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Abstract

Over the last decades Internet traffic has grown dramati-
cally. Besides the number of transfers, data sizes have risen
as well. Traditional transfer protocols do not adapt to this
evolution. Large-scale computational applications running
on expensive parallel computers produce large amounts of
data which often have to be transferred to weaker machines
at the clients’ premises. As parallel computers are fre-
quently charged by the minute, it is indispensable to min-
imize the transfer time after computation succeeded to keep
down costs. Consequently, the economic focus lies on min-
imizing the time to move away all data from the paral-
lel computer whereas the actual time to arrival remains
less (but still) important. This paper describes the design
and implementation of a new transfer protocol, the Fast
Send Protocol (FSP), which employs striping to interme-
diate nodes in order to minimize sending time and to utilize
the sender’s resources to a high extent.

1. Introduction

Increasing quantities of data produced and stored in grid
environments in combination with high-speed wide area
networks (WANs) stoke the desire for transferring tremen-
dous amounts of data between dispersed sites. 10 Gbit fiber
networks provide a theoretic throughput of more than 1
GB/s. High-performance servers are able to saturate such
networks using specialized protocols. Application-layer
protocols like GridFTP [1] are widely used and transport-
layer approaches such as FAST TCP [16] and pTCP [7]
have been proposed.

The weakest link on the path from sender to receiver de-
termines the achievable throughput. A slow network link,
e.g. a 100 Mbit WAN connecting two fiber Gbit LANs,
may be the bottleneck, as well as a poor receiving machine

limited by its CPU, hard drive or NIC.
FSP aims at overcoming the weakest link by introduc-

ing intermediate nodes. The sender partitions the data into
smaller blocks and starts a striped transfer to distribute the
blocks to several intermediate nodes. As soon as all blocks
are distributed, the server retreats from the transfer, while
the receiver collects the blocks from the intermediate nodes.
The striping and collecting phase may be overlapped to re-
duce overall transfer time. Intermediate nodes are chosen
from a preconfigured static list or from a self-organizing
peer-to-peer (P2P) overlay.

Application areas may be found wherever resources at
a server have to be freed by moving data as fast as possi-
ble. There are several concrete usage scenarios which ben-
efit from minimizing the sending time:

disaster recovery: Disasters (e.g. fire, flooding, earth-
quakes) may threaten a building containing information
storage servers. The servers may be rendered physically in-
accessible, but still be technically intact for some time. The
data has to be “evacuated” as fast as possible. A good solu-
tion is to stripe the data to servers nearby before bundling it
at a safe and distant server.
server maintenance: Before server hardware is changed or
when a server has to be shutdown, a data backup has to be
performed. To keep down backup times, FSP may be used
to move the data to a backup server.
parallel computers: High-performance parallel computers
are frequently shared between many users and are becoming
more and more widespread with the advent of computing
and data grids. Computing nodes are likely to be geograph-
ically far away from their users, especially in the academic
science community. Each user has a certain time-slot it has
to adhere to, and costs are directly associated with the time
the resources are used. After computations have finished,
moving the resulting data from the parallel computer has
top priority to reduce costs. Once again, FSP can be used to
stripe the data to cheaper nodes as fast as possible.



The remainder of this paper is structured as follows. Section
2 gives a technical description of FSP and section 3 shows
experimental results. We discuss related work in section 4
before concluding in section 5.

2. FSP protocol

Our design has been motivated by the goal of minimizing
the sending time when transferring data from a fast server.
We observed several limitations that might hurt throughput
in traditional direct file transfers:

slow network link: WAN links somewhere on the path be-
tween sender and receiver are likely to offer less bandwidth
than the server is able to saturate. Additionally, cross traffic
on shared links limits throughput.

slow receiver: The receiving machine may not be able to
cope with the server’s sending rate. Limiting factors are
slow CPUs, hard disks and NICs.

transport protocol limitations: Most file transfers use TCP
on the transport layer. TCP Reno, the predominant TCP im-
plementation, performs badly on so-called long fat pipes,
i.e. connections with a large bandwidth-delay-product
(BDP). Its flow-control parameters are often statically tuned
for small BDPs. Additionally, packet loss triggers large
TCP window reductions.

The Fast Send Protocol (FSP) addresses all these limita-
tions. The main idea is to replace the direct transfer from
sender to receiver by introducing intermediate nodes. Data
is striped to several intermediate nodes. These nodes are
closer to the sender or have more resources than the re-
ceiver. Finally, the data is collected by the receiver. Strip-
ing allows to use the combined bandwidth of several nodes
and network links to overcome slow direct network links
and slow receivers. The transport protocol limitations are
addressed by using automatic TCP parameter tuning (see
section 2.2).

