
Introducing Scalileo

A Java Based Scaling Framework

Tilmann Rabl, Christian Dellwo, Harald Kosch
Chair of Distributed Information Systems

University of Passau, Germany
{rabl,dellwo,kosch}@fim.uni-passau.de

ABSTRACT
Scalability is a major concern of internet based applications.
Access peaks that overload the application are a financial
risk. Therefore, systems are built to scale. They are usually
configured to be able to process peaks at any give moment.
This can be very inefficient. Yet, there are various ways to
improve efficiency. One reasonable approach is to scale ap-
plications according to their current workload. This requires
the possibility to scale a system up and down. In this pa-
per we present an scaling framework for Java applications.
It allows not only autonomic scaling, but also migration of
distributed applications. We will then show how energy effi-
ciency can be increased by scaling applications. To present
an example we have used our framework to autonomically
scale a web server cluster.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications

General Terms
Scaling Framework, Energy Efficiency, Distributed Applica-
tions, Autonomic Scaling

1. INTRODUCTION
In order to increase the efficiency of a distributed system
local as well as global optimizations should be taken into
consideration. Local optimizations try to enhance the effi-
ciency of a single system, while global optimizations capture
the distributed system as a whole. Examples for local opti-
mizations for energy efficiency are dynamic voltage scaling
and switching off devices such as hard drives. Global opti-
mizations are based on global decisions such as switching off
complete nodes or prioritization of services. Naturally, the
combination of both options brings best results. However,
recent research showed that global optimizations result in a
higher benefit than local ones [18]. Today distributed sys-
tems are usually designed to scale out rather than scale up.

Figure 1: Requests per second at the Wikimedia
clusters in October 2009 in Europe (green) and the
USA (blue) (image source: http://en.wikipedia.org/

wiki/Most_viewed_article).

Therefore, the most common hardware architecture is shared
nothing. The number of processing nodes in such a system
is an important efficiency factor [3]. Too few nodes will not
be able to process the given workload; an over scaled system
will however contain many nodes that are idle or only used
scarcely. It is common practice to scale a system, so that it
has enough resources to process peak workloads easily. Even
if the peaks occur very frequently, most of the time the sys-
tem is underloaded. An example of this behavior can be
seen in figure 1: it shows the number of requests per second
at the Wikimedia clusters, host of the Wikipedia website.
The workload is variable and the average load is only about
65% of the maximum load. So scaling the system according
to the active workload could reduce the number of nodes on
average by 35%.

In highly dynamic environments, such as web applications,
the distributed system should be able to adapt its resources
automatically. In autonomic computing this form of self tun-
ing is usually described as a control cycle, for example in the
MAPE model introduced by IBM [1] or the OPR model in-
troduced by Weikum et al. [19]. The online feedback control
loop described by MAPE contains four phases: monitoring,
analysis, planning and execution. In the monitoring phase
the systems status is recorded. Periodically this status is
analyzed. Based on this analysis a plan for optimizations is
created, if necessary. The plan then is executed. After the
execution, the system is monitored again and the loop starts
over. The MAPE loop is shown in figure 2.

http://en.wikipedia.org/wiki/Most_viewed_article
http://en.wikipedia.org/wiki/Most_viewed_article

Figure 2: The MAPE online feedback controll loop.

In this paper we introduce a scaling framework that uses an
online feedback control loop in order to dynamically scale
distributed applications. It is highly configurable and easily
extendable. We will show how dynamic scaling combined
with automatic switching-on and -off of nodes increases en-
ergy efficiency.

Our contributions are the following. We introduce Scalileo,
a universal scaling framework for distributed Java applica-
tions. The framework supports self-scaling and requires only
the implementation of certain interfaces to be integrated into
an application. Depending on the application, no change of
the code base is needed. Scalileo uses a bootstrap proce-
dure to acquire new nodes. Therefore, no installation or
configuration is required on previously unused nodes. The
framework is suitable for heterogeneous environments of ar-
bitrary scales. Because of the minimal installation overhead,
it is also cost-effective for small scale installations. We show
how our scaling framework can be used to increase energy
efficiency by 30% for a cluster of web servers. The frame-
work can be integrated into any distributed application, e.g.
resource management, database systems, web services, etc.

The rest of the paper is organized as follows. In the next
section we provide an overview of the architecture of Scalileo.
In section 3 we show how an efficient web server cluster
can be constructed with our framework. We evaluate its
efficiency in section 4. Related work is presented in section
5. We conclude in section 6 with our results and future
work.

2. SCALILEO’S ARCHITECTURE
Most distributed applications feature several worker nodes
that carry out computationally expensive tasks, as well as
a central component which is responsible for organizing and
controlling the entire system. In these systems not all of
the nodes are equal, as the central component has different
tasks then the worker nodes. Therefore, the Scalileo frame-
work implements a multi-tier architecture. It uses a central
component, called master node, which is responsible for or-
ganizing a set of workers running on different physical nodes.
The workers are controlled by the master and are intended
to carry out its commands. Further on they perform bench-
marks to monitor the status of their corresponding node.
An overview of the architecture of Scalileo and its relation
to the distributed application can be seen in figure 3.

