
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Dynamic Allocation in a
Self-Scaling Cluster Database

T. Rabl and M. Pfeffer and H. Kosch†

University of Passau
Innst. 43, 94032 Passau, Germany

SUMMARY

Database systems have been vital for all forms of data processing for a long time. In
recent years, the amount of processed data has been growing dramatically, even in small
projects. Nevertheless, database management systems tend to be static in terms of size
and performance, which makes scaling a difficult and expensive task. This is especially
an acute problem in dynamic environments like grid systems.
Based on the C-JDBC project, we developed a cluster database that supports automatic
scaling in the number of nodes used. To ensure good load balancing, we distribute the
tablespace according to a statistical analysis of the query history. In this paper we will
focus on the allocation algorithm.

key words: cluster database, middleware, dynamic allocation, scalability

INTRODUCTION

Nowadays databases are often accessed with prepared SQL statements, hence there are only
few distinct queries. These can therefore be divided into classes, where each class holds queries
which access the same set of relations. This gives a chance for optimizing the placement of the
relations. If the relations referenced in one class are placed in one backend of a multidatabase,
all queries of that class can be answered locally on that backend. In order to keep up with the
speed of a fully replicated system, the relative amount of work of each query class has to be
taken into account.

Consider the example in figure 1. We have a database with 3 relations A, B and C and three
classes of queries C1, C2 and C3, where queries of class C1 reference relations A and B, queries
of C2 reference C and queries of C3 reference all relations. The load of the database is divided
as follows, C1 produces 50% of the overall amount of work, C2 produces 35% and C3 the
remaining 15%. For one database backend there is only one option, it has to hold all relations.

†E-mail: {tilmann.rabl,marc.pfeffer,harald.kosch}@uni-passau.de

Copyright c© 2000 John Wiley & Sons, Ltd.

2 T. RABL, M. PFEFFER, H. KOSCH

Figure 1. Three Scaling Sizes of a Database on Basis of Three Query Classes.

Yet for two backends we can already save disk space if we do not replicate all relations on
the second backend but only A and B. We still can keep both backends busy since we can
schedule all queries of class C1 on the second backend and all other queries on the first. This
way both backends should have an equal workload. With three backends, we can reserve one
backend fully for C1 queries and one for queries of C2, so we have only one instance with all
relations. The workload can still be balanced, if we schedule some queries of C1 and C2 on the
backend with all relations. Of course this leads to a substantial saving of disk space. Another
advantage is that employing a new backend is less expensive, since we only need to copy some
relations rather than all. The old backends in our example stay untouched; this is not possible
in general, but we try to keep the overall changes minimal.

We developed an algorithm for the efficient calculation of good placements of relations
in a shared nothing database cluster. Further on we have extended the Sequoia project
(a continuation of the C-JDBC Project [2]) and realized a prototypical self-scaling cluster
database system that makes use of this algorithm.

The remainder of the article is structured as follows. First we will give an overview of the
architecture of our system. Then we explain the dynamic aspects of scaling and the allocation
used. The allocation algorithm is explained in detail in the section Allocation Algorithm and
performance evaluations in section Performance Evaluation. Finally we will discuss related
work and conclude.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 3

Figure 2. RAIDb Architecture Overview (cf. [1]).

SYSTEM OVERVIEW

We use Sequoia as the basis of our implementation [20]. Sequoia is a middleware that allows
transparent access to a cluster of database systems via JDBC [17]. This means that the cluster
is accessed like a single database instance and that the middleware takes care of the query
scheduling, update propagation and transaction management. Additionally, it offers simple
load balancing, recovery and caching features. Its architecture is based on a technique called
Redundant Array of Inexpensive Databases (RAIDb) [1]. RAIDb defines a shared nothing
architecture for database clusters and uses the read-once/write-all protocol [10].

