NV) has been recognized as a key technology
for the Future Internet [2]. One main problem in NV lies in the
mapping of virtual network resources to the substrate network
(SN). Each virtual resource has to be assigned to one or several
substrate resources. These, however, only have limited capac-
ity, thereby restraining the number of virtual resources that can
be hosted by a certain substrate resource. The optimal mapping
of virtual network requests (VNRs) on top of the SN has been
called Virtual Network Embedding (VNE) [3]. An efficient
embedding is not only important in network virtualization; the
EU funded project All4Green (www.all4green-project.eu) aims
for efficiently allocating demands in data centers to minimize
energy consumption accomplishing a fixed (static SLA) or
elastic (green SLA) QoS guaranteed to the ICT end users.

VNE is NP-hard [3]. As such, one has to refer to heuristic
solutions. However, even heuristics do not scale well for large
networks. Except for the distributed VNE approach presented
in [5], that incurs in a huge message overhead, current pro-
posals are centralized, resulting in scalability problems.

In this paper, we introduce DPVNE: a generic, fully Dis-
tributed and Parallel VNE approach. Contrary to centralized
approaches where a single node computes the entire embed-
ding, DPVNE has the advantage of making better use of avail-
able computing resources, letting multiple nodes (embedder
nodes) calculate embeddings in parallel. Multiple substrate
nodes, belonging to the SN, perform the actual embedding,
instead of having a central instance that gets overwhelmed
by receiving a large amount of requests. We introduce a
hierarchical partitioning that allows to perform the VNE in
smaller, cooperating parts of the SN. Some substrate nodes are
defined to be the entry points of the embedding framework
(delegation nodes), managing SN partitions. The VNRs are
initially randomly distributed to these special nodes by a load
balancer. Delegation nodes then embed the VNRs they receive,

either by delegating it to other parts of the network, or by
performing the embedding themselves.

More precisely, the main contributions of DPVNE are:
• Distributed Embedding: The VNE is not performed

by a centralized embedder node. Instead, the network is
partitioned into several parts and computational overhead
is spread among them. In contrast to other distributed
algorithms, message overhead is noticeably reduced.

• Parallel Embedding: Parts of the network can operate
independently, so the SN is able to embed, in parallel, a
set of VNRs, increasing the computation performance.

• Generic Embedding Framework: DPVNE is a gen-
eral framework that can integrate various existing cost-
optimizing VNE algorithms. Embedder nodes use one of
the existing VNE algorithms to actually embed the VNR.

Since DPVNE is distributed and embeds multiple VNRs in
parallel, it scales with respect to computational and messaging
overhead – even for large network topologies.

II. RELATED WORK

Due to the NP-hardness of the VNE problem, current
solutions are based on heuristics [9], [7], [1]. All those
previous approaches share the following characteristics: they
rely on a centralized embedder node to perform the VNE while
they serve just one VNR at a time. Being centralized, they can
benefit from full knowledge of the substrate network to com-
pute a near-optimal VNE result without any communication
overhead. However, they present a single point of failure.

The first distributed VNE approach that aims to guarantee
load-balancing among all substrate nodes during the VN
mapping was proposed in [5]. The proposal maps each VNR
by subdividing it into a set of hub-and-spoke clusters where
each cluster is handled by a root node in the SN. Although
this proposal solves some of the weaknesses of centralized ap-
proaches, it suffers from introducing high message overhead.

A partly distributed approach is presented in [4]: the SN is
split into different, hierarchic partitions. However, in contrast
to DPVNE, this approach is 1) not fully distributed (it relies
on a general manager and a set of sub-managers dealing with
each partition level), and 2) it is not generic.

III. DISTRIBUTED VNE FRAMEWORK

In this section we present a distributed, parallel, generic
VNE framework, based on hierarchical network partitioning.

