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Over the last decades Internet traffic has grown dramatically. Besides
the number of transfers, data sizes have risen as well. Traditional transfer
protocols do not adapt to this evolution. Large-scale computational appli-
cations running on expensive parallel computers produce large amounts of
data which often have to be transferred to weaker machines at the clients’
premises. As parallel computers are frequently charged by the minute, it is
indispensable to minimize the transfer time after computation succeeded to
keep down costs. Consequently, the economic focus lies on minimizing the
time to move away all data from the parallel computer whereas the actual
time to arrival remains less (but still) important. This paper describes the
design and implementation of a new transfer protocol, the Fast Send Protocol
(FSP), which employs striping to intermediate nodes in order to minimize
sending time and to utilize the sender’s resources to a high extent.

1 Introduction

Increasing quantities of data produced and stored in grid environments in combination
with high-speed wide area networks (WANs) stoke the desire for transferring tremendous
amounts of data between dispersed sites. 10 Gbit fiber networks provide a theoretic
throughput of more than 1 GB/s. High-performance servers are able to saturate such
networks using specialized protocols.

The weakest link on the path from sender to receiver determines the achievable
throughput. A slow network link, e.g. a 100 Mbit WAN connecting two fiber Gbit
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local area networks (LANs), may be the bottleneck, as well as a poor receiving machine
limited by its CPU, hard drive or network interface card (NIC).

There are several concrete usage scenarios which benefit from minimizing the sending
time:

disaster recovery: Disasters (e.g. fire, flooding, earthquakes) may threaten a building
containing information storage servers. The servers may be rendered physically
inaccessible, but still be technically intact for some time. The data has to be
“evacuated” as fast as possible. A good solution is to stripe the data to servers
nearby before bundling it at a safe and distant server.

server maintenance: Before server hardware is changed or when a server has to be
shutdown, a data backup has to be performed. To keep down backup times, it is
desirable to minimize the sending time of the transfer.

parallel computers: High-performance parallel computers are frequently shared between
many users and are becoming more and more widespread with the advent of com-
puting and data grids. Computing nodes are likely to be geographically far away
from their users, especially in the academic science community. Each user has a
certain time-slot it has to adhere to, and costs are directly associated with the
time the resources are used. After computations have finished, moving the result-
ing data from the parallel computer has top priority to reduce costs.

FSP aims at overcoming the weakest link by introducing intermediate nodes. The
sender partitions the data into smaller blocks and starts a striped transfer to distribute
the blocks to several intermediate nodes. As soon as all blocks are distributed, the server
retreats from the transfer, while the receiver collects the blocks from the intermediate
nodes. The striping and collecting phase may be overlapped to reduce overall transfer
time. Intermediate nodes are chosen from a preconfigured static list or from a self-
organizing peer-to-peer (P2P) overlay.

The remainder of this paper is structured as follows. In section 2 related work and
preliminaries are discussed, section 3 gives a technical description of FSP. Section 4
shows experimental results and the conclusion is presented in section 5.

2 Related Work and Preliminaries

The need for high-speed transfers of bulk data between local and remote sites has led to
a large number of network protocols and applications. These protocols and applications
seek to utilize the network to the largest extent possible. Some approaches implement
new transport layer protocols. Others make use of existing protocols (predominantly
the Transmission Control Protocol (TCP)) to built application layer protocols and ap-
plications. This section examines data transfer protocols at both the transport and
application layer. The protocols are compared to the FSP approach where applicable.
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2.1 Transport Layer Protocols

As stock TCP is not designed for modern long fat networks1 (LFNs), several approaches
to overcome the performance limitations have been proposed.

2.1.1 pTCP

pTCP (Parallel TCP) is a transport layer protocol that uses several TCP-v connections
between sender and receiver Hsieh and Sivakumar (2002). TCP-v is a modified version
of TCP. The TCP-v connections do not use the same path through the network. A
multi-homed host, that is a host with several network interfaces, can use a separate
TCP-v connection on each interface. The TCP-v connections are handled transparently
to the user who perceives only a single logical pTCP connection. The pTCP authors
refer to a pTCP connection with several TCP-v connections as a striped connection.
The aggregated throughput of several TCP-v connections over multiple paths yields a
higher throughput than a single TCP connection. In contrast to pTCP, FSP requires
only a single network interface.

