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Abstract. A large body of research concerns the adaptability of data-
base systems. Many commercial systems already contain autonomic pro-
cesses that adapt configurations as well as data structures and data or-
ganization. Yet there is virtually no possibility for a just measurement of
the quality of such optimizations. While standard benchmarks have been
developed that simulate real-world database applications very precisely,
none of them considers variations in workloads produced by human fac-
tors. Today’s benchmarks test the performance of database systems by
measuring peak performance on homogeneous request streams. Never-
theless, in systems with user interaction access patterns are constantly
shifting. We present a benchmark that simulates a web information sys-
tem with interaction of large user groups. It is based on the analysis of a
real online eLearning management system with 15,000 users. The bench-
mark considers the temporal dependency of user interaction. Main focus
is to measure the adaptability of a database management system accord-
ing to shifting workloads. We will give details on our design approach
that uses sophisticated pattern analysis and data mining techniques.

Key words: Benchmarking, Adaptability, Polynomial Approximation,
Time Series Generation

1 Introduction

More and more database systems feature autonomic processes for optimization
and adaptation. Nearly all major database vendors offer offline database design
advisors [1, 2, 3] and recent research considers the online tuning of database
systems [4, 5]. Certainly the query workload is the most important variable for
physical tuning during runtime. New developments in database benchmarks start
to face this trend. For example, TPC-DS [6] features a new query generator that
allows to generate a large set of queries which are syntactically different but se-
mantically similar [7]. Still synthetic query streams are usually homogeneous in
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the frequency of queries and the ratio between different query types, while real
database workloads tend to be bursty [8]. Traditionally the workload is seen as a
set of SQL query classes and the physical design is tuned accordingly. However,
new approaches define it as a sequence [9] or chain [10] of statements. This offers
new opportunities to adapt the database system. Nevertheless, there is only lit-
tle research on how to analyze the efficiency of such systems. To the best of our
knowledge there is only one publication that introduces a benchmark for auto-
nomic database tuning [11], yet this benchmark also only features homogeneous
workloads.
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Fig. 1. Most accessed web sites in June 2008 per 6 hours.

Even though database access in most cases is triggered by human interaction,
programs generate the actual SQL code. Therefore most queries are very similar
and can be divided in relatively few distinct classes. Within these classes usually
only simple parameters, like predicates change. Due to user interaction the oc-
currence of the classes depends on timetables. The most important examples are
the day and night rhythm and the week cycle. In figure 1 this can be seen clearly
for the accesses of an online eLearning portal (see section 2 for more details).
It is easy to see that there is a daily and a weekly period. Each of the website
accesses displayed will generate at least one and in most cases a sequence of SQL
queries. For one website the queries will only differ in form of variables. Apart
from the workload difference between day and night and workday and weekend,
shifts in the workload between the single classes can also be seen. In figure 2 an
average of the days in the data above is pictured. Not all websites are accessed
in the same pattern. Thus, depending on the time of day the database will have
different access rates and different access patterns.

Similar access patterns can be seen for any user accessed information system,
see for example the access rates at the Wikimedia clusters1 in figure 3. This
1 The Wikimedia foundation is a non-profit organization that hosts various websites,

most notably the online encyclopedia Wikipedia.
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Fig. 2. Most accessed websites in June 2008, average day per 10 minutes.

periodic behavior gives chances for optimizations. On the one hand peak loads
get more predictable and in times of low access the database can be prepared for
the higher load. Such preparations could be index tuning or data restructuring.
On the other hand clusters can be scaled according the access rates, in order to
save energy or use the free capacity for other time-independent tasks.

Fig. 3. Requests per second at the Wikimedia clusters in April 2009 in Europe (green)
and the USA (blue) (image source: http://en.wikipedia.org/wiki/Most_viewed_

article).

In this paper we introduce a benchmark that is based on a real online in-
formation system. We designed it to test our dynamic allocation algorithms for
cluster databases [12]. The main design focus was to build a realistic workload
model that reflects user dependent workload patterns. The implemented query
generator is able to simulate realistic workloads that shift in quantity and ratio of
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the statements. Another focus lay on the data generation. To generate datasets
in arbitrary sizes, we analyzed the value and reference distributions in the orig-
inal database and built an data generator that supports different probability
distributions.