Three modes of operation were defined to adjust the degree of replication: partitioning
(RAIDb-0), full replication (RAIDb-1) and partial replication
(RAIDb-2). For our purposes, partial replication is the most interesting approach. Read
requests are only executed by one database backend, while write requests are broadcasted
to all backends that have allocated the appropriate relations. Figure 2 shows the architecture
of a RAIDb cluster. All requests to the cluster are handled by the RAIDb controller. The data
is stored in the backends, which are standalone database systems. Depending on the load of
the backends and the relations referenced in the queries the controller sends read requests to
one backend and write requests to all backends with the according relations. The backends
process the queries and send the result to the controller. For larger clusters (> 25 backends)
there can also be more than one controller.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

4 T. RABL, M. PFEFFER, H. KOSCH

In this paper we present an extension of the Sequoia middleware that adds dynamic aspects
to the functionality of the middleware. We added methods to adjust the allocation of the
relations and degree of replication and to scale a cluster at runtime. Our software communicates
via a JMX/RMI interface with the Sequoia controller [18]. This approach makes it possible to
manage a cluster consisting of more than one controller (see controller replication in [20]) and
to keep changes to the Sequoia code base as small as possible.

Our tool mainly consists of three components: a monitoring component, a strategy
component, which implements the allocation algorithm presented in the next section, and an
execution component, which executes all actions on the controller or the database backends.

Monitoring includes collecting data from the backend database systems (i.e. memory- and
CPU-utilization and available disk space) and storing statistics of requests submitted to the
cluster. This information is stored in an embedded database for further analysis.

The strategy component has two main functions. First, it decides whether the cluster should
be resized by adding a new database backend or by dropping an existing one. The decision
is based on a scoring model and the data collected from the database backends. The second
function is to calculate a data replication scheme based on the query history. This scheme
balances the workload uniformly over the entire cluster and minimizes data replication.

The execution components performs the set of actions identified by the strategy component.
It contains a simple task scheduler, which executes a series of actions in parallel. This may
include adding a new node to or removing a node from the cluster, setting up the database
system on the node and replicating or deleting data on the database backends. To improve
performance, database specific tools such as bulk loaders etc. are used.

ALLOCATION AND SCALING PROCEDURE

As explained our extensions do not change the functionality of the Sequoia system itself.
They extend the system so that it can dynamically adjust the allocation of the relations and
automatically scale itself. This way it is possible to start the system with one node and avoid
further configuration.

Automatic Scaling

During runtime the monitoring component periodically measures the utilization of the single
backends and the overall system. The measurements include query queue lengths, memory
and disk utilization, processor load and other values. For each of the readings upper and lower
thresholds are defined. A modular policy, which can be changed at runtime, defines the actions
that are taken when these thresholds are exceeded. We chose a policy that automatically scales
the number of backends. So if the cluster is under heavy load for a certain period of time a
new backend is automatically acquired. When the load is to little the number of backends is
reduced.

The first step in upscaling is the selection of a new node which will host the new backend.
The set of possible hosts is held in a list, which contains each nodes IP address, username
and password. The node with the fastest ping answer is chosen, this is a very simple strategy

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 5

but again this policy is held modular, so it can easily be enhanced. When a node is selected
the execution module establishes a SSH connection to the node and transmits the database
software. Then database is started and integrated in the Sequoia cluster. To fill the database
the allocation procedure is triggered.

For downscaling a node has to be removed from the cluster. The node, which will be removed,
is again selected by a modular policy. We select the node with the least amount of diskspace.
Before the backend can be deleted the data has to be transfered to the remaining backends.
To do this we start the allocation procedure without the selected backend. The data then is
transfered according to the new allocation and the backend can be removed from the cluster.
The database on the removed node is stopped and all data is removed.

Dynamic Allocation

The monitoring component stores the complete query history and the according execution
times. From this history a classification of the request is calculated periodically (see section
Classification of Requests). Since the query types may vary we only use the recent queries for
the classification. The interval that defines the recent queries influences the dynamic of the
allocation. This depends on the application domain. To reduce effects of short-term variations
it is possible to define a second interval of older queries, which are also taken into account for
classification. The influence of the two intervals can be weighted.

