Collaborative Video Streaming in Future Networks

Extended Abstract David Erman, Markus Fiedler

The problem(s)

- Traditional, multicast-based, video streaming solutions based on traditional view of TV broadcasting
 - Single producer, many consumers
 - Good for popular content, and mass distribution of same content
- However...
 - Web 2.0 is here, and users generate much content
 - Production and consumption patterns change dramatically
 - Most (99%) videos are not "popular", i.e., very few people consume each video
 - No benefit in multicasting non-popular videos

Furthermore...

- A typical multicast system uses distribution trees
 - Ill-suited to handle churn
- Future networks likely to be more ad-hoc in nature
 - Churn will be the norm, not the exception
- Summing up:
 - Current tree-based solutions not likely to be sufficient for VoD

Mesh-based P2P systems

- Major contributor to current Internet bandwidth use
 - Large user base
- Quintessential example:
 - BitTorrent content distribution system
- Efficient content distribution using swarming
- Originally for distributing large files, but several extensions for streaming video exist

BitTorrent Features

- Segmentation
 - Streams partitioned into discrete segments with associated checksums
 - Peers exchange buffer maps, indicating what segments they carry
- Rudimentary incentive mechanism
 - Tit-for-tat exchange of segments
 - Distrust scheme, as opposed to trust scheme
 - Reciprocation decreases distrust
- Peers act as partial caches
- Deployment!

One Problem Solved

- Segment download order is random
- Problem solved by smart segment selection
- Simulation studies show BT-enabled video streaming uses only about 2% of bandwidth compared to equivalent Web streaming
- So, using BT as a distributor, we can at least provide a streaming service!

OpenOffice, libtorrent-0.12

- Changing production & consumption patterns
 - cf. youtube, vimeo, et al.
 - How to map the centralised cloud structure of these networks into the p2p nature of BitTorrent?
 - Is it even useful?
 - Adobe Stratus
 - Take popularity into account?

• Device & access heterogeneity

- Different capabilities of devices, how to distribute load w.r.t.
 - Storage (caching, pre-fetching)
 - Processing (transcoding, etc)
 - Relaying
- Access capabilities
 - How to gracefully adapt content to available bandwidth
- Mobility?

- Peer selection and reputation
 - Which peers?
 - Data availability and willingness to share is no longer enough;
 - Which access?
 - Account for physical proximity, network proximity, "social proximity"?
 - Encounter network concepts useful?

Challenge: Video is ugly

- Statistical characteristics for video are typically not very nice for the network
 - Smoothing and pre-fetching can help out, but is difficult to perform in low-bandwidth environments
 - Given enough bandwidth, it is however possible to outperform IPMC w.r.t. bandwidth utilization

- Extending the incentive mechanism
 - Current analysis assume two-player game using bandwidth as cost variable.
 - More variables must be taken into account, e.g., timely delivery.
 - Must capture group dynamics, making two-player assumption invalid

Summing up

- Mesh file sharing networks have some nice properties useful for video, but there are still open issues:
 - Segment selection
 - Peer selection
 - Incentive mechanisms

Thank you for your time!

<?>