A. Partition-based Distributed Embedding

The DPVNE framework uses a hierarchical partitioning
scheme. By partitioning the network, the partitions can be
used to perform embeddings independently. Therefore, the
network partition has to be performed in a preparatory phase,



5
6

7

8

2

1

3

4

5
6

7

8

2

1

3

4

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2

5
6

7

8

2

1

3

4

Fig. 1: Hierarchical Partitioning of a Network

before the first VNR arrives. DPVNE is, thus, divided in two
stages: the initialization of the substrate network phase and
the embedding phase.

1) Substrate Network Initialization Phase: This phase con-
sists of three steps: a) Partitioning the SN, b) assigning
delegation nodes, and c) setting up distributed lock trees.

a) Partitioning the SN: DPVNE looks for a hierarchi-
cal partitioning that provides, in each layer, a set of non-
overlapping partitions. Partitions should be highly connected
for increasing the likelihood that VNRs are assigned to well-
connected substrate resources. Fig. 1 depicts an example.

We choose the Multilevel Recursive Bisection partitioning
algorithm proposed by Karypis et al. in [6]. This algorithm
identifies a specified number of isolated and non-overlapping
partitions inside the substrate network’s graph that have nearly
the same amount of CPU and bandwidth (BW) resources.
Additionally, it also aims at minimizing the number of links
between partitions. This means that the algorithm tends to
group nodes that are highly interconnected. Later, these parti-
tions of nodes are used to embed virtual networks.

For each partition, the node with the highest available CPU
resources is selected. We call this node a clusterhead. It runs
the partitioning algorithm that builds isolated, non-overlapping
partitions, and it will also run the actual embedding algo-
rithm that the DPVNE implementation was assembled with.
The procedure is recursively repeated: Within each smaller
partition, another clusterhead (that has not been chosen as
a clusterhead before) is selected. Each new clusterhead then
divides the partition it is located in (cf. Fig. 1). For the sake
of simplicity, partitioning is described as a centralized process
here, however, it can also be done in a fully distributed way.

This way, a hierarchical partitioning structure of the sub-
strate network is built. Network partitions are organized hier-
archically allowing an easy distribution of the VNRs through
the SN. Partitions located at the same hierarchy level do not
intersect, and each partition encloses all nodes of its children.
On each level, DPVNE’s partitioning approach tries to find
partitions having a similar amount of resources. It stops when
the size of the partitions is 1 node. At the end each clusterhead
is aware of the topology and available resources inside its
partition and, as consequence, is able to run an embedding
algorithm to compute the actual VNE.

b) Assigning Delegation Nodes: The network operator
sets up a load balancer that randomly distributes VNRs.
However, these requests are not sent to any arbitrary substrate
node, but only to special ones: Some clusterheads inside
the hierarchy will be in charge of receiving the VNRs and
delegating them to the partition that fits better to perform
the embedding. Those nodes are called delegation nodes. To
increase the number of virtual networks that can be embedded
in parallel, we define more than just one single node inside
the partition hierarchy to be a delegation node.

If delegation nodes are situated at different levels in the
hierarchy, problems can occur with overlapping areas of re-

Fig. 2: Locking of network areas

sponsibility. E.g., if one delegation node is a child of another
delegation node, both nodes will forward VNRs to cluster-
heads below both of them, leading to inconsistent information
with regard to available resources. To avoid this kind of
problem, it is assumed here that delegation nodes are all
located on the same level in the hierarchy, taking care of
mutually independent parts of the network (cf. Fig. 2).

