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Abstract
Background

Cloud computing data centres, due to their housing of powerful ICT equipment, are high
energy consumers and therefore accountable for large quantities of emissions. Therefore,
energy saving strategies applicable to such data centres are a very promising research
direction both from the economical and environmental stand point.

Results

In this paper, we study the case of private cloud computing environments from the
perspective of energy saving incentives. However, the proposed approach can also be
applied to any computing style: cloud (both public and private), traditional and
supercomputing. To this end, we provide a generic conceptual description for ICT
resources of a data centre and identify their corresponding energy-related attributes.
Furthermore, we give power consumption prediction models for servers, storage devices
and network equipment. We show that by applying appropriate energy optimization
policies guided through accurate power consumption prediction models, it is possible to
save about 20% of energy consumption when typical single-site private cloud data centres
are considered.



Conclusion

Minimizing the data centre’s energy consumption, on one hand acknowledges the
potential of ICT for saving energy across many segments of the economy, on the other
hand helps ICT sector to show the way for the rest of the economy by reducing its own
carbon footprint. In this paper, we show that it is possible to save energy by studying the
case of a single-site private cloud data centres. We believe that through the federation of
several cloud data centres (both private and public), it is possible to minimize both the
energy consumption as well as CO2 emissions.
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Background

Motivation

Energy consumption of data centres is becoming a key concern for their owners: energy costs
(fuel) continue to rise and CO2 emissions related to this consumption are relevant. In 2007,
Gartner [1] estimated that the global impact of the ICT sector (considering PCs, servers,
cooling, fixed and mobile telephony, local area network, office telecommunications and
printers) is 2% of the global CO2 emissions, which is approximately the same as fuel
consumption from the airline industry.

Amazon [2] has evaluated its data centre expenses (see Figure 1), showing that server costs
account for 53%, while energy related costs totaling 42% (direct power consumption 19%
plus amortized power and cooling infrastructure 23%).

Figure 1 Amazon’s monthly expenses distribution. Amazon’s evaluation of its data centre
expenses showing that server costs account for 53%, while energy related costs totaling 42%

Therefore, saving money in the energy budget of a data centre, without sacrificing Service
Level Agreements (SLA) is an excellent incentive for data centre owners, and would at the
same time be a great success for environmental sustainability. This aspect needs to be
highlighted, since it’s absolutely not frequent in environment-related problems to have a
solution satisfying all stake holders.

Main focus

One of the latest trends in IT is cloud computing [3], where public and private deployment
models [4] are commonly used to differentiate one cloud provider from another. The former is
made available to the general public on pay-per-use basis, whereas the latter is operated solely
for internal users of organizations.



Since elasticity [4] is one of the key aspects of a cloud service, the cloud provider gives the
impression of having an infinite set of resources. In fact, large public cloud providers have end
users potentially spread over the globe and can capitalize on statistical compensation for large
number of service requests; practically speaking, since cloud resources are frequently
allocated and also released (as side effect of the pay-per-use billing mode), during the time
lots of allocations and de-allocations tend to compensate keeping fluctuations under
reasonable control. On the other hand, private clouds, instead, have generally a much smaller
number of users (e.g. the employees of a corporation) and the provider needs to size its ICT
infrastructure for the peak usage. Since the variety of usage patterns is limited inside a close
community, it’s quite likely that the utilization rate of the ICT resources can vary a lot
between night and day and/or week days and week-ends. Therefore, private cloud providers
need to keep a larger capacity buffer compared to public providers, and suffer more from load
variations. In addition, it has been noticed that some public cloud providers are starting to
offer discounted prices for certain time slots, when they foresee a resource usage gap –
something similar to the concept of “last minute”tickets for travelers – where private providers
don’t have this chance!

Given the above-mentioned differences in the ICT resources’ utilization patterns between
private and public cloud providers, it is obvious that more evident advantages are foreseen to
save energy in former than in latter where the owners –in case of low load –instead of saving
energy and costs, can decide to attract additional business by lowering the prices to fill the
utilization gap. Private cloud provider –in case of low load –has the possibility to see the
whole infrastructure optimized to run the load with the lowest energy consumption, while
preserving the SLAs with respect to their users.

In summary, there are lots of incentives for any cloud provider – being public or private – to
save energy. The opportunities for public cloud providers might depend on alternative
business conducts, while private cloud providers will likely get clear benefits.

Contributions and results

In general, energy savings can be achieved in data centres through optimization mechanisms
whose main objective is to minimize the energy consumption. However, in order that these
optimization mechanisms can take the most suitable energy-saving decisions, the existence of
accurate power consumption prediction models becomes primordial. Consequently, one of the
major contributions of this paper is devoted to a detailed description of power consumption
prediction models for ICT resources of data centres which are presented in Section Power
consumption prediction models. Note that the details on the optimization algorithms used for
our use-case study are out of the scope of this paper and interested readers can refer to [5].

The architecture of our energy-saving mechanism is based on a three-step control loop:
Optimization, Reconfiguration and Monitoring. The whole state of the data centre is
continuously monitored. As a matter of fact, another major contribution of this paper is
dedicated to a detailed description of the state of a data centre in terms of ICT resources with
their relevant energy-related attributes and interconnections which is introduced in Section
Data centre schema. This state is periodically examined by the Optimization module in order
to find alternative software application and services deployment configurations that allow
saving energy. Once a suitable energy-saving configuration is detected, the loop is closed by
issuing a set of actions on the data centre to reconfigure the deployment to this energy-saving
setup.



Monitoring and Reconfiguration modules in Figure 2 interact with the data centre monitoring
and automation frameworks to perform their tasks. The Optimization module ranks the
candidate target configurations, identified by applying energy-saving policies without
violating existing SLAs, with respect to their power consumption that are predicted by the
Power Calculator module. The accuracy of the predictions of this module is crucial to take
the most appropriate energy-saving decisions; in fact it has the responsibility to forecast the
power consumption of a data centre after a possible reconfiguration option. In the rest of this
paper, our energy-saving mechanism is called “plug-in” simply because it runs agnostically on
top of data centres’ automation and monitoring frameworks.

Figure 2 Proposed control loop for energy optimization. The different components and their
interactions of our energy-aware “plug-in”. We call it “plug-in” simply because such a set of
software components run agnostically on top of data centre automation and monitoring
frameworks

Finally, we demonstrate the results obtained through single-site optimization policies of a
private cloud computing data centre. In Section Evaluation and results these results are
presented which illustrate the possibility of saving about 20% on the total consumption of ICT
equipment inside a private cloud computing data centre. It is worthwhile to note that our
power consumption prediction models as well as state description of a data centre are generic
enough that they are suitable to energy-saving optimization mechanisms applicable to any
computing style being traditional, super and cloud computing.

Related work

Servers

In the existing literature, the power consumption of a server has been modelled in two
different ways: offline and online. In the former case, SimplePower [6], SoftwareWatt [7] and
Mambo [8] estimate the power consumption of an entire server. However, these models use
analytical methods based on some low-level information such as number of used CPU cycles.
The major advantage is that they provide high accuracy. Nevertheless, the offline nature of
such models requires extensive simulation, which results in a significant amount of time for
estimating the power consumption. Consequently, these models are infeasible for predicting
the power consumption of highly dynamic environments like cloud computing data centres.

To overcome this problem, an online (run-time) methodology is proposed [9, 10]. Such
models are based on the information monitored through performance counters [11]. These
counters keep track of activities performed by applications such as amount of accesses (e.g. to
caches) and switching activities within processors. The total power dissipation of a server is
computed as the power consumption of each activity. However, these counters in certain
processors (e.g. AMD Opteron) can report only four out of 84 events [12]. Therefore, such
models are unable to predict accurate power consumption in real-life cases.

Another run-time methodology is to use high-level information as the one proposed by [13].
These authors assumed that processors are the main contributors to the total server’s power
consumption. Thus, a linear model based on the processor’s utilization is proposed. However,
such a model suffers from a significant inaccuracy as the server’s power consumption is not
exactly linear [14]. The key reason is that the impact of other components (e.g. multiple level



caches, RAM, I/O activities) and their interactions are not considered. To prevent this
problem, [10] designed a component level model. Through this approach, a calibration phase
is performed before predicting the power consumption of a server. During this phase, this
model analyzes the system parameters (e.g. CPU utilization, hard disk I/O rate) influencing on
its power consumption. However, implementing such a model within a data centre (having
homogenous and/or heterogenous resources) is very difficult since it needs calibration
whenever a new hardware is installed within the existing servers. Since the component level is
flexible for modelling a generic server, we have also adopted the same approach as [10]. In
contrast to this model, which provides one linear model for the whole servers, our approach
designs different models for different components based on their behaviors. Another
distinguishing property is that our approach does not need calibration phase.