2.1 Workers
A worker in Scalileo is a process, running on a specific phys-
ical node where a process of the distributed application runs

Application

XML Controller
Interface

App
Node

Scalileo
master

Scalileo
worker

App
Node

Scalileo
worker

Scalileo
worker

 Used machines

. . .

WOL

Online Offline

Unused machines

Network

Inter-process
communication

Intra-process
communication

Figure 3: Overview of the Scalileo architecture.

or may run in the future. One main task of the worker is to
spawn or shut down processes of the distributed application
in order to increase or decrease their capability. Therefore,
the distributed application can supply a set of files and a
set of commands to be executed on this machine. These will
then be transferred by the Scalileo system. By doing so,
the application can transfer an executable program as well
as initial data needed by the distributed process that should
be started. Thus, the remaining duty of the distributed pro-
cess is to integrate itself in the distributed application, e.g.
by registering itself at a superior instance. If the node is not
needed any more the worker can shut down the spawned
process by executing a command that is provided by the ap-
plication. If specified, it then transfers the data back from
that node.

The second task of a worker is to run benchmarks on its
system. This can be measurements of system wide perfor-
mance parameters like load, CPU power or free space but
also special performance parameters provided by the dis-
tributed process that currently runs on this machine. These
data are acquired in specified intervals and are sent to the
master node for evaluation.

2.2 Master
A worker deals with the tasks that are processed on a sin-
gle node. In contrast, the duties of the master node are
the organization and management of the worker nodes and
keeping track of the global state regarding the overall per-
formance of the distributed application. The main tasks of
the master are:

• Initializing workers:
First, the master starts a worker on every node that
may be used to run processes of the distributed appli-
cation. It will log on to each node, transfer the worker’s
executable file to that node and start the worker pro-
cess.

• Collecting benchmark results:
The master node collects the benchmark results col-
lected by the workers on their respective nodes. In the
course of this process the workers send these results via
a network connection back to the master node. The
master node has a special thread listening for incoming
results.

• Keeping track of the overall performance state:
As the central instance in Scalileo, the master node is
the only one aware of the benchmark data of all work-
ers in the system. Using this information, the master
will reduce the values for each benchmark type to a sin-
gle value. For example the free space of every single
node in a distributed storage system is accumulated to
a single value describing the free space still available
on all active nodes in the system. It is also possible to
aggregate the reduced values of different benchmarks
into a single combined value.

• Maintain performance specifications:
The master node constantly monitors the benchmark
results and compares them to a set of preset constraints
that define upper and lower bounds between which
these values should lie. If a certain value exceeds such
a boundary for a specified time, the system needs to be
scaled up or down. If this is the case the master node
informs the distributed application that scaling is nec-
essary. The master then passes a list of nodes that can
be added to the system or respectively removed from
it. This list is ordered according to the suitability of
the nodes: the most promising nodes are at the top of
the list. If a storage system for example runs out of
free space the nodes with the most available space are
ranked first.

• Add and remove nodes from the system:
When the distributed application receives a scaling re-
quest from the master and decides to comply with this,
it picks a node from the given list. As the easiest op-
tion, the application can take the first element on the
list. It is most promising to solve the problem in cor-
respondence to the benchmark data. However, it can
also independently choose a node for scaling or even
decide not to scale at all. If a node is chosen for scal-
ing, the application provides a command to the master
node either to spawn a node or shut it down. Addition-
ally, a set of files can be defined that is be transferred
to the node or back from it. Then the master node first
spawns a worker process on that node (if not already
running) and secondly executes the given command
with the help of the worker.

As the master node has to communicate with the distributed
application in order to perform the scaling, an interface is
necessary. In Scalileo this is achieved by implementing the
Controller interface. It contains all necessary methods to

cooperate with the master node and to provide the required
data. We describe the different interface methods in detail
below:

• constraintViolated : This method informs the controller
that a constraint has been violated. Such an event
might not necessarily lead to a scaling, as the viola-
tion could be temporary and therefore not long enough
to initiate a scale action, but it gives the application
the chance to react to certain changes of the system’s
performance state.

• beforeScale: This method is called by the master node
if it determined that scaling is necessary and the vio-
lated constraint is passed to the application.

• chooseNode: Next the ordered list of nodes is passed
on to the application by the chooseNode method. The
application returns the node that should be used for
scaling or null if no scaling is desired at this time.

• getNodeSetup: Subsequently, the master node will ask
for the setup of the chosen node through the getNode-
Setup method. The setup contains the command to be
executed, the files to be transferred to the node as well
as the target directory where the files should be copied
to and where the command will be executed. The ex-
ecuted command has to terminate after it has started
the desired process and return 0 if this was successful
and a value greater than 0 if a problem occurred.

