

Profiling Energy Use in Households and Office Spaces

Salman Taherian, Marcelo Pias, George Coulouris and Jon Crowcroft

Computer Laboratory

Outline

- Motivation
- CSK Energy System
- Review of energy use
- Profiling energy
- Experimentation
- Conclusions

Motivation

• Climate change

Reducing energy consumption (behavioral dimension + awareness)

Aggregate energy use (homes and offices)

CSK (Cambridge Sensor Kit) Energy System

Reducing energy consumption (awareness & action)

- 1. Local feedback and assisted control (easy)
- 2. Local feedback and behavioral change (difficult)
- 3. Information sharing and comparison

Local feedback...

- Real-time displays (RD)
 - Spatially confined
 - Temporally confined

- Complementary feedback systems
 - Real-time LED Globe (RLG)
 - Digital Photo Frame (DPF)
 - Webpage (Web)

Feedback, awareness, and action....

Personal experience and practice helps

Feedback for office environment

Global feedback...

- Beyond one man's knowledge & expert advice
 - Information sharing and comparison
 - User-level discussions
 - Co-operative solution discovery
- Energy profiling: what to discuss?
 - Simple, personal, safe (secure & anonymous)
 - Baseline energy use (level of commitment/effort)
 - Personal energy demand (lifestyle efficiency)

What's always on? (baseline energy use)

$$\Delta_{bl} = b_{observed} - b_{correct}$$

- *b_correct* ~ 30 *watt* for homes (electric timers, smoke alarm/detector,...)
- e.g., <u>http://www.cambridgesensorkit.org/cskenergyP2</u> !

Who's green? BMI for energy?!

- Individualized energy metric (aggregated power index, API)
- $A^x = \sum_{V} P_v^x$ (sum of power indices, PIs, at different environments V)
 - User must have <u>control</u> (ownership)
 - Change must be <u>noticeable</u> (effective feedback)

Experiment (office space)

- How much energy use is at users' control?
- How noticeable is a simple change/action?
- Methodology
 - *"everyone should shut down their machine prior to attending weekly meeting"*

Post experimentation

Compulsory vs Voluntary

- Technology's role
 - duty cycling (> 55% savings

on machines, 4kW)

State	Power	Current	Proposed
		Cycle	Cycle
Disconnected	0W	0%	67%
from mains			
Switched off	12W	0%	0%
Stand-by	60W	75%	8%
Switched on	110W	25%	25%
Total power		72.5W	32.3W

Conclusions

- Smart system in co-operation with the user
 - User as valuable source of info.
 - Human in the control loop
- User engagement
 - Awareness + Personalization + Ownership
 - High-level data to assist engagement
- Sustainable behavior change is difficult
 - Re-enforce acceptance through automated control

Thank you!

Salman Taherian

st344@cl.cam.ac.uk