The rest of the paper is organized as follows, in section 2 we will give details
about the eLearning information system which is the basis of our benchmark
model. After that we will describe the benchmark database layout, query set and
workload definition. In section 4, we will show possible benchmarking objectives,
like measuring the adaptability of a database system, before concluding with
future work in section 5.

2 Application Domain

As the focus of the benchmark lies on changing workloads, online information
systems are a promising application domain. Usually it is very hard to get any
detailed information about the structure and especially the workload of such
systems, since they are treated as industrial secrets. We are in the fortunate
position to have access to a sufficiently large online eLearning platform that is
used at the University of Passau, which is therefore the basis of our benchmark.

Stud.IP2 is a popular eLearning management system. It started as a simple
forum and evolved into a full-featured Course and Campus Management System
over the years. The system supports the complete course life cycle, beginning
with creating the course, filling it with data, assigning times and rooms, specify-
ing application procedures and exporting the data into PDF or HTML. Online
communication and cooperation are encouraged by providing a forum for each
course, wiki, messaging system, chat and online material. Today, 38 universities
and 16 other institutes, are using Stud.IP3, one of them is the University of
Passau.

Stud.IP is written in PHP and uses a MySQL database. New functions can
easily be added by using the provided plug-in interface. The database schema
consists of 198 tables.

On a normal day during the semester, between 50 and 100 parallel users are
online at any given time. At the beginning of a new semester, this number is
drastically higher, normally there are about 200-300 users online at the same
time. The normal MySQL load is at about 1,200 database requests per second
as each PHP page generates several database requests.

In the spring semester of 2009, there are 1,734 courses with a total of 15,047
registered users of which 1,374 have a teacher role. Among those users, 672 teach-
ers and 7,072 users in student role logged in at least once during the semester.
6,921 of those student role users are registered in courses with a total of 63,895
course registrations.
2 Stud.IP - http://www.studip.de
3 http://www.studip.de/nbu.php?page_id=9cd4b3aac2bfe40abc26fcc0ba6254ce

http://www.studip.de
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Since the launch of Stud.IP in fall 2006, 8,907 courses were entered, 222,349
course registrations processed, 52,017 documents uploaded and 178,070 internal
messages sent. The database has 7,688,642 entries and is 1.3 GB in size.

3 Benchmark

The basic benchmark design is generic, so that a variety of database systems
could be modeled. The current implementation is based on the Stud.IP eLearning
platform. The database schema is a reduction of the original schema to the
core functionality. The data generation is hard coded to this database layout,
but it supports various database sizes. To generate realistic data the attribute
value and reference distributions were analyzed and modeled with probability
distributions.

The main contribution of the benchmark is the query generation. Since the
goal of the benchmark is to represent temporal dependencies in the database
access, attention was especially paid to modeling query streams. The benchmark
emulates the access behavior of students on Stud.IP based on web server logs
from the University of Passau. In the following we will detail on the analysis of
the original system and the according realization in the benchmark.

3.1 Database Design

The database schema is only a fraction of the Stud.IP schema as it is used
at the University of Passau. For simplicity reasons it is reduced to the core
functionality, thus it only consists of 25 tables compared to the nearly 200 tables
in the production system. The schema can be seen in figure 4. In the following,
we will give a brief explanation of the main tables and the relationship between
them.

The tables users and user info store all information about the users, which
may be students, teaching staff or employees. seminar contains information
about seminars, which may be lectures, tutorials or seminars. Which user is
registered in which seminars is stored in seminar user.

Each seminar has one or more courses, which are stored in courses. Each
course has one or more lecturers which are stored in course lecturer. In a
course students can work in teams, for example for assignments. Each team is
stored in teams. The relation courses user stores in which course and team a
student is.