• getNodeShutdown: In the case of a scale-down event,
a shutdown command is be retrieved through this me-
thod from the controller. The application provides the
command for shutting the application down. It can
optionally specify a path to a file or directory on the
remote node, which will be zipped and transferred back
to the master.

• afterScale: After the scaling process the application is
informed about the result. With this information the
application can determine if the scaling was successful
or if an error occurred. The method returns an error
code if an error occurred before the command could be
started. If the command could be executed the return
value of this command is returned instead.

Additionally, there exist further methods for informing the
controller of certain events, like the receiving of benchmark
results, handling errors such as hardware failure, etc. How-
ever, since many of these methods are not necessary for ev-
ery application, Scalileo offers an AbstractController class,
which already implements most of these methods with de-
fault behavior, thus reducing the programming effort. In
this case a programmer only needs to implement the two
obligatory methods for retrieving the node setup and shut-
down commands.

2.3 Parameterized Components
For every task in Scalileo a certain type of component ex-
ists that either specifies how to do this task or holds the
necessary data for it. To make Scalileo extensible and to

Monitor

Execute

 Analyze

 Plan

Node 1

Workers Master

Collect
benchmarks

Reduce

avg, sum, ...
Condition

≤x, >x, ...

Choose
action

add, replace,...

Choose
node

by benchmarks

Prepare
node setup

OK

FAIL

Node 2

Node 3

Node X

Sort
nodes

A

 inform

A

transfer
setup

start
application

provide confirm

Figure 4: Scalileo feedback control loop.

achieve a high adaptability for most scenarios and applica-
tions, the components have a common structure so that the
complete configuration of Scalileo can be defined within a
XML file. For this Scalileo uses the Java Reflection API, an
API which allows to construct objects at runtime by using
metadata about the object’s class. This metadata stores in-
formation such as the name of the contained methods, the
name of the class, the name of parent classes, and/or what
the compound statement is supposed to do. Using this in-
formation, an object can be created by reflecting upon the
given class name and determine if that class exists, what
kind of operations it supports, which interfaces it imple-
ments and what parent classes it has. This gives Scalileo
the ability to specify its components in XML and to con-
struct the corresponding Java object at runtime with this
information. Therefore, it is not necessary to hard-code any
predefined components. Instead, it is sufficient to specify
only certain interfaces which define the methods that the
implementation of a certain component must provide.

In the configuration file every Scalileo component is specified
with a certain tag, depending on the type of this component.
The tag requires two attributes: an ID for referencing this
component and a fully qualified Java class name that spec-
ifies the Java class which will be implementing this compo-
nent. Consider the following example that implements the
login process to nodes via the Secure Shell protocol (SSH):

<login -method id="sshLogin"
class="scalileo.login.SSHLogin" />

The chosen ID is ”sshLogin” and the implementing class will
be scalileo.login.SSHLogin. To instantiate this class later
via the Java Reflection API it has to be assured that these
classes follow a common architecture. Thus all classes that
implement a Scalileo component must be derived from a
certain abstract class, depending on the component’s type.
Common to all these classes is that the class must have a
public constructor that takes two arguments: an ID of type
java.lang.String and a set of parameters for this component
of type java.util.Map<String,Object>. Every parameter in

this map is identified with a key and has a java.lang.Object
as corresponding value. Additionally, a component must
provide a method hasValidParameters which is called after
constructing the object to determine if all necessary param-
eters are set. In this method the programmer must assure
that the parameters set in the constructor are complete and
valid. If they are not valid, false has to be returned and the
component will not be instantiated.

public <constructor >(String id,
Map <String ,Object > parameters) {}

public abstract boolean hasValidParameters ();

The parameters used in the constructor are specified in the
XML file when a certain instance of this component is de-
fined. Following the example above, an instance of a login
component is defined in the XML file at the specification
of every node. For the SSH login example two parame-
ters for username and password must be passed to the login
component. In the node definition in the XML file a login-
method must be defined in the <login-with> method, so
that Scalileo knows how to access the specified node. As
login type the ID of the desired login-method must be cho-
sen. Additionally the <login-with> tag can contain sev-
eral <parameter> tags that define the parameters for this
component. A parameter is identified with a key and must
specify the type of the parameter which must be a fully
qualified Java class name. This class must provide a pub-
lic constructor that takes a String as argument, where the
used String will be the content of the value attribute. Thus,
every class that provides such a constructor can be used as
a parameter object. The Java framework already provides
many possibilities for this as for example all primitive types
like String, Integer, Float, Boolean or complexer objects like
java.util.Date. A node specification in the XML file could
therefore look like this:

<node name="node -01"
address="node1.example.com">

<login -with type="sshLogin">

<parameter key="username"
type="java.lang.String" value="alice"
/>

<parameter key="password"
type="java.lang.String" value="secret"
/>

</login -with>
...