It is worthwhile to note that above mentioned approaches, which depend on low-level
information in order to predict the power consumption, are not appropriate in real-life case
simply because the underlying monitoring systems of the data centres are not able to provide
the low-level information that these approaches require. Consequently, in this paper we
identified the most-relevant energy-related attributes of ICT resources to which the monitoring
systems of data centres typically provide the necessary information.

Storage devices

The storage devices range from a single hard disk to SAN (Storage Area Network) devices,
which consume a significant amount of power. Several studies [15–18] were dedicated to
devise models for individual hard disks, where the power consumption of a disk is predicted
based on its states such as seek, rotation, reads, writes and idle. With the emergence of Disk
arrays (e.g. RAID), the above mentioned approaches need to be adapted to deal with several
hard disks instead of one. Several models [19–21] for RAID have been proposed. [19]
proposed STAMP (Storage Modeling for Power) by mapping the front-end workload to
back-end disk activities, and the power consumption of the back-end activities is computed. A
major concern is that this model ignores the power of some activities such as spin-up and
spin-down [21]. [20] generalized the model of individual hard disks to RAID where the
overall power of RAID is the sum of power consumed by each individual hard disk within
RAID. However, this model does not take into account the power of RAID controller’s
processor and memory. [21] addressed this problem by proposing a model (MIND), which
computes the power of RAID by considering controller’s power and disk activities such as
idle, sleep, random, sequential and cache accesses.

The key drawback of these RAID models is their implementation in the real world such as
data centres due to the low level input parameters. For instance, hard disk’s state (e.g. idle,
accessing, startup) and operation mode (read/write operations) are usually not available at data
centre level, where a monitoring system provide information only about average read and
write rates over a time period (e.g. per second). Furthermore, the total power consumption of
SAN devices, which are used for storage within data centres, cannot be computed through
RAID models since SAN has also processing (e.g. CPU, RAM) and network components (I/O
ports) in addition to hard disks. In this paper, we propose a model, which can be applied to any
type of storage devices. In contrast to the existing models, our approach requires information
such as read/write rate, which is usually available within data centres monitoring systems.



Network equipment

There has been a great deal of attention to devise power consumption models for routers and
switch fabrics. The power consumption of the integrated Alpha 21364 router and the IBM
InfiniBand 8-port 12X switch is modelled in [22] illustrating that buffers are the largest power
hoggers in routers. A crossbar switch, if present, consumes less but still significant power, and
arbiter power is negligible under high network load. It is shown, that also the router
micro-architecture has a huge impact on router power consumption. [23] suggest a framework
to estimate the power consumption on switch fabrics in network routers. They state that the
power consumption on switch fabrics is mainly determined by the internal node switches, the
internal buffer queues and the interconnect wires. [24] present a power and area model
according to network-on-chip architectures. They suggest ORION 2.0 that uses a set of
architectural power models for network routers to perform early-stage network-on-chip power
estimation.

Data centre schema

The ICT resources (e.g. servers, storage devices and network equipment) with their relevant
energy-related attributes and interconnections are represented by the data centre schema. The
data centre operator identifies all the equipment that the site is composed of and becomes
responsible for creating and editing an instance of such a schema. Note that some forms of
automated discovery of resources and exporting them to the schema instance might be
provided, however the data centre operators are responsible for validating their configuration.

Given the complexity and heterogeneity of the data centre infrastructure, we derive the data
centre schema by decomposing the modelling process into 5 phases: ICT resources, network
topology, server, storage, and services modelling.

ICT resources modelling

Figure 3 illustrates the UML class diagram of ICT resources for data centres. Each “Site” can
host a set of “Data centre”s where sites can be scattered geographically. The main
energy-related attribute of a “Site” is PUE [25] which stands for Power Usage Effectiveness
and is used to indicate the efficiency in terms of energy usage of the data centre facilities. This
metric is used for evaluating the impact of software load (e.g. virtual machines) on global
energy consumption. The attribute CUE (Carbon Usage Effectiveness) can be used to perform
optimisations based on CO2 emissions (out of the scope of this paper). Each “Data centre” is
based on a specific computing style indicated through the computingStyle attribute which
belongs to one of the following three categories: Traditional computing, Supercomputing and
Cloud computing. Note that the corresponding attribute is useful in order to enable the
optimization policies suitable to each computing style.

Figure 3 ICT resources UML class diagram. The figure, which is a Unified Modeling
Language design, describes in detail the different ICT resources that can be found inside a site
consisting of several data centres

Inside each data centre, there are ICT equipment which can be organized either inside
“Rack”s or in independent cases such as single box stands, generally with tower form factor



(“Tower Server”), in addition to box-like network devices such as routers and switches (“Box
Network”class). “Framework Capabilities” class describes energy-related controlling
capabilities of the management and automation tools available to the data centre to be
managed energy-wise. The term controlling capabilities refers to all possible actions (e.g.
power off/on equipment, migrate software load, etc.) applied to the data centre ICT resources
and carried through by the framework. As a matter of fact, in the rest of this paper
frameworkID attribute is used by every class that needs to identify its corresponding
controlling capabilities.

A rack is a framework used typically to hold several different ICT resources: rack-mountable
servers are represented by the “Rackable Server”class, enclosures to host blade form factor
servers (“Blade Server”class) are depicted by the “Enclosure”class. Typically “Tower
Server”s and “Rackable Server”s have independent Power Supply Units (“PSU”class) and
cooling system (“Cooling System”class), whereas “Blade Server”shares the PSU and cooling
system from its enclosure. Note that all these three classes representing servers are
generalizations of a single parent “Server”class (see Section Server modelling). Furthermore,
racks contain typically a set of Power Distribution Units (“PDU”class): in most cases they are
passive devices simply used to connect the different power plugs of the rack elements; in some
other cases they can also be active and perform power measurements and switch on/off
functions. Storage Area Network devices (“SAN”class) are generally mounted inside racks
and have independent Power Supply Units and cooling system. SAN is a dedicated device that
provides network access to consolidated, block level storage. Finally, network devices such as
routers and switches can also be mounted inside racks (“Rackable Network” class) whose
specifics are explained in Section Network topology modelling. Note that in the rest of this
paper measuredPower and computedPower optional attributes in most of the classes are used
in order to record the power consumption of the corresponding resource obtained respectively
through a dedicated power meter and power consumption prediction models of Section Power
consumption prediction models. Note that these two parameters serve for the model
refinement as they are useful to compare measured and computed values to check and refine
the power consumption prediction models. Finally, powerIdle and powerMax are respectively
used to denote the idle and the fully active power consumption of the corresponding class.

Network topology modelling

Figure 4 illustrates the network topology UML class diagram which depicts a clearer overview
of how network nodes in a data centre are connected to each other. A class “Network”consists
of number of entities of “Network Node”and “Flow”. Flows are allocated to the various nodes
based on the network decisions. These allocations are dynamic and can vary during the
lifetime of a flow to optimise the energy consumption accordingly. Therefore, the two defined
entities of “Network Node”and “Flow”shape the “Network”so that based on certain criteria a
“Flow”can be detached from one “Network Node”and can be attached to another. The energy
efficient policies that make such decisions are performed based on the attributes from both
classes of “Flow”and “Network Node”, which will be elaborated further in the followings.

Figure 4 Network topology UML class diagram. The figure, which is a Unified Modeling
Language design, provides a detailed description of how network nodes in a data centre are
connected to each other



As illustrated, the “Flow”class describes an end-to-end communication occurring within the
data centre or between one network node within the data centre and another node on an
external network (for example the Internet). This class’ attributes include the communication
end points, which can be expressed by the source and destination Network Node addresses.
The “Flow”class also includes an attribute bandwidth required by a communication which
provides an indication of the expected flow throughput for traffic engineering purposes.

A “Network Node”is an abstract class, which represents the entities defined as routers,
switches, servers, and so on. Each “Network Node”can have a number of communication
ports (“Network Port”class), however a port can only be associated to a single “Network
Node”. Moreover, each network port is associated to a class “Link”that connects this port to
another port in the network. The class “Network Node”possesses of the following attributes:
processingBandwidth refers to the maximum number of packets that can be processed by the
node per second. The processing bandwidth can be usually found in router’s/switches
specification data sheets or can be measured. forwardFlag indicates whether the node is able
to forward packets and is used to differentiate end hosts from routers and switches. Note that
each “Network Node” is equipped with Power Supply Units (“PSU” class) and cooling system
(“Cooling System” class) such as fans whose energy-related attributed are presented in
Section Server modelling.

