

# Statistical static capacity management in virtualized data centers supporting fine grained QoS specification

Talk at e-Energy 2010

Speaker: Marko Hoyer





**Marko Hoyer** 

OFFIS Institute for Information Technology marko.hoyer@offis.de

Kiril Schröder

C.v.O. University of Oldenburg kiril.schroeder@informatik.uni-oldenburg.de

**Wolfgang Nebel** 

C.v.O. University of Oldenburg nebel@informatik.uni-oldenburg.de



## 2 Motivation 1 / 4

Wasted energy through low server utilization

 Server utilization in small or medium enterprises (e.g. OFFIS ≈ 50 servers)

90th percentile at the web server: 2% CPU utilization

90th percentile at another server deploying different services:

39% CPU utilization





power efficiency

rel. power consumption

50

utilization [%]

- Server utilization in large efficient server clusters
  - 90th percentile of 5000 Google servers averaged¹:

50-60% CPU utilization





- ► Hardware to powerful for single services
- Daytime dependent variation of workload (and thus resource demand)

100

0

66-90%

100

CPU utilization — CPU utilization (floating average)

30
20
10
0
6
12
18
24
daytime

<sup>&</sup>lt;sup>1</sup> estimated from: Barroso, L. A.; Hölzle, U.: *The case of energy-proportional computing*. IEEE Computer 40(12).2007



## 3 Motivation 2 / 4

#### Basic idea of static statistic capacity management

- Optimizing utilization using virtualization technique
  - Different services deployed at one server
- Questions to be answered
  - How much resources must be reserved for a service?
  - Which services are deployed together at one server?



#### pessimistic approach Determine maximal required resources Distribute services to servers guaranteeing maximal required resources all the time vector bin packing benchmarking VM<sub>2</sub> $VM_2$ VM<sub>4</sub> VM<sub>3</sub> VM<sub>1</sub> VM<sub>3</sub> mail WEB SVN server 2 server 1





#### 4 Motivation 3 / 4

#### Known static statistical approaches

- Demand, allocated resources and server capacity
  - For each VM *i* (virtual machine)

resource demand:  $R_i(t) \leq R_i^{max}$ 

allocated resources:  $A_i^{min} \leq A_i(t) \leq A_i^{max}$ 

For each Server k (host)

**Resource capacity:**  $C_k$ 



- Statistical allocation planning
  - first pessimistically plan by R<sub>i</sub>max (vector bin packing)
  - create histograms from observed demand
  - create optimized allocation plan w. r. t. the demand behavior
    - ensuring minimal resources A<sub>i</sub><sup>min</sup>
    - ensuring minimal probability QoS; of not having performance problems
  - vector bin packing considering both conditions





## 5 Motivation 4 / 4

Problems of known approaches

 Convolution requires statistical independence



- ► Inflexible QoS specification
  - ▶ Only one pair of  $QoS_i$  and  $A_i^{min}$  possible





 Strength of resource shortage depends on resource demand





# 6 Concept 1/3

#### Demand independent fine grained QoS specification

- Independence of resource demand
  - Describe resource shortage as ratio α between allocable and required resources
  - Not reserving fixed resources but guaranteeing a minimal α

$$\alpha_i(t) = \frac{A_i(t)}{R_i(t)}$$



- More flexible QoS specification
  - $\triangleright$  Old one: 1 pair of QoS and  $\alpha$
  - **New** one: **function** QoS of  $\alpha$ 
    - For each α, an independent QoS value can be defined
    - More optimistic planning possible
  - For each VM it must hold that:



- one for uncorrelated workload
- one for correlated workload





$$\forall \alpha < 1.0: P(\frac{A_i(t)}{R_i(t)} < \alpha) < 1 - QoS_i(\alpha)$$



# 7 Concept 2 / 3

#### Dealing with correlations – pessimistic approach

- Reserve individual resource capacity for each VM
  - No interactions between VMs possible
  - Correlations can be neglected
- Reserved capacity can be lower than the maximum demand of the VM (R<sub>i</sub><sup>max</sup>>A<sub>i</sub><sup>max</sup>)
  - Consequences: resource shortage in some cases
- Approach
  - Select A<sub>j</sub><sup>max</sup> so that the QoS specification of the respective VM is met
  - ▶ Bin packing by A<sub>i</sub><sup>max</sup>

$$\sum A_i^{\max} \le C_k$$

- Disadvantage
  - Assume having fully positively correlated resource demand
  - Wasted resources







- R₁(t)

# 8 Concept 3 / 3

Dealing with correlations – optimistic approach

- More optimistic approach
  - Joint resource demand of all VMs must never exceed the servers' capacity









probability distribution of joint resource demand

- Some slides ago ...
  - Probability distribution of joint resource demand is derived from the individual distributions using convolution
  - **Problem:** Statistical independence not given when having **correlations!!**



- R<sub>1</sub>(t)+R<sub>2</sub>(t)

 $A_2^{\text{max}}$ 

 $A_1^{\text{max}} + A_2^{\text{max}}$ 

- Solution
  - **Overestimation**
  - Details in the paper ...





