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SENSITIVITY ANALYSIS FOR CONVEX SEPARABLE
OPTIMIZATION OVER INTEGRAL POLYMATROIDS∗
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Abstract. We study the sensitivity of optimal solutions of convex separable optimization prob-
lems over an integral polymatroid base polytope with respect to parameters determining both the
cost of each element and the polytope. Under convexity and a regularity assumption on the func-
tional dependency of the cost function with respect to the parameters, we show that reoptimization
after a change in parameters can be done by elementary local operations. Applying this result,
we derive that starting from any optimal solution, there is a new optimal solution to new pa-
rameters such that the L1-norm of the difference of the two solutions is at most two times the
L1-norm of the difference of the parameters. We apply these sensitivity results to a class of non-
cooperative games with a finite set of players where a strategy of a player is to choose a vector
in a player-specific integral polymatroid base polytope defined on a common set of elements. The
players’ private cost functions are regular, convex-separable, and the cost of each element is a non-
decreasing function of the own usage of that element and the overall usage of the other players.
Under these assumptions, we establish the existence of a pure Nash equilibrium. The existence is
proven by an algorithm computing a pure Nash equilibrium that runs in polynomial time when-
ever the rank of the polymatroid base polytope is polynomially bounded. Both the existence result
and the algorithm generalize and unify previous results appearing in the literature. We finally
complement our results by showing that polymatroids are the maximal combinatorial structure en-
abling these results. For any nonpolymatroid region, there is a corresponding optimization prob-
lem for which the sensitivity results do not hold. In addition, there is a game where the play-
ers’ strategies are isomorphic to the nonpolymatroid region and that does not admit a pure Nash
equilibrium.

Key words. polymatroid, submodular function, sensitivity, reoptimization, integer optimiza-
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1. Introduction. We consider polymatroid optimization problems, where the
objective is to distribute d ∈ N discrete units among a set of elements E = {1, . . . ,m}
so as to minimize a convex separable cost function subject to upper bounds on the
total amount of units allocated to subsets of elements. These upper bounds are defined
via values of an integral polymatroid rank function f : 2E → N. Formally, we study
the following optimization problem:
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minimize
∑
e∈E

Ce(xe; te)

subject to:
∑
e∈U

xe ≤ f(U) for all U ⊆ E(P (t, d)) ∑
e∈E

xe = d

xe ∈ N for all e ∈ E,
where the functions Ce : N × N → R+, e ∈ E are nondecreasing and discrete convex
in the first entry and f is a normalized, monotone, and submodular set function.
The vector t and the scalar d are integral parameters. For fixed parameters, this
problem is a convex-separable optimization problem over an integral polymatroid
base polytope and can be solved in polynomial time by greedy algorithms; see Fed-
ergruen and Groenevelt [8], Groenevelt [17], Hochbaum and Shanthikumar [21], and
the book by Fujishige [10]. Besides these appealing theoretical properties, the prob-
lem has applications in several areas ranging from scheduling problems (cf. Yao [40]
and Krysta, Sanders, and Vöcking [25]) and tree packing and matroid optimization
(cf. Gabow [12]) to game-theoretic applications (cf. He, Zhang, and Zhang [20]).

1.1. Sensitivity analysis. Suppose we are given an optimal solution x∗(t, d)
with respect to t and d. The main question addressed in this paper is, how does
the structure of an optimal solution change after changes to the parameters t and d?
We motivate this question by a concrete example. Let G = (V,E) be a connected
undirected graph with vertex set V and edge set E ⊆ (V × V ). The objective is to
compute k ∈ N spanning trees of G so that along each spanning tree, a message of
unit size can be sent. If xe ∈ N messages are sent along edge e, i.e., e is contained in
exactly xe spanning trees, the resulting (average) delay is defined as

Ce(xe;ue) =

{
1

ue−xe
if xe < ue,

+∞ else,

where Ce(xe;ue) is a standard M/M/1-delay function frequently used in queueing
theory [13, 24]. The parameter ue ∈ N denotes the installed capacity on edge e. The
problem to compute k spanning trees to minimize the total delay can be cast as a
convex separable integral polymatroid optimization problem by taking f as the kth
multiple of the rank function of the graphic matroid on G. In this model, it is natural
to ask how optimal solutions change if the edge capacities or k are changed.

1.2. Our results for the sensitivity of polymatroid optimization. The
change of an optimal solution for changed parameters clearly depends on the structural
dependency of the objective function and the feasible region on the parameters t and
d. To capture this dependency, we introduce the following concept of regularity.
Informally, we call a function C(x; t) regular if (i) the (left discrete) partial derivative
with respect to the first entry is a nondecreasing function in the parameter and (ii)
the left discrete partial derivative with respect to the first entry is not larger after a
unit increase of the parameter t than after a unit increase of x.

Our main results (Theorems 3.2, 3.4, and 3.5) can be informally summarized as
follows: Let x∗(t, d) be an optimal solution of P (t, d) for regular and convex functions
Ce, e ∈ E. Then, for any other integral parameters t′, d′, there exists a new optimal
solution x∗(t′, d′) close to x∗(t, d) in the following sense:

‖x∗(t, d)− x∗(t′, d′)‖1 ≤ 2‖t− t′‖1 + |d− d′|.
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2224 TOBIAS HARKS, MAX KLIMM, AND BRITTA PEIS

Moreover, given x∗(t, d), we can compute x∗(t′, d′) by performing ‖t− t′‖1 + |d− d′|
elementary exchange steps.

In the context of the tree packing example with M/M/1 queueing functions dis-
cussed in section 1.1, this sensitivity result implies that if the capacity vector is
changed, say, by p units, then there is a new optimal solution for which at most 2p
edges of the given spanning trees needs to be changed, and these changes can be
efficiently computed from the initial optimal solution. On the other hand, when k is
increased by p units, then at most p|V | units need to be changed since adding a single
additional spanning tree corresponds to adding |V | new units.

In section 6, we show that submodularity of the capacity function defining the
base polytope is necessary for the sensitivity results above in the following sense: For
any capacity function that is not submodular, both sensitivity results (in terms of a
change of t and d) do not hold anymore.

1.3. Our results for polymatroid games. Our sensitivity results have con-
sequences for the existence of pure Nash equilibria for a new class of noncooperative
games that we term polymatroid games. In such a game, there is a finite set of play-
ers N and a finite set of resources E. Each player i ∈ N distributes her demand
di ∈ N in integral units among the resources subject to player-specific submodular
capacity constraints. This way, the resulting strategy space for each player forms an
integral polymatroid base polytope (truncated at the player-specific demand). We
further assume that the private cost function is defined as a sum of regular, player-
specific, nondecreasing, convex cost functions Ci,e(xe; te), where the parameter te is
interpreted as the load contribution of other players to resource e. This class of games
includes as special cases the following variants of congestion games that have been
treated separately in the literature:

(i) congestion games with matroidal strategies and player-specific costs (studied
by Ackermann, Röglin, and Vöcking [1]) for the case that the submodular
capacity function is the rank function of a matroid;

(ii) integer-splittable congestion games with singleton strategies (studied by Tran-
Thanh et al. [38]) for the case that the submodular capacity function is equal
to a sufficiently large constant;

(iii) integer-splittable congestion games with matroidal strategies (the matroidal
counterpart of integer-splittable congestion games studied by Rosenthal [33])
for the case that the submodular capacity function is an integer multiple of
the rank function of a matroid.

We show the existence of a pure Nash equilibrium and devise an algorithm for its com-
putation for polymatroid games, thus generalizing and unifying the existence results
by Ackermann, Röglin, and Vöcking [1] and Tran-Thanh et al. [38]. Our algorithm
maintains preliminary demands, strategy spaces, and strategies of the players that all
are set to zero initially. In the course of the algorithm, the demands of the players are
increased iteratively by one unit, and a preliminary pure Nash equilibrium (with re-
spect to the current demands) is recomputed by following a sequence of best response
moves of the players. While similar algorithms have been proposed before for matroid
congestion games (cf. Ackermann, Röglin, and Vöcking [1]) and integer-splittable sin-
gleton games (cf. Tran-Thanh et al. [38]), the main difficulty is to show that the
sequence of best responses converges even in the more general setting of polymatroid
games. This is where the sensitivity results for polymatroid optimization shown in
section 3 are applied. Furthermore, we show that the runtime of the algorithm is
bounded by n2mδ3, where n is the number of players, m is the number of resources,
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and δ is an upper bound on the maximum demand. Thus, for polynomially bounded
δ, the algorithm is polynomial.

In section 6, we prove that submodularity of the players’ capacity constraints
is necessary for the existence of a pure Nash equilibrium in a strong sense. For any
monotonic, normalized, strictly positive, and nonsubmodular set function defining the
player-specific base polytope, there is a two-player game without a pure Nash equilib-
rium. In this sense, our results are best possible, and polymatroids are the maximal
combinatorial structure guaranteeing the existence of a pure Nash equilibrium.