</node>

When Scalileo parses the node definition in the XML con-
figuration file it will first instantiate all defined parameter
objects and save them in a parameter map object. Then the
specification of the given login type ”sshLogin” is looked up
and the corresponding class ”scalileo.login.SSHLogin” will
be instantiated with the components ID and the parameter
map. When Scalileo later needs to log on to that node the
created login-component will be used. As all other compo-
nents are defined following the same principle the procedure
to construct them is analogue to the one described in the
example above.

In the following, the different Scalileo components are de-
scribed. Figure 4 depicts the internal control cycle of Scali-
leo, which reflects the MAPE model. It shows most of the
components with their relationship and interaction.

2.4 Benchmarks
The components for measuring performance and other prop-
erties are called benchmarks. All benchmarks must extend
the abstract class scalileo.benchmark.Benchmark which re-
quires - in addition to requirements mentioned before - a
method run that returns a double value as result of the
benchmark.

public abstract double run() throws
BenchmarkException;

The Scalileo Benchmark class provides functionality to re-
peat a benchmark in given time intervals. This can be
achieved by specifying an Integer parameter called ”interval”
which defines the interval length in milliseconds by which the
benchmark should be repeated. In the XML configuration
file an example benchmark definition could look like this:

<benchmarks >
<benchmark id="ExampleBenchmark"

class="example.package.ExampleBenchmark"
/>

<benchmark id="OtherBenchmark"
class="example.package.OtherBenchmark" />

</benchmarks >

<node ...>
...
<use -benchmark type="ExampleBenchmark">

<parameter key="interval"
type="java.lang.Integer"
value="10000"/>

</use -benchmark >
<use -benchmark type="OtherBenchmark">
...

</node>

When a worker process is spawned on a node by the master,
the benchmarks belonging to this node are transmitted and
the worker will ensure that the benchmarks are executed in
the given interval. If no interval is specified, the benchmark
will only be run once at the start of the worker process. This
is used for benchmarks that measure static parameters like
CPU frequency or other primarily hardware related param-
eters.

Scalileo comes with a set of predefined benchmark compo-
nents like a PingBenchmark class measuring the round-trip
time of a ping packet to a certain host or a FreeDiskSpace-
Benchmark class measuring the available disk space on a
certain file system. All predefined benchmark classes are
located in the scalileo.benchmark package. It is also possi-
ble to use already available measurements, for example from
monitoring systems such as Ganglia [14]. They only have to
be wrapped by a implementation of the Benchmark inter-
face.

2.5 Reduction
When the master node receives a benchmark result from a
worker it will update all constraints affected by that bench-
mark. Before this can be done, the single benchmark results
must be merged into a single value. To do this, Scalileo uses
so called reduction components that will reduce a set of val-
ues in one aggregated value. Reduction components must be
derived from the abstract class scalileo.reduction.Reduction
which requires to implement one method for performing the
reduction. This method takes a collection of Double values
and will return the reduced value of this collection:

public abstract double
reduce(Collection <Double > results);

Scalileo comes with a number of reduction components, cov-
ering the most common reduction functions. Among others
these are components for reducing a given list of values to
their maximum, minimum, sum, average or median value.

2.6 Conditions
The next components in the Scalileo framework are so called
conditions, to which the reduced values are compared by the
master node in order to determine if the system’s perfor-
mance is still in a desired state. Those conditional compo-
nents must be derived from the abstract class scalileo.con-
dition.Condition and therefore implement a check method
that takes a reduced double value as its argument and re-
turn a boolean value which indicates if the condition is met
or not.

public abstract boolean check(double value);

Three conditional components are predefined in Scalileo, one
to test if a value is equal to another value (EqualCondition),

if it is smaller than an upper bound (MaxCondition), or if
it is greater than a lower bound (MinCondition). It is also
possible to specify several conditions which are connected
with a logical AND conjunction, so it is for example possible
to specify an interval in which a value must be by using a
MinCondition and a MaxCondition together.

2.7 Constraints
The three components mentioned earlier, i.e. benchmarks,
reductions and conditions, are combined together into so
called constraint components. A constraint component de-
fines a boundary for the values of a certain benchmark. If
the values are not within this boundary, the constraint is
violated. Therefore, a constraint specifies one benchmark
component whose values is reduced to a single value with
a specified reduction component and defines one or several
conditions which must be met by the reduced value. Addi-
tionally, the constraint does not just cover the last known
value, but tracks the values over a specified period of time.
Only when the constraint is violated over this period, a scale
action is performed. This avoids that an expensive scale op-
eration is executed due to a single short-term peak or a
temporary slowdown of a node. By tracking the values over
a longer time period, the collected values are averaged over
this period. Only when this average exceeds the defined
boundaries, a scale operation is suggested by the Scalileo
framework. Like all components of Scalileo constraints are
defined in the configuration XML file. An example for a con-
straint definition can be seen below. For now all parameters
have to be preset.

