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ABSTRACT
Modern large-scale distributed information systems need
to implement specific techniques in order to favor the ef-
ficient processing of document access requests. This pa-
per proposes a delivery system that consistently integrates
two types of such techniques based on caching: coop-
erative caching, which promotes the exchange of docu-
ments between caches whenever advantageous, and seman-
tic caching, which uses a monitoring of popular topics in
order to take decisions on which documents to cache. It
also presents the results of the experimental evaluation of
this proposal that has been conducted thanks to a simulator
of the complete system; these experiments show the poten-
tial of the system for effectively reducing access request
processing times.
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1 Motivation and related work

A typical use case that is common to all modern distributed
information systems in the broader sense of the term (We-
b/Web 2.0, datagrids, peer-to-peer systems. . . ) is that of a
document with an initially unique source that is accessed
in a short time interval by several clients distributed over
a very large geographical area. As this scenario becomes
increasingly inefficient with the number of clients, all these
systems implement some form of data dissemination con-
trol, so that most clients access a closer copy of the re-
quested resource instead of querying the original source;
this is typically achieved with caching techniques. How-
ever, without coordination, the use of these resources can
still be sub-optimal: for example, a client may not be aware
of the existence of a copy in a nearby cache, or a document
may be unnecessarily duplicated in several close caches.
Such inefficient management results in a waste of network
bandwidth, and in unnecessarily long retrieval times. Co-
operative caching techniques can help organize the use of
caching resources of the global system in a rational and ef-
ficient way.

In addition, an efficient cache management policy can
be seen as a form of prediction of future user requests. Tra-
ditional caching heuristics rely on operational parameters

(last access date, document size, access frequency. . . ) to
achieve these predictions. However, user interest for spe-
cific documents chosen from a large set of documents is not
purely random, but is partially correlated to their subjects,
their semantic information. Trends in interest for specific
subjects can be observed in requests distributions ([1]). In
parallel, semantic information is increasingly directly at-
tached to documents that are made available in a distributed
information system; this is the case for example with se-
mantic Web applications and Web 2.0 folksonomies. This
makes it easier to monitor the distribution user requests
with respect to this information. Semantic caching tech-
niques can then be implemented in order to take advantage
of this knowledge by keeping interesting documents in the
caches and by pre-fetching known interesting documents
that are no longer in cache.

Although there have already been a number of seman-
tic caching proposals (see [2, 3] for an overview, [4] for
peer-to-peer networks, [5] for mobile environments), they
usually amount to storing query results in order to avoid
computing the same complex queries several times; these
proposals are not aimed at improving the processing of re-
quests of access to documents for which semantic informa-
tion is already known. In a related area, many researchers
have made contributions towards the development of im-
proving the quantity and quality of semantic information
available about documents that are available in distributed
systems: these are the "semantic Web" ([6]) and more
recently "semantic Grid" ([7]) areas of research. While
many interesting applications have been derived from these
works, their approach is overkill at the level of a document
cache. Their complexity does not fit an environment in
which decisions have to be taken as fast as possible about
what to keep, discard or pre-fetch if the whole purpose of
caching (improving retrieval efficiency) is to be fulfilled.
Moreover, caches do not need the level of details offered
by these approaches: an identification of the main and pos-
sibly secondary topic(s) related to the document constitutes
sufficient semantic information for their purpose, hence the
relevance of works in the area of automatic document clas-
sification in our context, such as [8] for the specific case of
Web pages.

There has also been a number of cooperative caching
proposals in various environments: in the Web ([9]), grids
([10]), mobile ad hoc networks ([11]), content delivery net-



works ([12]); however, they do not consider the possibility
of semantic caching. While in theory nothing prevents both
types of techniques to be used at the same time, an effec-
tive joint implementation can be problematic. Indeed, both
types of techniques make decisions about moving, keep-
ing, deleting and pre-fetching documents; these decisions
can be inconsistent, effectively nullifying each othert’s ef-
fects. In this paper, we propose a complete document de-
livery system implementing both cooperation mechanisms
and usage monitoring-based semantic caching techniques
that have been designed from the start to be compatible.