FSP is an application-layer protocol extending FTP [11],
the most ubiquitous data transfer protocol. FTP has been
chosen as the basis of our protocol for quite the same rea-
sons as in GridFTP design [3]: FTP is a widespread and
mature protocol. With control and data channel being two
separate TCP connections, third-party transfers can be im-
plemented and extensibility is eased. A number of exten-
sion have already been proposed by the IETF1, e.g. in the
domain of security. For the sake of clarity the figures in this
paper do not distinguish between control and data connec-
tions.

FSP has been designed to be completely compatible with
standard FTP and may be used as a drop-in replacement for

1The Internet Engineering Task Force – http://www.ietf.org/
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Figure 1. Partitioning into blocks and strip-
ing to intermediate nodes using a first-come,
first-served distribution strategy

FTP. Additionally, FSP takes advantage of many GridFTP
concepts which address shortcomings of FTP with respect
to performance and data integrity.

An FSP data transfer is logically separated into several
phases:

request: The data transfer starts with a client requesting a
file or directory from an FSP server.

partitioning: The server partitions the data into blocks of
configurable size. A block header containing a descriptor
flag, header length, payload length, file offset and file name
is prepended to each block. The file name is represented
as the relative path with respect to the current directory. In-
cluding the file name in each header allows to send complete
directories with one single request, as each block can be as-
sociated with its file and the offset within the file. Typical
header sizes range between 20 and 50 bytes which results in
a negligible per-block overhead with sufficiently large block
sizes.

intermediate node selection: After that, the intermediate
nodes have to be selected from a static list or from a dy-
namic P2P overlay (see section 2.1 for details). Clever dy-
namic selection is crucial to the performance and accom-
plished by considering inter-node distances.

striping: The server opens a connection to each of the
intermediate nodes and stripes the blocks according to a
distribution strategy (see figure 1). Distribution strate-
gies include first-come, first-served (i.e. faster intermediate
nodes receive more blocks), cyclic distribution (i.e. blocks
are allocated round-robin) and partitioned distribution (i.e.



each intermediate node receives an equally-sized contigu-
ous share of each file). The different strategies enhance
load-balancing if it is expected that the data has to be trans-
ferred to several clients later on.

collection: The server continuously informs the client of
the block locations via the control channel, leaving it to the
client when to start collecting the distributed blocks. Typ-
ically, the distribution includes the client to keep down the
total time of transfer and the client starts collecting the dis-
tributed blocks while distribution is still in progress. The
client opens a connection to each intermediate node and re-
quests the respective blocks. Due to the block format, out-
of-order delivery of the blocks does not pose a problem.
When the client uses the data for streaming purposes, the
block size has to be set quite small, so that a slower in-
termediate node does not delay the reception of a needed
block.

The following subsections describe FSP’s features and tech-
niques in more detail.

2.1. Intermediate node selection

Selecting those intermediate nodes which offer the high-
est bandwidth is crucial to minimizing the sending time.
It does not help to use intermediate nodes with scarce re-
sources located farther away than the receiver. Currently,
FSP selects nodes according to their network location, tak-
ing into account their distances reflected by the latency
(round-trip time) to both sender and receiver. The actual
distance constraints are configurable. One may choose in-
termediate nodes very close to the sender (maybe on the
same LAN) without constraints regarding their distances to
the receiver. While this approach is optimal to reduce send-
ing time, it may hurt the total transfer time. A compromise
is to choose nodes in the middle between sender and re-
ceiver.

FSP organizes the intermediate nodes using a Meridian
P2P overlay as its network location service [18]. Meridian
allows to select nodes based on their location in a network.
Each Meridian node keeps track of a logarithmic number of
nodes organized in a set of concentric rings centered around
itself with exponentially increasing radii. The round-trip
time is used to place the nodes in the rings. A node selection
query consists of two constraints, the distance constraints
to the sender ds and receiver dr. The resulting nodes are
located in the intersection of the two constraint circles with
the radii ds around the sender and dr around the receiver
respectively as shown in figure 2.