c) Setting up Distributed Lock Trees: To perform paral-
lel VNEs, a locking mechanism is implemented to prevent
inconsistencies of clusterheads sharing parts of the same
substrate topology. For example, in the scenario presented
in Fig. 1, we may not run a mapping algorithm on the left
partition of the level 1, while at the same time, another
embedding is going on at the leftmost partition of the level 2.
In contrast, we can continue at the right partition of the level
1 in parallel, since this area is independent. For this reason,
each clusterhead maintains a data structure (locktree) where
information about the state of partitions that are currently
involved in a running embedding process is managed. Each
local locktree only covers the set of clusterheads that the
clusterhead itself communicates to (i.e., the subtree below
the partition and the parent clusterhead). Each partition is in
one of the following three states (cf. Fig. 2): fully locked
(FL), partially locked (PL) or unlocked (UN). FL means
that the clusterhead responsible for the partition is currently
embedding a VNR. A PL clusterhead itself is not currently
performing a VNE, however, one or more of its children
are. Consequently, the partition can not embed a VNR at
the moment, because it did not receive the latest, up-to-date
resource information yet. Finally, UN clusterheads are not
currently performing VNEs and their children neither.

2) Distributed and Parallel Embedding: After initializing
the SN, the embedding process can take place. To reduce the
number of exchanged messages, we confine the distribution of
the VNR to the hierarchical subtree starting at the delegation
node that has received the request.

a) Embedding within the scope of the delegation nodes:
Each delegation node controls an independent part of the net-
work. To avoid interferences, a delegation node may only del-
egate VN requests to clusterheads within its assigned partition
scope (or hand it off to its parent node). So, when a VN request
is received, the delegation node tries to find another underlying
clusterhead within its partition scope that might be able to
embed the VN request. The main requirements of a partition to
perform a VNE are to have, at least, the same number of nodes
than the VNR and to count on sufficient available resources.
To check this, a simple heuristic calculating the potential π of
a partition p (composed of a set of nodes n ∈ N and links
l ∈ L) to embed the VNR vi (composed of a set of virtual
nodes ni ∈ N i and links li ∈ Li) is used:

π =

∑
n∈N

rescpu(n)∑
ni∈Ni

demcpu(ni)
·

∑
l∈L

resbw(l)

ω ·
∑

li∈Li

dembw(li)

π is calculated by the delegation nodes for every underlying
partition they know. It is a combination of CPU and BW
potential. CPU potential is calculated by dividing available
CPU resources (rescpu(n)) by CPU demands (demcpu(n

i)).



Likewise, BW potential is calculated by dividing available
BW (resbw(l)) by demanded BW (dembw(l

i)). Since virtual
links can span several physical links, the demanded BW is
weighted with a parameter ω, which estimates how much
physical BW will be used by a virtual link. A higher ω leads to
a more pessimistic heuristic, expecting to spend more substrate
resources to fulfill the demands. Note that this definition can
easily be extended to take different constraints into account.

The potential tries to estimate whether a specific VNR
can be embedded into a substrate partition. If the partition’s
number of nodes is sufficient and its potential is greater
than 1, it is considered as a candidate to embed the VNR.
There might be more than just one single partition able to
embed the request. The delegation nodes start delegating the
embedding from the partition in the bottom hierarchy level
having the smallest complying π. The embedding is then
performed by the clusterhead of that partition. This behaviour
ensures both minimization of the embedding cost in the SN
and maximization of the number of network areas that can be
used for parallel VNRs: only the smallest possible network
partitions are busy, while other parts of the SN can be used in
parallel. In the meantime, when a clusterhead of an underlying
partition is still busy calculating the VNE, the delegation node
that forwarded the VNR can continue receiving further VNRs
and delegate them to other idle clusterheads.

b) Embedding outside the scope of the delegation nodes:
If the heuristic cannot find any suitable partition in the
scope of the delegation node, the request is forwarded to the
parent clusterhead. Clusterheads above the level of delegation
nodes in general do not have up-to-date information (since
some nodes within their scope are working in parallel and
therefore the availability of resources might have changed
in the meantime) and therefore do not use any heuristic to
estimate to which of their children they forward the request
to. They simply forward the request to all of their children
(except the one that sent the request), one by one, and stop as
soon as one of them can embed the VNE. The original child
that failed to embed the request stops embedding further VNEs
until its parent node sends a notification to continue (this is
done as soon as the parent node receives the final embedding
result). If none of the children is able to embed the VNE, the
parent clusterhead tries to embed the VNE itself. In case of
failure, it forwards the request to its parent clusterhead and
waits for its answer. This parent clusterhead again operates in
the same way. If there is no parent clusterhead to forward the
request to, the highest level of the partition hierarchy has been
reached and the VNE failed. In this case, the VNR is rejected.