1.4. Related work.
Sensitivity in polymatroid optimization. Fujishige et al. [11] studied convex-

separable minimization problems over polymatroid base polytopes. They conduct
a sensitivity analysis of optimal solutions for the case that the marginal cost func-
tion is (componentwise) shifted downwards. As their main result, they show that for
any downwards shift of the marginal cost function, any new optimal solution has the
property that all optimal cost values of the components decrease monotonically with
respect to the original optimal solution. Their motivation is to analyze the Braess
paradox, and their sensitivity result implies that there is no Braess paradox in poly-
matroids. A difference in our work lies in the fact that we conduct a quantitative sensi-
tivity analysis; that is, given an optimal solution for an initial parameter, we quantify
exactly the difference of a closest new optimal solution for a changed parameter.

He, Zhang, and Zhang [20] considered separable-concave maximization problems
over polymatroids in which each cost function component has a second parameter and
is concave in the parameter. They assume that the cost functions are discrete convex
in both entries. A further difference in our setting is that we consider as feasible
domain an integral polymatroid base polytope instead of an ordinary polymatroid
(defined by a real-valued submodular function). Their main result establishes (with-
out any further regularity assumptions) that the optimal value function as a function
of the parameter, or as a function of the support set of the objective function, is sub-
modular. These two results have important consequences for game-theoretical models
because, using the submodularity of the optimal value function, they show that the
joint replenishment game and the one-warehouse multiple retailer game is submod-
ular and, thus, has desirable properties in terms of existence of core solutions. In
contrast to the work of He, Zhang, and Zhang [20], we study in this paper sensitivity
properties of underlying optimal solutions and not the optimal value function. More-
over, the structure of an integral polymatroid base polytope differs from an ordinary
polymatroid. The integral polymatroid base polytope does not form a lattice when
considering the componentwise minimum and maximum as join and meet. Thus, the
sensitivity framework of Topkis [36, 37] (to which also He, Zhang, and Zhang [20]
refer) is not directly applicable.

Cook et al. [6] considered general integer programs of the form max{wx | Ax ≤ b}
and conducted a proximity and sensitivity analysis. The proximity analysis is con-
cerned with the difference of optimal solutions for integer linear programs and their
continuous relaxations, respectively (the difference is measured by the L∞- or L1-
norm). The sensitivity analysis investigates the difference of optimal solutions of an
integer linear program for changed b. Their main result shows that the L∞-distance to
the nearest optimal solution to the corresponding integer program is at most the num-
ber of variables multiplied by the largest subdeterminant of A. Baldick [3] strength-
ened some of the sensitivity and proximity results of Cook et al. [6] by introducing a
finer measure for the constraint matrix A.
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Murota and Tamura [31] and later Moriguchi, Shioura, and Tsuchimura [29] de-
rived proximity results for the minimization of M-convex functions in integer variables
(see Murota [30] for an introduction to this concept). Moriguchi, Shioura, and
Tsuchimura [29] showed for convex-separable objectives that the difference between
integral and fractional optimal solutions measured in the L1-norm is at most 2(n−1),
where n is the number of variables.

Congestion games. Rosenthal [32] introduced congestion games, a class of strate-
gic games where a finite set of players competes over a finite set of resources. Each
player is associated with a set of subsets of resources, e.g., the set of paths connecting
a given source and sink in a network. A pure strategy of a player is to choose a subset
from this set. The cost of a resource depends only on the number of players choosing
the same resource, and each player strives to minimize the sum of the costs of the
resources contained in the selected subset. Rosenthal [32] proved the existence of a
pure Nash equilibrium by a potential function argument.

Weighted congestion games are a generalization of this model where players are
associated with a weight, and the cost of a resource is a function of the aggregated
weight of its users. Unlike unweighted games, weighted congestion games may not
possess a pure Nash equilibrium in general [5, 9, 16], but a pure Nash equilibrium can
be guaranteed under additional restrictions on the set of cost functions [2, 9, 18] or
the strategy sets [1].

Similarly, also congestion games with player-specific cost functions need not pos-
sess a pure Nash equilibrium [15, 27, 28], but a pure Nash equilibrium exists under
additional restrictions on the set of cost functions [14] or the strategy sets [1, 27].
Specifically, Ackermann, Röglin, and Vöcking [1] showed that player-specific conges-
tion games where the strategy set of each player corresponds to the set of bases of a
matroid has a pure Nash equilibrium. Our results generalize these existence results
towards general polymatroid strategy spaces.

In congestion games with integer-splittable demands, players have an integer
weight that they split in integer units over the sets of resources. Rosenthal [33]
showed that that these games need not possess a pure Nash equilibrium. Dunkel and
Schulz [7] strengthened this result showing that the existence of a pure Nash equi-
librium in integer-splittable congestion games is NP-complete to decide. Meyers [26]
proved that in games with linear cost functions, a pure Nash equilibrium is always
guaranteed to exist. For singleton strategy spaces and nonnegative and convex cost
functions, Tran-Thanh et al. [38] showed the existence of pure Nash equilibria. They
also showed that pure Nash equilibria need not exist (even for the restricted strategy
spaces) if cost functions are semiconvex. Our results generalize the existence result of
Tran-Thanh et al. [38] towards general polymatroid strategy spaces.

For the use of congestion games to model decentralized systems involving the
selfish allocation of resources, we refer the reader to [4, 34, 39] in the context of selfish
route choices in traffic networks and to [22, 23, 35] in the context of flow control in
telecommunication networks.

2. Preliminaries. Let N denote the set of nonnegative integers, and let E be a
finite and nonempty set of elements. We write NE as shorthand for N|E|. Throughout
this paper, vectors x = (xe)e∈E ∈ NE will be denoted with boldface. An integral set
function f : 2E → N is submodular if f(U) + f(V ) ≥ f(U ∪ V ) + f(U ∩ V ) for all
U, V ∈ 2E ; f is monotone if f(U) ≤ f(V ) for all U ⊆ V ⊆ E; and f is normalized
if f(∅) = 0. We call an integral, submodular, monotone, and normalized function
f : 2E → N an integral polymatroid rank function. The associated integral polyhedron
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is defined as

Pf :=
{
x ∈ NE : x(U) ≤ f(U) for all U ⊆ E

}
,

where for a vector x = (xe)e∈E and U ⊆ E, we write x(U) as shorthand for
∑

e∈U xe.
For an element e ∈ E, we write x(e) instead of x({e}). Given the integral polyhedron
Pf and an integer d ∈ N with d ≤ f(E), the d-truncated integral polymatroid Pf (d) is
defined as

Pf (d) :=
{
x ∈ NE : x(U) ≤ f(U) for all U ⊆ E, x(E) ≤ d

}
.

The d-truncated integral polymatroid Pf (d) is again an integral polyhedron, as the
corresponding integral polymatroid rank function f ′ : 2E → N defined as f ′(U) =
min{d, f(U)} is submodular. For a d-truncated integral polymatroid Pf (d), the cor-
responding integral polymatroid base polyhedron is defined as

Bf (d) :=
{
x ∈ NE : x(U) ≤ f(U) for all U ⊆ E, x(E) = d

}
.

The rank of Bf (d) is given by d. We consider the problem of minimizing a parametrized
separable discrete convex function over a polymatroid base polytope:

minimize
∑
e∈E

Ce(xe; te)(P (t, d))

subject to x ∈ Bf (d),

where t = (te)e∈E ∈ NE , d ∈ N are nonnegative integral parameters.
Note that t influences the cost function, while the parameter d defines the trun-

cation of the integral polymatroid base polytope. Let x∗(t, d) ∈ NE be an optimal so-
lution to P (t, d). We are interested in quantifying the distance between x∗(t, d) and a
new optimal solution x∗(t′, d′) for the new parameters t′ ∈ N and d′ ∈ N. We will mea-
sure the distance between solutions using the L1-norm defined as ‖x‖1 :=

∑
e∈E |xe|

for all x ∈ NE . Thus, we are interested in bounding ‖x∗(t, d)−x∗(t′, d′)‖1 in terms of
‖t− t′‖1 and |d− d′|. Naturally, nontrivial bounds are only possible when imposing
additional assumptions on the dependence of the cost function on the parameter.

To state these assumptions formally, we need the following notation of discrete
derivatives. For a function c : N→ R+ and x ∈ N, let

c−(x) := c(x)− c(x− 1) and c+(x) := c(x+ 1)− c(x)

denote the left and right discrete derivative, respectively. Note that the left derivative
is only defined for x ≥ 1. The function c is called discrete convex if c−(x) ≤ c+(x)
for all x ∈ N. For a function C : N × N → R+, we slightly abuse notation, as we
denote by

C−(x; t) := C(x; t)− C(x− 1; t) and C+(x; t) := C(x+ 1; t)− C(x; t)

the left and right derivatives, respectively, with respect to the first argument. We call
C discrete convex if x 7→ C(x; t) is discrete convex for all t ∈ N.