<constraints >
<constraint id="SomeID" historyDelay="20000">

<use -benchmark type="ExampleBenchmark" />
<reduce -by type="MaxReduction" />
<check -condition type="MaxCondition">

<parameter key="max" value="45"
type="java.lang.Double" />

</check -condition >
<scale -action action="addNode">

<choose -by benchmark="ExampleBenchmark"
better="lower" weight="1" />

</scale -action >
</constraint >
...

</constraints >

Two types of scale actions (addNode and removeNode) can
be declared in a constraint, causing the adding respectively
the removal of a node. It is also possible to define both
types in one constraint in order to achieve a replacement of
a node. For each action the controller is given a list of nodes
ordered by their suitability on being removed or added. This
order is created by the master node by comparing the nodes
with the help of so called choice methods. A choice method
defines a benchmark component whose results are used in
order to compare the nodes in an ascending or descending
way. The order depends on whether the values of this bench-
mark should be treated better if they are higher or lower.
Nodes can be compared by means of several choice meth-
ods, so that the ranking is not based on the values of a
single benchmark, but on a set of benchmarks.

The order algorithm is implemented following the Java Com-
parator interface which in this case takes two nodes (n1 and
n2). It returns a negative integer, zero, or a positive integer
as the first node is more suitable, equally suitable or less
suitable than the second node. To compare the suitability
of two nodes a point system is used. The nodes will be
compared for every choice method defined. At each of these
comparisons each node is given a certain amount of points.
The number of points is the proportion of the two nodes to
each other. If the current choice-method states that higher
values are better, the points for node n1 result from the
benchmark value bn1 of n1 divided by the benchmark value
bn2 of n2. The number of points assigned to n2 is the recip-
rocal value of this fraction. So if n1 has a higher benchmark
value, it will get more points than n2 and thus be evalu-
ated as more suitable in regards to this choice-method. The
points for each choice method are summed up into a total
number of points pn1 and pn2 for each node. The node which
achieved a higher point number at the end will be ranked
higher in the list. Additionally, every choice method can be
weighted to increase the influence of a certain benchmark on
the order of the nodes. The points of every round are mul-
tiplied with the weight wc of the choice method before they
are added to the total number of points. The calculation of
points corresponds to the equations 1 and 2.

pn1 =
X
c∈C

(
bn1
bn2

· wc, if higher values are better
bn2
bn1

· wc, if lower values are better
(1)

pn2 =
X
c∈C

(
bn2
bn1

· wc, if higher values are better
bn1
bn2

· wc, if lower values are better
(2)

2.8 Login Methods
To enable Scalileo to access nodes running under arbitrary
operation systems and environments, the login process was
encapsulated in separate login components. When the mas-
ter node must spawn a worker on a certain node it needs
access to the node first. It further needs to have the ability
to run commands on this node and transfer files to it. The
login component’s task is to provide this functionality to
the master node. Therefore, it must be derived from the ab-
stract Java class scalileo.login.Login. The derived class must
implement one method for transferring data and running a
program on the target node.

public abstract void runProgram(AppSetup
setup);

The AppSetup object, which the runProgram method re-
ceives as argument, contains a command string that is exe-
cuted, a path string to a target directory in which the com-
mand is executed and a file object that contains a link to the
file that is transferred to the target directory before running
the command. To transfer several files at once, the files must
be zipped or compressed to a single file which can then be
transferred via the method above. The command can then
extract the file and subsequentially run the actual command.

Dispatcher
 Clients

. . .

Scalileo master

 Backend 1

Scalileo worker

 Backend 2

Scalileo worker

 Backend 3

Scalileo worker

 Backend n

Scalileo worker
 Data

 Scalileo control flow

Figure 5: Clustered web server test application.

Scalileo comes with one login component implemented which
is able to log in via Secure Shell (SSHv2) on the node. SSH
is available for nearly every platform and is considered to
be secure. Thus, Scalileo can cover a wide variety of node
types out-of-the-box.

3. TEST APPLICATION
As a test case, we chose a simple distributed web server,
consisting of a central dispatcher server, that distributes in-
coming requests to a set of up to 4 worker machines, which
handle the actual request. The dispatcher uses round-robin
scheduling, which is also used in DNS servers for load bal-
ancing. The redirection from the dispatcher to a worker
machine is done by a HTTP 302 redirect (Found), so that
the client will generate a new request to the corresponding
worker. A overview of the test setup can be seen in figure 5.

The workload produced by the clients in this test was based
on real-world system loads. We used workload traces of the
web based E-learning management system Stud.IP at the
University of Passau, which handles requests for a total of
15,000 users, consisting of different user groups like students
and teachers. Like most web based systems, Stud.IP shows
a significant variation over a day, a week and even a year.
The load is high during working time on days in the lecture
period, whereas at night time, weekends or semester break
the load is comparatively low. A more detailed description of
the system and the workload can be found in [16], a sample
of the workload can bee seen in figure 6.