Given the distance constraints, the FSP server first de-
termines the nodes that potentially match the distance con-
straints. After that, it issues measurement requests to these
nodes. Each of the nodes replies with its distance to both
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Figure 2. Intermediate node selection using
Meridian

sender and receiver, so that the FSP server can determine
whether the node actually matches the constraints. If there
are no (or too few) nodes exactly matching a constraint,
the query is forwarded to the node closest to the solution.
This may lead to a multi-hop search with each hop reducing
the distance to the target exponentially. A nice property of
Meridian is that a node does not have to be a member of
the overlay to issue a query. It is sufficient to know at least
one Meridian node as an entry point. The exact algorithm is
beyond the scope of this paper and we refer to [18] for the
excellent, original description.

2.2. TCP tuning

FSP is expected to transfer data between geographically
dispersed nodes via high-speed networks. These kind of
networks exhibit large round-trip times (RTT) implying a
large BDP with BDP = RTT ∗Bandwidth. TCP, the un-
derlying transport protocol, has not been designed to adapt
to such networks. It uses window based flow and congestion
control. The sender is only allowed to send up to Ws (send
window size) bytes without receiving an acknowledgement
from the receiver. When Ws is small compared to the BDP,
the sender has to wait for acknowledgements most of the
time and the throughput T is limited by T = Ws/RTT . For
instance, a transatlantic TCP connection on a 100 Mbit/s
line with 90 ms RTT (and BDP = 1.125 MB) and a
standard Ws = 64 KB yields a throughput of only T =
64 KB/90 ms = 5.56 Mbit/s. A Ws larger than the
BDP wastes system memory. Best results are achieved with
Ws = BDP . Ws is the minimum of the congestion win-
dow, the receive window and the sender’s socket buffer size.
The window sizes are hidden in the TCP implementation
and cannot be set directly from within the application layer.
The window size is set indirectly by changing the send and
receive buffer sizes via the socket API. The maximum pos-



sible buffer sizes are limited by operating system settings
and have to be adjusted if necessary [2].

Automatic buffer tuning. TCP’s buffer-sizes are often
statically tuned for slow networks. Manual tuning is per-
ceived tedious and sub-optimal if RTTs vary over time. Sev-
eral techniques have been proposed to automatically tune
buffer sizes. For an excellent comparison of the most impor-
tant ones we refer to [17]. AutoNcFTP measures the BDP at
connection set-up and sets buffers accordingly [10]. How-
ever, it suffers from a potentially fluctuating BDP. FSP im-
plements a different approach called dynamic right-sizing
(DRS) that has been designed for GridFTP [6]. DRS con-
tinually determines both current bandwidth and round-trip
time. Bandwidth is estimated by the receiver by simply cal-
culating the current throughput. To estimate the RTT, the re-
ceiver periodically sends a special block header containing
the receiver’s buffer size to the sender on the data channel
(unlike FTP, the data channel is used bi-directional). The
sender tries to adjust its own send buffer size to the one re-
ceived and acknowledges by setting a special descriptor flag
in the header of the next outgoing block. Upon receiving
the acknowledgement, the receiver can calculate the RTT
as the time it took the acknowledgement to arrive. This
method slightly overestimates the RTT because of the ap-
plication layer protocol overhead, but serves as a good es-
timate. After calculating the BDP, the receiver updates its
buffer sizes and informs the sender with the next RTT mea-
surement header. DRS makes sure that the connection is
never limited by the flow-control window.

Parallel streams. Besides buffer tuning, FSP adopts
GridFTP’s concept of parallel TCP streams to improve TCP
throughput. The advantages of parallel TCP streams are
threefold [8]. First, using n streams, means that n-times
the TCP buffer size is available compared to a single TCP
connection. Second, ramping up the transfer rate during
slow-start is accelerated. Third, aggregated throughput in
the congestion-avoidance phase is increased because recov-
ery from packet losses is faster and competing TCP connec-
tions are suppressed. Using parallel streams on networks
carrying cross-traffic may hurt the throughput of competing
connections. Contrary, DRS connections are TCP-friendly.

Parallel streams are especially useful when buffer sizes
can not be tuned due to operating system restrictions. The
number of parallel streams has to be set manually by the
user. A good rule of thumb is to use 4 parallel streams.
Combining DRS and parallel streams may even provide bet-
ter results [6]. However, using too many streams hurts the
throughput because of the overhead associated with driving
many connections.

2.3. Compression

FSP optionally supports on-the-fly per-block compres-
sion using ZLIB [4] with configurable compression lev-
els. ZLIB has been chosen because it is an open standard
with open-source libraries being freely available. How-
ever, other algorithms could be integrated easily. As com-
pression is computationally very expensive, it does not in-
crease throughput in most of the cases. Good results may
be achieved with highly compressible data such as text files
or on slow network connections where compression speed
is able to keep up with network speed. Intermediate nodes
do not decompress blocks to save CPU cycles and storage
space.