We introduce the following notion of regularity that bounds the impact of a
parameter change on the derivative.
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Definition 2.1 (Regularity). A function C : N× N→ R is called regular if

C−(x; t) ≤ C−(x; t+ 1) for all x, t ∈ N(2.1)

C−(x; t+ 1) ≤ C−(x+ 1; t) for all x, t ∈ N.(2.2)

That is, (2.1) requires that the (left) marginal cost function of C is nondecreasing in
t and (2.2) bounds the marginal cost of C after adding one unit to parameter t in
terms of the marginal cost after adding one unit to x. It can be shown that a regular
function C is discrete convex.

Observation 1. A regular function C : N× N→ R is discrete convex.

Proof. We calculate

C−(x; t) ≤ C−(x; t+ 1) ≤ C−(x+ 1; t) = C+(x; t),

where for the first and second inequality, we used (2.1) and (2.2), respectively.

Throughout this work, we impose the following assumption on Ce, e ∈ E.

Assumption 1. For every e ∈ E, Ce is regular.

If P (t, d) only involves cost functions satisfying Assumption 1, we speak of a
convex and regular optimization problem.

We recapitulate the motivating example given in section 1.1 and state it as a
convex and regular optimization problem.

Example 1. Let G = (V,E) be a connected undirected graph. The objective is to
compute k ∈ N spanning trees of G with minimum cost so that along each spanning
tree, a message of unit size can be sent. If xe ∈ N messages are sent along edge e, the
resulting cost per edge is defined as

Ce(xe;ue) =

{
1

ue−xe
if xe < ue,

+∞ else.

By defining u = maxe∈E ue and te = u − te for all e ∈ E, we obtain an equivalent
problem in which the cost functions are of the form Ce(xe; te) = 1/(u− te−xe). This
problem involves regular cost functions because ∂Ce(xe; te)/∂xe = 1/(u− te − xe)2 is
increasing in te; thus, (2.1) is satisfied. Moreover, one easily verifies that also (2.2) is
satisfied.

In the above example, there is an additive dependence between the variable xe
and the parameter te. We will now discuss the case of multiplicative dependences.

Lemma 2.2. Let C(x; t) = g(t) ·h(x) for functions g : N→ R and h : N→ R with
h− 6≡ 0, h− ≥ 0 and g 6≡ 0. Then C is regular if and only if the following properties
hold:

1. g is nondecreasing.
2. h is discrete convex.
3. g(t+ 1) · h−(x) ≤ g(t) · h−(x+ 1) for all x, t ∈ N.

Proof. ⇒: By Property (2.1) of regularity, we obtain

g(t) · h−(x) ≤ g(t+ 1) · h−(x) for all x, t ∈ N.

Since h− 6≡ 0, h− ≥ 0, there is x0 ∈ N with h−(x0) > 0. Hence, dividing

g(t) · h−(x0) ≤ g(t+ 1) · h−(x0) for all t ∈ N
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by h−(x0) yields g(t) ≤ g(t + 1) for all t ∈ N. By combining Property (2.1) and
Property (2.2) (similarly as in Observation 1), we get

g(t) · h−(x) ≤ g(t+ 1) · h−(x) ≤ g(t) · h−(x+ 1) for all x, t ∈ N.

Choosing t0 ∈ N with g(t0) 6= 0 and dividing by g(t0) implies that h is discrete convex.
Finally, Property (2.2) just says

g(t+ 1) · h−(x) ≤ g(t) · h−(x+ 1) for all x, t ∈ N,

which is stated in 3.
⇐: We get g(t) · h−(x) ≤ g(t+ 1) · h−(x) for all t, x ∈ N by the monotonicity of

g; thus, Property (2.1) follows. Property (2.2) follows directly from (3).

We give an example to illustrate the applicability of this characterization.

Example 2. We discuss the regularity of two particular cost functions:
1. The function C(x; t) = (t+ 1) · ex is regular.
2. The function C(x; t) = t · x is not regular.

To see the first statement, observe that g(t) = t + 1 is nondecreasing and h(x) = ex

is discrete convex. Moreover, condition 3 of Lemma 2.2 translates to

(t+ 2) · (ex − ex−1) ≤ (t+ 1) · (ex+1 − ex) for all x, t ∈ N
⇔ (t+ 2) · (ex − ex−1) ≤ (t+ 1) · e · (ex − ex−1) for all x, t ∈ N
⇔ t+ 2 ≤ (t+ 1) · e for all t ∈ N,

which is a true statement. For the second statement, we get with g(t) = t and
h(x) = x as a necessary condition

t · x− t · (x− 1) ≤
by (2.1)

(t+ 1) · x− (t+ 1) · (x− 1) ≤
by (2.2)

t · (x+ 1)− t · x

for all x, t ∈ N . This implies t ≤ (t+ 1) ≤ t, a contradiction.

3. Sensitivity results. For fixed parameters t ∈ NE , d ∈ N, we recapitulate
the following necessary and sufficient optimality conditions for an optimal solution to
problem P (t, d). Let χe ∈ NE be the indicator vector with all-zero entries except for
the eth coordinate which is 1. For x ∈ Bf (d) and e ∈ E, denote by

De(x) = {g ∈ E \ {e} | x + χg − χe ∈ Bf (d)}

the set of feasible local exchanges w.r.t. x and e and by

∆e(x; t) =

{
ming∈De(x) C

+
g (xg; tg) if De(x) 6= ∅,

+∞ else,

the minimum alternative cost when exchanging e. The following theorem gives a
necessary and sufficient condition for the optimality of a solution of a polymatroid
optimization problem.

Theorem 3.1 (see Fujishige [10]). x∗ ∈ Bf (d) is an optimal solution for P (t, d)
if and only if C−e (x∗e; te) ≤ ∆e(x

∗; t) for all e ∈ E.

Using these conditions, we proceed to establish the first sensitivity result, which
relates optimal solutions for changed values of t.
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Theorem 3.2. Let P (t, d) be a regular convex optimization problem with optimal
solution x∗(t, d), and let t′ = t + χe∗ for some e∗ ∈ E. Let

g∗ ∈

{
arg ming∈De∗ (x∗(t,d)){C+

g (xg; tg)} if De∗(x
∗(t, d)) 6= ∅,

{e∗} else.

Then the better of the two solutions, x∗(t, d) and x∗(t, d)− χe∗ + χg∗ , is optimal for
P (t′, d).

Proof. When De∗(x
∗(t, d)) = ∅, then x∗(t, d) trivially satisfies the optimality

conditions of Theorem 3.1 for any parameter vector t′, and there is nothing left to
show. Thus, let us assume De∗(x) 6= ∅. Let x = x∗(t, d) and y = x− χe∗ + χg∗ 6= x.

First, consider the case C−e∗(xe∗ ; te∗ + 1) ≤ ∆e∗(x; t). We claim that x is still an
optimal solution to P (t′, d), as it satisfies the optimality conditions

C−e (xe; t
′
e) ≤ ∆e(x; t′) for all e ∈ E.(3.1)

To see this, note that by Assumption 1 (using (2.1)), we get ∆e(x; t′) ≥ ∆e(x; t) for
all e ∈ E as t′e ≥ te. This directly implies that (3.1) is satisfied for all e 6= e∗. To see
the inequality also for e∗, observe that

C−e∗(xe∗ ; t
′
e∗) = C−e∗(xe∗ ; te∗ + 1) ≤ ∆e∗(x; t) = ∆e∗(x; t′),

where for the last equality we used that C+
g (xg; tg) = C+

g (xg; t′g) for all g 6= e∗.

Second, consider the case C−e∗(xe∗ ; te∗ + 1) > ∆e∗(x; t). We proceed to show that
y is then optimal for P (t′, d) by checking the optimality conditions of Theorem 3.1
for all e ∈ E = {e∗} ∪ {g∗} ∪ E \ {e∗, g∗}.

Case (A): e = e∗. We obtain

C−e∗(ye∗ ; te∗ + 1) = C−e∗(xe∗ − 1; te∗ + 1) ≤ C−e∗(xe∗ ; te∗) ≤ ∆e∗(x; t),

where the first inequality follows by the regularity of Ce∗ and the second since x is
optimal for P (t, d). Thus, the optimality conditions for e∗ are satisfied if ∆e∗(x; t) ≤
∆e∗(y; t′). To prove the latter inequality, we first show that De∗(y) ⊆ De∗(x). As-
sume by contradiction that there is g ∈ De∗(y) \De∗(x). This implies x−χe∗ +χg /∈
Bf (d). Hence, there must exist T ⊂ E with g ∈ T, e∗ /∈ T , and f(T ) = x(T ). On the
other hand, g ∈ De∗(y) implies y′ := y − χe∗ + χg = x − 2χe∗ + χg + χg∗ ∈ Bf (d).
Using g ∈ T, e∗ /∈ T, x(T ) = f(T ), this implies y′(T ) ≥ x(T ) + 1 = f(T ) + 1; hence,
y′ /∈ Bf (d), a contradiction.