The class “Network Port”defines a port on the “Network Node”, which can be any of the
variants as depicted in Figure 4: e.g. Serial PPP, VPN, ATM, e80211x, Ethernet, Optical
FDDI and Tunnel. The most relevant energy-related attributes of the “Network Port” class are
the followings: lineCapacity denotes the nominal transmission rate of the port (typical values
are 10 Mbps for Ethernet, 100 Mbps for Fast Ethernet, and 1 Gbps for Gigabit Ethernet),
whereas portID provides a unique identifier to the port. powerMax, powerIdle and
lineCapacity are used to capture the power consumption behaviour of the port. trafficIn and
trafficOut represent respectively the packet throughput in and out of the port. bufferSize and
bufferOccupancy describe all together buffer characteristics and management policies in use
within the port that are needed to estimate QoS metrics. trafficIn and trafficOut are required to
compute the actual power consumption based on the power consumption model. bufferSize,
and bufferOccupancy are used to compute the delay for the traffic forwarding to the
corresponding port. Finally, the “Link” class models the propagation medium associated with
its corresponding “Network Port”. Its attributes are the propagationDelay, which defines the
time required to physically move a bit from two end points, and the bitErrorRate.

Server modelling

Figure 5 depicts the Server UML class diagram where “Server”class represents an abstraction
for a generic server computing system, such that the different specializations used in data
centre schema (“Tower Server”, “Rackable Server”, and “Blade Server”classes) are
distinguished by their physical form factor.

Figure 5 Server UML class diagram. The figure, which is a Unified Modeling Language
design, illustrates in detail the different components such as processors, mainboard,
memories, hard disks that a server can be composed of



Typically, a server consists of a “Mainboard”and runs several software applications such as
“Native Operating System” and “Native Hypervisor” (see Section Services modelling). The
mainboard is the central printed circuit board in server computing system and holds many of
the crucial components of the system, while providing connectors for other peripherals. Its
memoryUsage attribute (counterpart of free space) denotes the overall usage (in GB) of all the
attached memory modules whose value should be kept up-to-date through the data centre’s
monitoring system. The followings are the main components attached to the “Mainboard”:
Central Processing Units (“CPU” class), Random Access Memories (“RAMStick”), Network
Interface Cards (“NICs”), hardware RAIDs (“HardwareRAID”) and Storage Units
(“StorageUnit”).

With the advent of modern processors, a “CPU”consists of more than one “Core” where each
such core can have its own “Cache” depending on the level (e.g. Level 1). Furthermore, it is
also possible that certain cores of a processor share the same cache (e.g Level 3). The most
relevant energy-related attributes of “CPU” are: architecture indicates the processor’s
manufacturer (e.g. Intel, AMD, etc.) each having different power consumption behaviour,
cpuUsage denotes the utilization (load) of the processor whose value should be kept
up-to-date through the data centre’s monitoring system. DVFS (Dynamic Voltage and
Frequency Scaling) is an attribute used to indicate whether the corresponding server’s
energy-saving mechanisms (e.g. Intel SpeedStep, AMD Cool’n’Quiet, etc.) is enabled or not.
lithography and transistorNumber denote respectively the size in nanometres as well as the
number of transistors (in the order of millions) of the processor which are used for idle power
consumption prediction purposes.

Each “Core”operates on a frequency (in GHz), scaled dynamicallya between minimum and
maximum ones (frequencyMin and frequencyMax), and voltage. coreLoad represents the
utilization of the corresponding core whose value should be kept up-to-date through the data
centre’s monitoring system. totalPstate and lastPstate indicate respectively the total number
of P-states (e.g. 2 or more) as well as the most recent P-state of the core (e.g. P0, P1, etc.).
Note that these two parameters are used to estimate the frequency of a server’s processor core
for data centres whose monitoring system can not provide up-to-date dynamic values for this
attribute. The implementation details of guessing the frequency is not covered in this paper.

The “RAMStick”class has several attributes relevant to power consumption estimation:
voltage reflects the supply voltage under which the memory module operates which is highly
dependent on the type (e.g. DDR1, DDR2, DDR3, etc.), whereas size and frequency indicate
respectively the size (in GB) and frequency (in MHz) of the memory, vendor denotes the
manufacturer (e.g. KINGSTON, HYNIX, etc), bufferType shows the type of the memory
module in terms of buffer technology (e.g. fully buffered, buffered, registered, and
unbuffered). It is worthwhile to mention that values of all the above-mentioned attributes are
provided by the manufacturer’s data sheet.

Several “Storage Unit”s can be attached to a “Server”either directly through its
“Mainboard”or by means of a dedicated “Hardware RAID”device. Additional information
regarding storage modelling is provided in Section Storage modelling. As mentioned
previously, “Tower Server”s and “Rackable Server”s are equipped with their own Power
Supply Units (“PSU”class) and cooling systems (“Cooling System”) which can be either a
“Water Cooler”or a “Fan”. The followings are the most relevant energy-related attributes of a



“PSU”: efficiency (in percentage) indicates the amount of loss of the power supplied to the
components of the server, which is highly related to the load. Note that values of efficiency
for the corresponding loads can be extracted from the manufacturer’s data sheet.

Finally, inside the “Fan”class, depth denotes the depth (in meter) of a fan, whereas maxRPM
and powerMax indicate respectively the maximum rotations per minute and power
consumption of the fan. All the above-mentioned attributes can be found inside
manufacturer’s manuals. actualRPM shows the current rotation speed of the fan whose value
should be kept up-to-date through the data centre’s monitoring system.

Storage modelling

In this section, we present the storage modelling both for the case of storage units attached
directly to servers as well as the case of Storage Area Network (SAN) devices. A generic
UML class diagram for these cases is introduced in Figure 6.

Figure 6 Storage UML class diagram. The figure, which is a Unified Modeling Language
design, provides an overview of the way storage devices (e.g. hard disks) as well as SAN
devices can be connected to servers

Server storage

Left part of the UML class diagram of Figure 6 illustrates the server storage modelling where
the “Storage Unit”class represents the abstraction for all kinds of disk-like devices providing
the physical storage for data. “Storage Unit”s can be directly connected to a “Server”through
its “Mainboard”or by means of a “Hardware RAID”controller that provides the different
levels of RAID support to servers. We consider both traditional disks with revolving platters
(“Hard Disk”class) and solid state disk (“Solid State Disk”) as possible “Storage
Unit”devices. Note that attributes for “Server” and “Mainboard” classes are described in
Section Server modelling.

“Storage Unit”class energy-related attributes are the followings: maxReadRate and
maxWriteRate indicate respectively the maximum read and write rates of the disk which are
computed in terms of the transferred size per second (MB/s). The values for above-mentioned
attributes can be extracted from the manufacturer’s data sheet. readRate and writeRate
indicate respectively the actual read and write rates of the disk which are expressed in terms of
MB/s as mentioned previously. The values for both of these attributes should be kept
up-to-date through the data centre’s monitoring system.

Each “Hard Disk”has the following different energy-related attributes: rpm indicates the
rotation per minute of the disk, platters denotes the number of platters, whereas AAM
presents whether the hard disk is equipped with Automatic Acoustic Adjustment feature. For
the “Solid State Disk”, powerByRead and powerByWrite denote respectively the power
consumed by read and write operations. The distinction here is due to the fact that read and
write operations in solid state disks have different power consumption behaviour.

“Storage Unit”s can also be attached logically to a “Server”. Such a functionality is provided
by means of “Logical Unit”s abstraction of “SAN” devices called “LUN”, whose details are



covered in Section SAN storage. Each “LUN” class has the following attributes: LUNRef is
used to reference the corresponding logical unit of a SAN device, whereas readRate and
writeRate have the same definition as for the case of “Storage Unit” class.

SAN storage

A Storage Area Network (SAN) is a dedicated device that provides network access to
consolidated, block level storage. SAN architectures are alternative to storing data on disks
attached to servers or storing data on Network Attached Storage (NAS) devices connected
through general purpose networks - which are using file-based protocols.

Right part of Figure 6 illustrates the SAN devices UML class diagram. Typically, a “SAN”
device consists of more than one (usually two) “PSU” and “Fan” for redundancy purposes,
several fiber channel (FC) and Ethernet Network Interface Cards (“FiberchannelNIC”and
“EthernetNIC” classes) and a set of “Storage Unit”s. Furthermore, “Storage Unit”s are
logically consolidated through “Logical Unit”s abstraction such that a “Storage Unit” is a
member of one and only one “Logical Unit”. “Server”s access a “Logical Unit” through a
unique logical unit number reference (“LUN” class).