From this classification an allocation scheme is calculated, as explained in the next section.
This calculation does not take the actual configuration of the backends into account. Therefore,
after the calculation the new allocation is compared with the current configuration and an
optimal matching is computed (see section Cost Minimal Implementation). To implement the
matching efficiently the copying of relations is done in parallel. Unused relations are deleted
after the copying. Whereever possible the whole database of a backend is transfered, since
this way all indices and constraints can be saved and do not have recomputed. The detailed
allocation algorithm will be described in the subsequent sections.

ALLOCATION ALGORITHM

In this section we present an algorithm that calculates the placement scheme for the relations.
Since Sequoia lacks distributed joins and relation fragmentation capabilities we have to allocate
the relations in a way that all queries can be processed by a single backend. With a good
allocation, the workload on all database backends of the cluster should be balanced.

Classification of Requests

In order to calculate a good allocation, a classification of all requests is needed. As any request
must be processable on a single database backend, all relations referenced by this request must
be available locally. Thus, all requests submitted to the cluster within a given period of time
are classified based on the relations they are referencing. Because of the replication model we

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

6 T. RABL, M. PFEFFER, H. KOSCH

also need to to distinguish between read-only requests and updates. So we create two profiles,
one for reads (Q) and one for updates (Qu).

After specifying these classes, the ratio of the overall workload for each class is calculated
with the cost function cQ. The cost function measures the relative amount of the total execution
time. For every request class Ci a value ai = cQ(Ci) is calculated, where 0 ≤ ai ≤ 1 and∑

ai = 1.

Problem Definition

The main goal of the presented method is to keep a balanced workload while minimizing
the replication rate. The limitations of the Sequoia implementation have to be considered.
To achieve this, the allocation calculated by evaluating the classification of the requests, and
minimizing disk usage (another possibility is the minimization of the number of replicated
relations in the cluster or minimization of the global update workload by minimizing replication
of updated relations (see Qu in section Classification of Requests) or a weighted combination
of the mentioned cost functions). The problem is formalized as follows:

Let R = {r1, . . . , rk} be the global database schema. Each relation ri has a cost cS(ri) as
evaluated by the cost function cS . In our case cS(ri) corresponds to the physical size of ri.
Furthermore, let Q = {C1, . . . , Cm} be a request profile consisting of m request classes Cj ,
where Cj ⊆ R. A value aj = cQ(Cj) is computed for each request class Cj for cost function
cQ. Then

∑m
j=1 aj = 1 holds.

For each of the n database backends, a set of relations Ri ⊆ R is computed, so that each
backend gets an equal fraction of the whole workload.

The following sum has to be minimized:

min
n∑

i=1

k∑

l=1

(if rl ∈ Ri then cS(rl) else 0) (1)

where :
Ri = {∪Cj |xij > 0} (2)

xij is the ratio of workload from request class Cj that is assigned to backend i.
The following constraints hold:

m∑

j=1

xijaj =

∑m
j=1 aj

n
=

1
n

(3)

n∑

i=1

xij = 1 (4)

0 ≤ xij ≤ 1 (5)

This problem is presumably NP-hard. Therefore a heuristic method is presented that solves
the problem efficiently and with adequate quality. This is done in two steps. First a greedy
algorithm computes an initial solution which is then improved by simulated annealing.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 7

Heuristic for a Initial Solution

For the efficient calculation of an initial solution to the problem stated above, we developed
a greedy algorithm. Due to the nature of the problem the greedy approach is not optimal. It
can however still be further improved, as will be explained later on.

The problem is similar to Bin packing or Knapsack, therefore a greedy algorithm analogously
packs request classes into database bins. Each of the n backends bi has a capacity of 1/n. Our
target is to pack all m request classes Cj into the n backends so that all capacity constraints
are taken into account and that the cost function cS is minimized. In contrast to the classical
bin packing problems, the set of objects in the bins are not disjunctive. That means that for
two request classes Ci and Cj mostly Ci ∩ Cj 6= ∅ applies.