The rest of this paper is organized as follows. Sec-
tion 2 describes our semantic caching proposals. Section 3
outlines our proposed cooperative architecture that also in-
tegrates the semantic caching mechanisms. The results of
the simulation-based experimental evaluation of the system
is outlined in section 4. Finally, conclusions are drawn in
section 5.

2 Semantic caching

The principle of our semantic caching proposal is to con-
sider recent user requests as hints of current user interests.
This means that we postulate that if several requests related
to a specific subject are observed, the probability of request
of all documents related to the subject increases. We extend
this idea to different subjects: an influx of requests for a
subject increases the probability of requests for another se-
mantically related subject. To make use of this hypothesis
in a real-world environment, the "strength" of the relation
needs to be considered: tenth century chants and the lat-
est popstar may be related as part of the general "music"
concept, but the dynamic of their requests is probably very
different. This can be observed by analyzing requests logs.

Our goal is to translate these assumptions into cache
management heuristics. To this end, we have defined a data
structure for storing the semantic information related to a
set of documents and the relations between the concepts
indexing them. This data structure, shown in figure 1, is
a single-rooted n-ary tree. Its leaves represent documents,
while its internal nodes correspond to tags or keywords.
The edges between a tag and a document correspond to
an indexing relation, while those linking internal nodes
correspond to a generalization/specialization relation. The
weight associated to the edges evaluates the strength of the
relation between the linked nodes as described above. It is
computed through an off-line analysis of request logs. The
corresponding algorithm is conditional-probability-based:
the weight of a A-B link is evaluated as the probability of
a request for a document directly linked B in the hierarchy
given a request for a document linked to A (the B query
has to occur in a given time interval after the A query). The
algorithm has O(n2) time complexity with respect to the
size of the logs used for the calculation.

Based on this data structure, we have defined the tem-
perature, a numerical value attached to each document
meant as an instant measurement of the likelihood that it
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Figure 1. Graphical representation of the data structure

will be accessed in the near future. This value is computed
through a synthesis between the number of recent access re-
quests for the document and the semantic links of the data
structure.

The temperature computation process is performed at
regular intervals. The number of accesses to each docu-
ment between two consecutive computations is stored. The
process is carried out in three phases which we will now
describe using the example outlined in figure 2. The nodes
depicted in the figure are to be understood as being part
of a larger hierarchy. In phase 1, the temperature of docu-
ments is increased by their number of accesses since the
last update; this is the case for documents D1 and D3.
The temperature of documents that were not accessed is
decreased by a value equal to their latest temperature in-
crease (if any), hence the decrement of 2 for D2’s tem-
perature. In phase 2, the temperature variations of the
documents are recursively propagated upstream, follow-
ing the links of the data structure. The propagated values
are always multiplied by the weight of the edges through
which they are passing. Thus for example N1 receives
∆(D1) ∗ W (D1, N1) + ∆(D2) ∗ W (D2, N2). Finally in
phase 3, the temperature variations resulting from the pre-
vious phase are propagated downstream proportionately to
the weights until they reach the documents. In figure 2, the
initial temperature variations noted for N1, N2 and N3 are
supposed to originate from other non depicted documents,
hence the difference with the values noted for phase 2.

Temperature serves as the basis of the COldest DOc-
ument Replacement (CODOR) cache replacement policy:
when a cache is full and a new document must be inserted,
the documents with the lowest temperature are recursively
deleted until enough storage space is freed. Temperature
can also be used to pre-fetch documents that are already
known but are no longer in the cache and that have a tem-
perature at least higher than that of the "coldest" document
currently present in the cache.

The temperature computation algorithm presented
above can be implemented in lienar time with respect to



Figure 2. Three-phase temperature computation process
the number of documents indexed in the data structure.
The CODOR algorithm has a complexity of quadratic or-
der O(n2), with n the number of documents stored in the
cache at the time of the replacement decision.