2.1.2 PSockets

PSockets (Parallel Sockets) is actually an application level protocol that uses several
TCP connections to transfer data Sivakumar et al. (2000). However, it is implemented
as a library that can be used by applications in the same way as ordinary TCP sockets.
PSockets partitions the data into parts of equal size and sends it in parallel over several
TCP connections. Handling the TCP connections is hidden from the user who is only
concerned with one logical PSocket connection. Parallel TCP streams between two
endpoints help with TCPs poor performance in LFNs. However, it raises fairness issues
as parallel streams tend to get a larger share of the network than a single stream. Section
3.4.4 provides more details on parallel streams. FSP can also use parallel TCP streams
between two endpoints and therefore features the same throughput gain.

2.2 Advanced TCP Stack Implementations

There are several new proposals and implementations for TCP protocols that try to do
better in LFNs than the commonly-used TCP Reno and TCP NewReno implementa-
tions. They implement new techniques for flow and congestion control. For an overview
of the TCP congestion controll see section 3.2.

Fast TCP Fast Active Queue Management Scalable TCP uses a congestion control al-
gorithm that tries to keep a constant number of packets in queues, determined by
taking the delay into account.

S-TCP Scalable TCP increases the congestion window exponentially and decreases it
by a factor of only 0.125 in case of congestion (compared to 0.5 for TCP Reno)
and therefore utilizes the bandwidth to higher extent.

1LFNs are networks with a large bandwidth-delay product.
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HS-TCP High-Speed TCP defines a new congestion control mechanism. The congestion
window is not increased or decreased by a fixed value but in relation to the current
congestion window size. It can ramp up the congestion window more aggressively
and does not cut window sizes as strongly as TCP Reno.

The interested reader is referred to the empirical evaluation of some advanced TCP
stacks in Bullot et al. (2004).

2.2.1 Assessment of the Transport Layer Protocols

Transport layer protocols have to be installed at the operating system level. As the
design of FSP is directed to support a heterogeneous environment of machines, FSP
itself does not assume that any special transport layer protocol such as an advanced
TCP implementation is present. FSP uses application level tuning techniques that work
with any TCP implementations. In particular, it uses TCP buffer tuning and parallel
TCP streams to obtain good performance with standard TCP stacks.

2.3 Application Layer Protocols

2.3.1 File Transfer Protocol (FTP)

FTP is an application layer protocol used to transfer files from a server machine to a client
or vice versa. It is an Internet standard protocol defined by the Internet Engineering
Task Force (IETF) in RFC959 as early as 1985 Postel and Reynolds (1985). The core
functionality has not been changed since which shows the farsighted design. Besides
supporting the transfer of files, FTP allows to delete, create, and rename directories and
to retrieve directory listings. It is probably the most widespread data transfer protocol
on the Internet.

FTP has one feature that sets it apart from most other network protocols. It employs
separate connections for control and data transfer. The terms control and data channel
are used interchangeably with control and data connection. Both connections use TCP
at the transport layer. The control connection is used by the client to issue requests
and by the server to reply to requests. The control connection’s endpoints are called
User Protocol Interpreter (User-PI) at the client and Server Protocol Interpreter (Server-
PI) at the server. The data transfer itself and directory listings are performed via the
data connection. The data connection’s endpoints are referred to as User Data Transfer
Process (User-DTP) and Server Data Transfer Process (Server-DTP).

FTP does not guarantee data integrity. It completely relies on TCPs reliable byte
stream transfer.

Additionally, the original FTP specification has some security issues. Most of the
time, simple username/password authentication is performed and both username and
password are sent over the unencrypted control channel in clear text. To counteract this
problem, FTP security extensions have been defined that propose SSL encryption of
the control and optionally the data connection Ford-Hutchinson (2005). SSL protected

4



FTP is referred to as FTPS or FTP/SSL. FTP can also be secured by tunneling it over
Secure Shell (SSH). SSH-tunneled FTP is called secure FTP or FTP over SSH.

Being based on TCP, FTP potentially suffers from TCP’s bad performance on LFNs
(see section 3.2). It does not support features for high-speed transfers such as parallel
TCP streams, striping, or TCP buffer tuning.