As a first step of the algorithm, the request profile is sorted in descending order, so that
the most expensive elements in terms of cost function cS are processed first. Then for all not
completely filled backends, a precedence value is computed. For a given request class Cj , the
precedence value is computed by comparing the difference between the size of the intersection
and the size of the union of Cj and relations already packed in a backend by the means of cost
function cS . Then the class is put in the backend with the maximum precedence values. By
this approach request classes with many relations in common are put in the same backends.
An outline of the algorithm can be seen below.

Data: request profile Q, backends B
Result: allocation schema
sort(request profile Q) according cost function cS descending ;
foreach C ∈ Q do

foreach b ∈ B do
if b.free capacity > 0 then

UNION ← b.relations ∪ C.relations;
INTERSECT ← b.relations ∩ C.relations;
diff [C, b]← cS(INTERSECT)− cS(UNION);

else
diff [C, b]← −∞;

while C.rest workload > 0 do
b← b ∈ B where diff [C, b] maximal;
workload for b← min(b.free capacity, C.rest workload);
b.add(C,workload for b);
C.rest workload← C.rest workload− workload for b;
diff [C, b]← −∞;

Procedure Greedy Heuristic

The result of the algorithm can be formulated as a n×m matrix where every row corresponds
to a backend and every column to a request class. Each value 0 ≤ xij ≤ 1 indicates which

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

8 T. RABL, M. PFEFFER, H. KOSCH

ratio of a request class Cj is packed on a backend bi. A database backend bi holds all relations
r ∈ ⋃

Cj for which xij > 0.

Post Optimization Method

We improve the quality of the initial solution by a post optimization phase. Simulated
Annealing [7], an algorithm for a local search, is used as a meta heuristic to improve the
data replication scheme.

This method starts with an initial solution and then iteratively moves to a neighbor solution.
The best solution with respect to our cost function cS is returned. Therefore, a neighborhood
relation has to be specified. In our case, a neighbor solution is an allocation where one request
class is swapped with another request class from another backend.

Cost Minimal Implementation

The algorithm presented above bases its computation of a new replication schema solely on the
size of the cluster and on the profile of the requests. This does not take the current allocation
into account. To get a cost minimal implementation of the new data replication scheme a
matching method is used to compute a cost minimal perfect matching. In our case the size of
the data to be transferred in the cluster is the cost.

Let G = (V1 + V2, E) be a complete weighted bipartite graph, where |V1| = |V2| = n holds.
Each node v ∈ V1 represents one of the n new data replication schemes for a given database
backend, while each node u ∈ V2 represents a database backend with its currently allocated
relations. Let Rnew

v ⊆ R be the relations associated with a node v ∈ V1 and Rold
u ⊆ R be the

relations already allocated on a node u ∈ V2. For each node v ∈ V1 and u ∈ V2, a weighted
edge evu is added to G so that G becomes a complete graph. The weight of edge is computed
as follows: w(evu) = size(Rnew

v \Rold
u).

A cost minimal perfect matching can be computed efficiently (O(n3)) on this graph with the
Hungarian Method (Kuhn-Munkres algorithm) [8]. This matching determines which database
backend will host which of the new data allocation schemes. According to the schemes relations
are newly replicated on a backend or dropped from a backend.

PERFORMANCE EVALUATION

Our implementation favors read dominant database applications, therefore we chose a slight
modification of the TPC-H benchmark to test our system and evaluate its performance.
Additionally we ran a TPC-W like workload to examine performance in an OLTP like setting.

TPC-H Benchmark

The TPC Benchmark H (TPC-H) is a decision support benchmark that defines a set of queries
with a high degree of complexity [13]. It consists of two test scenarios: A power test that defines
a sequence of requests sent to the database sequentially, surrounded by two refresh functions,

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 9

and a throughput test that defines a set of query streams that are executed in parallel together
with the refresh functions. At this we omit the updates because we want to test a readonly
scenario. The design of the Sequoia system does not allow any speedup for the power test,
since each request is always processed by a single backend. We therefore restrict our evaluation
to the throughput test.

TPC-W Benchmark

The TPC Benchmark W (TPC-W) is a business oriented transactional web benchmark. It
simulates a common eCommerce scenario. There are three kinds of workload profiles defined
by the benchmark. They only vary in ratio of browse to buy interactions and accordingly in
ratio of read to write interactions from the database’s point of view. These profiles are (in
descending order of read to write ratio): browsing (WIPSb), primarily shopping (WISP), and
web-based ordering (WISPo).