c) Distributed VNE Protocol: To deal with the commu-
nication among the clusterheads of the hierarchy, a VNE pro-
tocol is proposed. To facilitate the comprehension of DPVNE,
its behavior is illustrated in Fig. 3. Here, delegation nodes are
chosen at level 1 of the partitions’ hierarchy. The VNRs are
processed for each time (tx) as follows:

t0: VNR arrives at delegation node B. Let’s assume the
heuristic tells the delegation node that there are not enough
resources available inside none of its subpartitions. In this case,
the delegation node tries to run the embedding algorithm inside
its own partition. However, it is not able to map the VNR.

t1: Since VNR can not be mapped inside the partitions
of delegation node B, it delegates the request to its parent
clusterhead A. There might be unapplied resource updates
generated by previous embeddings that only B and some
underlying clusterheads are aware of, so B can also include

t0

Delegation Nodes

Request

Result

Stop

Start

Embedding fails

Embedding succeeds A

C

t1 t2

t3

t3

t4t5

t5

D E F G

B

Fig. 3: Distributed Algorithm Behavior

update information if necessary. Clusterhead B fully locks
all of its own partition scope locally, including its parent
clusterhead, so it queues any other VNRs that arrive in the
mean time until the embedding of the current VNR is done.
t2: Upon receiving a delegated request, being a clusterhead
located above the delegation nodes level, clusterhead A knows
that B is unable to embed the VNR within its scope. So
it fully locks the corresponding partition scope locally and
randomly chooses one of its other, locally unlocked children
and sends to it a STOP message asking for the embedding of
the VNR. (Since we have a binary tree in this example, the
only possibility here is C). When receiving a STOP message,
newly incoming VNRs are queued by the delegation node
(until a START message is received), the node finishes ongoing
embeddings, and, finally, tries to embed the VNR that is part
of the STOP message in the partition scope.
t3: Delegation node C receives STOP from its parent. C
stops receiving new requests, waits until all the VNRs being
embedded inside its partition finish and, based on the potential,
chooses the clusterhead F to delegate the VNR and perform
the VNE. C fully locks node F locally; it also locks itself
partially. In the next step, VNR is mapped in clusterhead F,
which, in turn, communicates the result to clusterhead C.
t4: After the VNE finishes, C locally unlocks the clusterheads
again and notifies parent node A that the VNR was success-
fully embedded and which resource allocations changed. A
receives the message, unlocks the locally locked clusterheads
and applies the corresponding updates.
t5: Node A forwards the result message to delegation node B,
indicating that the embedding was performed successfully. In
turn, it sends a START message to node C that was previously
stopped. This message tells that C can continue processing
VNRs. B unlocks the resources that were locked locally.

In summary, the DPVNE framework performs embeddings
in parallel, distributing the load among different nodes in the
SN. It first partitions the SN to create a hierarchy of SN
partitions within which VNRs can be embedded. Each partition
is coordinated by a clusterhead. Each clusterhead maintains
a local lock tree, containing information about parts of the
SN currently busy with an embedding. Some clusterheads
are assigned as Delegation Nodes, receiving VNRs from the
outside world and distributing them within the hierarchy.
VNRs can be escalated to higher levels in the hierarchy, if
a clusterhead does not have sufficient resources to satisfy the
VNR. In the following section, efficiency of this approach will
be evaluated and compared to other VNE algorithms.

IV. EVALUATION

We evaluate various characteristics of DPVNE with regard
to its distributed nature. Therefore, we compare it to the
DAVNM algorithm, which is, to the best of our knowledge, the
only other fully distributed VNE proposal up to now. We also
analyze DPVNE concerning the quality of the embedding, in



particular embedding cost. To this end, we compare DPVNE
to a set of well known centralized algorithms. In contrast to a
distributed approach, the single embedder node of centralized
approaches benefits from full knowledge of substrate topology.