Finally, let us show ∆e∗(x; t) ≤ ∆e∗(y; t′). This is trivial if De∗(y) = ∅. Other-
wise, we obtain

∆e∗(x; t) = min
g∈De∗ (x)

{C+
g (xg; tg)} = C+

g∗(xg∗ ; tg∗) ≤ C+
g∗(yg∗ ; tg∗) = C+

g∗(yg∗ ; t
′
g∗),

where for the inequality we used discrete convexity. Moreover, we obtain for all
g′ ∈ De∗(x) \ {g∗} the inequality

∆e∗(x; t) = min
g∈De∗ (x)

{C+
g (xg; tg)} ≤ C+

g′(xg′ ; tg′) = C+
g′(yg′ ; t

′
g′).

Putting things together, we get

∆e∗(x; t) ≤ min
g∈De∗ (x)

C+
g (yg; t′g) ≤ min

g∈De∗ (y)
C+

g (yg; t′g) ≤ ∆e∗(y; t′).

Case (B): e = g∗. For a contradiction, assume that there is g ∈ Dg∗(y) with

(3.2) C−g∗(yg∗ ; t
′
g∗) > C+

g (yg; t′g).
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Note that g 6= e∗ since

C−g∗(yg∗ ; t
′
g∗) = C−g∗(yg∗ ; tg∗) = C+

g∗(xg∗ ; tg∗)

< C−e∗(xe∗ ; te∗ + 1) = C+
e∗(ye∗ ; te∗ + 1) = C+

e∗(ye∗ ; t
′
e∗),

a contradiction to (3.2). Thus, g ∈ Dg∗(y) \ {e∗}. We obtain

y − χg∗ + χg = x− χe∗ + χg ∈ Bf (d),

which implies g ∈ De∗(x). Since g∗ minimizes C+
g (x; t) among all g ∈ De∗(x), we get

C−g∗(yg∗ ; t
′
g∗) = C−g∗(yg∗ ; tg∗) = C+

g∗(xg∗ ; tg∗) ≤ C+
g (xg; tg) = C+

g (yg; t′g), contradict-
ing (3.2).

Case (C): e ∈ E \ {e∗, g∗}. Assume by contradiction that there is g ∈ De(y) with

(3.3) C−e (ye; t
′
e) > C+

g (yg; t′g).

We first treat the case g = e∗, where (3.3) becomes

(3.4) C−e (ye; te) > C+
e∗(ye∗ ; te∗ + 1).

With e∗ ∈ De(y), we get y − χe + χe∗ = x − χe + χg∗ ∈ Bf (d); hence, g∗ ∈ De(x).
We get

C+
e∗(ye∗ ; te∗ + 1) < C−e (ye; te)(using (3.4))

= C−e (xe; te)(using e ∈ E \ {e∗, g∗})
≤ C+

g∗(xg∗ ; tg∗)(since x was optimal for t)

< C−e∗(xe∗ ; te∗ + 1)(since x was not optimal for t′)

= C+
e∗(ye∗ ; te∗ + 1),(since y = x− χe∗ + χg∗)

a contradiction.
From now on, we may assume g ∈ E \ {e∗}. We claim that the following two

properties are satisfied:
(a) x− χe + χg∗ ∈ Bf (d);
(b) x− χe∗ + χg ∈ Bf (d).

This claim has also been used in the proof of Theorem 4.11 in Fujishige [10]. In order
to keep our analysis self-contained, we provide an alternative proof of fact (a) and (b)
below.

Before proving these properties, however, we show that they give the desired
contradiction to (3.3). First note that (a) implies g∗ ∈ De(x), which together with
the optimality of x for t implies C−e (ye; t

′
e) = C−e (xe; te) ≤ C+

g∗(xg∗ ; tg∗). Similarly,

(b) implies g ∈ De∗(x), which by the choice of g∗ implies C+
g∗(xg∗ ; tg∗) ≤ C+

g (xg; tg).
Finally, we have C+

g (xg; tg) ≤ C+
g (yg; tg) = C+

g (yg; t′g) by discrete convexity and the
fact that yg ≥ xg for all g ∈ E \ {e∗}. Combining all three inequalities, we obtain
C−e (ye; t

′
e) ≤ C+

g (yg; t′g), a contradiction to (3.3).
It remains to prove properties (a) and (b). Denote

y′ := y − χe + χg = x + χg∗ − χe∗ − χe + χg ∈ Bf (d).

We will first show that x − χe + χg /∈ Bf (d). Assume by contradiction that
x− χe + χg ∈ Bf (d). We then obtain

C−e (xe; te) = C−e (ye; t
′
e) > C+

g (yg; t′g) = C+
g (yg; tg) ≥ C+

g (xg; tg),(3.5)
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where for the first identity we used e ∈ E \{e∗, g∗}, the first inequality used (3.3), the
second identity used g 6= e∗, and the last inequality used g 6= e∗, discrete convexity
and yg ≥ xg for all g ∈ E \ {e∗}. This implies that x was not optimal for P (t, d), a
contradiction.

We conclude that x−χe +χg /∈ Bf (d), but y′ = x−χe +χg−χg∗ +χe∗ ∈ Bf (d).
Thus, there exists some set S ⊂ E with x(S) = f(S) and

(3.6) {g, e∗} ⊆ S and {e, g∗} ∩ S = ∅.

It follows that x(S) = y′(S) = f(S).
We proceed to show (a). For the sake of a contradiction, suppose that x− χe +

χg∗ 6∈ Bf (d). Using g ∈ De(y) and, thus, xe = ye ≥ 1, this implies the existence of a
set T ⊂ E with x(T ) = f(T ), g∗ ∈ T , and e 6∈ T . Since y = x − χe∗ + χg∗ ∈ Bf (d),
it follows that e∗ ∈ T . Moreover, since y′ = y − χe + χg ∈ Bf (d) and e 6∈ T , we have
g 6∈ T . Hence, y′(T ) = x(T ) = f(T ). By submodularity of f , the identities x(S) =
y′(S) = f(S) and x(T ) = y′(T ) = f(T ) imply x(S ∩ T ) = y′(S ∩ T ) = f(S ∩ T ) and
x(S∪T ) = y′(S∪T ) = f(S∪T ). Together with e∗ ∈ S∩T and {e, g∗, g}∩(S∩T ) = ∅,
we arrive at the desired contradiction

(3.7) f(S ∩ T ) = x(S ∩ T ) = y′(S ∩ T )− 1 = f(S ∩ T )− 1.

Thus, x− χe + χg∗ ∈ Bf (d), as claimed.
In a similar way, we show (b). For the sake of a contradiction, suppose x−χe∗ +

χg 6∈ Bf (d). Since De∗(x) 6= ∅ and, thus, xe∗ ≥ 1, this implies the existence of a set
U ⊂ E with x(U) = f(U), g ∈ U , and e∗ 6∈ U . Since y′ = x− χe∗ + χg∗ − χe + χg ∈
Bf (d), we further have e ∈ U and g∗ 6∈ U , implying y′(U) = f(U) and g ∈ S ∩ U .
Just as for (a), x(S) = y′(S) = f(S) and x(U) = y′(U) = f(U) leads to the desired
contradiction

f(U ∩ S) = x(U ∩ S) = y′(U ∩ S)− 1 = f(U ∩ S)− 1.

We have treated all cases, and the theorem follows.

In a similar manner, it can be shown that at most a single local improvement step
suffices to obtain a new optimal solution for any parameter shift of type t′ = t−χe∗ .
We conclude with the following corollary.

Corollary 3.3. Let P (t, d) be a regular convex optimization problem. Then, for
every optimal solution x∗(t, d) to P (t, d) and every t′ with ‖t− t′‖1 = 1, there is an
optimal solution x∗(t′, d) for P (t′, d) satisfying

‖x∗(t, d)− x∗(t′, d)‖1 ≤ 2.(3.8)

We now turn to the impact of a change of the parameter d on optimal solutions
of P (t, d).

Theorem 3.4. Let D ⊂ N denote the set of possible integral values of d. Let
P (t, d) be a family of regular optimization problems with Bf (d) 6= ∅ for all d ∈ D.

Then, for every d, d′ ∈ D with |d− d′| = 1 and every optimal solution x∗(t, d) to
P (t, d), there is an optimal solution x∗(t, d′) for P (t, d′) with

‖x∗(t, d)− x∗(t, d′)‖1 ≤ |d− d′| = 1.(3.9)D
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Proof. We here only prove the case d′ = d+1; the case d′ = d−1 follows similarly.
Define the set of resources with slack with respect to x := x∗(t, d) as

S(x) := {e ∈ E : x + χe ∈ Bf (d+ 1)}.

Since by assumption d + 1 ∈ D and thus Bf (d + 1) 6= ∅, we obtain S(x) 6= ∅ (cf.
Fujishige [10, Theorem 2.3, p. 35]).