2.3.2 GridFTP

GridFTP is a protocol extending FTP that offers secure high-speed data transfers in
Grid environments. The first GridFTP version is specified in Allcock (2003) and a
revised second version was released two years later in Allcock and Perelmutov (2005).
The Grid or Grid computing is a form of distributed computing. It allows to make
coordinated use of decentralized resources across various administrative and geographic
domains to provide high-performance computing and storage amongst others. A good
introduction to the Grid may be found in Stockinger (2007).

With Grid computing, tremendous amounts of data are processed and produced. Data
has to be transferred across wide areas as Grid resources are often far away from each
other. GridFTP provides a set of extension to FTP that enhance performance and
security.

GridFTP separates the protocol interpreter from the data transfer process in the same
way as FTP. In order to use the combined resources of several machines in parallel, one
machine may be used as the controlling front-end that serves as the protocol interpreter.
Other machines serve as data nodes (back-end nodes) and are statically registered at
the front-end. Together they form a single logical GridFTP server. The protocol used
between front-end and data nodes is not part of the standard. Clients connect to the
front-end and the front-end server determines which data nodes to use for a transfer.

GridFTP allows to transfer data at very high speeds. In practice, throughputs of 27.3
Gbit/s memory-to-memory and 17 Gbit/s disk-to-disk were reached using a 30 Gbit/s
network with 60 ms RTT Allcock et al. (2005).

The Globus Toolkit2 provides an open source GridFTP server and client implemen-
tation. It is tightly integrated in the Grid Security Infrastructure and requires a fair
amount of configuration. While GridFTP defines commands to set the TCP socket
buffers or trigger automatic buffer negotiation, the Globus implementation does not pro-
vide automatic negotiation at all. There are, however, research extensions to GridFTP
which implement dynamic right sizing (DRS) (see section 3.2).

One of GridFTP’s shortcomings is that it does not allow to stripe data from one server
to several other independent servers and vice versa. Consequently, it can not be used
for the two stage transfer proposed and employed by FSP.

GridFTP provides point-to-point transfers where both of the logical endpoints may
span several hosts (n:m striping). In this sense, FSPs two stage transfer can be seen
as a sequence of 1:n striping during the distribution phase and a following n:1 striping
during collection at the client. While GridFTP could be used for the independent point-

2http://www.globus.org
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to-point transfers from the server to the intermediate nodes, a controlling entity would
still be needed.

2.3.3 UDP-based Data Transfer (UDT)

UDT is a high-performance data transfer protocol built on top of UDP. It implements
its own congestion control and reliable transfer because UDP provides only a simple
connectionless and unreliable service Gu and Grossman (2007). UDT can reach higher
throughputs than untuned TCP because UDP does not incorporate any flow or conges-
tion control that artificially limits the throughput. It transfers data directly between
two endpoints. Applications can directly use UDT with a C++ API that compiles on
most operating systems. FSP does not use UDT to perform its transfers because similar
performance result can be obtained by tuning the TCP connections (see 3.2).

2.3.4 Kangaroo

Kangaroo is an end-to-end background data movement service that moves data from
source to destination via a variable number of intermediate Kangaroo servers Son (2001).
Kangaroo presumes that many Grid applications are not designed to deal with unex-
pected failures, such as network outages and out-of-storage errors. Its goal is to hide
network or storage errors and latencies from Grid applications to provide a robust storage
framework. A client application writes data to (or reads data from) a nearby Kangaroo
server. The Kangaroo server routes the data to the next hop server or the destination
server. Data is spooled to disk at any intermediate server. A data mover background
process is responsible for moving the data to the next hop as soon as possible. When
the throughput to the next hop does not suffice or the next hop server is currently un-
available, the mover retries the transfer until it can be finished successfully. Spooling
the data to disk at intermediate servers insulates the client application from network
failures as long as the temporary storage space is not exceeded. CPU and I/O usage at
the client application may be overlapped as a side effect. Kangaroo is sender-centric or
output-oriented in that it is mainly designed for writing data to a destination.

Kangaroo transfers data via a single route from source to destination, that is a sin-
gle series of hops (Kangaroo servers). The routes have to be predefined statically at
each Kangaroo server. An extension allows to take advantage of multiple routes to one
destination Rajamani and Balakrishnan (2001). This is accomplished by the client ap-
plication writing to several first-hop Kangaroo servers instead of a single one. However,
the routing remains static. The client has to know in advance which first-hop servers to
use and all servers along the route need a static routing table.