## 9 Evaluation results 1/3

Resource saving when using fine grained QoS specification



| Type A                           |                  | Туре В                           |      |
|----------------------------------|------------------|----------------------------------|------|
| A <sub>i</sub> <sup>min</sup> /α | QoS <sub>i</sub> | A <sub>i</sub> <sup>min</sup> /α | QoS  |
| 28 / 0.95                        | 0.5              | 18 / 0.90                        | 0.85 |
| 27 / 0.90                        | 0.9              | 14 / 0.70                        | 0.95 |
| 15 / 0.50                        | 0.99             | 10 / 0.50                        | 0.99 |





## 10 Evaluation results 2 / 3

Resource saving when using fine grained QoS specification

- Simulation based evaluation
  - 4 workload types, 200 VMs
- ► Relative hardware savings
  - Count of servers compared to pessimistic approach (guaranteeing max. demand all the time)
- Energy savings in data center
  - Best case (PUE remains constant)
    - ► Hardware savings = Energy savings

≈ 27%

Worst case (only server power is saved)

| PUE (pessimistic approach) | 1.5 | 2.0 | 2.5 |
|----------------------------|-----|-----|-----|
| PUE (statistical approach) | 1.7 | 2.3 | 3.0 |
| Energy savings             | 19% | 13% | 11% |





## 11 Evaluation results 3 / 3

#### QoS violations when ignoring correlations

#### Methodology

- As many **VMs of same type** as possible placed at one server
- Statistical approach using convolution
- Demand traces of one day workload
- Strength and frequency of resource shortage measured and compared to QoS

#### Analyzed cases

- Fully positively correlated workload (cor. coef. 1.0)
  - Workload Type A, exactly the same time series are used
- Mainly positively correlated workload (cor. coef. 0.87)
  - Trend of workload Type A, random noisy part
- Uncorrelated workload (cor. coef. 0.0)
  - Workload Type B (random)

#### Results

Violations of up to 4x the specified one when having positively correlated workload



down to  $P(\alpha(t) < a)$  for VM of Type A (cor. coef.: a = 0.45

|      | α ≥0.95 | α≥0.9 | α≥0.5        | α<υ. |   |
|------|---------|-------|--------------|------|---|
| must | ≤0.5    | ≤0.1  | <u>≤0.01</u> | =0   | , |
| is   | 0.1     | 0.1   | 0.08         | 0.01 |   |

 $P(\alpha(t)<a)$  for VM of Type A (cor. coef.: 0.87)

| 40 5 40 4         |                  |
|-------------------|------------------|
| must ≤0.5 ≤0.1 ≤0 | .01 =0<br>04 0.0 |
| is 0.06 0.04 0.   | 0.0              |

 $P(\alpha(t) < a)$  for VM of Type B (cor. coef.: 0.0)

|      | α ≥0.9 | α≥0.7 | α≥0.5 | α<0.5 |
|------|--------|-------|-------|-------|
| must | ≤0.15  | ≤0.05 | ≤0.01 | =0    |
| is   | ≈0.0   | ≈0.0  | ≈0.0  | =0.0  |



## ▶12 Summary & Ongoing and required future work ...

#### ► Main outcomes in this paper

- Statistical static allocation approach
  - Fine grained trade off between performance and hardware resources (energy)
  - Pessimistically and optimistically dealing with correlations
- Evaluation results
  - ▶ Up to **27% resource (energy) savings** in our example
  - Ignoring correlation will lead to significant QoS violations

#### Ongoing work

- Just finished an dynamic allocation approach for VMs
  - Uses life migration and server standby
  - Ensures meeting fine grained QoS at any time
  - Ensures redistributing the VMs right in time

#### Required Future Work

- Until now, resource demand and supply are adjusted as good as possible
- ► Real QoS Attributes are response time or throughput
  - Mapping them to resource demand is required









## 13 Questions & Discussion?















