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a b s t r a c t

Bottleneck routing games are a well-studied model to investigate the impact of selfish behavior in
communication networks. In this model, each user selects a path in a network for routing her fixed
demand. The disutility of a user only depends on the most congested link visited. We extend this model
by allowing users to continuously vary the demand rate at which data is sent along the chosen path. As
our main result we establish tight conditions for the existence of pure strategy Nash equilibria.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Bottleneck routing games are a theoretical model to study the
effects of resource allocation in distributed communication net-
works [1,4]. Every user of the network is associated with a non-
negative demand that she wants to send from her source to the
respective destination, and her goal is to find a path thatminimizes
the congestion of the most congested link. It has been argued
(cf. [5,28]) that in the context of packet-switched communication
networks, the performance of a path is more closely related to the
most congested link than the classical sum-aggregation of costs
(as in [18,29,34]), and there are several proposals (cf. [26,36]) for
replacing the sum-aggregation of congestion costs with the max-
aggregation, primary, because the max-aggregation leads to favor-
able properties of protocols in terms of their stability in presence
of communication delays [36].

While bottleneck routing games are an important step in terms
of integrating routing decisions with bottleneck objectives, they
lack one fundamental tradeoff inherent in packet-switched com-
munication networks: once a path is selected, a user increases the
sending rate in case of low congestion and decreases it in case of
high congestion. In this paper, we address this tradeoff by intro-
ducing bottleneck congestion games with elastic demands, where
users can continuously vary their demands. Formally, there is a
finite set of resources and a strategy of a player is a tuple consisting
of a subset of resources and a demand. Resources have player-
specific cost functions that are non-decreasing and strictly convex.
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Every user is associated with a non-decreasing strictly concave
utility function measuring the received utility from sending at a
certain demand rate (cf. [18,31]). The goal of a user is to select both
a subset of resources and a demand rate that maximizes the utility
(from the demand rate) minus the congestion cost on the most ex-
pensive resource contained in the chosen resource set. Our model
thus integrates as a special case (i) single-path routing (which is
up to date standard as splitting packets over several routes leads to
different packet inter-arrival times and synchronization problems)
and (ii) congestion control via data rate adaption based on the
maximum congestion experienced.

1.1. Our results

We derive conditions for the cost functions that ensure that the
resulting bottleneck congestion gameswith elastic demands admit
a pure Nash equilibrium (PNE). The existence of pure Nash equilib-
ria is favorable for large communication network as they provide a
deterministic steady state fromwhich no player has an incentive to
deviate. Mixed Nash equilibria, on the other hand are less desirable
as they may lead to oscillating route choices which degrade the
performance of the system [21]. Our condition requires that for
every player the player-specific resource cost functions are non-
decreasing, strictly convex and equal up to resource specific shifts
in their argument. While monotonicity and convexity are natural
conditions, the last assumption seems limiting. We can show,
however, that without it there are examples without any PNE. Our
proof is constructive, i.e., we devise an algorithm that computes a
PNE.

Our results thus give further indication that the max-aggrega-
tion of congestion costs has desirable properties in terms of equi-
librium existence. Specifically, our results imply that networks
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with M/M/1 functions (cf. [23]) possess a PNE, if congestion costs
are aggregated with the maximum. This stands in contrast to the
classical sum-aggregation of congestion costs, where PNE need not
exist [12].

An extended abstract of the results presented in this paper
appeared in Harks et al. [14].

1.2. Related work

Bottleneck routing games with fixed demands admit strong
equilibria [13,24], a strengthening of PNE that are resilient to
coordinated deviations of groups of players. The complexity of
computing PNE and strong equilibria in these games was inves-
tigated in [9]. For works on the price of anarchy of PNE and the
worst-case quality of strong equilibria we refer to [2,3,5,7,16,17].
Further related is the model of [25] who studied generalizations of
congestion games in which the sum-aggregation is replaced by an
arbitrary aggregation function.

In previous work [11], we established the existence of an equi-
librium for a class of aggregative location games. This result implies
the existence of a PNE for the present model when the allowable
sets of resource of players contain singletons only. Congestion
games with variable demands coincide with the present model
except that the traditional sum-aggregation of costs is used. For
these games only affine and certain exponential cost functions lead
to the existence of PNE [12]. These results imply that for M/M/1
delay functions a PNE does not always exist.

Integrated routing and congestion control has been studied
in [8,19,20,32,33], where the existence of a PNE is proved by
relating it to optimal solutions of an associated convex utility
maximization problem. These models require that every user pos-
sibly splits the flow among a number of paths that may even be
exponential in the size of the underlying graph. This issue has been
addressed in [6,27], where controllable route splitting at routers is
assumed which can effectively limit the resulting number of used
routes. For all the above models, however, the end-to-end appli-
cations may suffer in service quality due to packet jitter caused
by different path delays. Partly because of this issue, the standard
TCP/IP protocol suite still uses single path routing. Also in contrast
to our model, all these models assume that congestion feedback is
aggregated via the sum instead of the max operator.

Another model for resource allocation in telecommunication
networks is the class of MAXBAR-games. Here, players select a
single path in a network with fixed edge capacities. Then, all
players synchronously increase their rate until the capacity of an
edge is reached. After such an event all rates of users using this tight
edge are fixed. MAXBAR games possess a PNE [35], and a strong
equilibrium [10] evenwhen the rate increase is non-homogeneous.