Kangaroo shares with FSP that it takes advantage of resources at intermediate servers.
However, it is mainly sender-centric, that is the sender pushes data to the destination.
Furthermore, Kangaroo applies static routing, whereas FSP allows to select several inter-
mediate nodes dynamically. The sender can only decide upon the first-hop. Further hops
depend on the static routing tables at every single Kangaroo server. Without its multi-
route extension, Kangaroo can only use one single preconfigured path. Additionally,
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Kangaroo does not exploit parallel TCP streams or buffer tuning. It has been designed
to hide latencies and errors from an application, rather than to perform high-speed bulk
data transfers.

2.3.5 Network Logistics

The network logistics approach to bulk data transfers uses a store-and-forwarding mech-
anism to improve throughput in LFNs Swany (2004). It separates a single point-to-point
TCP connection into a path of shorter connections taking advantage of resources at in-
termediate hosts. Data is sent hop-by-hop along the path and each intermediate host
buffers part of the data before sending it to the next host. The bandwidth-delay-product
(BDP) of the shorter connections is smaller than the one of the single connection. In
case the single connection is flow-control limited because of a TCP socket buffer size
that is too small compared to the BDP, the throughput can be increased using shorter
connections with the same buffer sizes. For further details of socket buffer sizes and
TCP performance see section 3.2. This approach does not require any changes at the
operating system or the network level. It is particularly applicable when the maximum
buffer sizes at any of the endpoints can not be changed.

In order to obtain optimal performance, the path of intermediate hosts has to be
selected in a way that maximizes the throughput. The total throughput is determined
mainly by the slowest link on the path. A performance matrix is created containing the
cost between each pair of nodes. After estimating the bandwidth with a network weather
service3 forecast, the cost is defined as 1/bandwidth. The optimal path is computed as
the path between sender and receiver that has the smallest maximum cost between any
pair of nodes along the path (the Minimax path). Empirical results show an increase in
the throughput of 5.75% to 9% Swany (2004).

The network logistics approach takes advantage of a whole path of intermediate hosts
while FSP uses only one level of intermediate nodes. However, it does not employ
parallel streams or TCP buffer tuning and is limited to a single path between sender
and receiver. FSP uses a number of intermediate hosts in parallel and thus multiple
routes from sender to receiver. When FSP is configured to choose intermediate nodes
halfway between server and client, the same network logistics effect is achieved but
limited to dividing the connection into two shorter ones.

2.3.6 Assessment of the Application Layer Protocols

Most of the existing and widely used application layer protocols support the direct
transfer between two endpoints. In particular, GridFTP uses interesting concepts for
high-speed data transfers. There are some protocols such as Kangaroo that take ad-
vantage of resources at intermediate hosts in a way similar to FSP. However, there is
no protocol that is able to stripe data to several intermediate nodes and collect it at a
client machine automatically. Furthermore, FSP distinguishes itself by organizing the

3A network weather service is a distributed application that monitors the bandwidth (amongst others)
between pairs of hosts and predicts the future bandwidth.
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intermediate nodes in a P2P overlay and allowing to select them dynamically according
to their estimated location in the network.

3 FSP Protocol

Our design has been motivated by the goal of minimizing the sending time when transfer-
ring data from a fast server. We observed several limitations that might hurt throughput
in traditional direct file transfers:

slow network link: WAN links somewhere on the path between sender and receiver are
likely to offer less bandwidth than the server is able to saturate. Additionally,
cross traffic on shared links limits throughput.

slow receiver: The receiving machine may not be able to cope with the server’s sending
rate. Limiting factors are slow CPUs, hard disks and NICs.

transport protocol limitations: Most file transfers use TCP on the transport layer. TCP
Reno, the predominant TCP implementation, performs badly on LFNs, i.e. con-
nections with a large BDP. Its flow-control parameters are often statically tuned
for small BDPs. Additionally, packet loss triggers large TCP window reductions.