The tables dokumente and folder represent all existing documents. These
documents and folders are linked to each other via eigeneDateien links. This
relation links seminars to their root folder, folders to subfolders and folders
to documents. The table permissions manages and stores user permissions to
documents and folders.

Each user has an inbox and an outbox which stores references to all mes-
sages he has received or sent. The messages themselves are stored in the table
messages.
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Fig. 4. The database schema of the benchmark.

All objects a user can visit, i.e. a document, a course, etc., are modeled in the
table objects. The last visits for each user are stored in object user visits.

The table user studiengang references the users to the table studiengaenge
in which all degree programs are stored. Therefore, it describes which user is en-
rolled in which degree program.

institute stores all institutions of the university. Each seminar belongs to
an institute and this association is stored in seminar institute.

A seminar can be credited for different degree programs, each of which can
have different versions of examination rules. These connections are stored in
the sem hierarchy table. The seminars are linked to this table via seminar-
sem hierarchy in order to define which seminar can be credited for which degree

program and which examination rule.
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Additionally, there is a table which stores all information about Stud.IP plug-
ins called plugins. It contains the path of each plug-in, the name, if it is enabled
and an unique id.

3.2 Data Generation
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Fig. 5. Distribution of the references in table seminar users.

To populate the schema above a generator for arbitrary sized data was im-
plemented. Different scaling factors can be specified for each table, to enable
non-linear scaling. The generated data has similar distribution properties to the
original data. To achieve this, we have analyzed the value and reference distribu-
tions between the tables. For the table seminar users a reference distribution
can be seen in figure 5. As described above this table stores the relationship be-
tween users and seminars. We use maximum likelihood estimation to fit standard
probability distributions to the data. For now our data generator only supports
normal and log-normal distributions, since they model most distributions suffi-
ciently (for a discussion about log-normal distribution see [13]). Figure 6 shows
that the distribution of the number of seminars a user is registered for can be
modeled by a log-normal distribution, even though a gamma distribution would
produce a better fit. The distribution of the number of users per seminar does
not match the log-normal distribution very good, but still sufficiently. This can
be seen in figure 7. Similar observations about reference distributions were made
by Hsu et al. in [8]. They used the Hill equation to model the references, which
is related to the log-logistic distribution.

Our data generation differentiates between entity and relationship tables ac-
cording to the entity-relationship modeling [14]. Entity tables can be generated
directly by the given distributions, while relationship tables are generated with
knowledge of the according entity tables. The basic entity data generation works
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Fig. 6. Distribution of seminars per user in table seminar user.
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similar to dbgen or MUDD [15]. For each attribute we specify a domain and a
distribution. Whenever possible we use real data from the Stud.IP database or
other sources. Table user is for example defined as follows.

Each user gets a unique, consecutively numbered id first. The name of a user
is generated by selecting a first name and a last name randomly. These names can
be listed in a separate configuration file. Additionally, each user gets a unique
username, which consists of his last name and a serial number. For his email
address, a domain is added to the username. A password is also generated for
every user by calculating the MD5 hash of the unique username. For a seminar,
the process is similar.
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Relationship tables are generated based on the entity tables. Thus for each
referenced entity table the references are copied according to the modeled distri-
bution. Additional attributes are generated in the same way as for entity tables.

3.3 Query Set

We extracted a set of 30 common queries from the original system. The queries
are different in their characteristics and workload. Yet all queries must be pro-
cessed within seconds. We changed the query syntax to comply with the SQL 92
standard. In the following we will give some examples of possible queries. The
first example selects information about a user. This is usually done at the login
for the users start page or if a user homepage is visited:

SELECT s . name , u . vorname , u . nachname , u i . address , u i . phone ,
u . emai l

FROM use r s u , u s e r i n f o ui , u s e r s tud i engang us ,
s tud iengaenge s

WHERE u . u s e r i d = ui . u s e r i d
AND us . u s e r i d = u . u s e r i d
AND us . s tud i engang id = s . s tud i engang id
AND u . u s e r i d = $ u s e r i d ;

The next query is executed, if a user browses the seminars he is registered
for. This is one of the most common actions in Stud.IP. The query is rather
expensive.