Because we are only interested in database performance, we used a multithreaded trace
player to emulate a TPC-W application server. For our performance evaluation we used a trace
of 40000 transactions from the browsing mix generated with a open source implementation
of the TPC-W benchmark [9]. The TPC-W scaling parameter were set to 10000 items and
288000 customers. The number of emulated clients (EB’s) was set to 100.

Experimental Setup

As stated above our implementation is based on Sequoia; we used a slightly modified version
2.10.6. To get significant results, we compared the performance of a normal RAIDb-1 setup
to that of a RAIDb-2 setup that is based on our calculations. For both setups we used the
least pending request load balancer (as proposed in [3]). Result caching features of the Sequoia
controller were disabled.

As database system for the backends we used Apache Derby [19]. Derby is an open source
relational database that is completely written in Java. We used the latest developer version
(10.3.0.0 alpha) because there were some unresolved performance issues regarding multi-user
performance in the latest stable release (10.2.2.0).

All tests were run on a Linux platform with a 2.6.19 kernel. We used SUN’s Java Runtime
Environment 1.6.0 for the database backends as well as for the Sequoia controller and for our
tools.

We tested our system on up to ten database backends. Each backend was hosted on a
PC with an Intel Pentium IV 2.8 GHz CPU and 1 GB RAM. The Sequoia controller and
our tool ran on a separate machine of the same type. We used two (one) Intel Core 2 Duo
E6400 machines to generate the workload for the TPC-H (TPC-W) tests. All machines were
connected via a switched 100 Mbps Ethernet LAN.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

10 T. RABL, M. PFEFFER, H. KOSCH

Figure 3. Throughput for TPC-H with RAIDb-1 and RAIDb-2.

Experimental Results

TPC-H

Our performance analysis is based on the time needed to complete a throughput test for
each configuration. The results are presented in average SQL requests per minute. To get a
heavy workload on the system, we always used twice as many query streams as backends. We
report the best results out of three runs for each configuration. For RAIDb-2 we executed our
allocation algorithm after each run. Figure 3 shows the results of our throughput tests.

The figure shows that throughput almost increases linearly with the size of the cluster in
both replication modes. In this read only test setup this can be expected for a RAIDb-1
configuration. But the speedup of the RAIDb-2 configuration shows that our allocation does
only slightly decrease the speed of the system.

Figures 4 and 5 show the relative number of replicas and usage of disk space. For RAIDb-
2 the allocation algorithm tried to minimize disk space usage. If full replication is used the
number of replicas and therefore the required disk space grows according to the size of the
cluster. For ten backends each relation is replicated ten times and therefore ten times more
disk space is used. With our partial replication strategy the number of replicas and disk space
usage grows as well, but at a lower rate.

In the TPC-H benchmark the relation LINEITEM is referenced in almost every request
class. Since it has three quarters of the whole data volume the volume difference is not as
significant as the number of relations. Especially because for cluster sizes up to 16 nodes every
node has a copy. Nevertheless, for 10 nodes we save 10 percent disk space and have already 30
percent less replicas in the system.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 11

Figure 4. Average Number of Replicas per Relation for TPC-H with RAIDb-1 and RAIDb-2.

Figure 5. Diskspace Usage for TPC-H with RAIDb-1 and RAIDb-2.

The results show that a cluster using the partial replication approach is competitive in
performance to one using a full replication approach.

TPC-W

We measured the time of running the trace of 40000 transactions for each configuration. We
report the average number of transactions per second. As with TPC-H results, we report the
best result out of three runs for each configuration. Because the TPC-W benchmark contains

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

12 T. RABL, M. PFEFFER, H. KOSCH

Figure 6. Throughput for TPC-W with RAIDb-1 and RAIDb-2.

updates, we modified the cost function cS (see section Problem Definition) to enable our
algorithm to take updates into account. cS is now a weighted sum of two costfunction cS1 and
cS2 , where the first one measures the relative amount of diskspace consumed by a relation
(0 ≤ cS1(ri) ≤ 1) and the other one measures the ratio of update workload associated with
a relation 0 ≤ cS2(ri) ≤ 1. Both were weighted equally. Figure 6 shows the results of our
throughput tests.