Each “SAN” class has the following energy-relevant attributes: networkTrafficIn and
networkTrafficOut have the same definition as their counterparts trafficIn and trafficOut of
Section Network topology modelling. On the other hand, RAIDLevel of “Logical Unit” class
shows the level (e.g. RAID 0, 1, 5, 10, etc.) of the RAID being used with the corresponding
logical unit. As a matter of fact, each logical unit can be considered as a separate RAID
controller. Furthermore, stripeSize shows the size of the RAID protocol’s stripe.
numberOfRead and numberOfWrite denote respectively the number of read and write
operations performed per second. All the other attributes of “Logical Unit” class have the
same definition as their counterparts of the “Storage Unit” class of Section Server storage.

Services modelling

By the term services we mean any type of software applications which directly or indirectly
generate load on ICT resources of a data centre. Consequently, all software components,
either at application or system level, independently from the computing style (e.g. traditional,
supercomputing or cloud computing) of the data centre, can be modelled as load generator
whose UML class diagram is introduced in Figure 7. Note that such a model is necessary for
power optimization algorithms that seek to distribute and potentially move software
application load (e.g. virtual machine) to the computing resources which consume less power
and still satisfy the required Service Level Agreements (SLA).

Figure 7 Services UML class diagram. The figure, which is a Unified Modeling Language
design, shows the different software components (e.g. applications, operating systems, virtual
machines, etc) that can run on physical servers

Physical servers (“Server”class) execute the software structured and layered as depicted in
Figure 7. Above the hardware level, at start-up a physical server bootstraps either a traditional
operating system (“Native Operating System”) or a virtualization hypervisor (“Native



Hypervisor”). Some virtualization hypervisors need to run above an operating system
(“Hosted Hypervisor”).

Both “Native Hypervisor” and “Hosted Hypervisor” can run “Virtual Machine”s, which
implement a software equivalent environment of a hardware server (with some limitations).
The actual power consumption of the “Virtual Machine”increases with the increase of
required number of processing resources such as numberOfCPUs, actualCPUUsage (load
imposed on the processor(s)), actualStorageUsage (size in GB), actualDiskIORate (MB/s),
actualMemoryUsage (size in GB) and actualNetworkUsage (packets/s or MB/s) that is being
used. Note that the values of these attributes should be kept up-to-date through the data
centre’s monitoring system. The resourceClassID is used to point out to the required
resources of the virtual machine in terms of CPU, memory, disk I/O, etc. This information is
useful for the power optimization algorithms to ensure SLA about resource utilization is not
violated when moving the VM from one host to another. The frameworkID is used in order to
discover the appropriate framework actions (e.g. migrate, pause, resume) applicable to the
virtual machines. In cloud computing environment, each virtual machine typically belongs to
a specific type which is identified by a unique name (e.g. m1.small, m1.medium, c1.large,
etc). Each such type specifies the required resources of the virtual machine in terms of CPU,
memory and disk. cloudVmType is used to identify the appropriate predefined virtual machine
types whereas cloudVmImage indicates the installed operating system.

“Virtual machine”s typically boot a “Hosted Operating System”, which might contain –
depending on the case – specialized drivers to operate on virtualized devices.

The UML class diagram of Figure 7 describes “Operating System”class as a generalization for
a traditional native or hosted operating systems (OS), and for native hypervisors: they all
share the “boot on ”relation with respect to a physical server or a virtual machine.
systemRAMBaseUsage indicates the amount of memory allocated by the operating system. In
addition, an operating system in general contains multiple “File System” types), might
support - inside the kernel - the software implementation of raid features (“Software RAID”)
and the software implementation of network devices, for example virtual switches (“Software
Network”). The power consumption of “File System”increases with the increase of
fragmentation factor and with the decrease of the free available size with respect to the total
capacity (size) as the disk needs more power to locate the position of the data. An important
energy-related attribute for “Software Network”is switchFabricType as this indicates the type
of the network device the software is emulating (switch or router).

The typical software packages (“Software Application” class) can run either on a “Native
Operating System” and/or on a “Hosted Operating System”: some applications don’t have
problems in any execution environment, while others are not able to run in virtualized mode,
thus the distinction in the model. The actual power consumption of the “software application
”increases with the increase of number of processing resources such as NumberOfCPUs,
actualCPUUsage (load imposed on the processor), actualStorageUsage (size in GB),
actualDiskIORate (MB/s), actualMemoryUsage (size in GB) and actualNetworkUsage
(packets/s or MB/s) that the application is using. Note that the values of these attributes
should be kept up-to-date through the data centre’s monitoring system.



Power consumption prediction models

In this section, we introduce the power consumption prediction models of the most relevant
ICT resources of data centres such as servers, storage devices and networking equipment (e.g.
routers or switches). Note that such power consumption models are the cornerstone of energy
optimization algorithms by providing them with detailed insights regarding the power
consumption of the aforementioned ICT resources in different workload deployment
configurations.

Server

The power consumption of a server is broken down into two parts: idle and dynamic. The
former is computed while the server is idle with no activities, whereas the latter is calculated
when the server is performing certain computations. As a matter of fact, it is necessary to
model both aspects for different components of a server illustrated in Figure 5, in order to
have a deeper understanding on the power consumption.

Processor

It was shown in [13] that processors are the most prominent contributors (about 40%) to the
overall power consumption of servers. Furthermore, the power consumption of processors can
be due to either its idle state (no utilization) or dynamic state while carrying out certain
computations. With the advent of multi-core processors (e.g. dual-core, quad-core, etc.) as
well as their corresponding energy-efficient mechanisms (e.g. Intel SpeedStep, AMD
Cool’n’Quiet), several techniques (e.g. Dynamic Voltage and Frequency Scaling - DVFS)
were introduced that save energy especially when the processor is in idle or low utilization
states.

Idle power consumption

The idle power consumption of a processor can be determined by using the following well
known equation [26] derived from Joule’s and Ohm’s laws:

P = I ∗ V , (1)

where P denotes the power (Watt), I represents the electric current (Ampere) and V indicates
the voltage. Equation (1) can be adopted in order to compute the idle power consumption at
core level by assuming that each core contributes equally to the overall idle power
consumption of a processor:

Pi = Ii ∗ Vi, (2)

where Pi, Ii and Vi denote respectively the power, current and voltage of the corresponding
core i. Furthermore, by analyzing the current Ii and voltage Vi relationship, we derive the
following second order polynomial (using the curve-fitting methodology) to model the current
leakage:

Ii = αV2
i − βVi + γ , (3)

where α = 0.114312 ((V�)−1), β = 0.22835 (�−1) and γ = 0.139204 ( V
�

) are the
coefficients such that V and � denote respectively the voltage and resistance. It is worthwhile
to note that these values are derived based on results obtained from a power meter [27] while
analyzing a quad-core processor with energy-efficient mechanisms (e.g. DVFS) deactivated.



With the emergence of energy saving mechanisms (e.g. Intel SpeedStep, AMD Cool’n’Quiet),
the idle power consumption of a core (processor) decreases. This is achieved by decreasing
the voltage and frequency (DVFS) of a core. In order to demonstrate such an impact, we
propose the following model:

Pri = δiPi, (4)

where δi is the factor for reduction in the power consumption Pi of core i (see Equation (2)),
whereas Pri represents the reduced power consumption of core i. It is worth pointing out that
δi can vary depending upon the corresponding energy saving mechanisms where each of such
mechanism has its own particular features (the detailed modelling of δi is out of the scope of
this paper). To this end, in this paper we provide values of δi for multi-core Intel processors in
Table 1. Certain processors, for instance, Intel dual- and quad-core processors do not possess
C-states. Hence, the energy reduction factor for processors (e.g. hexa-core) having such states
is significantly different from the others.

Table 1 Values of δi for Intel Processors
Processor type δi

Intel Xeon dual-core E5502 0.942
Intel Xeon quad-core E5540 0.728
Intel Xeon hexa-core X5650 0.316

The values of the reduction factor δi for different types of Intel processors

Given a processor of n cores with a specific energy-saving mechanism, then its idle power
consumption is given by:

PCPUidle =
n∑

i=1

Pri , (5)

where Pri is introduced in Equation (4).

Dynamic power consumption

The power consumption of the ith core of a multi-core processor due to performing certain
computations is given by:

P
′
i = Pmax

Li

100
, (6)

where P
′
i denotes the dynamic power consumption of the core i having a utilization (load) of

Li, whereas Pmax indicates the maximum power consumption due to 100% utilization. It is
worthwhile to note that Equation (6) is derived based on the well known linear
utilization-based model of [13] for single-core processors.

The maximum power consumption Pmax is computed by adopting the following well known
CMOS [28] circuits power consumption equation:

Pmax = V2
max ∗ fmax ∗ Ceff , (7)

where Vmax and fmax denote respectively the voltage and frequency at maximum utilization,
whereas Ceff [28] indicates the effective capacitance which includes the capacitance C and
switching activity factor α0→1.