We claim that the solution y := x + χg∗ is optimal for problem P (t, d′), where

g∗ ∈ arg ming∈S(x) C
+
g (xg; tg).

To prove the claim, we show that the optimality conditions of Theorem 3.1 are satis-
fied, i.e., C−e (ye; te) ≤ ∆e(y; t) for all e ∈ E. This is trivial if De(y) = ∅. Otherwise,
we distinguish two cases. If g∗ ∈ arg ming∈De(y){C+

g (yg; tg)}, we obtain

∆e(y; t) = C+
g∗(yg∗ ; tg∗) ≥ C+

g∗(xg∗ ; tg∗) ≥ C−e (xe; te) = C−e (ye; te),

where for the first inequality we used discrete convexity and for the second inequality
we used the optimality of x for Bf (d). If g∗ /∈ arg ming∈De(y){C+

g (yg; tg)}, we obtain

∆e(y; t) = min
g∈De(y)

{C+
g (yg; tg)} ≥ min

g∈De(x)
{C+

g (yg; tg)} = min
g∈De(x)

{C+
g (xg; tg)}

≥ C−e (xe; te) = C−e (ye; te),

where for the first inequality we used De(x) ⊇ De(y) for all e ∈ E \ {g∗} and for the
second inequality we used the optimality of x for Bf (d).

By inductively applying Theorems 3.2 and 3.4, we arrive at the following result.

Theorem 3.5. Let D ⊂ N denote the set of possible integral values of d, and let
P (t, d), d ∈ D be a set of regular optimization problem with Bf (d) 6= ∅ for all d ∈ D.
Then, for every optimal solution x∗(t, d) of P (t, d), d ∈ D, every d′ ∈ D, and every
t′, there is an optimal solution x∗(t′, d′) of P (t′, d′) with

‖x∗(t, d)− x∗(t′, d′)‖1 ≤ 2‖t− t′‖1 + |d− d′|.(3.10)

Note that for the proof, we can safely use induction on d also for those d’s with
d1, d2 ∈ D, d1 ≤ d ≤ d2, d /∈ D, as Bf (di) 6= ∅, i = 1, 2 implies Bf (d) 6= ∅. Moreover,
regularity of P (t, d) does not depend on d.

The proofs of Theorems 3.2 and 3.4 also show that after a parameter change,
a new optimal solution can be recovered by elementary exchange steps, that is, by
iteratively shifting one unit from one element to another or by adding one unit to an
element. We can summarize this discussion as follows.

Corollary 3.6. Let D ⊂ N denote the set of possible integral values of d. Let
P (t, d), d ∈ D be a set of regular optimization problems with Bf (d) 6= ∅ for all d ∈ D.
Then, for every optimal solution x∗(t, d) of P (t, d), d ∈ D, every d′ ∈ D, and every t′,
there is an optimal solution x∗(t′, d′) for P (t′, d′) that can be computed from x∗(t, d)
by performing at most ‖t− t′‖1 + |d− d′| elementary exchange steps.

In the following section, we apply the above sensitivity results to a quite general
class of noncooperative games, thereby establishing an existence and computability
result of pure Nash equilibria.
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4. Noncooperative games on polymatroids. We consider the following class
of games. There is a finite setN = {1, . . . , n} of players and a finite set E = {1, . . . ,m}
of elements. As it is standard in the congestion game literature, in this section we
refer to the elements e ∈ E as resources. Each player i is associated with a demand
di ∈ N and an integral polymatroid rank function fi : 2E → N that together define a
di-truncated integral polymatroid Pfi(di) with base polytope Bfi(di). A strategy of
player i ∈ N is to choose a vector xi = (xi,e)e∈E ∈ Bfi(di); i.e., player i chooses an
integral resource consumption xi,e ∈ N for each resource e such that the demand di
is exactly distributed among the resources and for each U ⊆ E not more than fi(U)
units of demand are distributed to the resources contained in U . Using the notation
xi = (xi,e)e∈E , the set Xi of feasible strategies of player i is defined as

Xi = Bfi(di) =
{
xi ∈ NE : xi(U) ≤ fi(U) for all U ⊆ E, xi(E) = di

}
,

where for a set U ⊆ E, we write xi(U) as shorthand for
∑

e∈U xi,e. The Cartesian
product X = X1 ×X2 × · · · ×Xn of the players’ sets of feasible strategies is the joint
strategy space. An element x = (xi)i∈N ∈ X is a strategy profile. For a resource e
and a strategy profile x ∈ X, we write xe =

∑
i∈N xi,e and x−i,e =

∑
j∈N\{i} xj,e.

The private cost of player i under strategy profile x ∈ X is defined as

πi(x) =
∑
e∈E

Ci,e(xi,e;x−i,e).

We assume that every Ci,e fulfills the conditions of Assumption 1. In the remain-
der of the paper, we will compactly represent the strategic game by the tuple G =
(N,X, (di)i∈N , (Ci,e)i∈N,e∈E). We use standard game theory notation. For a player
i ∈ N and a strategy profile x ∈ X, we write x as (xi,x−i). A best response of player i
to x−i is a strategy xi ∈ Xi with πi(xi,x−i) ≤ πi(yi,x−i) for all yi ∈ Xi. A pure
Nash equilibrium is a strategy profile x ∈ X such that for each player i, the strategy
xi is a best response to x−i.

4.1. Notable special cases. We proceed to illustrate that we obtain the well-
known classes of integer-splittable singleton congestion games and matroid congestion
games as special cases of congestion games on integer polymatroids.

4.1.1. Singleton integer-splittable congestion games. Tran-Thanh et al. [38]
consider singleton integer-splittable congestion games where each player i is associ-
ated with an integral demand di ∈ N that needs to be distributed integrally over a
player-specific subset Ei ⊆ E of resources. Every resource has a nondecreasing and
convex cost function ce : N→ R+, and the private cost of a player i is equal to

πi(x) =
∑
e∈E

ce(xi,e + x−i,e)xi,e.

We proceed to show that this class of games is contained in the class of polyma-
troid games as a special case.

Proposition 4.1. Singleton integer-splittable congestion games are polymatroid
games.

Proof. For i ∈ N and U ⊆ E, we let

fi(U) =

{
di if U ∩ Ei 6= ∅,
0 otherwise.
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For i ∈ N and e ∈ E, we let Ci,e(xi,e;x−i,e) = ce(xi,e +x−i,e)xi,e. First, we show that
the functions fi are normalized, monotone, and submodular. For submodularity, it
suffices to show that f(U ∪{v})−f(U) ≥ f(V ∪{v})−f(V ) for all U ⊆ V and v /∈ U .
The inequality can only be violated if f(V ∪ {v})− f(V ) = di, which implies v ∈ Ei

and V ∩Ei = ∅. This, however, implies U ∩Ei = ∅ and, thus, f(U ∪{v})−f(U) = di.
We proceed to show that the cost functions are regular provided that ce is nonde-

creasing and convex. Discrete convexity is easy to verify. For regularity, we compute
for arbitrary i ∈ N and e ∈ E

C−i,e(x; t+ 1) = ce(x+ t+ 1)x− ce(x+ t)(x− 1)

≤ ce(x+ t+ 1)(x+ 1)− ce(x+ t)x

= C−i,e(x+ 1; t),

where the inequality follows since c is nondecreasing.

4.1.2. Matroid congestion games with player-specific costs. Ackermann,
Röglin, and Vöcking [1] studied matroid congestion games with player-specific costs,
where each player i is associated with a matroid Mi = (Ei, Ii, ) defined on some
player-specific subset Ei ⊆ E. The strategy space for every i ∈ N is equal to the set
Bi of bases of Mi. Given a strategy profile (B1, . . . , Bn) with Bj ∈ Bj for all players j,
the private cost of player i is defined as

πi(B1, . . . , Bn) =
∑
e∈Bi

ci,e(|{j ∈ N : e ∈ Bj}|),

where the functions ci,e : N → R+ with i ∈ N and e ∈ E are nondecreasing. We
proceed to show that this class of games is contained in the class of polymatroid
games as a special case.

Proposition 4.2. Matroid congestion games are polymatroid games.

Proof. For a player i, we associate with each basis Bi ∈ Bi its characteristic vector
xi(Bi) = (xi,e(Bi))e∈E defined as

xi,e(Bi) =

{
1 if e ∈ Bi

0 otherwise.

It is well known that for each matroid Mi = (Ei, Ii), there is a function rk : Ei → N,
called the rank function of the matroid, such that

{xi(Bi) : Bi ∈ Bi} = {xi ∈ NEi : xi(Ei) = rk(Ei) and xi(U) ≤ rk(U) for all U ⊆ Ei}.