In our test we set up the clients so that the workload during
the test simulates the first day of the lecture period of the
Stud.IP system. We differentiate between two types of re-
quests: dynamic and static websites. The response that was
returned to a dynamic client request from the web servers
was a web page containing an image, which was resized for
every request on the fly by the web servers. The computa-
tional effort was therefore mainly dependent on this image
resizing. For static requests we chose to return a simple
HTML document. The workload was chosen in a way, so

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

re
qu

es
ts

 /
10

 m
in

October 19, 2009

static
dynamic

Figure 6: HTTP workload trace of Stud.IP at Uni-
versity of Passau for the first day of the winter term
2009.

that the system could easily handle the requests in peak
times when using all four available web servers. Accord-
ingly, in times with reduced load, it is possible to reduce
the number of worker servers while being able to handle all
requests. Aggregated in 10 minute steps, the original work-
load has a peek of about 80 requests per second and is in
average 25 request per second. To reduce testing time and
increase the workload, we sped the replay of the trace up
by a factor of 48 and used only every 20th request, resulting
in a peak load of 192 requests per second and an average
load of 60 requests per second. The ratio between static
and dynamic accesses varies between 0.2 and 66.4 and the
median is 0.3. On average, every fourth requested webpage
is dynamic. As the average load is only a third of the peak
load, it is likely that reducing the number of servers in times
of lower load can lead to a drastic reduction in energy con-
sumption. It has to be pointed out, that the first day of the
lecture period has the highest workload in the whole year
(cf. [16]). Accordingly, for the complete year even higher
energy savings will be possible.

4. TEST RESULTS
Our tests were conducted on 8 workstation PCs with Intel 4
GHz Dual Core Processors, 3GB RAM and 100 Mbit/s Fast
Ethernet. The OS is Ubuntu Linux 8.04.2, Kernel 2.6.24-
23 and the used Java version is 1.6.0 16. The workstations
have a power consumption of 91 Watts when idle, 200 Watts
during boot phase and 2 Watts when they are switched off.

We used the Scalileo framework to implement the distributed
web server. The Scalileo master was running on the same
machine as the dispatcher server and on every running wor-
ker machine a Scalileo worker node measured the processor
load on the machine and reported back to the master as
benchmark results. If the overall load on the system was
beyond a threshold, Scalileo started a further web server
worker on a new machine to increase the system’s perfor-
mance. To save energy the Scalileo system shut down un-
used machines and woke them up via Wake-on-LAN when
they were needed again.

Since booting and halting of the machines consumes energy
without any value for the distributed web server, it had to be
assured that scaling did not take place on small and tempo-
rary load changes but only when necessary. The constraints
for the application were iteratively determined and the final
values were as follows. If the average CPU usage over all

active nodes was higher than 45% in two third of all bench-
mark samples over 20 seconds in the simulation, a new node
would be spawned. This accords to a period of 16 minutes
in original speed. Respectively, at the lower bound the CPU
usage had to be lower than 20% over 35 seconds, before a
node was shut down. This corresponds to 28 minutes in orig-
inal time. In a real world setup, both constraints could be
set higher, but the high simulation speed enforced these pa-
rameters in order to give the system enough time to spawn
a new node.

The main focus of the test lay on two issues: on the one hand
the reduction of the necessary energy to operate the system
and on the other hand the response time for a request. It
is clear that both aspects have to be met, as energy saving
must not happen at the cost of increased response times.

In figure 7 the power consumption of the cluster with and
without the on/off policy is shown. It can be clearly seen,
that shutting down unnecessary nodes effectively reduces
power consumption. The total energy consumption for the
test run was 175 Wh with scaling and 250 Wh without scal-
ing, so the energy savings were 30%. In figure 8 the number
of active servers compared to the workload is shown. Due to
the sped up replay of the workload trace, the booting time
of offline nodes resulted in the visible lag in scaling. Because
of this lag the system had to boot nodes earlier than neces-
sary under real world conditions. It also has to be pointed
out that the fast replay has a negative effect on the energy
efficiency, since booting time and booting power consump-
tion had a much larger effect. In relation to the simulation
speed a worker machine needed 50 minutes for booting. As
mentioned before, the first day of the lecture period has the
highest workload in the year. So even if the workload would
be equally high every day, the savings per year were 1300
kWh.

5. RELATED WORK
Scaling Frameworks
There is little research on self-scaling applications or scaling
frameworks. In the cloud computing world some frameworks
for automatic application scaling are used. An example of
a commercial system is Scalr1, it uses the Amazon Elastic
Compute Cloud (EC2)2 [9]. Scalr uses different Amazon
Machine Images (AMI), an Amazon proprietary virtual ma-
chine, to scale and replicate applications. These AMIs are
configured to run certain applications such as web servers,
load balancers or database servers. Additionally the AMIs
have a monitoring suite, which is comparable to the bench-
marking system of Scalileo. Unlike Scalileo, Scalr is limited
to the EC2 environment and cannot be run on arbitrary
clusters. Although virtualization is a viable technique for
energy efficiency – an example is the Virtual Home Environ-
ment project [11] – Scalr does not aim for energy efficiency.
Scalileo can also be used with virtualization. The virtual-
ization layer can be made self-scaling, similar to Scalr, but
independent of the base system. The distributed application
is then started on a fixed number of virtual machines (VMs)

1Scalr - http://www.scalr.net
2Amazon Elastic Compute Cloud - http://aws.amazon.
com/ec2/

and Scalileo allocates the VMs on real systems according to
the current load.