3 Cooperation

Our cooperative policy for the processing of document ac-
cess requests is based on a three-level hierarchy of proxy
servers, the third level being optional (see figure 3).

The first level component, the Local Proxy (LP), cor-
responds to a cache attached to a client. In the Web frame-
work, its position corresponds to that of the caches included
in browsers. However, instead of being isolated, it is de-
signed to be able to cooperate with other nearby LPs in
order to efficiently process the requests of its users, with
which it can exchange documents according to a mecha-
nism synchronized by higher-level proxies.

The second-level component, the Intermediate Proxy
(IP), is similar to a Web proxy server. It implements the
CODOR and pre-fetching policies described in the preced-
ing section. Through the Meta Proxy described below, the
IPs can exchange documents with each other and with LPs.
They monitor temperature variations and exchange infor-
mation about the most noteworthy variations with other
IPs. Each LP is compulsorily linked to a single IP. The
IP receives the cache misses of its LPs, possibly indicating
them that a cached copy of the requested document can be
fetched from another LP. To this end, it maintains an index
of the contents of the cache of its LPs.

The highest level component, the Meta Proxy defines
a global view of several IPs with their sets of LPs. No data
is actually stored at this level; instead, an MP maintains
an aggregation of information about the caching hierarchy
that it is responsible for. In particular, it serves as a virtual
directory of the content cached in its hierarchy. It also ex-
changes this information with other MPs on a peer-to-peer
mode, provided that they are close enough for cooperation
with them to be worthwhile. An MP thus knows about the
contents of a large number of caches. It uses this knowl-

Figure 3. Cooperative architecture
edge to implement the second level of the cooperative pol-
icy: on an IP cache miss, it may tell it about a cache from
which the requested document can be fetched. Each IP is
compulsorily linked to an MP. This level of the architecture
is optional; in its absence, its functions are ensured by the
IPs.

This architecture is structured by two types of virtual
groups:

• Hierarchy groups, which group together the proxies
that are part of the same Meta Proxy ⇒ Intermediate
Proxies ⇒ Local Proxy hierarchy.

• Meta Proxy groups, which group together several co-
operating MPs, and therefore several hierarchy groups.
These groups have the advantage of increasing the level
of cooperation. For example in figure 3, thanks to the
M1+M2 and M2+M3 groups, the M1 and M3 hierar-
chies indirectly benefit of each other’s cache contents
even though they do not directly interact.

For creating the cache context indexes at the IP and
MP level, the Cache Digest protocol ([13]) is used. Based
on Bloom filters, it allows to maintain such information up
to date using a messages system while limiting the over-
head created by its use. Cache Digest messages are also
exchanged by MPs belonging to the same MP group.

Listing 1 presents a summary of the query process-
ing algorithm in the cooperative architecture. Note that
some of the steps that seem consecutive can actually be
performed simultaneously (such as searching for the docu-
ment in the IP index and in its cache).

Listing 1. Document search algorithm

C l i e n t s u b m i t s document a c c e s s r e q u e s t
Reques t i s t r a n s m i t t e d t o LP
Document i s s e a r c h e d i n LP cache
I f i t i s found



Document i s t r a n s m i t t e d t o c l i e n t
E l s e

Reques t i s t r a n s m i t t e d t o t h e IP
Document i s s e a r c h e d i n t h e IP cache
I f i t i s found

Document i s t r a n s m i t t e d t o LP
Document i s c o p i e d i n LP cache
Document i s t r a n s m i t t e d t o c l i e n t

E l s e
Document i s s e a r c h e d i n t h e IP i n d e x
I f i t i s found i n t h e i n d e x

Document l o c a t i o n i s s e n t t o t h e LP
LP f e t c h e s document
Document i s c o p i e d i n LP cache
Document i s t r a n s m i t t e d t o c l i e n t

E l s e
Reques t i s t r a n s m i t t e d t o t h e MP
Document i s s e a r c h e d i n t h e MP i n d e x
I f i t i s found i n t h e i n d e x