Moreover, the rank function is normalized, monotone, and submodular. We let
fi(U) = rk(U∩Ei) and let di = rk(Ei). Then fi is submodular since for all U, V ∈ 2E ,
we have

fi(U) + fi(V ) = rk(U ∩ Ei) + rk(V ∩ Ei)

≥ rk((U ∩ Ei) ∪ (V ∩ Ei)) + rk(U ∩ V ∩ Ei)

= fi(U ∪ V ) + fi(U ∩ V ),

where the inequality uses the submodularity of the rank function.
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For i ∈ N and e ∈ E, let

Ci,e(xi,e;x−i,e) =

{
ci,e(xi,e + x−i,e) if xi,e = 1,

0 if xi,e = 0,

and note that the rank function is subcardinal, i.e., rk(U) ≤ |U | for all U ⊆ E, so that
rk({r}) ≤ 1 for all e ∈ E, and thus Ci,e is well defined. As a consequence, we need
to require regularity and discrete convexity only for x ∈ {0, 1}. As for regularity, we
obtain

Ci,e(0; t+ 1) = 0 ≤ ci,e(1 + t) = Ci,e(1; t)

for all t ∈ N by the nonnegativity of ci,e. As for discrete convexity, we do not need to
require discrete convexity of the function x 7→ C(x; t), as x only takes two different
values. Moreover, since Ci,e(0; t) = 0 for all t, we only have to check that t 7→ Ci,e(1; t)
is discrete convex. To this end, we calculate

C−i,e(1; t) = ci,e(1 + te)− ci,e(1 + te − 1)

≤ ci,e(1 + te + 1)− ci,e(1 + te),

where we used that ci,e is nondecreasing.

5. Equilibrium existence. In this section, we give an algorithm that computes
a pure Nash equilibrium for polymatroid games. Our algorithm relies on the two
sensitivity results stated in Theorems 3.2 and 3.4.

5.1. The algorithm. Both sensitivity results are used as the main building
blocks for the Algorithm in Figure 1 that computes a pure Nash equilibrium for
congestion games on integral polymatroids. The algorithm maintains preliminary
demands, strategy spaces, and strategies of the players denoted by d̄i ≤ di, X̄i =
Xi(d̄i), and xi ∈ X̄i, respectively. Initially, d̄i is set to zero for all i ∈ N , and the
strategy profile, where the strategy of each player equals the zero vector, is a pure
Nash equilibrium for this game, in which the demand of each player is zero.

Then in each round, for some player i, the demand is increased from d̄i to d̄i + 1,
and a best response yi ∈ X(d̄i + 1) with ‖xi−yi‖1 = 1 is computed; see line 5 in the
algorithm. By Theorem 3.4, such a best response always exists. In effect, the load on
exactly one resource e increases, and only those players j with xj,e > 0 on this resource
can potentially decrease their private cost by a deviation. By Theorem 3.2, a best
response of such players consists w.l.o.g. of moving a single unit from this resource to
another resource; see line 8 in the algorithm. As a consequence, during the while-loop
(lines 7–9), only one additional unit (compared to the previous iteration) is moved,
preserving the invariant that only players using a resource to which this additional
unit is assigned may have an incentive to profitably deviate. Thus, if the while-loop
is left, the current strategy profile x is a pure Nash equilibrium for the reduced game
Ḡ = (N, X̄, d̄, (Ci,e)i∈N,e∈E).

Now we are ready to prove the main existence result.

Theorem 5.1. Polymatroid games possess a pure Nash equilibrium.

Proof. We prove by induction on the total demand d =
∑

i∈N di of the input
game G = (N,X, (di)i∈N , (Ci,e)i∈N,e∈E) that the algorithm computes a pure Nash
equilibrium of G.
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Input: G = (N,X, (di)i∈N , (Ci,e)i∈N,e∈E)
Output: pure Nash equilibrium x

1 d̄i ← 0, X̄i ← Xi(0) and xi ← 0 for all i ∈ N ;
2 for k = 1, . . . ,

∑
i∈N di do

3 Choose i ∈ N with d̄i < di;
4 d̄i ← d̄i + 1; X̄i ← Xi(d̄i);
5 Choose a best response yi ∈ X̄i with ‖yi − xi‖1 = 1;
6 xi ← yi;
7 while ∃i ∈ N who can improve in Ḡ = (N, X̄, d̄, (Ci,e)i∈N,e∈E) do
8 Compute a best response yi ∈ X̄i with ‖yi − xi‖1 = 2;
9 xi ← yi;

10 Return x;

Fig. 1. Computation of a pure Nash equilibrium.

For d = 0, this is trivial. Suppose that the algorithm works correctly for games
with total demand d− 1, for some d ≥ 1, and consider a game G with total demand
d. Let us assume that in line 3, the algorithm always chooses a player with minimum
index. Consider the game G′ = (N,X, (d′i)i∈N , (Ci,e)i∈N,e∈E) that differs from G only
in the fact that the demand of the last player n is reduced by one, i.e., d′i = di for
all i < n and d′n = dn − 1. Then, when running the algorithm with G′ as input, the
d − 1 iterations (of the for-loop) are equal to the first d − 1 iterations when running
the algorithm with G as input. Thus, with G as input, we may assume that after the
first d − 1 iterations, the preliminary strategy profile that we denote by x′ is a pure
Nash equilibrium of G′.

We analyze the final iteration k = d of the algorithm in which the demand of
player n is increased by 1 (see line 4). In line 5, a best reply yn with ‖xn − yn‖1 = 1
is computed which exists by Lemma 3.4. Then, as long as there is a player i that can
improve unilaterally, in line 8, a best response yi with ‖yi − xi‖1 = 2 is computed
which exists by Lemma 3.2.

It remains to show that the while-loop in lines 7–9 terminates. To prove this, we
give each unit of demand of each player i ∈ N an identity denoted by ij , j = 1, . . . , di.
For a strategy profile x, we define r(ij ,x) ∈ E to be the resource to which unit
ij is assigned in strategy profile x. Let xl be the strategy profile after line 8 in
the algorithm has been executed the lth time, where we use the convention that x0

denotes the preliminary strategy profile when entering the while-loop. As we chose
in line 5 a best reply yn of player n with ‖xn − yn‖1 = 1, there is a unique resource
e0 such that x0e0 = x′e0 + 1 and x0e = x′e for all e ∈ E \ {e0}. Furthermore, because
we choose in line 8 a best response yi with ‖yi − xi‖1 = 2, a simple inductive claim
shows that after each iteration l of the while-loop, there is a unique resource el ∈ E
such that xlel = x′el + 1 and xle = x′e for all e ∈ E \ {el}.

For any xl during the course of the algorithm, we define the marginal cost of unit
ij under strategy profile xl as

∆ij (xl) =

{
C−i,e(x

l
i,e;x

l
−i,e) if e = e(ij ,x

l) = el,

C−i,e(x
l
i,e;x

l
−i,e + 1) if e = e(ij ,x

l) 6= el.
(5.1)

Intuitively, if e(ij ,x
l) = el, then the value ∆ij (xl) measures the cost saving on re-

source e(ij ,x
l) if ij (or any other unit of player i on resource e(ij ,x

l)) is removed
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from e(ij ,x
l). If e(ij ,x

l) 6= el, then the value ∆ij (xl) measures the cost saving if ij
is removed from e(ij ,x

l) after the total allocation has been increased by one unit by
some other player. For a strategy profile x, we define ∆(x) = (∆ij (x))i=1,...,n,j=1,...,di

to be the vector of marginal costs and let ∆̄(x) be the vector of marginal costs sorted
in nonincreasing order. We claim that ∆̄(x) decreases lexicographically during the
while-loop. To see this, consider an iteration l in which some unit ij of player i is
moved from resource el−1 to resource el.

For proving ∆̄(xl) <lex ∆̄(xl−1), we first observe that we only have to care for
∆-values that correspond to units ij of the deviating player i because for all players
h 6= i, we obtain ∆hj (xl−1) = ∆hj (xl) for all j = 1, . . . , dh. This follows immediately
if hj is assigned to neither el−1 nor el. If hj is assigned to el−1 or el, then we switch
the case in (5.1), and the claimed equality still holds. It remains to consider the ∆-
values corresponding to the units of the deviating player i. Recall that the deviation
of player i consists of moving unit ij from resource el−1 to resource el. We obtain

∆ij (xl−1) = C−i,el−1
(xl−1i,el−1

;xl−1−i,el−1
)

> C+
i,el

(xl−1i,el
;xl−1−i,el)

= C−i,el(x
l−1
i,el

+ 1;xl−1−i,el)

= C−i,el(x
l
i,el

;xl−i,el)

= ∆ij (xl),

where the strict inequality follows since player i strictly improves. For every unit im
of player i that is assigned to resource el as well, i.e, e(im,x

l) = e(ij ,x
l) = el, we

have ∆ij (xl) = ∆im(xl) since the ∆-value is the same for all units of a single player
assigned to the same resource. The ∆-values of such units im might have increased,
but only to the ∆-value of unit ij .