The Fast Send Protocol addresses all these limitations. The main idea is to replace
the direct transfer from sender to receiver by introducing intermediate nodes. Data is
striped to several intermediate nodes. These nodes are closer to the sender or have
more resources than the receiver. Finally, the data is collected by the receiver. Striping
allows to use the combined bandwidth of several nodes and network links to overcome
slow direct network links and slow receivers. The transport protocol limitations are
addressed by using automatic TCP parameter tuning (see section 3.2).

FSP is an application layer protocol extending FTP Postel and Reynolds (1985),
the most ubiquitous data transfer protocol. FTP has been chosen as the basis of our
protocol for quite the same reasons as in GridFTP design Allcock et al. (2005): FTP is
a widespread and mature protocol. With control and data channel being two separate
TCP connections (the figures in this paper do not distinguish between control and data
connections), third-party transfers can be implemented and extensibility is eased. A
number of extension have already been proposed by the IETF4, e.g. in the domain of
security.

FSP has been designed to be completely compatible with standard FTP and may
be used as a drop-in replacement for FTP. Additionally, FSP takes advantage of many
GridFTP concepts which address shortcomings of FTP with respect to performance and
data integrity.

An FSP data transfer is logically separated into several phases:

request: The data transfer starts with a client requesting a file or directory from an
FSP server.

4The Internet Engineering Task Force – http://www.ietf.org/
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Figure 1: Partitioning and striping using a first-come, first-served distribution strategy.

partitioning: The server partitions the data into blocks of configurable size. A block
header containing a descriptor flag, header length, payload length, file offset and
file name is prepended to each block. The file name is represented as the relative
path with respect to the current directory. Including the file name in each header
allows to send complete directories with one single request. Typical header sizes
range between 20 and 50 bytes which results in a negligible per-block overhead
with sufficiently large block sizes.

intermediate node selection: After that, the intermediate nodes have to be selected
from a static list or from a dynamic P2P overlay (see section 3.1 for details). Clever
dynamic selection is crucial to the performance and accomplished by considering
inter-node distances.

striping: The server opens a connection to each of the intermediate nodes and stripes
the blocks according to a distribution strategy (see figure 1). Distribution strate-
gies include first-come, first-served (i.e. faster intermediate nodes receive more
blocks), cyclic distribution (i.e. blocks are allocated round-robin) and partitioned
distribution (i.e. each intermediate node receives an equally-sized contiguous share
of each file). The different strategies enhance load-balancing if it is expected that
the data has to be transferred to several clients later on. For a single target transfer
first-come, first-served is in most cases preferable.

collection: The server continuously informs the client of the block locations via the
control channel, leaving it to the client when to start collecting the distributed
blocks. Typically, the distribution includes the client to keep down the total time
of transfer and the client starts collecting the distributed blocks while distribution
is still in progress. The client opens a connection to each intermediate node and
requests the respective blocks. Due to the block format and the header information,
out-of-order delivery of the blocks does not pose a problem. When the client uses
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Figure 2: Intermediate node selection using Meridian.

the data for streaming purposes, the block size has to be set quite small, so that a
slower intermediate node does not delay the reception of a needed block.

The following subsections describe FSP’s features and techniques in more detail.

3.1 Intermediate Node Selection

Selecting those intermediate nodes which offer the highest bandwidth is crucial to min-
imizing the sending time. Currently, FSP selects nodes according to their network
location taking into account their distances reflected by the latency (round-trip time)
to both sender and receiver. The actual distance constraints are configurable. One may
choose intermediate nodes very close to the sender (maybe on the same LAN) without
constraints regarding their distances to the receiver. While this approach is optimal to
reduce sending time, it may hurt the total transfer time. A compromise is to choose
nodes somewhere in the middle between sender and receiver.

FSP organizes the intermediate nodes using a Meridian Wong et al. (2005) P2P
overlay as its network location service. Meridian allows to select nodes based on their
location in a network by multi-constraint queries (MCQ). Each Meridian node keeps
track of a logarithmic number of nodes organized in a set of concentric rings centered
around itself with exponentially increasing radii. The round-trip time is used to place
the nodes in the rings.

A node selection query MCQ = {(s, dcs), (r, dcr)} consists of two constraints, the
distance constraints to the sender dcs and receiver dcr. The resulting nodes are located in
the intersection of the two circles with the radii dcs around the sender s and dcr around
the receiver r respectively as shown in figure 2. Meridian is specifically designed to
process MCQs and find a set of nodes which satisfy multiple constraints on their network
location. A Meridian node p processes an MCQ = {(t1, dct1), (t2, dct2), ..., (tn, dctn)} in
several steps:

• First, the distances dpti between node p and all constraint targets ti are measured.

