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Context: Energy, Autonomic Computing and Machine Learning

e Keywords:
— Autonomic Computing (AC): Automation of management
— Machine Learning (ML): Learning patterns and predict them

e Applying AC and ML to energy control:
— Self-management must include energy policies
— Optimization mechanisms are becoming more complex
— ... and they can be improved through automation and adaption

e Challenges for autonomic energetic management:
— Datacenters policies require adaption towards constant optimization
— Complexity can be saved through modeling and learning

— If a system follows any pattern, maybe ML can find an accurate
model to help the decision makers and improve policies
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Introduction

e Self-management looking towards Energy Saving:
— Apply the well-known consolidation strategy

e Consolidation strategy:
— Reduce the turned on machines grouping tasks in less machines
— Turn off as many IDLE machines as possible (but not all!)

e Main Contributions
— Consolidate tasks in a datacenter environment
— Predict information a priori to solve uncertainty and “play it safe”
— Design adequate metrics to compare consolidation solutions
— Turn on/off machines from SLA vs. Power trade-off method
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Energy Aware Scheduling

e Consolidation
— Execute all tasks with the minimum amount of machines
— Unused machines are turned off
— Known policies: Random, Greedy policies, (Dynamic) Backfilling

e Policies and Constraints
— SLA fulfillments must not degrade excessively
— Operations must reduce or maintain energy consumption
— Turn off as many machines as possible
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EAS: Machine Learning application (1)

e Prediction a priori -
— Deal with uncertainty
— Anticipate future information

e Applying Machine Learning:
— Relevant variables for decision making only available a posteriori
— ML creates a model from past examples

—
Ended Training Dataset ML
Jobs (posteriori data)

Estimates Data for the
new Job

New
Job

e Desired information a priori -
— SLA fulfillment level: i.e. we don't know the exact finish time per task
— Consumption: i.e. we don’t know the consumption before placing a task

e Learn a model to induce:
— <lInfo. Running tasks, Info. Host> — <SLA fulfillment, Power Consumption>
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EAS: Machine Learning application (1)

e Information “a posteriori”
— R, Average SLA fulfillment level of jobs in host
— C,,: Host consumption
— Finished jobs: Information about ended jobs
— Host: Information about host capabilities

e Learn a model to induce
— <Running jobs, Host> — <R, ,C,>

e Used Variables

— “Post-mortem” data:
» Finished Job: <Job ., Tstarts Tends TuserrSLARact™ — R

e Host Consumption: <Usageg..> — C;
— Available data:
* Running Job: <CPU sages Tstarts Tnows TuserSLARact™ — R;
» Host Consumption: <CPU,.iiapie™> — Ch,
 Host SLA fulfillment: aggregation of R; — Ry,
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EAS: Machine Learning application (111)

e Backfilling and Dynamic Backfilling policies:
— Purpose: fill turned on hosts before starting off-line ones
— When a task enters, it is always put on the most fillable host
— At each scheduling round, move tasks to get more consolidation

e Applying Machine Learning:
— We learn the SLA fulfillment impact and consumption impact, for
each past schedule

— For each possible task allocation <host, jobs on host+new job>:
e Estimation of resulting SLA fulfillment
e Estimation of resulting power consumption
e If they don’t degrade, allocation is viable

— Dynamic Backfilling: Change the static data by estimated data
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Simulation and Metrics

e Self-created simulator:

— Simulates a data center able to execute tasks according to
different scheduling policies

— Takes into account CPU consumption and energy
— Able to turn on/off simulated machines
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e Metrics:
— There is no standard approach to compare power efficiency

— We introduce metrics to compare adaptive solutions:

e Working nodes, Running nodes, CPU usage, Power consumption,
SLA fulfillment level...
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Evaluation (1): Shutting down machines

e Power vs SLA fulfillment trade-off
— Determine when to shut down IDLE nodes, and turn on new ones

e Find the adequate number of IDLE on machines
— It depends on the number of running tasks
— Determine range of IDLE machines (minimum and maximum)

e Trade-off between energy and required resources
— At what load start off-line machines, or shut down IDLE ones
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Evaluation (I11): Consolidation

e Experimental Environment
— Simulated datacenter with 400 hosts (4 CPU per host)
— Workload: fixed CPU size tasks and variable CPU size tasks
— Use of Linear Regression and M5P for SLA and Power prediction
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Evaluation (I111): Machine Learning

e Experimentation Results (11)

— Dynamic BF + ML performs better, having uncertainty (service and
heterogeneous workloads)

— Accuracy around 98.5% on predictions
— Detail: Values with highest estimation always had highest accuracy

Working nodes (avg) Running nodes (avg) Power (kwh)  SLA (%)
Grid workload
Round Robin 16.11 41.37 1696.66 85.99
Dynamic Backfilling 9.91 26.46 1118.86 100.00
Machine Learning DB 15.04 37.92 1574.78 99.69
Service workload
Round Robin 290.99 400.00 19761.54 100.00
Dynamic Backfilling 108.79 352.88 16229.22 100.00
Machine Learning DB 99.61 270.50 13673.71 100.00
Heterogeneous workload
Round Robin 260.66 400.00 19713.72 94.20
Dynamic Backfilling 111.03 329.07 16214.49 99.59
Machine Learning DB 124.20 307.89 15110.33 08.63
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Conclusions and Future Work

e Challenge and Contribution
— Vertical and “intelligent” consolidation methodology
— Metrics to evaluate different consolidation approaches

— Predict application SLA timings and power consumption to decide
scheduling

e Experimentation Results

— Consolidation aware techniques:

e Improve power efficiency

e Compare backfilling with “standard” techniques
— Machine Learning method:

e Close to consolidation techniques

e Better when information is inaccurate

e Current and Future Work
— More complex SLA fulfillment (response time, throughput, ...)
— More complex Resource elements (CPU, memory, 1I/0 elements)
— More elaborated Policy optimization (utility functions)
— Addition of virtualization overheads
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Thank you for your attention
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