Energy Efficiency Frameworks
Several frameworks for energy efficiency have been proposed.
Petrucci et al. have presented a dynamic framework for
power aware server clusters [15]. Besides an on/off-policy,
they also support dynamic voltage scaling to reduce power
consumption. Specialized hardware and software to mea-
sure performance and power consumption of individual ma-
chines are used. Based on the results a theoretically opti-
mal cluster configuration is calculated using mixed integer
linear programming. This involved approach makes it im-
possible to use self-scaling techniques as in Scalileo. Since
management efficiency is an important factor besides energy
efficiency [3], Scalileo has built-in performance benchmarks
and makes simplified assumptions for energy consumption
to reduce the setup complexity and management overhead.

A similar framework was presented by Rusu et al. [18]. It
also uses dynamic voltage scaling and on/off policies, but
relies – similar to Scalileo – on more simplified optimiza-
tion schemes. However, it also requires extensive power con-
sumption measurements and does not consider self-scaling.
With the use of these measurements the framework is able
to improve energy efficiency in heterogeneous clusters. The
benefit of considering heterogeneity was also demonstrated
in [10]. In Scalileo heterogeneity is only considered on a
performance level. But using adapted benchmarks and con-
ditions, previous hardware efficiency measurements could be
utilized as well.

On an applicational level additional energy savings are pos-
sible. For example, Horovath et al. have shown that using
prioritization for request queueing in webservers additional
to dynamic voltage scaling can lead to substantial energy
savings [12]. However, these kind of optimizations are out-
side of the scope of a scaling framework and have to be
implemented in the scalable application.

At larger scales the GREEN-NET framework [7] and Muse
architecture [5] show how energy efficiency of computing
grids and hosting centers can be improved. This is done
using on/off policies as well as energy aware service level
agreements. At the scale of data centers, energy consump-
tion of network devices such as switches can also be con-
sidered. These devices do usually not offer any low power
states and constantly communicate even if systems are idle.
Therefore, switching them off further reduces energy con-
sumption [2]. These techniques are currently out of scope
of the Scalileo framework, but will be considered for future
work.

Similar approaches for energy efficiency have been presented
in specialized applications. For example, Chen et al. present
a energy aware cluster of connection servers for internet ser-
vices [6]. It uses an on/off policy to adapt the number of
connection servers to the number of TCP connections. Sys-
tems like this can also be implemented using the Scalileo
framework.

6. CONCLUSION

http://www.scalr.net
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 100

 200

 300

 400

 500

 600

 700
re

qu
es

ts
 /

10
 m

in

po
w

er
 c

on
su

m
pt

io
n

(w
at

t)

October 19, 2009

static requests
dynamic requests
power - w/o scaling
power

Figure 7: Energy consumption compared to workload.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 1

 2

 3

 4

 5

re
qu

es
ts

 /
10

 m
in

nu
m

be
r

of
 w

or
ke

r
se

rv
er

s

October 19, 2009

static requests
dynamic requests
number of servers

Figure 8: Number of servers used compared to workload.

This paper describes the architecture and design of the scal-
ing framework Scalileo. The framework is highly config-
urable and allows dynamic scaling of Java applications. It is
easy extensible and needs little to no changing of the target
application. For evaluation purposes, we have implemented
a simple web server cluster. By using an on/off policy, the
system was able to reduce power consumption by 30% for
a real world webserver workload. Since we used an annual
peak workload and sped up simulation time, it is clear that
much higher percentage of savings are possible.

For future work, we want to include more sophisticated
benchmarks and constraints. Because of the periodicity of
most web application workloads, it seems promising to intro-
duce time series analysis. This will allow a better prediction
of workload variations. Bertini et al. propose model mea-
surement of quality of service [4], which could also improve
efficiency. For now the boundaries of constraints are itera-
tively determined, a sensitivity analysis will further reduce
the configuration overhead and improve the parameter set-
tings. An other improvement will be the introduction of
scaling hierarchies. This will make the framework better
suited for systems with multiple hierarchical levels. In our
example application we only considered global optimizations

to reduce the energy consumption. However, our framework
could easily be extended to support local optimizations like
dynamic voltage scaling [21], this could also improve robust-
ness when workloads are bursty [20]. Furthermore we will
use the Scalileo framework to scale other applications such
as database systems. For this we will use our allocation algo-
rithms presented in [17]. In combination with a hierarchical
model this could also be used to scale larger data intensive
systems such as MapReduce clusters [8], as shown in [13].

7. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers
and especially Priya Mahadevan for their constructive com-
ments, which helped to improved the quality of the paper.

8. REFERENCES
[1] An architectural blueprint for autonomic computing.

Technical report, IBM Corporation, 2006.

[2] M. Allman, K. Christensen, B. Nordman, and
V. Paxson. Enabling an energy-efficient future internet
through selectively connected end systems. In HotNets
’07: Proceedings of the Sixth Workshop on Hot Topics
in Networks, 2007.

[3] E. Anderson and J. Tucek. Efficiency matters! In
HotStorage ’09: Proceedings of the SOSP Workshop
on Hot Topics in Storage and File Systems, New York,
NY, USA, 2009. ACM.

[4] L. Bertini, J. C. B. Leite, and D. Mossé. Statistical qos
guarantee and energy-efficiency in web server clusters.
In ECRTS ’07: Proceedings of the 19th Euromicro
Conference on Real-Time Systems, pages 83–92,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. P. Doyle. Managing energy and server
resources in hosting centers. In SOSP ’01: Proceedings
of the 18th ACM Symposium on Operating System
Principles, volume 35 of ACM SIGOPS Operating
Systems Review, pages 103–116, New York, NY, USA,
2001. ACM.

[6] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao. Energy-aware server provisioning and
load dispatching for connection-intensive internet
services. In NSDI ’08: 5th USENIX Symposium on
Networked Systems Design & Implementation, pages
337–350. USENIX Association, 2008.

[7] G. D. Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre,
A.-C. Orgerie, J.-M. Pierson, O. Richard, and
K. Sharma. The green-net framework: Energy
efficiency in large scale distributed systems. In IPDPS
’09: Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, pages
1–8, Los Alamitos, CA, USA, 2009. IEEE Computer
Society.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[9] S. L. Garfinkel. An evaluation of amazon’s grid
computing services: Ec2, s3 and sqs. Technical Report
TR-08-07, School for Engineering and Applied
Sciences, Harvard University, Cambridge, MA, USA,
2007.

[10] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and
R. Bianchini. Energy conservation in heterogeneous
server clusters. In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 186–195, New
York, NY, USA, 2005. ACM.

[11] H. Hlavacs, K. A. Hummel, R. Weidlich, A. Houyou,
A. Berl, and H. de Mee. Distributed energy efficiency
in future home environments. Annals of
Telecommunications, 63(9-10):473–485, October 2008.

[12] T. Horvath, K. Skadron, and T. F. Abdelzaher.
Enhancing energy efficiency in multi-tier web server
clusters via prioritization. In IPDPS ’07: 21th
International Parallel and Distributed Processing
Symposium, pages 1–6. IEEE Computer Society, 2007.

[13] J. Leverich and C. Kozyrakis. On the energy
(in)efficiency of hadoop clusters. In HotPower ’09:
Workshop on Power Aware Computing and Systems,
New York, NY, USA, 2009. ACM.

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[15] V. Petrucci, O. Loques, and D. Mossé. A framework

for dynamic adaptation of power-aware server clusters.
In SAC ’09: Proceedings of the 2009 ACM symposium
on Applied Computing, pages 1034–1039, New York,
NY, USA, 2009. ACM.

[16] T. Rabl, A. Lang, T. Hackl, B. Sick, and H. Kosch.
Generating shifting workloads to benchmark
adaptability in relational database systems. In R. O.
Nambiar and M. Poess, editors, TPCTC ’09: First
TPC Technology Conference on Performance
Evaluation and Benchmarking, volume 5895 of Lecture
Notes in Computer Science, pages 116–131. Springer,
2009.

[17] T. Rabl, M. Pfeffer, and H. Kosch. Dynamic allocation
in a self-scaling cluster database. Concurrency and
Computation: Practice and Experience,
20(17):2025–2038, 2008.

[18] C. Rusu, A. Ferreira, C. Scordino, and A. Watson.
Energy-efficient real-time heterogeneous server
clusters. In RTAS ’06: Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 418–428, Washington, DC, USA,
2006. IEEE Computer Society.

[19] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback.
Self-tuning database technology and information
services: from wishful thinking to viable engineering.
In VLDB ’02: Proceedings of the 28th International
Conference on Very Large Data Bases, pages 20–31.
VLDB Endowment, 2002.

[20] A. Wierman, L. L. H. Andrew, and A. Tang.
Power-aware speed scaling in processor sharing
systems. In NFOCOM ’09: The 28th Conference on
Computer Communications, pages 2007–2015, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[21] L. Yuan and G. Qu. Analysis of energy reduction on
dynamic voltage scaling-enabled systems. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(12):1827–1837, 2005.

	Introduction
	Scalileo's Architecture
	Workers
	Master
	Parameterized Components
	Benchmarks
	Reduction
	Conditions
	Constraints
	Login Methods

	Test application
	Test Results
	Related Work
	Conclusion
	Acknowledgements
	References