Given a processor of n cores with no specific energy-saving mechanisms enabled, then its
dynamic power consumption is given by:

PCPUdynamic =
n∑

i=1

P
′
i, (8)

where P
′
i is introduced in Equation (6).

In fact, there are certain factors which play a major role in reducing the overall power
consumption of multi-core processors of Equation (8). Among those, the followings are two
main techniques through which the power consumption of multi-core processors can be
reduced: Energy saving mechanisms such as Intel SpeedStep and AMD Cool’n’Quiet
decrease power utilization of a core by controlling its clock speed and voltage dynamically. In
the idle mode or when the utilization (load) of a core (processor) is low, the clock speed is
reduced to minimize its power dissipation. Resource sharing (e.g. L2-cache in case of certain
Intel multi-core processors) reduces the power consumption. We believe that this assumption
is true due to the fact that sharing L2-cache with other cores minimizes the cache miss ratio.
As a consequence, less communication takes place with the memory (e.g. to fetch new
instructions), which contributes in reducing the total power consumption of cores.

Due to these power reduction mechanisms, the power consumption of a multi-core processor
is always less than the one of Equation (8). In order to cope with this overestimation, we
introduce a power reduction factor (δ′) to Equation (8) in the following manner:

PCPUdynamic = δ′(
n∑

i=1

P
′
i), (9)

where the detailed modelling of δ′ is not covered in this paper. However, it is worthwhile to
mention the following facts related to the modelling of δ′:

1. The reduction factor δ′ changes by modifying the frequency of the processor.

2. The number of active (a utilization of more than 1%) cores of the processor has an
impact on the reduction of power consumption.

Table 2 illustrates a sample value of δ′ for an Intel quad-core processor having different
number of 100% loaded cores as well as clock frequencies ranging from 2.0 to 2.5 GHz. As
we can notice, the higher the frequency is, the possibility of reducing power becomes more
evident. Furthermore, more power is saved as the number of active cores increases. These are
due to the fact that the pure summation of the power consumption of the cores given by
Equation (8) is always greater than the total actual power consumption. As a matter of fact,
this difference becomes important for increasing frequencies and number of active (100%
loaded) cores. Hence the reduction factor δ′ becomes more obvious for those cases.



Table 2 Values of δ′ based on Frequency and Number of 100% Loaded Cores
Processor type F[GHz] Voltage δ′

2 cores 3 cores 4 cores
2.0 1.104 0.94 0.93 0.92Intel Xeon quad-core E5540
2.5 1.104 0.70 0.71 0.70

The values of the reduction factor δ′ for different frequencies of Intel quad-core processor. The
reduction factor also changes based on fully loaded cores

Total power consumption

The total power consumption of a multi-core processor is defined by:

PCPU = PCPUidle + PCPUdynamic , (10)

where PCPUidle and PCPUdynamic are introduced in Equations (5) and (8) respectively.

Memory

A Random Access Memory (RAM) consumes power when it is idle refreshing the ranks
holding certain stored data as well as while accessing the memory ranks to perform either read
or write operations. In this paper, we focus on Synchronous Dynamic RAM DDR3 technology
due to the fact that most modern data centres’ (including our real-world testbed) servers are
equipped with such type of memory modules.

With respect to the idle power consumption of DDR3 memory, we derive a model starting
from the following well known equation [26] :

P = I ∗ V , (11)

where P denotes the power (Watt), I represents the electric current (Ampere) and V indicates
the voltage. On the other hand, it was shown in [29] that there is a linear relationship between
the current I and voltage V when the supplied voltage is between 0 and 2V (which is typically
the case for DDR3 memory). Hence the current can be expressed in the following manner:

I = c ∗ V , (12)

where based on our observations, we noticed that c takes a value of 13 × 10−5. Taking
Equations (11) and (12) into account, the power consumption of a DDR3 memory module for
a given frequency f (in MHz) and size s (in GB) can be rewritten in the following way:

P(f , s) = c ∗ V2. (13)

Consequently, in order to reflect the impact of frequency on the idle power consumption,
Equation (13) can be written as:

P(s) = f ∗ c ∗ V2. (14)

Furthermore, in order to show the influence of size (in GB) on the idle power consumption,
Equation (14) can be written as:

P = s ∗ f ∗ c ∗ V2. (15)



Given a set of n DDR3 memory modules, then their idle power consumption is expressed as:

PRAMidle =
n∑

i=1

si ∗ fi ∗ c ∗ V2
i , (16)

where si, fi and Vi denote respectively the size (in GB), frequency (in MHz) and the voltage
(volts) of a specific DDR3 memory module i, whereas c takes a value of 0.00013.
Concerning the dynamic power due to accessing the memory, there is always only one active
operating rank per channel regardless of the number of memory modules or module ranks in
the system. As a matter of fact, such a power is always constant during access and
independent of the operation type (read or write) as well as size and is given by:

PRAMdynamic = 9.5 Watt, (17)

Then based on Equations (16) and (17), the overall power consumption of a Random Access
Memory is given by:

PRAM = PRAMidle + γ ∗ PRAMdynamic , (18)

where γ ∈[ 0, 1] whose details are covered next. Since certain monitoring systems (including
the one of our real-world testbed) can not provide information about how often the memory
modules are accessed, then we adopted the following technique to derive values for γ :

1. If the processor is in idle state performing no activity, then we assume that the memory
modules are also in idle state (γ = 0).

2. If the processor is carrying out certain computations (utilization of more than 1 %), then
we adopt a probabilistic approach in modelling γ , such that the more total memory is in
use, the higher in probability that a memory access is performed:

γ = memoryUsage∑n
i=1 si

, (19)

where n and si are defined in Equation (16) and memoryUsage is introduced in Section Server
modelling.

Hard disk

Typically, the power consumption of a hard disk can be broken down into three major parts:
startup, idle, and accessing modes, where each such mode has different power consumption
behaviour. The disk is in startup mode when all of its mechanical and electrical components
are activated. On the other hand, the disk is in idle mode when no activity (read or write) is
carried out, whereas it is in accessing mode while performing read or write operations.

Based on our observations performed on different families of hard disks, we noticed that the
idle mode power consumption can be further split into three states: idle, standby and sleep.
Moreover, we noticed that the power consumption due to standby and sleep states is quite
identical and it is in average 10% of the idle state power consumption. This is due to the fact
that during standby and sleep states, the disk’s mechanical parts are significantly shutdown.
Then, the idle mode power consumption of the hard disk is given by:

PHDD_idle = Pidle(α + 0.2 ∗ β), (20)



such that α ∈[ 0, 1] indicates the probability that the disk is in idle state, β ∈[ 0, 1] denotes the
probability that the disk is in standby and sleep states (the values of α and β are given later
such that α + β = 1), whereas Pidle is the idle state power consumption provided by the
manufacturer’s data sheet. Furthermore, we observed that the startup and accessing modes’
power consumption is respectively in average 3.7 and 1.4 times more than that of the idle state
power consumption. Then, the power consumption of the hard disk is given by:

PHDD = x ∗ 1.4 ∗ Pidle + y ∗ PHDD_idle + z ∗ 3.7 ∗ Pidle, (21)

such that x, y, z ∈[ 0, 1] denote respectively the probability that the disk is in accessing, idle
and startup modes, whereas Pidle is the idle state power consumption provided by the
manufacturer’s data sheet.

Since certain monitoring systems (including the one of our real-world testbed) can not provide
information about when each hard disk switches from startup, to idle and accessing modes,
then we adopted the following two techniques in order to derive values for x, y and z such that
x + y + z = 1:

1. If the average operation size (MB/s) of reads and writes per second is zero (readRate =
writeRate = 0), then we assume that the disk is in its idle mode (x = z = 0 and y = 1).

2. If the average operation size (MB/s) of reads and writes per second is not zero, then we
adopt a probabilistic approach in modelling the mode changes such that:

• If readRate > 0 and writeRate > 0, then
x = readRate+writeRate

maxReadRate+maxWriteRate ,

• If writeRate = 0, then x = readRate
maxReadRate ,

• If readRate = 0, then x = writeRate
maxWriteRate ,

Note that readRate, maxReadRate, writeRate and maxWriteRate are introduced in Section
Storage modelling, whereas y = 0.9 ∗ (1 − x) and z = 0.1 ∗ (1 − x). Finally, in order to derive
values of α, β ∈[ 0, 1] for the idle mode power consumption, we adopted the following
probabilistic approach:

1. If 0 < y ≤ 0.3, then we set α = 0.9 and β = 0.1
2 .

2. If 0.3 < y ≤ 0.6, then we set α = 0.5 and β = 0.5
2 .

3. If 0.6 < y ≤ 1, then we set α = 0.1 and β = 0.9
2 .

We can notice from the above equations that the more the hard disk is in idle mode (y ≃ 1),
the higher is the probability that it will remain in standby and sleep states.