Contrary to the read only TPC-H benchmark, the average throughput does not scale linearly
with the number of backends. This is due to the replication model used by the Sequoia
controller. Using synchronous replication lacks scalability with updates because they have
to be performed by every backend having a replica. Nevertheless there is a gain of performace
when increasing the number of backends.

Figure 7 shows the relative amount of diskspace needed for full replication (RAIDb-1)
and partial replication (RAIDb-2) configuration. With an increasing number of backends our
allocation algorithm gives a huge gain in saving diskusage. For a six node configuration, we
are already saving over 50% of diskspace compared to a RAIDb-1 configuration.

The results show that also in the context of an OLTP like workload our dynamic data
allocation approach has the potential to perform equally to a full replication system while
saving a great amount of resources.

RELATED WORK

As stated above, our implementation is based on the Sequoia cluster database middleware.
Since we did not change any of the functionality of Sequoia, our system has the same features.
Sequoia has several limitations, which we addressed in this project. The major problem in
Sequoia is the lack of distributed joins. This implies that if the system comprises no node

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 13

Figure 7. Diskusage for TPC-W with RAIDb-1 and RAIDb-2

containing all relations some queries cannot be processed. This can also be a problem in our
system, however with the periodical allocation that is performed, all previously submitted
queries will be processable after a new allocation phase. Another drawback is the scheduling
in Sequoia. Usually the first backend has the highest workload, while the last is often idle. With
our adapted allocation the workload is distributed automatically, since backends are tailored for
certain request classes. In the future Sequoia will integrate support for the GORDA replication
interface. The GORDA project (Open Replication of DAtabases) is a more general approach to
database replication [4]. It is focused on implementing different replication strategies according
to a defined interface. This will improve the performance of databases with a high ratio of write
requests.

The Ganymed project provides a middleware layer that allows replication of database engines
and transparent access [11, 12]. The system is divided in a master and several satelite databases,
where the satelites allow only read access and the write access is done only on the master.
The consistency of the databases is guaranteed thanks to snapshot isolation. The goal of this
project is to house multiple database instances in a single database system. The system is very
fast, since it does not have to process the queries at all, but only has to differentiate between
read and write requests. The major difference to our system is that every copy of the database
has to be a complete replication which implies that every satelite database uses as much disk
space as the master.

An early approach was presented in [5]. The architecture proposed is similar to the one in
the Ganymed project. In contrast to Ganymed the replicated database backends hold only
fragments of the original database and the complete system is designed for read-only access.

A commercial cluster database system is Oracle Real Application Clusters (RAC) [14], it
also uses snapshot isolation. In contrast to the projects presented above, RAC has a shared

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

14 T. RABL, M. PFEFFER, H. KOSCH

everything architecture. Therefore it relies on the use of specialized hardware like high speed
interconnection and shared disks.

CONCLUSION

We have presented techniques for optimizing the allocation in self-scaling cluster database
systems. By analyzing the request history, we classify the queries and calculate the allocation of
the relations accordingly. The allocation is designed in such a manner that it leads to a balanced
load distribution over the cluster and that the disk usage is minimized. We implemented
our algorithms in a prototypical system based on the Sequoia project. We also reduced the
shortcomings of the original Sequoia system with our dynamic approach. The test results
indicate that our implementation has equal performance to the original system while reducing
disk usage and improving load balance.

In future research, we plan to address the lack of distributed joins. This will enable the
system to distribute the relations of query classes with small workload on several backends and
should lead to a significant reduction of the disk space usage. Recent research has shown that
column stores have a significant improved performance in read-mostly environments [15, 6],
therefore we are working on an refined algorithm that allocates column-wise. Another issue is
the evaluation of the workload: for now we use the query processing time as a measurement,
which is not appropriate in heterogeneous environments. To address this issue, we will develop
benchmarking tools to estimate the relative speed of the database backends and use more
fine-grained cost functions for the query classes.

