Bandwidth Allocation in a Network Virtualization Environment

Juan Felipe Botero jfbotero@entel.upc.edu Xavier Hesselbach xavierh@entel.upc.edu

Department of Telematics Technical University of Catalonia

Future Internet Architectures: New Trends in Service Architectures (2nd Euro-NF Workshop), June 9 of 2009

Outline

Introduction

- Network Virtualization Architecture
- Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example

Outline

Introduction

- Network Virtualization Architecture
- Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Outline

Introduction

• Network Virtualization Architecture

Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Many networks on top of a shared substrate
- Each virtual network is independent of the others
- Virtual networks are composed of virtual nodes (routers) and virtual links
- Network virtualization allow the testing and the deployment of new protocols
- Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

Network Virtualization implies an architectural change

Many networks on top of a shared substrate

- Each virtual network is independent of the others
- Virtual networks are composed of virtual nodes (routers) and virtual links
- Network virtualization allow the testing and the deployment of new protocols
- Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Many networks on top of a shared substrate
- Each virtual network is independent of the others
- Virtual networks are composed of virtual nodes (routers) and virtual links
- Network virtualization allow the testing and the deployment of new protocols
- Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Many networks on top of a shared substrate
- Each virtual network is independent of the others
- Virtual networks are composed of virtual nodes (routers) and virtual links
- Network virtualization allow the testing and the deployment of new protocols
- Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Many networks on top of a shared substrate
- Each virtual network is independent of the others
- Virtual networks are composed of virtual nodes (routers) and virtual links
- Network virtualization allow the testing and the deployment of new protocols
- Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Network Virtualization implies an architectural change
 - Many networks on top of a shared substrate
 - Each virtual network is independent of the others
 - Virtual networks are composed of virtual nodes (routers) and virtual links
 - Network virtualization allow the testing and the deployment of new protocols
 - Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Network Virtualization

- Network Virtualization implies an architectural change
 - Many networks on top of a shared substrate
 - Each virtual network is independent of the others
 - Virtual networks are composed of virtual nodes (routers) and virtual links
 - Network virtualization allow the testing and the deployment of new protocols
 - Allows multiple end-to-end packet delivery systems
- Network Virtualization architecture [Feamster, 2007]
 - Infrastructure Provider
 - Service Provider
 - End User

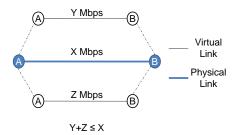
Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Outline

Introduction

- Network Virtualization Architecture
- Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example


Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Bandwidth Allocation in Virtual Links

- Resource scheduling is one of the main challenges in the deployment of a new Internet architecture based on Network Virtualization
 - The resources to be scheduled are the CPU processing rate and the Bandwidth
 - Bandwidth is shared among virtual links

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Physical and Virtual Links

- Physical links are split in virtual links
- Each virtual link is logically independent of each other
- Virtual link must share the bandwidth of a physical link
- Correct bandwidth allocation must be done among virtual links

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Bandwidth Allocation Approaches

Static Allocation Approach

Provides static bandwidth to each virtual link by allocating the demanded bandwidth when VN is created

Best-Effort Approach

Sharing, following a best-effort paradigm, the bandwidth of the physical links among the virtual ones

QoS Based Approach [Jiayue He, 2008]

Taking into account QoS requirements of the flows that are crossing each virtual network.

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Bandwidth Allocation Approaches

Static Allocation Approach

Provides static bandwidth to each virtual link by allocating the demanded bandwidth when VN is created

Best-Effort Approach

Sharing, following a best-effort paradigm, the bandwidth of the physical links among the virtual ones

QoS Based Approach [Jiayue He, 2008]

Taking into account QoS requirements of the flows that are crossing each virtual network.

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

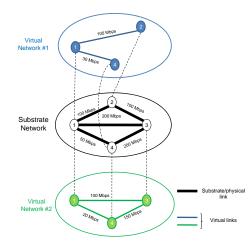
Bandwidth Allocation Approaches

Static Allocation Approach

Provides static bandwidth to each virtual link by allocating the demanded bandwidth when VN is created

Best-Effort Approach

Sharing, following a best-effort paradigm, the bandwidth of the physical links among the virtual ones


QoS Based Approach [Jiayue He, 2008]

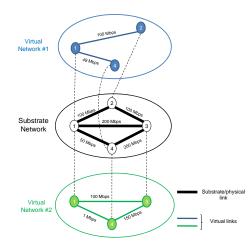
Taking into account QoS requirements of the flows that are crossing each virtual network.