SELECT seminar . name , cou r s e s . weekday , cour s e s . s ta r t t ime ,
course . endtime , user . vorname , user . nachname

FROM seminar user , seminare , o b j e c t u s e r v i s t s ,
s eminar sem tree

WHERE s eminar use r . s eminar id = seminare . s eminar id
AND o b j e c t u s e r v i s t s . o b j e c t i d = seminar use r . s eminar id
AND o b j e c t u s e r v i s t s . u s e r i d = se rminar use r . u s e r i d
AND seminar sem tree . s eminar id = seminar use r . s eminar id
AND s eminar use r . u s e r i d = $ u s e r i d

UNION
SELECT seminar . name , cou r s e s . weekday , cour s e s . s ta r t t ime ,

course . endtime , user . vorname , user . nachname
FROM c o u r s e l e c t u r e r , courses , seminare , o b j e c t u s e r v i s t s ,

s eminar sem tree
WHERE c o u r s e l e c t u r e r . c o u r s e i d = cour s e s . c o u r s e i d

AND seminare . s eminar id = cour s e s . s eminar id
AND o b j e c t u s e r v i s t s . o b j e c t i d = seminar use r . s eminar id
AND o b j e c t u s e r v i s t s . u s e r i d = se rminar use r . u s e r i d
AND seminar sem tree . s eminar id = seminar use r . s eminar id ;
AND c o u r s e l e c t u r e r . u s e r i d = $user . id ;

Additionally there are update queries, which are executed whenever an ob-
ject, i.e. a seminar, a document etc. is visited. As well as inserts, when new
courses or users are created. An example is the following query which is exe-
cuted when a user accesses an object.
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UPDATE o b j e c t u s e r v i s i t s
SET l a s t a c c e s s = NOW( )

WHERE u s e r i d = $ u s e r i d
AND o b j e c t i d = $ o b j e c t i d ;

3.4 Query Generation

To benchmark our adaptation techniques we will generate sample query streams
that are artificial but reflect a realistic user behavior. For that purpose we pro-
pose a new kind of random generator for time series.

We start from the assumption that the essential shape of a time series can
be modeled by means of an approximating polynomial. Here, a time series de-
scribes the aggregated user behavior over one day, for instance, with values each
reflecting the number of accesses in a time interval of 60 minutes. Thus, we have
time series with 24 measurements starting at 5 am in the morning, for instance,
when the number of accesses is lowest (close to zero). That is, we are given a
time series consisting of N + 1 = 24 observations yn at points in time xn with
n ∈ {0, . . . , N}. These points are assumed to be equidistant in time. In general,
an optimally (in the least-squares sense) approximating polynomial pa of degree
K can be represented by a linear combination of K + 1 basis polynomials pk:

pa(x) =
K∑

k=0

akpk(x), (1)

with a weight vector a ∈ RK+1, a = (a0, a1, . . . aK)T, where T denotes the
transposition of the parameter vector.

In principle, the basis polynomials pk(x) (k ∈ {1, . . .K}) could be monomials.
Here, however, we claim that they must have the following properties:

1. They must have different and ascending degrees 0, . . . ,K.
2. The leading coefficient (coefficient of the monomial with the highest degree)

of each basis polynomial must be one.
3. Each pair of basis polynomials pk1 and pk2 (with k1 6= k2) must be orthogonal

with respect to the inner product

〈pk1 |pk2〉 =
N∑

n=0

pk1(xn)pk2(xn). (2)

That is, 〈pk1 |pk2〉 = 0 for all k1 6= k2.

It must be mentioned that the choice of these basis polynomials depends on
the points in time when samples are observed. If the observations were made at
equidistant points in time, the choice depends only on their number N + 1 if we
assume—without loss of generality—that the first observation is made at time
0—otherwise we simply shift the time series to this point.