• After that, the node calculates its distance s to the solution space using the distance
function s =

∑n
i=1max

2(0, dpti − dcti). When the node does not satisfy one of the
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constraints, it is penalized by adding the squared distance to that constraint to
the total distance to the solution space. A distance of 0 indicates that the node p
satisfies all constraints itself and is part of the result set.

• Subsequently, all locally known ring members j are considered whose distances dpj

to itself satisfy

∀i = 1...n : max(0, (1− β) · (dpti − dcti)) ≤ dpj ≤ (1 + β) · (dpti + dcti)

Where β (β ∈ [0..1]) is called the route acceptance threshold.

This includes all nodes that satisfy at least one of the constraints or that are close
to the solution space at any rate. These nodes are requested to measure their
distances to all the constraint targets ti and reply with the measurement results.
With these distances, the distance to the solution space sj can be calculated for
all the nodes j. Again, a distance of 0 indicates that j satisfies all constraints and
it is added to the result set.

• When no or too few nodes lie in the solution space, the query is forwarded to the
node closest to the solution space provided it satisfies sj < β · s. This ensures that
the query is not forwarded to a nearby node which is also likely to be unable to
provide better results. A larger β causes more nodes to be considered as possible
solutions and as forwarding targets and increases the possibility of finding a large
result set. However, the downside is a larger number of hops and an increased
bandwidth requirement due to more measuring requests and query forwardings.
Hence a query takes longer to be processed.

A nice property of Meridian is that a node does not have to be a member of the overlay
to issue a query. It is sufficient to know at least one Meridian node as an entry point.

3.2 TCP tuning

FSP is expected to transfer data between geographically dispersed nodes via high-speed
networks. These kind of networks exhibit large round-trip times (RTT) implying a large
BDP with BDP = RTT ∗ Bandwidth. TCP, the underlying transport protocol, has
not been designed to adapt to such networks. It uses window based flow and congestion
control. The sender is only allowed to send up to Ws (send window size) bytes without
receiving an acknowledgement from the receiver. When Ws is small compared to the
BDP, the sender has to wait for acknowledgements most of the time and the throughput
T is limited by T = Ws/RTT . For instance, a transatlantic TCP connection on a 100
Mbit/s line with 90 ms RTT (and BDP = 1.125 MB) and a standard Ws = 64 KB
yields a throughput of only T = 64 KB/90 ms = 5.56 Mbit/s. A Ws larger than the
BDP wastes system memory, since the window is never completely used. Therefore best
results are achieved with Ws = BDP . Ws is the minimum of the congestion window,
the receive window and the sender’s socket buffer size. The window sizes are hidden in
the TCP implementation and cannot be set directly from within the application layer.

11



The window size is set indirectly by changing the send and receive buffer sizes via the
socket API. The maximum possible buffer sizes are limited by operating system settings
and have to be adjusted if necessary Allcock and Bresnahan (2004).

Automatic buffer tuning. Several techniques have been proposed to automatically tune
buffer sizes. For an excellent comparison of the most important ones we refer to Weigle
and Feng (2002). For instance, AutoNcFTP measures the BDP at connection set-up
and sets buffers accordingly National Laboratory for Applied Network Research (2007).
However, it suffers from a potentially fluctuating BDP. FSP implements a different ap-
proach called dynamic right-sizing (DRS) that has been designed for GridFTP Gardner
et al. (2004). DRS continually determines both current bandwidth and round-trip time.
Bandwidth is estimated by the receiver by simply calculating the current throughput.
To estimate the RTT, the receiver periodically sends a special block header containing
the receiver’s buffer size to the sender on the data channel (unlike FTP, the data channel
is used bi-directional). The sender tries to adjust its own send buffer size to the one
received and acknowledges by setting a special descriptor flag in the header of the next
outgoing block. Upon receiving the acknowledgement, the receiver can calculate the
RTT as the time it took the acknowledgement to arrive. This method slightly overesti-
mates the RTT because of the application layer protocol overhead, but serves as a good
estimate. After calculating the BDP, the receiver updates its buffer sizes and informs the
sender with the next RTT measurement header. DRS makes sure that the connection is
never limited by the flow-control window.