Introduction

Proposal Summary Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Static Allocation

- Advantages
 - Bandwidth resources isolation
 - Each user is provided with the demanded bandwidth


Limitations

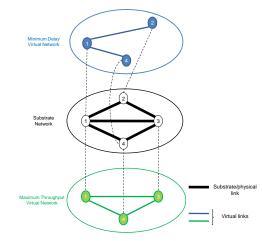
- Bandwidth resources are not fully used
- Bandwidth of one virtual link could be wasted when unused
- It is not enough, resources are wasted

Introduction

Proposal Summary Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

Best Effort

Advantages


 Maximum use of the bandwidth resources

Limitations

- No fairness among virtual links
- Greedy bandwidth applications using a virtual link lead to loss of service in others

Network Virtualization Architecture Bandwidth Allocation in Virtual Networks

QoS Based Approach

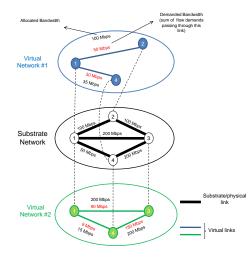
Advantages

- This mechanism provides an optimum allocation
- It distributes the bandwidth periodically
- It adjusts the virtual network parameters taking into account the current network behavior

Limitations

- It creates virtual networks based on the class of service.
- Virtual networks are not created by clients (Virtual Service Providers)

Outline



- Network Virtualization Architecture
- Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example

Optimization Model Simple Network Topology Modeling Example

Spare Bandwidth Optimization Approach

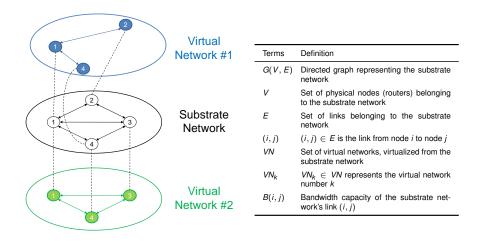
Advantages

- Bandwidth is allocated to obtain the minimum spare bandwidth in substrate network
- Each demand requests, in advance, a specific bandwidth that is assured
- The remaining bandwidth in each virtual link, is distributed other virtual links

Limitations

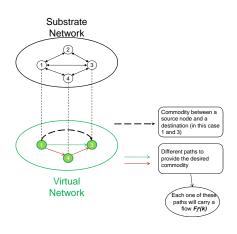
Bandwidth is not totally used

Optimization Model Simple Network Topology Modeling Example


Some Definitions

Definition

- Substrate Network is represented by a directed graph G(V, E)
- Considering an ordered set of vertices $V_1, V_2, ..., V_n, V_{n+1}$; a directed path is any sequence of arcs $\in E$ of the following type: { $(V_1, V_2), (V_2, V_3), ..., (V_n, V_{n+1})$ }
- Given a network G(V, E), C(K) is a set of commodities (Multi-Commodity), where $C_l(k)$ is the commodity *I* of the vn *k*. A commodity is defined by $C_l(k) = (s_l(k), t_l(k), h_l(k))$, where $s_l(k)$ and $t_l(k)$ are the source and sink of commodity *I*, and $h_l(k)$ is the demand between the source and the sink in the vn *k*


Optimization Model Simple Network Topology Modeling Example

Substrate Network Variables

Optimization Model Simple Network Topology Modeling Example

Virtual Network Variables

Terms	Definition
$C_l(k)$	Commodity number <i>l</i> of the virtual network <i>k</i>
$P_l(k)$	Allowed subset of directed paths for the commodity I in the virtual network k
$P_l^p(k)$	$P_l^{\rho}(k) \in P_l(k)$ is the directed path number ρ for the commodity l in the virtual network k
$F_l^p(k)$	Bandwidth allocated to the flow that uses the p possible path of the l commodity in the virtual network k
<i>h</i> _l (<i>k</i>)	Minimum bandwidth that must be as- signed to the commodity <i>I</i> of the virtual network <i>k</i> . (Commodity demand)
$\rho_l^p(i,j,k)$	Binary variable k It is $0 \rightarrow if$ the link (i, j) in the virtual net- work k. is not part of the path p for the commodity l It is $1 \rightarrow if$ the link (i, j) in the virtual net- work k. is part of the path p for the com- modity l

