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Energy in Data Centers

US data centers now consume
2% of total US power

Energy has become important
metric of system performance
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Can we make data intensive

computing more energy
efficient?

— Metric: Work per Joule




Goal: reduce peak power
Traditional Datacenter FAWN
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Wimpy Nodes are Energy Efficient
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Wimpy Nodes are Energy Efficient
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Wimpy Nodes are Energy Efficient

...but slow
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FAWN - Fast Array of Wimpy Nodes

Leveraging parallelism and scale out to build eEfficient Clusters

Traditional FAWN
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* Why is FAWN more energy-efficient?

* When is FAWN more energy-efficient?

 What are the future design implications?



CPU Power Scaling and System Efficiency

Instructions/sec/W in millions
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CPU Power Scaling and System Efficiency
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CPU Power Scaling and System Efficiency

Instructions/sec/W in millions
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CPU Power Scaling and System Efficiency

Speed vs. Efficiency
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* When is FAWN more energy-efficient?



When is FAWN more efficient?

Core i7-based Desktop (Stripped down) Modern Wimpy FAWN Node

* Single 2.8GHz quad-core Core i7 860 | | * Prototype Intel “Pineview” Atom

* Two 1.8GHz cores
e 2GB of DRAM e 2GB of DRAM

 40W — 140W (idle — peak) e 18W --29W (idle — peak)
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Data-intensive computing workloads

FAWN'’s sweet spot
2. Memory/CPU-bound
3. Latency-sensitive, but non parallelizable
4. Large, memory-hungry



Memory-bound Workloads

L1 Size
(Both)

e Atom 2x as efficient when
in L1 and DRAM
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Memory-bound Workloads
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Memory-bound Workloads
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Memory-bound Workloads

L1 Size
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CPU-bound Workload

* Crypto: SHA1/RSA

* Optimization matters! Atom 3.85»5.6 56
— Unopt. C: Atom wins

— Opt. Asm:
* Old: Corei7 wins! i7 4.8 = 4.8 71

e New: Atom wins!
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CPU-bound operations can be
more energy efficient on low-

* Crypto: POWer processors

* Optimization matters! Atom 3.85»5.6 56
— Unopt. C: Atom wins

— Opt. Asm:
* Old: Corei7 wins! i7 4.8 = 4.8 71

e New: Atom wins!
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CPU-bound operations can be
more energy efficient on low-
POWer processors

However, code may need to
be hand optimized

\
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Potential Hurdles

* Memory-hungry workloads
— Performance depends on locality at many scales

e E.g., prior cache results, on or off chip/machine

— Some success w algo. changes e.g., virus scanning

* Latency-sensitive, non-parallelizable
— E.g., Bing search, strict latency bound on processing time
* W.o. software changes, found atom too slow



 What are the future design implications?

— With efficient CPUs, memory power becomes critical



Memory power also important

Today’s high speed systems: mem. ~= 30% of power

DRAM power draw
— Storage:

* |dle/refresh
— Communication:

* Precharge and read Memory bus
* Memory bus (~40% ?)

Refresh

CPU to mem distance greatly affects power

— Point-to-point topology more efficient than bus, reduces trace length
* +Lower latency, + Higher bandwidth, + Lower power cons
* - Limited memory per core

— Why not stack CPU and memory?
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Preview of the Future

FAWN RoadMap

 Nodes with single CPU chip
with many low-frequency
cores

* Less memory, stacked with
shared interconnect

* |Industry and academia
beginning to explore

— iPad, EPFL Arm+DRAM



To conclude, FAWN arch. more efficient,
but...

* Up to 10x increase in processor count
e Tight per-node memory constraints
* Algorithms may need to be changed

e Research needed on...
— Metrics: Ops per Joule?

* Atoms increase workload variability & latency
* Incorporate quality of service metrics?

— Models: Will your workload work well on FAWN?



To con Questions?

www.cs.cmu.edu/~fawnproj
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— Metrics: Ops per Joule?

* Atoms increase workload variability & latency
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Related Work

e System Architectures
— JouleSort: SATA disk-based system w. low-power CPUs
— Low-power processors for datacenter workloads

 Gordon: Focus on FTL, simulations
 CEMS, AmdahlIBlades, Microblades, Marlowe, Bluegene

— IRAM: Tackling memory wall, thematically similar
approach

* Sleeping, complementary approach

— Hibernator, Ganesh et al., Pergamum