Parallel streams. Besides buffer tuning, FSP adopts GridFTP’s concept of parallel
TCP streams to improve TCP throughput. The advantages of parallel TCP streams are
threefold Ito et al. (2006). First, using n streams, means that n-times the TCP buffer
size is available compared to a single TCP connection. Second, ramping up the transfer
rate during slow-start is accelerated. Third, aggregated throughput in the congestion-
avoidance phase is increased because recovery from packet losses is faster and competing
TCP connections are suppressed. Using parallel streams on networks carrying cross-
traffic may hurt the throughput of competing connections. Contrary, DRS connections
are TCP-friendly.

Parallel streams are especially useful when buffer sizes can not be tuned due to oper-
ating system restrictions. The number of parallel streams has to be set manually by the
user. A good rule of thumb is to use 4 parallel streams. Combining DRS and parallel
streams may even provide better results Gardner et al. (2004). However, using too
many streams hurts the throughput because of the overhead associated with driving
many connections.

3.3 Compression

FSP optionally supports on-the-fly per-block compression using the library zlib Deutsch
and Gailly (1996) with configurable compression levels. zlib has been chosen because
it is an open standard with open-source libraries being freely available. However, other
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algorithms could be integrated easily. As compression is computationally expensive,
it does not increase throughput in most of the cases. Good results may be achieved
with highly compressible data such as text files or on slow network connections where
compression speed is able to keep up with network speed. Intermediate nodes do not
decompress blocks to save CPU cycles and storage space.

3.4 Data integrity

When large amounts of data have to be transferred without any bit errors, it is crucial
to detect the range of bytes where an error occurred. This allows to retransmit only
the erroneous block instead of the complete file. TCP offers a reliable byte stream
with its own error detection mechanism, but the checksums used are rather weak Stone
and Partridge (2000). Standard FTP does not offer any integrated means to ensure
data integrity. One has to resort to manually transferring a precomputed checksum and
checking the validity. With only a single checksum per file, the complete file has to be
retransmitted which is very inefficient.

FSP optionally computes its own per-block checksums and uses the same approach to
data integrity as GridFTP. Each block is appended a checksum calculated over the com-
plete bytes of the block. Transmission errors can be tracked down on a per-block basis.
As block sizes are relatively small compared to the complete file length in most cases,
retransmitting erroneous blocks is very efficient. Retransmission is always triggered by
the receiving endpoint. The checksum algorithm may be chosen freely. Our current
implementation supports ADLER32, CRC32, MD5 and SHA1 checksum algorithms.

3.5 Security

FSP currently uses username/password authentication over a Transport Layer Security
(TLS)5 encrypted control channel. Both server and client have to have a user account at
each intermediate node or there must be a common account at each intermediate node,
respectively. We are aware of the security implications and that FSP can be extended
with a more secure mechanism such as X.509 certificates.

Being based on FTP, FSP has both a control and a data channel. Both are point-to-
point connections, but the data they carry differs in its security needs. The control data
exchanged on the control connection is only relevant to the two involved parties. Point-
to-point security is sufficient and FSP encrypts the control channel with SSL/TLS in
the same way as the protocol extension to FTP proposes in RFC4217 Ford-Hutchinson
(2005).

On the other hand, data exchanged on the data channel has end-to-end semantics.
While it is processed and stored at several intermediate nodes, only the client and server
should be able to read the (confidential) data as clear text. Blocks of data distributed
to intermediate nodes are not supposed to be readable at the intermediate nodes or on
the wire during transmission. Thus, there is a need for end-to-end security, which is not
provided by TLS. FSP encrypts the blocks with symmetric block ciphers offering AES

5TLS is the successor of Secure Sockets Layer (SSL).
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Figure 3: Third-party transfer with FSP.

National Institute of Standards and Technology (2001) and Blowfish Schneier (1994)
encryption with bit sizes of at least 128 bits. The encryption key is securely exchanged
between server and client via the TLS protected control channel. Intermediate nodes
are not able to decrypt the blocks and are not aware of the content they store.

Encrypting is computationally expensive and has a negative performance impact. The
user has to decide upon the tradeoff between security and performance.

