A Utility-based Framework for Joint Channel, Topology, and Routing Control in Wireless Mesh Networks

Vasilios A. Siris

Athens University of Economics and Business & Institute of Computer Science, FORTH Greece

vsiris@ics.forth.gr

EU-MESH: Enhanced, Ubiquitous, and Dependable Broadband Access Using MESH Networks FP7 ICT-215320 - www.eu-mesh.eu

PHY and MAC models

- PHY model
 - trans. rate function of SINR, receiver sensitivity & noise
 - signal attenuation
 - interference = sum of all interferers
 - adjacent (non-orthogonal) channel interference model
- MAC model
 - fair channel sharing
 - no collisions
 - saturated conditions
 - access time inversely proportional to trans. rate

First attempt at Reliability-only Multipath Metric • End-to-end reliability of k paths: $E2e \operatorname{Reliability} = 1 - \prod_{k \in K} (1 - q_k)$ where q_k reliability of path k (p_l failure prob of link l): $q_k = \prod_{i \in k} (1 - p_l)$ • Assumes link disjointness, among others

Thank You!

A Utility-based Framework for Joint Channel, Topology, and Routing Control in Wireless Mesh Networks

Vasilios A. Siris

Athens University of Economics and Business & Institute of Computer Science, FORTH Greece

vsiris@ics.forth.gr

EU-MESH: Enhanced, Ubiquitous, and Dependable Broadband Access Using MESH Networks FP7 ICT-215320 - www.eu-mesh.eu