In order to evaluate our approach, we used the ALEVIN
simulation tool 12. This tool facilitates the development, com-
parison, and analysis of VNE algorithms and comes with
various implemented VNE algorithms. Since our framework
focuses on cost optimization, we selected a set of appropriate
VNE algorithms sharing the same goal: DAVNM [5], Baseline
[9], ASID [7], RW-MM-SP [1], and RW-BFS [1]. As already
stated, our approach is generic. For the following evaluation,
DPVNE embedder nodes used ASID to perform VNE.

We partition the networks into two parts at each level,
creating a binary tree hierarchy. The set of evaluation sce-
narios were created over random network topologies. This
is in line with evaluations done in related work [9], [7].
To generate the random topologies, a Waxman generator [8],
parametrized with edge probability 0.5 and long edge ratio
0.5 was employed. Substrate networks were generated with
100 nodes. In order to evaluate the effect of increased stress
on the substrate network, we generated requests of different
sizes (5, 10, 15, or 20 nodes per VNR). As in most related
work, CPU power in nodes and bandwidth in links were
chosen as constraints, but other kinds of constraints can also
be used without constriction. Substrate nodes/links received a
random CPU/bandwidth capacity between 1−100, and virtual
nodes/links a random CPU/bandwidth demand between 1−50,
which is similar to parameters presented in related work. To
ensure stability of the results, 30 scenarios were generated.

We evaluated and compared various algorithms towards
embedding costs. As in previous approaches, cost is defined
as the sum of the SN resources used to allocate the VNR.
However, costs heavily depend on the topology and the de-
mands of VNRs. Since our topologies are random, costs vary
and thus, direct comparison can be unfair. A better comparison
strategy could be to additionally take the demands of VNRs
into account by determining the revenue (defined as the sum of
requested bandwidth and CPU of the VNRs). So, to provide an
appropriate comparison, the cost/revenue (C/R) ratio is defined
as the division of cost and revenue.

As discussed in Section I, our goal was to present a
distributed, scalable and parallel VNE framework. From the
obtained results, we summarize the following key observations
(confidence level of all figures: 95%).

A. Reduction of message overhead by DPVNE

In general, there are two primary factors for the success
of a scalable algorithm that operates in a distributed manner
– the distribution of load (set of VNRs) and the message
overhead generated by it: On the one hand it is preferable
that load is spread across as many nodes as possible (parallel
VNE). On the other hand, communication overhead should
be low. Otherwise, the approach will not scale well. This
is a problem of the DAVNM algorithm: DAVNM has a
noticeable communication overhead in our simulations in order
to complete the embeddings. Table Ia compares the message
overhead of DAVNM to DPVNE with ω = 10, using the root
node as the only delegation node that distributes load. So,
DPVNE comes with significantly lower message overhead.

1ALEVIN: http://sourceforge.net/projects/alevin/
2Full source code of DPVNE: http://net.fim.uni-passau.de/beck/DPVNE.zip

TABLE I

(a) coordination messages

#nodes DAVNM DPVNE
per VNR

5 53554 18
10 61591 13
15 74918 13
20 93470 14

(b) Node stress

#nodes ASID DPVNE
per VNR

5 0.4 0.3
10 1.9 0.5
15 4.0 0.8
20 6.9 1.0

B. Influence of pessimistic estimations

Various parameters influence the behaviour of DPVNE and
also have an impact to the number of exchanged messages
needed to find an appropriate embedding result. One important
factor is a reasonable estimation of the available resources
inside SN partitions. The potential π of a determined partition
can be fine-tuned by its ω parameter: A higher value results in
a more pessimistic evaluation of available substrate resources,
a smaller value in a more optimistic one.