Next, consider the ∆-values of a unit im assigned to resource el−1, i.e., e(im,x
l) =

e(ij ,x
l−1) = el−1. We obtain

∆im(xl) = C−i,el−1
(xli,el−1

;xl−i,el−1
+ 1)

= C−i,el−1
(xl−1i,el−1

− 1;xl−1−i,el−1
+ 1)

≤ C−i,el−1
(xl−1i,el−1

;xl−1−i,el−1
)

= ∆im(xl−1),

where for the inequality we used that Ci,el−1
is regular. Altogether, the ∆-values of all

units of all players h 6= i have not changed, for player i the ∆-values of remaining units
assigned to resource el−1 decreased, and the ∆-values assigned to resource el increased
exactly to ∆ij (xl), which is strictly smaller than ∆ij (xl−1). Thus, ∆̄(xl) <lex ∆̄(xl−1)
follows.

The following corollary states an upper bound on the number of iterations of the
algorithm in terms of δ = maxi∈N di.

Theorem 5.2. The number of best responses computed by Algorithm 1 is bounded
from above by n2mδ3.

Proof. The algorithm successively adds units of demands to the system starting
with zero units and terminating with

∑
i∈N di ≤ nδ units. To prove the theorem,

we show that for a fixed number of k units in the system, the number of best replies
computed by the algorithm during the while loop in lines 7–9 is bounded by nmδ2.
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Fix an arbitrary unit of demand ij of an arbitrary player i, and consider its
marginal cost value ∆ij during the execution of the while loop in lines 7–9. By
definition of the ∆ij , the value ∆ij only changes either when another unit il of player i
enters or leaves the resource that ij is assigned to or ij is assigned to another resource.
Since the number of resources ij can be assigned to is bounded by m and the number
of other units of player i assigned to the same resource as ij is bounded by δ, there
are at most mδ different values that ∆ij can take. Moreover, for every best reply
where ij is moved, the value ∆ij strictly decreases so that we can conclude that unit
ij is moved at most mδ times during the while loop in lines 7–9. Note that the strict
monotonicity of the ∆ij -values follows directly if we assume (for the analysis) that
units for any player i are moved in last-in-first-out order. The same reasoning applies
to any of the k ≤ nδ units; thus, the total number of best replies during the execution
of the while loop is bounded by nmδ2. This implies the claimed result.

6. Nonpolymatroid regions. The proofs of the results obtained in sections 3
and 4 relied on the fact that the function f is submodular, and thus the feasible
region of the optimization problem and the strategy spaces of the players, respec-
tively, are polymatroids. One may wonder whether polymatroids are the maximal
combinatorial structure for which these results hold. In this section, we will give an
affirmative answer to this question. In fact, we will work towards showing that for
every normalized, monotonic, and nonsubmodular function f , there is a convex and
regular optimization problem with feasible set

Bf (d) =
{
x ∈ NE : x(U) ≤ f(U) for all U ⊆ E, x(E) = d

}
(6.1)

with d ∈ N such that the sensitivity results of Theorems 3.2 and 3.4 do not hold.
Moreover, there is a game with convex and regular cost functions where the players’
strategies are isomorphic to (6.1) that does not have a pure Nash equilibrium. This
implies that also for the existence result of Theorem 5.1, the polymatroid structure
is maximal.

For ease of exposition, we assume that f is strictly positive in the sense that
f(U) > 0 for all U ∈ 2E \ ∅. This assumption can be made without loss of generality
since a nonempty set of resources U with f(U) = 0 is not used in any strategy anyway
and, thus, can effectively be removed from E.

Formally, let

X (d) = {Bf (d) : f is strictly positive, normalized and monotonic} ,
X ∗(d) = {Bf (d) : f is strictly positive, normalized, monotonic, and submodular}

denote the feasible regions that can be described by arbitrary and submodular func-
tions f , respectively.

First, note that X (1) = X ∗(1). To see this, note that f({e}) ≥ 1 as f is strictly
positive, so f does not encode any constraints on where the single unit of demand can
be put. Thus, the set of strategies can be described equivalently by a function f ′ with
f ′(U) = 1 for all U ∈ 2E \ {∅}. It is straightforward to verify that f ′ is submodular.

More interestingly, already for d = 2, the feasible regions contained in X (2) and
X ∗(2) differ. We start with the following observations regarding the feasible regions
in X (2) \ X ∗(2).

D
ow

nl
oa

de
d 

09
/0

1/
18

 to
 1

37
.2

50
.1

29
.2

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2240 TOBIAS HARKS, MAX KLIMM, AND BRITTA PEIS

Lemma 6.1. For any X ∈ X (2) \ X ∗(2), there are f : 2E → N and S, T ∈ 2E

such that
1. X = Bf (2) =

{
x ∈ NE : x(U) ≤ f(U) for all U ⊆ E, x(E) = 2

}
;

2. for any constraint x(U) ≤ f(U), there is x ∈ Bf (2) with x(U) = f(U);
3. f(S) = f(T ) = f(S ∩ T ) = 1 and f(S ∪ T ) = 2.

Proof. Since X ∈ X (2), there is a strictly positive, normalized, and monotonic
function f withX = Bf (d). Note that f is not submodular sinceX ∈ X ∗(2) otherwise.

To prove the second observation, suppose that there is U ′ ⊆ R such that x(U ′) <
f(U ′) for all x ∈ Bf (2). Consider the new function f ′ : 2E → N defined as

f ′(U) =

{
f(U) if U 6= U ′,

f(U)− 1 if U = U ′.

By construction, Bf (2) = Bf ′(2). Applying the above argumentation on f ′, we de-
rive that f ′ is not submodular as well. Decreasing the right-hand side of nontight
constraints iteratively in this manner, we finally obtain a nonsubmodular function
f : 2E → N with X = Bf (2) such that for any constraint of type x(U) ≤ f(U), there
is x ∈ Bf (2) with x(U) = f(U).

To prove the third observation, first note that x(E) = 2 together with the sec-
ond statement of the lemma implies that f(U) ≤ 2 for all U ⊆ E. Since f is not
submodular, there are sets S, T ∈ 2E such that

f(S) + f(T ) < f(S ∩ T ) + f(S ∪ T ).(6.2)

It is straightforward to verify that this inequality can only be satisfied when S and
T are nonempty. We claim that S ∩ T is nonempty as well. For the sake of a
contradiction, let us assume that (6.2) is satisfied by S, T ∈ 2E \ ∅ with S ∩ T = ∅.
Using the second statement of the lemma, there is a vector x ∈ Bf (2) such that the
constraint x(S ∪ T ) ≤ f(S ∪ T ) is tight, i.e., x(S ∪ T ) = f(S ∪ T ). Since S and T are
disjoint, we obtain x(S∪T ) = x(S)+x(T ) ≤ f(S)+f(T ) < f(S∪T ), a contradiction.
We have established that S, T , and S∩T are nonempty. Using the strict positivity of
f , this implies that f(S) ≥ 1, f(T ) ≥ 1, and f(S∩T ) ≥ 1. Together with f(S∪T ) ≤ 2
and the monotonicity of f , this implies that

f(S) = f(T ) = f(S ∩ T ) = 1 and f(S ∪ T ) = 2,(6.3)

as claimed.

We proceed to give two additional lemmas that give further structural results
regarding the sets S, T ∈ 2E \ ∅ for which the submodularity constraints are violated.
First, we show that each strategy whose support is contained in S ∪ T does not use a
resource in S ∩ T .

Lemma 6.2. Let f : 2E → N and S, T ∈ 2E be as guaranteed by Lemma 6.1.
Then, for any x ∈ Bf (2) with supp(x) ⊆ S ∪ T , we have supp(x) ∩ (S ∩ T ) = ∅.

Proof. Suppose there is x ∈ Bf (d) and a resource e ∈ E with supp(x) ⊆ S ∪ T
and e ∈ supp(x) ∩ S ∩ T . Because x is integral and f(S ∩ T ) = 1, this implies that
x(e) = 1. Since x(R) = 2 = x(S ∪ T ) and x(S ∩ T ) ≤ 1, there is another element
e′ 6= e with e′ ∈ S∆T and x(e′) = 1. It is without loss of generality to assume that
e′ ∈ S \ T . This, however, implies that x(S) ≥ x(e) + x(e′) = 2, a contradiction to
x(S) ≤ 1.
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Combining the two previous lemmas, we derive the existence of four distinct
critical elements which are used by two vectors with disjoint supports.

Lemma 6.3. Let f : 2E → N be as guaranteed by Lemma 6.1. Then there are four
distinct elements e1, e2, e3, e4 ∈ E and two vectors x,y ∈ Bf (2) with the following
properties:

1. x(e1) = x(e2) = 1 for some e1 ∈ E \ (S ∪ T ) and e2 ∈ S ∩ T .
2. y(e3) = y(e4) = 1 for some e3 ∈ S \ T and e4 ∈ T \ S.
3. For all other strategies z ∈ Bf (2) \ {x,y} with supp(z) ⊆ {e1, e2, e3, e4}, one

of the following three cases holds:
(a) supp(z) = {e1, e3}.
(b) supp(z) = {e1, e4}.
(c) supp(z) = {e1}.