Document l o c a t i o n i s s e n t t o t h e IP
IP f e t c h e s document
Document i s c o p i e d i n IP cache
Document i s t r a n s m i t t e d t o LP
Document i s c o p i e d i n LP cache
Document i s t r a n s m i t t e d t h e c l i e n t

E l s e
MP f e t c h e s document from i t s s o u r c e
Document i s t r a n s m i t t e d t o IP
Document i s c o p i e d i n IP cache
Document i s t r a n s m i t t e d t o LP
Document i s c o p i e d i n LP cache
Document i s t r a n s m i t t e d t o c l i e n t

E n d i f
E n d i f

E n d i f
E n d i f

The possible interactions of the proxies of our system
(document and information exchange) define the request-
reponse based Temperature-Based Cache Control Protocol
(TBCCP). TBCCP implements all the procedures defined
in this section, with the exception of those related to the
maintenance of the cache content indexes (responsibility of
Cache Digest) and the direct transfer of files between prox-
ies and/or sources (assumed to be a basic service offered by
the distributed information system). The TBCCP messages
are formed of a fixed-size header and a variable size body.
The main field of the header defines the message type. The
main message types are queries (PL to PI or PI to PL), with
the following possible responses: HIT (the receiver has the
document in its cache), FOUND (the receiver knows of a
cache holding the document and forwards its address to the
initial requester), NOTFOUND (the receiver neither holds
the document nor knows where to find it in the system; the
request is going to be forwarded), and AVAILABLE (the
receiver retrieved the document from another source, the
initial requester can now download it).

4 Experimental evaluation

4.1 Simulator

A simulator was developed in order to be used for the ex-
perimental evaluation of our proposals. The simulator en-
abled us to perform tests in the context of a environment
including a number of clients, local proxies, intermediate
proxies, content servers without having to deal with the
constraints related to experimenting with such a complex
system in a "real-life" environment.

The goal of the experiments was to assess the com-
plete system with respect to the following aspects: the ef-
ficiency of the cooperation policy at the local proxy level,
the efficiency of the cooperation policy at the intermedi-
ary proxy level and the efficiency of the temperature-based
cache management policy within the complete system.

For the latter, we compared the performance of a sim-
ulated system using our temperature-based algorithm with
those of the same system using three different other well-
known replacement policies. Four different versions of the
simulator were therefore developed, differing only in their
replacement algorithm.

The simulators have been developed in Java, using
the network simulation packages of the J-Sim simulation
development environment (http://www.j-sim.org).
J-Sim offers a number of functions that we needed for our
simulator: state-based simulation, time reference frame-
work, event ordering with respect to predefined trigger
rules and duration, etc. The basic principle of the simu-
lators is simple: they take a request distribution file and
a system configuration file (defining the clients, LPs, IPs,
and the links between them) and process the requests until
the end of the request distribution file, while updating the
requested measures.

4.2 Query distribution

We have used logs collected on real-world Web proxies for
our experiments; these data have been obtained from the
IRCache project (http://www.ircache.net). The
files come from various mostly academic Web proxies. IP
addresses contained in the files are anonymized, but in such
a way that it remains possible to determine which requests
correspond to the same client. However, the anonymiza-
tion process is not consistent between different days; mean-
ing that the experiments could only be conducted over logs
covering at most 24h traffic. This explains the relatively
low value of some of the caracteristics outlined in table 1.

Table 1. Log files caracteristics

Average number of requests 127224
Average object size (Ko) 17,2
Total size served (Go) 2.19
Average number of clients 125
Maximum possible hit rate 52,3



Some pre-processing on these files was necessary.
Currently unavailable URLs for which GET requests return
HTTP 404 or other types of error had to be identified and
eliminated. Moreover, as our system needs semantic infor-
mation that is not yet attached to current Web documents,
the available documents were indexed off-line.

4.3 Experimental results

4.3.1 Cooperation between local proxies

The goal of this experiment is to assess the impact of
local proxy cooperation. The simulated system is com-
posed of one Intermediary Proxy and as many local proxies
(with identical cache sizes) as the number of distinct clients
found in the log file. Figure 4 presents the evolution of the
hit rate of the IP and of the LPs with respect to the size of
a local cache. One hit for the LPs means that the IP has
found a requested file in the cache of another LP.