Network interface card

Network interfaces, which connect a server to one or more networks, normally operate at a
fixed line rate and add both physical and link layer functionalities that contribute to increase
the total power consumption of a server. At any given time, a network interface will be either
in idle mode or actively transmitting or receiving packets. If PNICidle is the power of the idle



interface and PNICdynamic is the power when active either (or both) receiving or transmitting
packets, the total energy consumption of an interface will be given by:

ENIC = PNICidleTidle + PNICdynamicTdynamic, (22)

where Tidle is the total idle time and Tdynamic denotes the total active time in an observation
period T = Tidle + Tdynamic, such that Tidle and Tdynamic > 0. The average power PNIC during
period T is:

PNIC = (T − Tdynamic)PNICidle + PNICdynamicTdynamic

T
= PNICidle + (PNICdynamic − PNICidle)ρ (23)

where ρ = Tdynamic
T is the channel utilization (also known as the normalized link’s load). Both

time periods and power values would depend on the particular network technology employed.

It is interesting to note that the choice of network technology could affect, to varying degrees,
the utilization of other computer system components and in particular processor (CPU). For
example, in serial point-to-point (PPP) communications, the CPU is normally used to execute
a significant number of communication-related operations (e.g., frame checking and protocol
control). These operations can easily increase the dynamic power consumption of the CPU.
On the other hand, embedded network implementations, such as InfiniBand, can move much
of the communication work to the embedded architecture. To include this network-technology
dependent behaviour into our model, consider parameter Li (CPU load) in Equation (6) as
resulting from two components: Li = L

′
i + γρ, where L

′
i and γρ correspond to non-network

and network dependent CPU load respectively. Parameter γ (γ ≥ 0) models the impact of a
given network technology on CPU load based on network utilization ρ. Small γ values can
account for the minimal impact that embedded network architectures could cause to CPU load
whereas larger γ values could be used to model the higher CPU dependency of other network
interfaces.

Mainboard

The aggregated power consumption of the mainboard consists that of its constituent
components attached to it and is given by the following equation:

PMainboard =
l∑

i=1

PCPU + PRAM +
m∑

j=1

PNIC +
n∑

k=1

PHDD + c, (24)

where PCPU, PRAM, PNIC, and PHDD are given respectively by Equations (10), (18), (23), and
(21), whereas c is constant related to the mainboard’s own power consumption. Note that
technically it is challenging to compute the power consumption of the mainboard. Hence,
statistical values for c can be derived based on the server type (e.g. tower, rackable, and
blade), which is reflected by means of powerIdle and powerMax attributes of the “Mainboard”
class in Section Server modelling.

Fan

The power consumption of a fan changes from one Rotation Per Minute (RPM) to another:
i.e. the higher the RPM is, the more power it consumes. Consequently, a model is derived



starting from the following well known formulab for the power consumption of a fan:

P = dp ∗ q, (25)

where P denotes the power consumption (Watt), dp indicates the total pressure increase in the
fan (Pa or N/m2), and q represents the air volume flow delivered by the fan (m3/s). Hence,
replacing dp by F

A and q by V
t in Equation (25), we obtain:

P = F
A

∗ V
t

, (26)

where F, A, V and t denote respectively the force (N), area (m2), volume (m3) and time
(seconds). By a simple simplification of volume V and area A, we obtain the following
equation:

P = F ∗ d
t

, (27)

where F denotes the force (N), d indicates the depth of the fan (m) and t represents the time
(seconds). Based on our observations performed on a set of fans, we found out that F is
proportional to the square of the RPM:

F = c ∗ RPM2. (28)

By taking into account Equations (27) and (28), the power consumption model for the fan is
given by:

PFan = c ∗ RPM2 ∗ d
3600

. (29)

where RPM denotes the actual rotation per minute of the fan (actualRPM in Section Server
modelling) whose value should be kept up-to-date through the monitoring system. It is
worthwhile to note that for a given fan, the value of c remains constant. As a matter of fact,
we compute the value of c based on Equation (29):

c = 3600 ∗ Pmax

RPM2
max ∗ d

, (30)

where Pmax and RPMmax denote respectively the maximum power and rotations per minute of
the fan whose values can be extracted, in addition to the depth d, from its manufacturer’s data
sheet.

Power supply unit

As its name indicates, PSU supplies power to the numerous components of a server. In
general, the power consumed inside the PSU itself (loss) is highly dependent on its efficiency:
the higher the PSU is in efficiency, the less power it consumes. To this end, the PSU
manufacturers provide the efficiency range with respect to a given PSU load. Hence, we
compute the power consumption of a PSU having an efficiency of e, in the following manner:

1. If the data centre’s monitoring system provides information at the PSU level
(measuredPower of “PSU” class in Section Data centre schema), then the power



consumption is given by the following equation:

PPSU = measuredPower ∗ (100 − e)
100

.

2. If the data centre’s monitoring system provides information only at the server level
(measuredPower of “Server” class in Section Data centre schema), then we assume that
this measured power of the server is evenly distributed among its n PSUs (having
similar efficiency) providing power to the components, and compute the power
consumption by the following equation:

PPSU = (measuredPower
n ) ∗ (100 − e)

100
.

3. If the data centre’s monitoring system provides no information neither at the server level
nor at the PSU level, then we compute the power consumption by the following
equation:

PPSU = (
PMainboard + PFan

n ∗ e
) ∗ 100 − (

PMainboard + PFan

n
),

such that PMainboard and PFan are introduced in Equations (24) and (29) respectively,
whereas n denotes the number of PSUs and e their efficiency (assuming that its identical
for all the installed PSUs).

Server power consumption

Given a server composed of a mainboard, several fans and power supply units as illustrated in
Figure 5, then we compute its power consumption in the following manner:

1. If the server is of type Blade, then its power consumption is given by the following
equation:

PBlade = PMainboard. (31)

2. If the server is of type Tower or Rackable, then its power consumption is given by the
following equation:

PTower_Rackable = PMainboard +
l∑

i=1

PFan +
m∑

j=1

PPSU, (32)

such that PMainboard, PFan and PPSU are respectively given by Equations (24), (29), and
Section Power supply unit.

SAN devices

Given a SAN device whose UML class diagram is depicted in Figure 6, then its power
consumption is presented by the following equation:

PSAN = PSANidle + PSANdynamic , (33)



such that PSANidle and PSANdynamic denote respectively the idle (no activity) and utilization
dependent power consumptions. Moreover, the idle power consumption of the SAN devices is
given by:

PSANidle =
n∑

i=1

PHDD_idle +
m∑

j=1

PENICidle +
l∑

k=1

PFCNICidle + c, (34)

where n denotes the total number of installed hard disks whose idle power consumption is
given by Equation (20), m and l indicate respectively the total number of Ethernet Network
Interface Cards (NIC) and Fiber Channel NICs having an idle power of PENICidle and PFCNICidle

given by manufacturer’s data sheet, whereas c is a constant value representing the idle power
consumption due to the mainboard and its attached components other than those mentioned
above. Statistical values for c can be configured by powerIdle attribute of the SAN devices
introduced in Section SAN storage. It is worthwhile to note that most of the real-life cases,
such SAN devices rarely go to sleep or standby modes. As a matter of fact, we set α = 1 and
β = 0 for Equation (20).

On the other hand, the dynamic power consumption of a SAN device is as follows:

PSANdynamic =
r∑

o=1

PLU(o) +
s∑

p=1

PENICdynamic +
t∑

q=1

PFCNICdynamic , (35)

where p and q denote respectively the total number of Ethernet and Fiber Channel NICs
whose dynamic power consumption is given by Equation (23), whereas o indicates the total
number of Logical Units of a SAN device whose dynamic power consumption is:

PLU(i) = (
NbRi

NbRi + NbWi
)

ri∑
i=1

PHDD + (
NbWi

NbRi + NbWi
)

wi∑
j=1

PHDD, (36)

such that NbRi and NbWi denote respectively the total number of read and write operations
performed per second which are represented by numberOfRead and numberOfWrite attributes
of “Logical Unit” class in Section SAN storage, whereas PHDD is the power consumption of
the corresponding hard disk introduced in Equation (21). Since it is not possible for
monitoring systems of data centres to provide accurate information regarding whether the last
performed operation is read or write, then we adopt a probabilistic approach in Equation (36)
by using the number of read and write operations performed per second in order to guess
which operation has more dominance. Note that such a guess is important for RAID protocols
since the number of involved hard disks differ from read to write.