REFERENCES

1. Cecchet E. RAIDb: Redundant Array of Inexpensive Databases. In Parallel and Distributed Processing and
Applications, Second International Symposium, ISPA 2004. LNCS 3358, Springer Verlag, 2004; 115–125.

2. Cecchet E, Marguerite J, Zwaenepoel W. C-JDBC: Flexible Database Clustering Middleware. In
Proceedings of the FREENIX Track: 2004 USENIX Annual Technical Conference. USENIX, 2004.

3. Cecchet E, Marguerite J, Zwaenepoel W. Partial Replication: Achieving Scalability in Redundant Arrays
of Inexpensive Databases. In Proceedings of the 7th International Conference on Principles of Distributed
Systems (OPODIS 2003). LNCS 3144, Springer Verlag, 2003; 58–70.

4. Correia A, Pereira J, Rodrigues L, Carvalho N, Vilaça R, Oliveira R C, Guedes S. GORDA: An Open
Architecture for Database Replication. In Proceedings of the 6th IEEE International Symposium on
Network Computing and Applications (NCA 2007). NCA, IEEE Computer Society, 2007; 287–290.

5. Exbrayat M, Kosch H. Offering Parallelism to a Sequential Database Management System on a Network of
Workstations Using PVM. In Proceedings of the 4th European PVM/MPI Users’ Group Meeting. LNCS
1332, Springer Verlag, 1997; 457–462.

6. Harizopoulos S, Liang V, Abadi D J, Madden S. Performance tradeoffs in read-optimized databases In
Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB 2006). ACM, 2006;
487–498.

7. Kirkpatrick S, Gelatt Jr D, Vecchi M P. Optimization by Simulated Annealing. Science 1983;
220(4598):671-680.

8. Kuhn H W. The Hungarian Method for the Assignment Problem. Naval Research Logistic Quarterly 1955;
2:83–97.

9. Marden M. An Architectural Evaluation of Java TPC-W. In Proceedings of the Seventh International
Symposium on High-Performance Computer Architecture (HPCA’01). IEEE Computer Society, 2001.

10. Özsu M T, Valduriez P. Principles of Distributed Database Systems (2nd edn). Prentice-Hall, Inc., 1999.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

DYNAMIC ALLOCATION IN A SELF-SCALING CLUSTER DATABASE 15

11. Plattner C, Alonso G, Özsu M T. DBFarm: A Scalable Cluster for Multiple Databases. In Proceedings of
the ACM/IFIP/USENIX 7th International Middleware Conference. LNCS 4290, Springer Verlag, 2006;
180–200.

12. Plattner C, Alonso G, Özsu M T. Extending DBMSs with Satellite Databases. In VLDB Journal. To
appear in 2008.

13. Poess M, Floyd C. New TPC Benchmarks for Decision Support and Web Commerce. SIGMOD Rec. 2000;
29(4):64–71.

14. Pruscino A. Oracle RAC: Architecture and Performance. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. ACM, 2003.

15. Stonebraker M, Abadi D J, Batkin A, Chen X, Cherniack M, Ferreira M, Lau E, Lin A, Madden S, O’Neil
E J, O’Neil P E, Rasin A, Tran N, Zdonik S B. C-Store: A Column-oriented DBMS In Proceedings of the
31st International Conference on Very Large Data Bases (VLDB 2005). ACM, 2005; 553–564.

16. Continuent.org Sequoia Basic Concepts.
http://sequoia.continuent.org/doc/latest/sequoia-basic-concepts.pdf [23 August 2007]

17. Java Database Connectivity (JDBC).
http://java.sun.com/javase/technologies/database/ [23 August 2007]

18. Java Management Extensions (JMX) Technology.
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/ [23 August 2007]

19. The Apache Derby Project.
http://db.apache.org/derby/ [23 August 2007]

20. The Sequoia Project.
http://sequoia.continuent.org/ [23 August 2007]

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