3.6 Third-party transfers

Transfers between two servers initiated by a third party are referred to as third-party
transfers. They are implemented differently than in FTP or GridFTP. The client opens
a control connection to the receiving server and indirectly triggers the transfer between
the two servers (shown in figure 3). It acts like a “remote control” for the transfer.
The receiving server retrieves the requested file from the sending server as if it were a
client. Unlike FTP, the client does not directly request one of the servers to open any
data connections. This approach keeps the complexity of opening connections to the
intermediate nodes at the servers.

4 Experimental Results

The test setup is shown in figure 4. The server has a 1 Gbit ethernet connection to a
Gbit switch. The intermediate nodes and the client are connected to 100 Mbit switches
which are themselves linked to the Gbit switch. The link to intermediate node 4 (IN4)
is routed via a virtual private network and carries cross-traffic. Both the client and IN3
share the same 100 Mbit uplink to the Gbit switch. RTTs between the nodes range
between 0.3 ms and 2 ms. The machines are not limited by their CPU or harddrive, but
only by the network connection. All tests were conducted with transfers of a single 1
GB file using blocks of size 1 MB. DRS was enabled which generally set the TCP buffer
sizes to 128 KB.
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Figure 6: Experimental results using 4*100 Mbit lines.

The first test uses intermediate nodes 1 to 3. The maximum (theoretically) achievable
bandwidth during striping is 300 Mbit/s while the client is limited by its 100 Mbit/s
connection. Figure 5 shows the results of our tests. The left bar of each column shows
the goodput6 during striping, the right bar indicates the goodput of the total transfer. A
direct transfer between server and client resulted in a goodput of 86.1 Mbit/s. Striping
to IN1-3 without including the client in the striping phase yields 264 Mbit/s and 66
Mbit/s in total. Including the client in the striping phase increases the total goodput
to 76 Mbit/s (striping bandwidth remains the same as the client and IN3 compete for
bandwidth). Additionally, overlapping the striping and the collection phase reduces the
striping goodput to 252 Mbit/s, but increases the total goodput to 82 Mbit/s. Best
overall results were obtained by striping to IN1 and IN2 and including the client in the
striping phase (thus removing bandwidth competition between client and IN3). With
261 Mbit/s striping goodput and 86.4 Mbit/s total goodput, we obtained 91.6% of the
theoretical 284.8 Mbit/s maximum striping goodput and even exceeded the total goodput
of a direct transfer between client and server.

Our second test takes advantage of striping to all four intermediate nodes (see 6).
This increases the theoretical striping throughput to 400 Mbit/s (however, the line to
IN4 carries cross traffic). We achieved 83.4% of the theoretical striping throughput, but
the total goodput ranged between 69 Mbit/s and 80 Mbit/s. We attribute the worse
total goodput to varying amounts of cross traffic on the route to IN4.

Our results show, that the striping approach significantly increases the throughput
during sending and thus reduces the sending time. It is very promising to note, that
under certain circumstances (test IN1-2 + direct) the total goodput is even slightly
higher than in a direct transfer.

6Goodput is defined as the application level throughput, that is the amount of useful bits transferred
per second. In our case, the overhead of the block headers and the protocol overhead of transport,
network, data link and physical layer are excluded.
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5 Conclusion

In this paper we presented a new approach for minimizing sending time in high-speed
bulk data transfers. The Fast Send Protocol uses intermediate nodes and striping mech-
anisms to maximize the amount of data sent by the server and to reduce the impact
of slow network links. The selection of intermediate nodes is either static or based on
a P2P overlay. FSP adopts concepts of GridFTP and reaches equal overall transfer
rates. It is completely compatible with FTP. Optionally, data integrity can be ensured
by using per-block checksums. Additional mechanisms for encryption, compression and
third-party-transfers have been included. Experimental results show that FSP signifi-
cantly increases the bandwith utilization at the sender side, thus reducing the sending
time. Another finding is that the overall transfer times of striped transfer and direct
transfer are equal.

Further research will address the dynamic adjustment of the number and the selec-
tion of intermediate nodes during data transfer. To fulfil stricter security requirements
support of certificates will be added. The dynamic adaptation of the number of parallel
streams as described in Ito et al. (2006) could further improve the transfer rate.
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