In order to compute the number of involved hard disks ri due to performing a RAID protocol
read operation at Logical Unit i, we apply the following technique:

|Ri| = λi

NbRi
, (37)

where λi denotes the read rate (MB/s) of the Logical Unit i represented by readRate attribute
of Section Server storage and |Ri| indicates the average read operation size (MB/read) per



second. Based on Equation (37), the number of involved hard disks is given by:

ri = |Ri|
stripeSize

, (38)

where stripeSize denotes the size of the RAID protocol’s stripes specified by its level. The
same methodology can be used in order to compute the number of involved hard disks wi for
write operations. It is important to note that the different involved hard disks for a given
operation are picked up randomly since this is purely RAID level’s protocol dependent. As a
matter of fact, we assume that the hard disks attached to a given Logical Unit i have similar
power consumption behaviour.

Network equipment

Given that the power consumption PNEQ of a network equipment will be mainly driven by the
internal switching state and buffer utilization, it is sensible to assume that its overall power
consumption will be linked to its total packet switching throughput (λ′):

PNEQ = γ ′ + 8(λ′), (39)

where γ ′ represents the power consumed by the equipment without workload and 8(.) a
function that determines the level of power used by a given packet switching throughput. The
exact form of function 8(.) will be determined by the implementation technology. In practical
terms, the contribution of 8(.) to the total power consumption of a regular (embedded)
network equipment is expected to be small. However, it is also expected that this trend will
change in the future as “greener”implementations are introduced.

Evaluation and results

Testbed environment and configuration

The testbedc under investigation provides a computational environment implementing cloud
computing for Infrastructure as a Service (IaaS) platform. It is the most basic cloud service
typology, where virtual infrastructure resources (e.g. CPU, memory, storage devices) are
provided to users on dynamic and scalable basis. It is worthwhile to note that the testbed is
based upon a Lab-grade infrastructure fully resembling (in a smaller scale) both the
configuration and functional capabilities of actual production-grade IaaS implementations,
being private or public.

Hardware configuration

The hardware equipment consist of two racks each hosting an HP Blade System C3000 [30]
enclosure where equivalent ISS (Industry Standard Server) blade servers are mounted inside.
In addition to the four free slots, each enclosure bears 4 blade servers (a total of 8 in the
testbed) belonging to HP ProLiant BL460c G6 [31] series which are half-height blades,
configured as in Table 3.



Table 3 Servers’ Hardware Configuration
Processor Dual CPU, quad-core Intel Xeon E5540, 2.53 GHz 8 MB L3 cache
Memory 24 GB (6 x 4 GB DIMMs) DDR3

Hard Disk Two hot plug hard drives 2 x 300 GB
Network Dual-port 10 gigabit Ethernet adapter NC532m

The hardware characteristics of the servers for the corresponding testbed regarding

Inside each enclosure, the servers are interconnected through an HP Virtual Connect Ethernet
Module. The two racks, in turn, are interconnected through an external Ethernet switch.
Power supply is bundled with the enclosure, through 6 high efficiency (90%) 1200W HP
Common-Slot Power Supply Units. Cooling is provided by 6 HP Active Cool 100 fan units,
also directly installed in the enclosures.

Finally, energy measurement is performed by an HP hardware component named iLO
(Integrated Lights-Out), accessible through the Insight Control software suite. iLO offers the
ability to read real-time electrical power consumption down to single server level.

Software configuration

The testbed’s architecture consists of the following five software components:

1. The Cloud Controller (CC),

2. The Node Controller (NC),

3. Energy-aware plug-in,

4. The Power and Monitoring Collector (PMC),

5. The client (end user) system.

The Cloud Controller (CC) is the component hosting the core cloud management functions,
i.e. it’s the application server (Front End) where the cloud web services actually reside. These
services are triggered by any end user request, asking to activate or deactivate a set of
computational resources, identifiable as virtual machines. Furthermore, the CC software is
deployed onto a physical server, as typically done to duly keep under control the response
time to client requests. This software runs on a Red Hat Enterprise Linux (RHEL) 5.5
operating system instance.

The five Node Controllers (NC) are the physical machines providing virtualized environment
to cloud platform clients. They are the physical servers on which virtual machines are created
and instantiated by the CC, initialized with the software image selected by the client within
the service catalog, and finally made exclusively accessible to the requesting client for its own
usage through the network. The instantiated virtual machines can be de-instantiated upon
clients’ request containing a “terminate instance ”command, and their used resources are
released by the CC. Both events (instantiation and de-instantiation of a virtual machine) are
captured by the energy-aware plug-in which on its turn triggers certain optimization
algorithms to minimize the energy consumption of the testbed. The Node Controller software,
like the Cloud Controller (CC), runs on a RHEL 5.5 operating system instance. The virtual



machines instantiated in response to client requests are created and deployed by a XEN
hypervisor, and typically host Linux images (e.g. Ubuntu, Suse, Red Hat, etc.).

The energy-aware plug-in (described briefly in Section Contributions and results) resides
altogether on a dedicated virtual machine, running on the VMware ESX 4.0 hypervisor. The
Power and Monitoring Collector (PMC) is implemented by a customized version of collectd.
Collectd is an open source Linux daemon able to collect, transfer and store performance data
of computers and network equipment. For our testbed, specific collectd agents have been
developed and implemented, to interface with iLo and acquire power measurement data. Like
the Cloud Controller, even the PMC is deployed on a physical server.

Finally, the client systems are emulated by a custom software tool, generating sequence of
requests that faithfully replay the interaction among a group of observed users from a real life
context and the cloud IaaS infrastructure. The client load simulation is deployed inside virtual
machines running an Ubuntu image, whose execution is scheduled and coordinated by a
custom component running on the same VMware node where the energy-aware plug-in is also
deployed.

Testing methodology

A cloud computing IaaS load is by definition fairly unpredictable in the sense that its
instantaneous computational load fluctuates arbitrarily between zero and maximum available
capacity of the physical resources. This unpredictability in load is due to accommodating
requests coming from a group of users, without being constrained into a static planning of the
infrastructural capacity. To this regard, finding a suitable testing methodology is challenging
due to the lack of upfront clue on the actual usage pattern of the environment.

To overcome this methodological problem, the activities (over a period of 6 months) of a real
cloud computing IaaS environment were traced and the system parameters of each active
physical and virtual resource were monitored. Then from these observations, a collection of
repeating test sequences and usage patterns were extracted that altogether provides an
exhaustive representation of system states worth experimenting our optimization algorithms
and measuring their actual results. To this end, a custom workload simulator was designed
and developed. This tool can generate a sequence of actions and direct them to the Cloud
Controller (CC), creating the required workload snapshots in order to enact energy-aware
optimization algorithms and measure the achieved results with the best significance.
The testbed is equipped with a data logger component, storing all the details of the
energy-aware plug-in activities, along with the measured energy and the corresponding
timestamps. After the end of the proof of concept, the log files were extracted from the
system, and carefully analyzed to take out of them a perceptible track of the actual user
activities performed and logged. As a final outcome of this hindsight, we obtained crisp and
content-relevant activity profiles of 7 different usage patterns. The chosen profiles span a
sufficient timeframe and content to get a significant variance of activity profiles, and a
sufficient amount of dynamical context changes (new activities and tasks, high load versus
night timeframes). These profiles serve as the basis for designing and implementing the
workload patterns enacted by the simulator tool whose details are covered next.



Workload generation

Based on the observations of the real case user activity profiles as explained in previous
section, a basic set of activity types is identified typically replicable on a weekly basis. The
analysis elucidated the existence of overall three basic activity aggregation types, detectable in
different profiles per user and per virtual machine:

1. Steady tasks: spawn a virtual machine, and keep it running for a medium-long period of
time, with a basically constant level of resource usage (e.g. CPU, memory, storage
device); typical cases were complex software application development tasks.

2. Spiky tasks: spawn a virtual machine, intensively use it for a short term period (e.g. a
quick debug on an application), then suddenly release it to the IaaS environment.

3. Rippling tasks: spawn a virtual machine, and keep it running for a medium-long period
of time, with a fairly variant pattern of resource usage; this typology can be associated,
for instance, to data management/reporting activities, or to some particular tasks ran in
collaboration.

After identifying the above-mentioned three basic activity types, the next step was to
configure the workload simulation tool in order to generate a realistic sequence of system
actions (create and de-instantiate virtual machines) able to replicate as faithful as possible
these recovered patterns.

A snapshot of a workload profile is shown in Figure 8. It is worthwhile to mention the fact
that time schedules have been squeezed into a 7:1 or 7:2 compression factor. As a matter of
fact, all the tests of one week long are performed in a single day or 2 days time slot, ensuring
the full execution of the test plan. Before going full speed with the test campaign, we ran a
single-spot, full week test on a selected sample profile, followed by the time squeezed test on
the same profile, to make sure that the time compression didn’t bring up any bias or alteration
to the observed system behaviour.