Fig. 4a shows the number of coordination messages that
are exchanged between substrate nodes. This is evaluated for
varying ω. Additionally, the size of the virtual networks was
varied between 5 nodes and 20 nodes, and the root node
was chosen as the only delegation node. Regardless of the
size, there is a sharp drop up to ω = 10 with the amount
of messages staying at or below 20 messages for larger ω.
This is because for lower ω, DPVNE acts in an optimistic
way, trying to embed VNRs at levels too deep in the tree,
leading to an increased messaging overhead, when oversized
virtual networks have to be delegated to larger partitions. On
the other hand, if ω is too large, eventually everything will
be embedded by the root node, leading to lower message
overhead (but increased centralization). In the figure, this is
the case for 20 virtual nodes per network.

C. Influence of delegation node placement

For Fig. 4a, to have a clear presentation of results, we
had chosen the root node (level 0) as the only delegation
node. However, the number of messages also depends on
where the delegation nodes are placed, because this influences
which level of the hierarchy the VNRs are initially sent to
and how they are delegated. Fig. 4b, shows the number of
messages in dependence of the level where delegation nodes
are placed. Each level is evaluated with varying load, having
virtual networks with 5, 10, 15, or 20 nodes each. It can be
seen that message overhead does not significantly change when
delegation nodes were set to a lower level. The advantage of
choosing multiple delegation nodes that delegate and spread
computation to other clusterheads is the reduction of message
passing overhead and the dependability on a single node.
However, delegation nodes should not be placed too deep in
the hierarchy. Otherwise, this has a negative effect to message
overhead: As depicted in the figure, for level 3, message
overhead starts to grow again, especially for bigger networks.
The average number of nodes within one of the 23 partitions
at level 3 is 100/23 ≈ 13. Since a partition of this size will,
on average, not be able to embed a VNR that has 15 or 20
nodes, these VNRs have to be delegated to a higher hierarchy
level – which results in additional message overhead.

D. Tradeoff - number of messages vs level of parallelism

Keeping the number of coordination messages at a low
level is not the only aim of a VNE algorithm. Otherwise, an
algorithm that only uses one single node to compute all the
embeddings (like centralized algorithms do) would be ideal,
already. For a distributed approach, however, VNRs should be
appropriately distributed among substrate nodes, so that they



0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
e
r
o
f
M
e
ss
a
g
e
s

ω

number of nodes: 5
number of nodes: 10
number of nodes: 15
number of nodes: 20

number of nodes: 5

number of nodes: 10

number of nodes: 15

number of nodes: 20

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 m

es
sa

ge
s

ω
0

10

20

30

40

50

60

70

(a) # messages vs. ω
0

10
20
30
40
50
60
70
80
90

100

5

Number of messages

nodes per VNR

level:0

level: 1
level: 2

level: 3

10 15 20

(b) # messages vs delegation level (c) Cost/revenue (different algorithms)

Fig. 4: DPVNE Results

28

Level 4

Level 1

Level 2

Level 3

1 5 1510

12 14

50 100ω:

100

75

50

25

0

Embedding substrate nodes

% of 
networks
mapped

Fig. 5: Embedding involvement vs ω

can be embedded in parallel. To spread load equally, DPVNE
organizes substrate nodes in a tree structure. As such, it is
interesting to see which percentage of the requested virtual
networks is mapped at which level in the tree. The deeper
in the hierarchy, the more nodes will participate in the set
of embeddings. E.g., if 10% of all networks are mapped at
level 3, then 23 = 8 nodes take 10% of the load. This is
depicted in Fig. 5. In this figure, the load distribution between
levels in the binary tree is shown in relation to ω, which is the
main regulating factor in this approach. A higher ω means that
estimates for embedding costs are more pessimistic, leading to
networks being embedded at a higher level in the tree and, as
a consequence, to a lower level of parallelism. The number of
nodes participating in the embedding is shown at the top of the
figure as “embedding substrate nodes”. It can be seen that for
higher ω there are less nodes participating in the embedding.