Figure 4. Hit rate with respect to local proxy cache size

The IP hit rate remains constant, as the IP always re-
ceives the same requests regardless of the size of the LP
caches. The LP hit rates increases regularly before saturat-
ing around 20 Mb. This is due to the fact that the average
total size of the fetched files for one client in the log files is
close to 20 Mb.

4.3.2 Cooperation between intermediary proxies

This experiment simulates a 2-IP system, each one with its
own hierarchy of LPs. The measured value here is the co-
operation rate, meaning the ratio of the number of requests
that one IP could resolve by fetching the document from a
cache of the other hierarchy to the total number of requests.
Figure 5 outlines the evolution of this value with respect to
the cache size of the IPs.

The rate first increases in a fast and quasi-linear way,
before the curve starts to bend around 500 Mb. For caches
larger than 1.4 Gb, the rate is quasi-constant. We conclude
from this experiment that the IP cooperation policy alone

Figure 5. Cooperation rate with respect to IP cache size
allows to improve the processing of around 7% of queries,
which is far from negligible.

4.3.3 Replacement policy

This experiment compares the efficiency of a 2-IP sys-
tem implement IP cooperation, LP cooperation and
temperature-based replacement with that of the same sys-
tem with a different cache replacement policy. The se-
lected adversaries are Least Recently Used (LRU), Least
Frequency Used (LFU) and Greedy Dual Size (GDS). LRU
and LFU were chosen because they are based on the two
operational parameters that are the most significant in Web
requests distributions (respectively frequency of access and
last access date), while GDS has been several times found
to be efficient in Web caching settings ([14]). The results
for all four algorithms are displayed in figure 6.

Figure 6. Hit rates for different replacement policies

The figure shows a very similar evolution for CODOR
and GDS, with the difference between them never exceed-
ing two points. GDS is superior for smaller cache sizes,
however CODOR’s bends less heavily when the size in-
creases; CODOR is the algorithm that reaches its maximum
performance the first. The difference between these algo-
rithms and the two others is bigger for smaller cache sizes,
especially with respect to LFU.



To conclude on these experiments, they show that the
three potential improvement factors of our system do in-
deed all have a positive impact on the performances. More-
over, two of the three experiments were conducted in a
complete system environment, which proves that the co-
operation and semantic are conducted simultaneously and
consistently, not nullifying each other’s positive effects.

5 Conclusion

In this article, we have presented an architecture for the ef-
ficient delivery of documents in a distributed system that
integrates semantic caching and cooperation mechanisms
in a consistent way. Our semantic caching proposals are
based on the monitoring of previous user requests, on a
limited knowledge of the semantic properties of the docu-
ments in the form of keywords, and on a knowledge of the
semantic links between some of the keywords. We compute
a synthesis of these properties, the temperature, that aims
at being a metric of the interest of a given document for a
cache. Our cooperative architecture implements document
sharing between caches at a local and global level, allow-
ing caches to fetch documents from other nearby caches
rather than from the distant source. It also implements the
sharing of information by monitoring temperature varia-
tions. We have performed an experimental evaluation of
our system using simulation, and have found out the three
potential factors of improvement of the integrated system
(local proxy cooperation, intermediate proxy cooperation,
semantic caching) do indeed all have a positive impact on
the efficiency of requests processing.

Future work in this domain includes additional exper-
iments, such as the study of the effect of the complexity of
the architecture on performances (scalability of the archi-
tecture, evaluation of the limitation to the number of co-
operating proxies above which the system does not bene-
fit from cooperation anymore). We also plan on studying
the influence of the accuracy of the semantic information
that we use: while in its current state our system treats this
information as external and accurate, collectively created
Web2.0 folksonomies have been praised as much more rel-
evant than traditional keywords determined by Web sites
authors, and it would be interesting to see if our system can
indeed benefit from this property.
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