Proof. By Lemma 6.1, there is a strategy x for which the constraint x(S∩T ) ≤ 1
is tight. This implies the existence of a element e2 ∈ S ∩ T with x(e2) = 1. By
Lemma 6.2, supp(x) 6⊆ S ∪ T , implying the existence of a element e1 ∈ E \ (S ∪ T )
with x(e1) = 1.

By Lemma 6.1, there is also another strategy y for which the constraint x(S∪T ) ≤
2 is tight. First, note that y(r) ≤ 1 for all r ∈ S ∪ T , as otherwise the constraint
y(S) ≤ f(S) = 1 or y(T ) ≤ f(T ) = 1 would be violated. This implies the existence of
two distinct elements e3, e4 ∈ S ∪ T such that y(e3) = y(e4) = 1. Further, note that
e3, e4 /∈ S ∩ T , as otherwise Lemma 6.2 is violated. Using y(S) ≤ 1 and y(T ) ≤ 1, we
derive that e3 ∈ S \ T and e4 ∈ T \ S.

To see the last part of the claim, note that any strategy z with e2 ∈ supp(z) ⊆
{e1, e2, e3, e4} must have supp(z) = {e1, e2}, as otherwise the constraint z(S) ≤ 1
or z(T ) ≤ 1 is violated. Thus, z = x for any such z. Similarly, note that any
strategy z with a singleton support supp(z) = {e} with e ∈ {e1, e2, e3, e4} must have
supp(z) = {e1}, as otherwise the constraint z(S) ≤ 1 or z(T ) ≤ 1 is violated. These
two observations leave only room for the strategies as in part 3 of the statement of
the lemma.

6.1. Violation of sensitivity results (Corollary 3.3) and Theorem 3.4.
We first show that for any feasible region X ∈ X (2) \X∗(2) that is not described by
a submodular capacity constraint, the sensitivity results of Corollary 3.3 do not hold.

Theorem 6.4. For any X ∈ X (2) \ X∗(2), there is an optimization problem of
the form

minimize
∑
e∈E

Ce(xe; te)

subject to x ∈ X

with regular functions Ce, e ∈ E, and parameters t, t′ ∈ NE such that ‖t − t′‖1 = 1
but ‖x∗(t, 2)− x∗(t′, 2)‖1 > 2.

Proof. By Lemma 6.3, there are four critical elements e1, e2, e3, e4 such that X
can be decomposed in the following way:

X = {x,y} ∪Xcrit ∪Xout,

where supp(x) = {e1, e2}, supp(y) = {e3, e4}. The set

Xcrit = {z ∈ X : supp(z) ∈ {{e1, e3}, {e1, e4}, {e1}}}
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contains an arbitrary subset of vectors whose support is a subset of the four critical
resources but that are not contained in {x,y}. By Lemma 6.3, the only supports that
can occur for vectors in Xcrit are {e1, e3},{e1, e4}, and {e1}. Finally, the set Xout

contains all vectors whose support contains a noncritical element.
Let

Ce(xe; te) = (xe + te)
2 for e ∈ {e1, e2},

Ce(xe; te) = (xe + te)
2 + 1/2 for e ∈ {e3, e4},

Ce(xe; te) = 20 for all e ∈ E \ {e1, e2, e3, e4},

and consider the parameter vectors t = 0 and t′ = χe2 . It is easy to see that
x∗(t, 2) = χe1 + χe2 is the unique optimal solution for parameter vector t. On the
other hand, for t′ the unique optimal solution is x∗(t′, 2) = χ3 + χ4. We note that
‖x∗(t, 2)− x∗(t′, 2)‖1 = 4 even though ‖t− t′‖1 = 1 proving the claimed result.

With the same construction, it is also not hard to verify that also Theorem 3.4
does not continue to hold for any feasible region that is not a polymatroid.

Theorem 6.5. For any X ∈ X (2) \ X∗(2), there is an optimization problem of
the form

minimize
∑
e∈E

Ce(xe; te)

subject to x ∈ X

with regular functions Ce, e ∈ E and d, d′ ∈ NE, and t ∈ NE such that |d − d′| = 1
but ‖x∗(t, d)− x∗(t, d′)‖1 > 1.

Proof. With the same construction as in the proof of Theorem 6.4, we compute
that the unique optimal solution for t = χe2 and d = 1 is x∗(χe2 , 1) = χe1 . However,
as argued in the proof of Theorem 6.4, x∗(χe2 , 2) = χe3 +χe4 . We obtain ‖x∗(χe1 , 2)−
x∗(χe2 , 2)‖1 = 3, proving the claimed result.

6.2. Violation of the existence of equilibria (Theorem 5.1). We proceed
to show that also the existence result for pure Nash equilibria of Theorem 5.1 does
not continue to hold. In fact, for any nonpolymatroid structure X ∈ X (2) \ X ∗(2),
there is a two-player game where both players’ strategies are isomorphic to X that
does not have a pure Nash equilibrium.

Theorem 6.6. For any X ∈ X (2)\X ∗(2), there is a two-player game with regular
player-specific costs and strategy sets isomorphic to Bf (2) that does not have a pure
Nash equilibrium.

Proof. Let f be as guaranteed by Lemma 6.1. By Lemma 6.3, for every player i ∈
{1, 2}, there are four critical resources e1i , e

2
i , e

3
i , e

4
i such that the strategy set Xi of

player i can be decomposed as

Xi = {xi,yi} ∪Xopt
i ∪Xout

i ,

where supp(xi) = {e1i , e2i } and supp(yi) = {e3i , e4i }. The set

Xcrit
i =

{
zi ∈ Xi : supp(zi) ∈

{
{e1i , e3i }, {e1i , e4i }, {e1i }

}}D
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strategy y2 x2 Xcrit
2︷ ︸︸ ︷ Xout

2

supp {a, h} {b, g} {a, g} {h, g} {g}
y1 {a, b} 1+1, 1+0 0+1, 0+2 1+1, 1+2 0+1, 0+2 0+1, 2+2 · ,≥20

x2 {h, g} 0+0, 1+2 0+3, 0+2 0+3, 1+2 0+3, 2+2 0+6, 2+2 · ,≥20

Xcrit
1


{a, g} 1+0, 1+0 0+3, 0+2 1+3, 1+2 0+3, 0+2 0+6, 2+2 · ,≥20

{b, g} 1+0, 1+0 1+3, 0+2 1+3, 1+2 1+3, 0+2 1+6, 2+2 · ,≥20

{g} 3+3, 1+0 6+6, 0+2 6+6, 1+2 6+6, 0+2 9+9, 2+2 · ,≥20

Xout
1 ≥20, · ≥20, · ≥20, · ≥20, · ≥20, · ≥20,≥20

Fig. 2. Game without a pure Nash equilibrium as constructed in the proof of Theorem 6.6.

contains a possibly empty subset of strategies whose support is contained in the set
of critical resources {e1i , e2i , e3i , e4i }, and the set

Xout
i =

{
zi ∈ Xi : supp(zi) \ {e1i , e2i , e3i , e4i } 6= ∅

}
contains a possibly empty subset of strategies that contains a noncritical resource
e ∈ E \ {e1i , e2i , e3i , e4i }. Next, we describe how the set of strategies of both players are
interweaved. For our purposes, it is sufficient to specify the critical resources of the
two players. To this end, let a, b, h, g be four resources such that

e11 = g, e12 = g,

e21 = e, e22 = h,

e31 = a, e32 = a,

e41 = b, e42 = b.

Consider the following player-specific cost functions:

c1,a(x) = max{0, x− 1}, c2,a(x) = 1,

c1,b(x) = 1, c2,b(x) = 0,

c1,h(x) = 0, c2,h(x) = max{0, 2x− 2},
c1,g(x) = max{0, 3x− 3}, c2,g(x) = 2.

For any noncritical resource e ∈ E \ {a, b, e, g}, we define

c1,e(x) = 20, c2,e(x) = 20.

For a player i ∈ {1, 2} and e ∈ E, we let Ci,e(xe;x−i,e) := ci,e(xi,e+x−i,e)xi,e. The
resulting private costs of the players are shown in Figure 2. Note that by Lemma 6.3,
for every player i we are only guaranteed the existence of the two strategies xi and
yi shown in the upper left part of the bimatrix. As shown in Lemma 6.3, any other
strategy zi contains either a noncritical resource and is thus contained in the subset
of strategies Xout

i or contains only critical resources and is contained in the subset of
strategies Xcrit

i . The bimatrix in Figure 2 has the property that there is no pure Nash
equilibrium no matter which subset of the strategies in Xcrit

i or whether a strategy
in Xout

i is actually present. We may thus conclude that no matter how the sets of
strategies described by f specifically look like, no pure Nash equilibrium exists.

Acknowledgments. We thank Satoru Fujishige and two anonymous referees for
helpful suggestions that improved the presentation of the paper.
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