Optimization Model(I)

Minimize:

$$F = \sum_{(i,j)\in E}^{|E|} \left(B(i,j) - \sum_{k=1}^{|VN|} \sum_{l=1}^{|C(k)|} \sum_{p=1}^{|P_l(k)|} \rho_l^p(i,j,k) F_l^p(k) \right) \rightarrow \text{Objective function}$$

Subject to:

$$\begin{split} & \mathcal{B}(i,j) - \sum_{k=1}^{|V|} \sum_{l=1}^{|C(k)|} \sum_{p=1}^{|P_l(k)|} \rho_l^p(i,j,k) F_l^p(k) \geq 0 \quad \text{for}(i,j) \in E \to \text{Capacity constraints} \\ & \sum_{p=1}^{|P_l(k)|} F_l^p(k) \geq h_l(k) \quad \text{for} \quad 1 \leq k \leq |VV|, \quad 1 \leq l \leq |C(k)| \to \text{Demand constraints} \\ & \exists ! F_l^p(k) \neq 0 \quad \forall p | P_l^p(k) \in P_l(k) \to \text{Unsplittable path constraints} \\ & |VV| \geq 0 \quad |E| \geq 0 \to \text{Non-negativity constraints} \\ & |F_l^p(k)| \geq 0 \quad \text{for} \quad 1 \leq k \leq |VV|, \quad 1 \leq l \leq |C(k)|, \quad 1 \leq p \leq |P_l(k)| \\ & |C(k)| \geq 0 \quad \text{for} \quad 1 \leq k \leq |VV| \\ & |P_l(k)| \geq 0 \quad \text{for} \quad 1 \leq k \leq |VV| \\ & |P_l(k)| \geq 0 \quad \text{for} \quad 1 \leq k \leq |VV| \quad 1 \leq l \leq |C(k)| \\ & \rho_l^p(i,j,k) \geq 0 \quad \text{for} \quad (i,j) \in E, \quad 1 \leq k \leq |VV|, \quad 1 \leq l \leq |C(k)|, \quad 1 \leq p \leq |P_l(k)| \end{split}$$

Optimization Model(II)

Objective Function

Minimize Spare bandwidth in the substrate Network

Capacity constraints

The sum of the bandwidths assigned to each virtual link cannot exceed the bandwidth of the physical link

Demand constraints

The demand (minimum bandwidth) of each commodity must be assured.

Unsplittable path constraints

This constraint assures that each commodity only uses one path from the source to the destination node

Non-negativity constraints

Optimization Model(II)

Objective Function

Minimize Spare bandwidth in the substrate Network

Capacity constraints

The sum of the bandwidths assigned to each virtual link cannot exceed the bandwidth of the physical link

Demand constraints

The demand (minimum bandwidth) of each commodity must be assured.

Unsplittable path constraints

This constraint assures that each commodity only uses one path from the source to the destination node

Non-negativity constraints

Optimization Model(II)

Objective Function

Minimize Spare bandwidth in the substrate Network

Capacity constraints

The sum of the bandwidths assigned to each virtual link cannot exceed the bandwidth of the physical link

Demand constraints

The demand (minimum bandwidth) of each commodity must be assured.

Unsplittable path constraints

This constraint assures that each commodity only uses one path from the source to the destination node

Non-negativity constraints

Optimization Model(II)

Objective Function

Minimize Spare bandwidth in the substrate Network

Capacity constraints

The sum of the bandwidths assigned to each virtual link cannot exceed the bandwidth of the physical link

Demand constraints

The demand (minimum bandwidth) of each commodity must be assured.