In the context of a representation with orthogonal basis polynomials, the ak

are called orthogonal expansion coefficients. Each time series—or the polynomial
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representing this time series, to be precise—can now be regarded as one point
in a particular space (we call it shape space) which is spanned by the orthogonal
expansion coefficients. Due to the particular representation of the approximating
polynomial sketched above, these orthogonal expansion coefficient can be inter-
preted as optimal (in the least-squares sense) estimators of average (a0), slope
(a1), curve (a2), change of curve (a3), etc. of the time series.

The description of appropriate techniques for the determination of orthogonal
basis polynomials and the efficient computation of the orthogonal expansion
coefficients for a given time series is out of the scope of this article. We refer to our
previous work published in [16, 17] which is based on mathematical background
outlined in [18, 19].

Assume now, we want to construct a random generator for time series de-
scribing the user behavior on Mondays which are working days. Then, a set of
sample time series is needed to build this generator (ideally, about 25 or more).
The time series are all approximated as described above (e.g., with polynomials
of degree 6). In our experiments it turned out that the representations of the sam-
ple time series all originating from a particular kind of day (e.g., public holiday,
working Friday, etc.) can be regarded as being nearly normally distributed in the
shape space. More precisely, to model this distribution we need the functional
form of a multivariate Gaussian distribution

N (a|µ,Σ) =
1

(2π)(K+1)/2

1

|Σ|1/2
exp

{
−1

2
(a− µ)TΣ−1(a− µ)

}
(3)

with a (K+1)-dimensional center (or mean) µ and a (K+1)×(K+1)-dimensional
matrix Σ. To find the model parameters µ and Σ from a sample data set,
we assume that the points in the shape space are independent and identically
distributed and apply a standard maximum likelihood technique (cf., e.g., [20])
to determine their values.

A model for a specific set of time series can then be used as a random
generator for time series in the following way:

1. A random number generator parameterized by means of the multivariate
Gaussian is used to generate random numbers which are points in the shape
space distributed according to Eq. 3.

2. Using the (known) orthogonal basis polynomials, these points can be trans-
formed into the respective polynomials.

3. The polynomials can be evaluated at the desired points in time (e.g., at
points corresponding to time intervals of 60 minutes).

4. Random noise can be added, e.g., white noise with a standard deviation
corresponding to the average approximation error for the set of sample time
series.

Altogether, we obtain an arbitrarily large set of artificial time series which all
have an essential shape that is similar to the shapes of the time series contained
in the set of (real) samples which has been used to build the random generator.
An example of an polynomial approximation for Mondays during the lecture
period can be seen in figure 8.
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Fig. 8. The most likely approximating polynomial for Mondays during the lecture
period.

Each day of the week has different access rates, which can be seen in figure
1. We therefore build single models for every day of the week. This way we can
also easily simulate holidays and outliers with anomalous accesses.

3.5 Scaling Time

An important factor for the usability of a benchmark is its runtime [21]. The
smallest unit of time that has periodical access rates is usually one day. To test
adaptability several periods have to be processed. Since this is too long for most
benchmarking purposes, we propose to scale time. With a scaling factor of 1/7 a
complete week can be simulated within 24 hours. Depending on the application
under test, even smaller factors could be reasonable. An other possibility to
shorten runtime is to use a reduced week that only consists of three days.

Of course the system under test should be aware of the time scaling factor.
Since daily and weekly periods are usual in information systems, good tuning
processes will use this previous knowledge for periodical tasks.

4 Benchmarking Objectives

Depending on the benchmark objective, different test cases can be built. Shifting
workloads give lots of opportunities to test automatic and autonomic systems.
Usually the metric is transactions per second or average response time for a given
database size, depending on the optimization goal (e.g. the QphDS@SF metric
in TPC-DS [6]). It has to be mentioned that whichever is used, the other should
also be monitored. In the following we will give four examples on how we use
the benchmark.

4.1 Basic Performance

The most common benchmarking objective in database systems is to test the
speed, i.e. transactions per second or similar. A good baseline for such a test is the
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peak performance of the system without any automatic tuning and without any
workload shifts. We concur with Bruno, who argues that only primary indexes
should be used for a reasonable baseline [22].