Taking Fig. 5 into account, one can conclude that ω = 10
provides a good tradeoff between message overhead and load
distribution. In comparision to more than 60000 messages
generated by DAVNM, it becomes clear that our approach is a
significant improvement in terms of message overhead.

E. Economical resource usage

Fig. 4c shows the C/R ratio for several VNE algorithms. It
can be seen that the C/R ratio of our approach is comparable
to the ratio of other approaches. On average, results are better
than for the distributed DAVNM algorithm. In some cases,
DPVNE even outperforms centralized approaches, especially
for smaller virtual networks, although embedder nodes do not
have full knowledge of the overall network topology.

It is even slightly better than the pure ASID, because em-
beddings are confined to highly connected partitions with just
enough resources. Therefore, the possibility to find appropriate
embedding candidates within the immediate surroundings of
a node is higher than when just choosing arbitrary, random
areas that are possibly already crowded (as ASID does). This
is indicated by the average number of nodes that gets mapped
to a substrate node (see Table Ib).

Simulation results showed that DPVNE drastically reduces
the number of exchanged messages when compared with the
other distributed alternative, DAVNM. They also showed that
making pessimistic estimations and placing delegation nodes
up in the hierarchy reduces the level of parallelism. There is a
tradeoff between the amount of exchanged messages and the
number of VNRs that can be embedded in parallel. Embedding
costs are comparable with the ones of centralized approaches.
With VNRs of low sizes, DPVNE even achieves better C/R
ratios, due to the restriction of the VNEs to smaller and
strongly interconnected SN partitions.

V. CONCLUSION AND FUTURE WORK

We introduced a generic, distributed and parallel framework
for embedding virtual networks that can be used in combi-
nation with cost-reducing embedding algorithms. We showed
that message overhead can be kept significantly smaller than
other distributed VNE solutions. Despite its distributed nature,
embedding costs of DPVNE remain comparable to those
of centralized algorithms. Simulation results also indicate a
tradeoff between message overhead and the level of parallelism
that can be achieved with DPVNE.

Future work will be devoted to the evaluation of DPVNE
with various VNE algorithms. More sophisticated heuristics
for estimating the potential π will be investigated. Also,
different partitioning methods can be evaluated, and timing
and load balancing aspects should be discussed in more detail.

ACKNOWLEDGMENTS This work has received support by the
EU projects All4Green (FP7 STREP, grant no. 288674), EINS
(FP7 NoE, grant no. 288021), and the Spanish Government
project MICINN (grant no. TIN2010-20136-C03-01).

REFERENCES

[1] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang.
Virtual network embedding through topology-aware node ranking. SIG-
COMM Comput. Commun. Rev., 41:38–47, April 2011.

[2] N. Chowdhury and R. Boutaba. A survey of network virtualization.
Computer Networks, 54(5):862 – 876, 2010.

[3] A. Fischer, J. Botero, M. Beck, H. de Meer, and X. Hesselbach. Virtual
network embedding: A survey. Communications Surveys Tutorials, IEEE,
PP(99):1 –19, 2013.

[4] T. Ghazar and N. Samaan. Hierarchical approach for efficient virtual
network embedding based on exact subgraph matching. In GLOBECOM,
pages 1–6. IEEE, 2011.

[5] I. Houidi, W. Louati, and D. Zeghlache. A distributed virtual network
mapping algorithm. In Communications, 2008. ICC ’08. IEEE Interna-
tional Conference on Communications, pages 5634 –5640, may 2008.

[6] G. Karypis, V. Kumar, and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Distributed Com-
puting, 48:96–129, 1998.

[7] J. Lischka and H. Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In VISA, pages 81–88, 2009.

[8] B. M. Waxman. Routing of multipoint connections. IEEE Journal on
selected areas in communications, 6(9), 1988.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM
SIGCOMM CCR, 38(2):17–29, Apr. 2008.