Unsplittable path constraints

This constraint assures that each commodity only uses one path from the source to the destination node

Non-negativity constraints

Optimization Model(II)

Objective Function

Minimize Spare bandwidth in the substrate Network

Capacity constraints

The sum of the bandwidths assigned to each virtual link cannot exceed the bandwidth of the physical link

Demand constraints

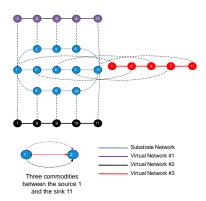
The demand (minimum bandwidth) of each commodity must be assured.

Unsplittable path constraints

This constraint assures that each commodity only uses one path from the source to the destination node

Non-negativity constraints

Outline



- Network Virtualization Architecture
- Bandwidth Allocation in Virtual Networks

- Optimization Model
- Simple Network Topology Modeling Example

Optimization Model Simple Network Topology Modeling Example

Simple Network Topology Variables

Variable	Value
V	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
E	$\{(1, 2), (2, 3), (3, 4), (4, 11), (1, 5), (5, 6), (6, 7),$
	(7, 11), (1, 8), (8, 9), (9, 10), (10, 11)}
VN	$\{VN_1, VN_2, VN_3\}$
B(i, j)	1 <i>Mbps</i> $\forall (i, j) \in E$
$C(k), k \in VN$	$C_1(k) = (s_1(k), t_1(k), h_1(k)) = (1, 11, 1)$
	$k \in \{1, 2, 3\}$
P ₁ (1)	$\{P_1^1(1)\}, P_1^1(1) = \{(1, 2), (2, 3), (3, 4), (4, 11)\}$
P ₁ (2)	$\{P_1^1(2)\}, P_1^1(2) = \{(1,5), (5,6), (6,7), (7,11)\}$
P ₁ (3)	$\{P_1^1(3)\}, P_1^1(3) = \{(1, 8), (8, 9), (9, 10), (10, 11)\}$
$F_k^1(1), k \in VN$?, $k \in VN \to k \in \{1, 2, 3\}$
$h_1^1(k), k \in VN$	1 Mbps, $k \in VN \rightarrow k \in \{1, 2, 3\}$
$\rho_l^p(i, j, k)$	$\rho_1^1(i,j,k) = 0 \forall (i,j,k) - \{\rho_1^1(1,2,1), \rho_1^1(2,3,1)\}$
	$\rho_1^1(3,4,1), \rho_1^1(4,11,1), \rho_1^1(1,5,2), \rho_1^1(5,6,2),$
	$\rho_1^1(6,7,2), \rho_1^1(7,11,2), \rho_1^1(1,8,3), \rho_1^1(8,9,3),$
	$\rho_1^1(9, 10, 3), \rho_1^1(10, 11, 3)\}$

Model of Simple Network Topology

Minimize:

 $F = 12 - 4F_1^1(1) - 4F_1^1(2) - 4F_1^1(3) \rightarrow$ Objective function

Subject to:

 $F_1^1(1) \ge 1$, $F_1^1(2) \ge 1$ and $F_1^1(3) \ge 1 \rightarrow$ Capacity constraints = Demand constraints $\exists ! F_l^p(k) \ne 0 \quad \forall p | P_l^p(k) \in P_l(k) \rightarrow$ Unsplittable path constraints All the variables must be positive \rightarrow Non-negativity constraints

It is easy to find the optimal values in this case: $F_1^1(k)$ is 1 for k = 1, 2, 3

- Bandwidth Allocation is a critical challenge in an network virtualization environment
- A model based on the minimization of the spare bandwidth is proposed to allocate the bandwidth in virtual links

Future Work

- Show, by means of NP-Completeness theory, the complexity of the problem
- Look for efficient algorithms to approach the objective
- Take into account applications with different kind of services
- Consider not only the bandwidth, but other QoS parameters (Delay, Jitter) in the objective function

References

Feamster, 2007]

N.Feamster, L. Gao, J. Rexford.

How to lease the Internet in your spare time, ACM SIGCOMM Computer Communication Review, pp. 61-64. (2007)

[Jiayue He, 2008]

J. He, R. Zhang-Shen, Y. Li, C.Y. Lee, J. Rexford, and M. Chiang.

Davinci: Dynamically adaptive virtual networks for a customized internet, ACM CoNEXT, 2008