To test if the system can automatically produce a better throughput in a
real time environment, alternating workloads can be used. This way the system
has phases of high load, which can be used to measure the peak performance. In
phases of low load, the system has time to optimize its table structure, scale itself
or tune the indices without risking serious performance bottlenecks. Throughout
the test the ratio of different query classes stay constant. After some periods
the peak performance should increase and should be better than the baseline
performance.

4.2 Adaptivity

As stated in the introduction a major goal was to measure adaptability. The
idea is to test how well a system can adjust itself to the workload. Partially this
is already tested by the throughput test above. But as we have shown before,
the rates of query classes change within a single day. This can be simulated by
shifting workloads. So different query sets are defined and for each set a separate
time series is generated. Also the workload is different for each day of the week.
Either a complete week can be simulated, or only a reduced week consisting only
of two working days and one weekend day, which should suffice in most cases.
With this test, a system under test that is aware of the temporal dependencies
in the workload, should get a better performance than a system that is not.
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Fig. 9. Most accessed websites in Stud.IP between October 24, 2008 and June 10,
2009 per day.

Changes in the workload behavior can be introduced to further test the
adaptivity. In figure 9 the most frequently accessed websites in Stud.IP between
October 08 and May 09 can be seen. It is easy to see that there are sections with
very different characteristics. The diagram starts shortly after the beginning of
the lecture period, which lasts until the first week of February. The next lecture
period started at April 20. Additionally the Christmas break from December
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24 until January 06 can be seen. So for an eLearning system at a university a
week can be classified in one of the three classes, lecture period, free period and
holidays. All three of these sections are well-defined and their limits are previous
knowledge. This form of test is in some respects already implemented in current
benchmarks, TPC-DS for example consists of four consecutive phases with very
different characteristics (i.e. load, query run, data maintenance, query run - cf.
[23]). However, our form of query generation also makes it possible to model the
trends within one phase. Such a trend can be seen in the fall term 2008 where
the workload constantly decreases and then slightly increases at the end of the
term.

4.3 Robustness

To test the robustness of an autonomic system outliers can be introduced. In
figure 9 these can be seen in form of legal holidays on May 21 and June 1 and in
form of unpredictable outliers for example on February 11 (server maintenance)
or March 16 (unexpected user behavior). An autonomic system should be able
to identify such outliers and handle them correctly. So, it should not change its
configuration completely based on the single day. Yet it also must not have a
serious performance collapse. For legal holidays this could also be supported by
previous knowledge. Outliers can be modeled like other days and either triggered
randomly (maintenance) or at previously defined points in time. To test robust-
ness the performance before and after an outlier can be compared and the time
until the original performance is reached again. To find out if a system is over
adapted, the performance during an outlier day can be used.

4.4 Energy and Space Efficiency

The shifting workloads can of course be used to test the energy and space effi-
ciency of a system. An autonomic system might be able to reduce its space and
energy consumption in phases of low load. To measure the energy efficiency an
transaction per watt metric, as introduced in [24], can be used.

5 Conclusion

Autonomic tuning is an ongoing field of research in the database community,
new evaluation methods are therefore needed. The benchmark introduced in
this paper features a new way to model database workloads. With the poly-
nomial representation of every week-day a good compromise between realistic
access rates and comparable patterns is found. This opens new possibilities to
test automatic and autonomic tuning. The benchmark is based on an online
eLearning application that was analyzed extensively.

For future work we will first examine and tune the benchmark. We will im-
prove our eLearning benchmark and analyze how our techniques can be used in



Generating Shifting Workloads to Benchmark Adaptability 15

other benchmarks as well (e.g. TPC-C, TPC-H). To ease the adaptation of our
benchmark we will implement more generic query and data generators. These
generators will be controlled by configuration files that make adoption of the
schema or value domains and distributions more easy. As online information
systems are usually evolving over their life time, an interesting extension will be
the introduction of schema evolution. We will include possibilities to alter the
current table definitions and add new tables. This will add further challenges to
physical design tuning. To learn about realistic schema evolution, we will further
monitor the development of the Stud.IP installation at the University of Passau.
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