2.4. Data integrity

When large amounts of data have to be transferred with-
out any bit errors, it is crucial to detect the range of bytes
where an error occurred. This allows to retransmit only the
erroneous block instead of the complete file. TCP offers
a reliable byte stream with its own error detection mecha-
nism, but the checksums used are rather weak [13]. Stan-
dard FTP does not offer any integrated means to ensure data
integrity. One has to resort to manually transferring a pre-
computed checksum and checking the validity. With only a
single checksum per file, the complete file has to be retrans-
mitted which is very inefficient.

FSP optionally computes its own per-block checksums
and uses the same approach to data integrity as GridFTP.
Each block is appended a checksum calculated over the
complete bytes of the block. Transmission errors can be
tracked down on a per-block basis. As block sizes are rel-
atively small compared to the complete file length in most
cases, retransmitting erroneous blocks is very efficient. Re-
transmission is always triggered by the receiving endpoint.
The checksum algorithm may be chosen freely. Our cur-
rent implementation supports ADLER32, CRC32, MD5
and SHA1 checksum algorithms.

2.5. Security

FSP currently uses username/password authentication
over a TLS encrypted control channel. Both server and
client have to have a user account at each intermediate node
or there must be a common account at each intermediate
node, respectively. We are aware of the security implica-
tions and FSP can be extended with a more secure mecha-
nism such as X.509 certificates.

Being based on FTP, FSP has both a control and a data
channel. Both are point-to-point connections, but the data
they carry differs in its security needs. The control data ex-
changed on the control connection is only relevant to the



two involved parties. Point-to-point security is sufficient
and FSP encrypts the control channel with SSL/TLS in the
same way as the protocol extension to FTP proposes in
RFC4217 [5].

On the other hand, data exchanged on the data channel
has end-to-end semantics. While it is processed and stored
at several intermediate nodes, only the client and server
should be able to read the (confidential) data as clear text.
Blocks of data distributed to intermediate nodes are not sup-
posed to be readable at the intermediate nodes or on the wire
during transmission. Thus, there is a need for end-to-end
security. FSP encrypts the blocks with symmetric block ci-
phers offering AES [9] and Blowfish [12] encryption with
bit sizes of at least 128 bits. The encryption key is securely
exchanged between server and client via the TLS protected
control channel. Intermediate nodes are not able to decrypt
the blocks and are not aware of the content they store.

Encrypting is computationally expensive and has a neg-
ative performance impact on servers which are not able to
encrypt at the same rate as their network connection pro-
vides. The user has to decide upon the tradeoff between
security and performance.

2.6. Third-party transfers

Transfers between two servers initiated by a third party
are referred to as third-party transfers. They are imple-
mented differently than in FTP or GridFTP. The client opens
a control connection to the receiving server and indirectly
triggers the transfer between the two servers. It acts like
a “remote control” for the transfer. The receiving server
retrieves the requested file from the sending server as if it
were a client. Unlike FTP, the client does not directly re-
quest one of the servers to open any data connections. This
approach keeps the complexity of opening connections to
the intermediate nodes at the servers.

3. Experimental results

We implemented an FSP client and server prototype in
Java 1.6. Java has been chosen for the sake of platform-
independence. We use the Java new I/O (NIO) APIs for file
and network I/O which benefits performance compared to
Java’s traditional stream-based I/O. NIO takes advantage of
native OS buffers which moves time-consuming I/O oper-
ations to the operating system where they are implemented
more efficiently.

The test setup is shown in figure 3. The server has a 1
Gbit ethernet connection to a Gbit switch. The intermediate
nodes and the client are connected to 100 Mbit switches
which are themselves linked to the Gbit switch. The link to
intermediate node 4 (IN4) is routed via a VPN and carries
cross-traffic. Both the client and IN3 share the same 100

1 Gbit
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switch switch switch switch

IN1 IN2 IN3 IN4

Client
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Figure 3. Test setup

Mbit uplink to the Gbit switch. RTTs between the nodes
range between 0.3 ms and 2 ms, typical values for a LAN
environment. The machines are not limited by their CPU
or harddrive, but only by the network connection. All tests
were conducted with transfers of a single 1 GB file using
blocks of size 1 MB. DRS was enabled which generally set
the TCP buffer sizes to 128 KB.