Figure 8 An example of workload profile on a weekly basis. The figure illustrates the workload
profile of our experiments performed in a single day or 2 days time slot

Numerical results

Power consumption predictions

Before performing our tests related to the energy optimization, it was necessary to validate
the accuracy of the power consumption prediction models of Section Power consumption
prediction models. To this end, we carried out observations both for the idle and dynamic power
consumptions of the blade servers whose hardware configuration is presented in Table 3.

Idle power consumption predictions

Figure 9 illustrates the power consumption of the blade servers both obtained from our power
monitoring tool iLo and our power consumption prediction models (PCM). We can notice that
both have identical power consumption which is due to the fact that we were able to configure
the mainboard power consumption (see powerIdle in Section Server modelling) appropriately.
In Table 4, we present the idle power consumption breakdown on the component-basis.



Figure 9 Idle power consumption of blade servers. The figure shows the idle power
consumption of blade servers obtained from a power monitoring tool (iLo) and developed
power consumption models (PCM)

Table 4 Idle Power Consumption Prediction Breakdown
Component Consumption (Watt)
Processors 33 Watt
Memories 14 Watt
Hard Disks 3 Watt
Mainboard 70 Watt

Total 120 Watt
This table indicates the idle power consumption of the investigated server expressed in terms
of its constituent components

Dynamic power consumption predictions

In order to better understand the power consumption behaviour of our blade servers under
different load patterns, we performed tests (1) by explicitly fixing the frequency of the
processor to its maximum and (2) by letting the operating system to configure it automatically
(e.g. on-demand governor) based on certain OS-related mechanisms ensuring performance
and energy efficiency (e.g. Intel SpeedStep). To identify the trend of the power consumption
for a server, we adopted the lookbusyd software tool, which allows to generate synthetic
workload on a server in a tractable way, based on a wide set of parameters (e.g. CPU usage,
memory usage, IO operations, etc.). The methodology followed for testing a server was the
following:

1. Set the server’s power management policy (e.g. performance, on-demand, etc.).

2. Measure power consumption from iLO with CPU in idle state.

3. While the CPU utilization is less than 100%:

(a) Increment by 20% the workload on the server.

(b) Wait for a 10-minute period, to let the server and the power metering system to
reach a stable situation.

(c) Measure the power consumption.

Such a measurement was repeated while simulating also memory usage with the lookbusy
tool, to assess the impact of memory usage on the power consumption.

Figure 10 illustrates the power consumption of the blade servers with dynamic setting (e.g.
on-demand governor) both obtained from the power monitoring tool iLo and our power
consumption prediction models (PCM). The horizontal axis represents the load percentage
(utilization) of all the cores: i.e. for a quad-core processor, a load of 20% reflects the fact that
all the four cores are 20% loaded. We can notice that both iLo and PCM have quite identical
results. However between 60% and 80% load, PCM suffers from an error of at most 13%. We
believe that this error is due to inaccuracy of the information provided by the monitoring
system of our testbed concerning the frequency. In order to validate our argument, another set
of similar observations was performed by fixing the frequency of the processor to the



maximum whose results are demonstrated in Figure 11. It is clear in this figure that if the
appropriate frequency and voltage parameters are provided, then the power consumption of
“iLo” and “PCM” is almost identical.

Figure 10 Power consumption of blade servers with dynamic setting. The figure demonstrates
the power consumption of blade servers obtained from a power monitoring tool (iLo) and
developed power consumption models (PCM), by increasing the load of the processors by
increments of 20%. The frequency of the processors are configured dynamically by means of
the operating system in order to achieve the required performance

Figure 11 Power consumption of blade servers with maximum frequency setting The figure
demonstrates the power consumption of blade servers obtained from a power monitoring tool
(iLo) and developed power consumption models (PCM), by increasing the load of the
processors by increments of 20%. The frequency of the processors are set to its maximum
manually through the BIOS

Energy optimization tests

The actual energy optimization results were achieved by applying, the same workload of
Section Workload generation in identical conditions, to the testbed once without energy-aware
plug-in and the second time with the plug-in up and running. Figure 12 illustrates the number
of active virtual machine instances tracked across a 24-hour timeframe, which is a compressed
image of a 7-day pattern, generated by the execution of the workload profile as described in
Section Workload generation. We can notice from Figure 13 that the energy consumption of
the testbed is more flat than the corresponding instance curve of Figure 12. This is due to the
fact that no energy optimization policies of any type were applied to the testbed. On the other
hand, we can identify in Figure 14 the clear difference with respect to the energy consumption
when no energy optimization policies are applied. More precisely, we can observe the
substantial rippling and fluctuations which follows up the variations of workload. Also, at any
specific instance, the testbed’s power consumption does not bypass 1 KWatt whereas it is clear
that in the case of no energy-aware plug-in, the testbed’s average power and energy
consumption is more than 1 KWatt.

Figure 12 Number of virtual machine instances. The figure shows the total number of virtual
machine (VM) instances over the time of 24 hours test, representing a 7 days load pattern,
compressed with a factor of 7 into a single full day

Figure 13 Power measures of the testbed without energy-aware plug-in. The figure illustrates
the total overall power consumption of the testbed executing the workload without
energy-aware plug-in

Figure 14 Power measures of the testbed with energy-aware plug-in. The figure demonstrates
the total overall power consumption of the testbed executing the workload with our
energy-aware plug-in



Finally, in order to ensure that the energy-aware plug-ine, whose main task is to minimize the
energy consumption, itself does not consume significant amount of power, we computed its
consumption. It turns out that the plug-in itself consumes 3% (6 Watt out of 187 Watt) of the
overall power of the server running this VM. Thus, we can conclude that the energy saving
achieved through our energy-aware plug-in is not offset by side effects due to its own induced
additional consumption. Figures 15 and 16 summarizes the energy as well as average power
consumption of the testbed with and without energy-aware plug-in. We can notice in Figure
16 that the least savings (16.27%) can be achieved in the beginning days of the week whereas
the most savings (19.76%) can be realized among the end days of the week (weekends). Thus
Figure 15 represents the total global savings (17.98%) that is accomplished through our
energy-aware plug-in. Note that the results presented in this section are obtained by taking the
average of five independent observations (run of the workload) with a confidence interval of
99% such that the power measurement unit has itself an accuracy of 1%.

Figure 15 The global overview of the testbed results. The figure provides a general comparison
(in KWh), of the total energy consumption of the testbed, between with and without energy
aware plug-in

Figure 16 The day range overview of the testbed results. The figure provides a comparison (in
KWh), of the total energy consumption of the testbed, between with and without energy aware
plug-in, based on the days of the week

Conclusion and perspectives

Cloud computing being private or public is becoming more and more primordial in IT sector
due to the numerous advantages (see Section Main focus) it gives to its end users. To cope
with the high user demands, data centres having cloud computing style possess myriad of ICT
resources. Most of the cases, this over-provision of resources, which serves to respect the
Service Level Agreements that the data centres have with their end users, leads to
astronomical numbers with respect to energy consumption. To this end, power and energy
consumptions of data centres have become an issue recently due to economical and ecological
reasons. In this paper, we study the case of a private cloud computing data centre from the
energy efficiency perspectives, and show that there are incentives to save energy. To this
respect, we described in the form of UML class diagrams the ICT resources with their
most-relevant energy related attributes. Furthermore, we provided generic power consumption
prediction models for servers, storage devices and network equipment. Note that our proposed
methodology is generic enough so that it encompasses any computing style: traditional, cloud
and super computing. Finally, in order to validate the energy optimization policies of [5], we
performed evaluations in a real-life private cloud computing data centre and showed that it’s
possible to save energy almost 20% when only single-site is taken into account.

As a future work, it is also interesting to investigate the federation of several data centres and
propose new optimization policies which take into account the following two main objectives:

1. Minimizing the energy consumption of data centres.

2. Minimizing the CO2 emissions of data centres.



With respect to item (1), our current optimization policies take into account minimizing the
overall energy consumption of the data centre while not violating any of its SLAs. When item
(2) is concerned, new optimization policies should be devised that take into account the
availability of green energy so that the overall CO2 emissions are minimized by taking
advantage of the concept of data centre federation.

In the end, our approach has the following two-dimensional benefits:

1. For the data centre businesses:

(a) Reduction of costs and therefore prices.
(b) Marketing options for green services.
(c) Provision of potential energy legislation.

2. For the data centre end users: reduction of cost for services.

Endnotes
aBased on the required performance and energy saving needs.

bhttp://www.engineeringtoolbox.com/fans-efficiency-power-consumption-d_197.html

cHewlett-Packard Italy Innovation Center located in Milan

dhttp://www.devin.com/lookbusy/

eImplemented in the form of a virtual machine
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