

Wireless Networks Unplugged

Jukka Manner with Jörg Ott, Marko Luoma and Jyri Hämäläinen

Professor, PhD.

Aalto University

Department of Communications and Networking

Aalto University?

- Merger of three largest universities in their fields in Finland
 - Helsinki University of Technology (TKK, HUT)
 - Helsinki School of Economics (HSE)
 - University of Art and Design Helsinki (UIAH)
- Technology + business + design => Aalto
- Effective 1.1.2010 (104 days old)
- Web site: www.aalto.fi

Problem

No verified solution

Drafting things that could be done

Lot of work done on energy efficiency

by wouterh, Flickr

Somewhat little on those, yet

Ad-hoc networks, offices, homes, computing equipment, buildings, smart grids,

Our focus

In particular

Who cares?

We all do

24/7

2G

3G

3.5G

4G (LTE, sometime)

Coverage

2G = n base stations

$3G = 2-4 \times n$

3.5 G = 6-9 x n

$4G = 11-40 \times n$

Huge increase in network devices

Energy consumption

2G base station ~ 0.5-1 kVA

3G ~ 1-2 kVA

4G ~ 1.5-3 kVA

2G -> 4G ~ 30-100 x energy

Technology

Curve for 1 operator

Finland has major operators for million people

Germany:

major operators for 82 million people

EU:

?

major operators for 501 million people

Issue is world-wide energy consumption

Deployed Base Stations								'06 - '11
Units	2005	2006	2007	2008	2009	2010	2011	CAGR
CDMA	200,054	220,083	238,406	247,826	254,328	258,146	261,288	3.5%
y/y growth		10.0%	8.3%	4.0%	2.6%	1.5%	1.2%	
GSM	1,018,287	1,088,306	1,137,507	1,163,048	1,216,036	1,246,016	1,251,914	2.8%
y/y growth		6.9%	4.5%	2.2%	4.6%	2.5%	0.5%	
PDC	59,898	55,860	51,029	46,597	42,530	41,296	41,315	-5.9%
y/y growth		-6.7%	-8.6%	-8.7%	-8.7%	-2.9%	0.0%	
WCDMA	231,287	302,762	389,808	491,128	562,574	620,404	676,499	17.4%
y/y growth		30.9%	28.8%	26.0%	14.5%	10.3%	9.0%	
Total	1,509,526	1,667,011	1,816,751	1,948,599	2,075,468	2,165,862	2,231,015	8.1%
y/y growth	10.1%	10.4%	9.0%	7.3%	6.5%	4.4%	3.0%	
Source: In-Stat, 02/07								

Worldwide total deployed base stations (units). Source: [InStat (2007)]

Total deployed base stations (units), worldwide [left], Europe [right]. Source: [InStat (2007)]

[InStat (2007)] InStat: "WCDMA Base Station: Embracing the New Generation," InStat analyst report by F. Guan, Feb. 2007.

In Europe these cost today ~ 10 TWh/year

(without 4G and with bad coverage) (probably way underestimated)

Not just about being green

Also OPEX

"Electricity bill is 20% of OPEX today" (a telco high executive)

Also site building

A new site needs power and cables (x 2)

Digging the cables is expensive and sometimes impossible

Could be build base station sites without cables, communications nor power?

Unplug Mobile Networks

Examples already exist

Works when you have ample sunshine and winds

Could also use diesel generators

Drafting the concept

Background questions

How much energy can be acquired from renewable sources?

Deployment locations?

What is the expected client load?

Answers differ between countries and regions

things that could be done

1. Better renewable energy sources

2. Better energy storage, e.g., regenerating fuel cells

3. Development of HVDC powering solutions

4. Envelope tracking, tight integration of power amplifier and radio load

5. Power control, incl. beam forming, of radio

(lower at the base station, higher at the terminal?)

6. Load balancing

(difficult processor sharing)

7. Deploy black nodes

(nodes that regenerate when others operate)

8. New network structures and coverage planning

9. Shutdown higher speed services

10. Follow weather forecasts

11.-20. You choose

In summary

Important problem

We can do more than just lower the consumption

Make it