The first test uses intermediate nodes 1 to 3. The max-
imum (theoretically) achievable bandwidth during striping
is 300 Mbit/s while the client is limited by its 100 Mbit/s
connection. Figure 4(a) shows the results of our tests. The
left bar of each column shows the goodput2 during strip-
ing, the right bar indicates the goodput of the total trans-
fer. A direct transfer between server and client resulted in
a goodput of 86.1 Mbit/s. Striping to IN1-3 without includ-
ing the client in the striping phase yields 264 Mbit/s and 66
Mbit/s in total. Including the client in the striping phase in-
creases the total goodput to 76 Mbit/s (striping bandwidth
remains the same as the client and IN3 compete for band-
width). Additionally, overlapping striping and collection
phase reduces the striping goodput to 252 Mbit/s, but in-
creases the total goodput to 82 Mbit/s. Best overall results
were obtained by striping to IN1 and IN2 and including the
client in the striping phase (thus removing bandwidth com-
petition between client and IN3). With 261 Mbit/s striping
goodput and 86.4 Mbit/s total goodput, we obtained 87%
of the theoretical 300 Mbit/s maximum striping throughput
and even exceeded the total goodput of a direct transfer be-
tween client and server.

Our second test takes advantage of striping to all four
intermediate nodes. This increases the theoretical striping

2Goodput is defined as the application level throughput, that is the
amount of useful bits transferred per second. In our case, the overhead
of the block headers and the protocol overhead of transport, network, data
link and physical layer are excluded.
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Figure 4. Experimental results

throughput to 400 Mbit/s (however, the line to IN4 carries
cross traffic). We achieved 83.4% of the theoretical striping
throughput, but the total goodput ranged between 52 Mbit/s
and 80 Mbit/s. We attribute the worse total goodput to vary-
ing amounts of cross traffic on the route to IN4.

Our results show, that the striping approach significantly
increases the throughput during sending and thus reduces
the sending time. It is very promising to note, that under
certain circumstances (test IN1-2 + direct) the total goodput
is even slightly higher than in a direct transfer.

4. Related work

FSP is based on FTP [11] using TLS encryption as de-
scribed in RFC4217 [5]. It adopts some of the GridFTP con-
cepts such as parallel TCP streams and striping. GridFTP
[1] provides point-to-point transfers even though both of
the endpoints may span several hosts (N:M striping). In
this sense, FSP may be seen as a sequence of 1:N strip-
ing during the distribution phase to the intermediate nodes
and a following N:1 striping during collection at the client.
GridFTP may not be used directly to stripe data from a
server to intermediate nodes and collect it at a client au-
tomatically. It could be used as a means to transfer the data
between the nodes, but a controlling entity would still be
needed. GridFTP lacks the feature of dynamically selecting
nodes to stripe to. The data nodes that are used for striping
are statically registered at a front-end node. Additionally,
GridFTP is quite complex to install.

Quite close to the FSP approach is Kangaroo [15]. Kan-
garoo is a data movement service which hides I/O errors
from grid applications by transparently moving data to a
storage site, optionally using network and disk capacity on
a single path of intermediate sites. However, the routing to
and between intermediate sites has to be statically config-
ured at each site for each source and destination address.
Contrary to FSP, Kangaroo is limited to a single path of
intermediate sites and does not apply TCP optimizations.
Swany [14] proposes an approach using network logistics.
A single connection is divided into a path of shorter connec-
tions. End-to-end throughput is improved because TCP per-
forms better on connections with smaller RTTs and BDPs.
A similar effect is achieved when FSP is configured to se-
lect intermediate nodes in the middle of client and server.
However, FSP is limited to one level of intermediate nodes,
while Swany’s approach can use several intermediate hosts
on a path.

5. Conclusion

In this paper we presented a new approach for minimiz-
ing sending time in high-speed bulk data transfers. The Fast
Send Protocol uses intermediate nodes and striping mech-
anisms to maximize the amount of data sent by the server
and to reduce the impact of slow network links. The se-
lection of intermediate nodes is either static or based on a
P2P overlay. FSP adopts concepts of GridFTP and reaches
equal overall transfer rates. It is completely compatible with



FTP. Optionally, data integrity can be ensured by using per-
block checksums. Additional mechanisms for encryption,
compression and third-party-transfers have been included.
Experimental results show that FSP significantly increases
the bandwith utilization at the server side, thus reducing the
sending time. Another finding is that the overall transfer
times of striped transfer and direct transfer are equal.

Further research will address the dynamic adjustment of
the number and the selection of intermediate nodes during
data transfer. To fulfil stricter security requirements, sup-
port of certificates will be added. The dynamic adaptation
of the number of parallel streams as described in [8] could
further improve the transfer rate.
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