2. The model

Let R = {1, . . . ,m} be a nonempty and finite set of m ∈ N
resources, and let N = {1, . . . , n} be a nonempty and finite set
of n ∈ N players. For every i ∈ N, let Xi ⊂ 2R

\ {∅} be a nonempty
set of nonempty subsets of resources available to player i and let
X = ×i∈NXi denote their Cartesian product. We call xi ∈ Xi an
allocation of player i and we denote by x = (xi)i∈N ∈ X the overall
allocation vector. For every player i and every resource r ∈ R we
are given a player-specific cost function ci,r : R≥0 → R≥0. Every
player i ∈ N has a utility function Ui : [σi, τi] → R≥0 where
[σi, τi] ⊆ R≥0 with σi ∈ R≥0, τi ∈ R≥0 ∪ {∞}, σi ≤ τi is the
interval of feasible demands of player i. A vector d = (di)i∈N with
di ∈ [σi, τi] is called a demand vector. A bottleneck congestion
game with elastic demands is a maximization game G = (N, S, π )
with Si = Xi × [σi, τi] for all i ∈ N . We set S = ×i∈NSi and
for s = (x, d) ∈ S , we define the private payoff function of

player i as πi(s) := Ui(di) − maxr∈xi
{
ci,r

(
ℓr (x, d)

)}
. Here, ℓr (s) =

ℓr (x, d) =
∑

j∈N:r∈xj
dj is the loadof resource r under strategy profile

s = (x, d). We impose the following assumptions on the utility and
cost functions, respectively.

Assumption 2.1. For every player i, the following properties are
satisfied:

(A1) the utility function Ui : [σi, τi] → R≥0 is non-decreasing,
differentiable and strictly concave;

(A2) for every resource, the cost function ci,r : R≥0 → R≥0 is
non-decreasing, differentiable and strictly convex;

(A3) there is a function ci : R≥0 → R≥0 and player-independent
offsets υr ∈ R≥0 such that ci,r (t) = ci(t+υr ) for all t ≥ 0 and
r ∈ R.

Note that the monotonicity together with the strict concavity and
convexity of the utility and cost functions required in (A1) and (A2)
implies that these functions are strictly monotonic.

Strict concavity of the utility function as required in (A1) is
justified by application-specific characteristics such as the rate-
control algorithm used in common congestion control protocols,
cf. [18,31]. Also, inmany applications the considered cost functions
are strictly convex as required in (A2), e.g., the polynomial delay
functions considered in transportation networks (cf. [30]) and
M/M/1 functions modeling queuing delays in telecommunication
networks (cf. [32]). Assumption (A3) essentially requires that the
maximum load (including the offsets υr ) experienced on the cho-
sen subset of resources determines the bottleneck. Since this as-
sumption is certainly restrictive, a few remarks are in order. First, in
games violating assumption (A3) a player’s private payoff function
need not be differentiable in the demand of the player, e.g., con-
sider a game with a single player using both a resource with cost
function c1(t) = 1+t and a resourcewith cost function c(t) = 2t . It
is easy to verify that the player’s private payoff is not differentiable
at d1 = 1. On the other hand, payoff functions are differentiable
when (A3) is satisfied as the limit limϵ→0

πi(x,(di+ϵ,d−i))−πi(x,(di,d−i))
ϵ

=

U ′i (di) − c ′i (maxr∈xi{ℓr (x, d) + υr}) exists. Second, we will see in
Section 6 that games violating assumption (A3) may actually fail
to admit a PNE. Lastly, we observe that conditions (A1)–(A3) are
still expressive enough to include relevant functions, for instance,
M/M/1 delay functions ci,r : [0, zr ) → R≥0 of the form ci,r (t) =
ti/(zr − t) with zr > 0 and ti ≥ 0.

3. A characterization of pure Nash equilibria

In this section, we give a complete characterization of PNE in
bottleneck congestion games. Our characterization relies on the
notion of a demand equilibrium which we define as a strategy
profile with the property that no player can increase her payoff by
unilaterally changing her demand only.

Definition 3.1 (Demand Equilibrium). A strategy profile (x, d) is
called a demand equilibrium if πi(x, d) ≥ πi(x, d̃) for all i ∈ N and
d̃ = (d−i, d̃i) with d̃i ∈ [σi, τi].

Every PNE is a demand equilibrium, but not vice versa. As-
sumption (A3) implies that the private payoffs are differentiable
in the demand. Thus, the Karush–Kuhn–Tucker conditions impose
the following necessary conditions for demand equilibria. For s =
(x, d), let bi(x, d) = maxr∈xi{ℓr (x, d)+υr} denote the maximal load
(or bottleneck) that player i experiences and denote by b−1i (x, d) the
set of resources where the bottleneck is attained, i.e., b−1i (x, d) =
argmaxr∈xi{ℓr (x, d)+ υr}.
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Corollary 3.2. Let (x, d) be a demand equilibrium. Then, for all i ∈ N
the following conditions are satisfied:

(i) di < τi ⇒ U ′i (di) − c ′i
(
ℓr∗ (x, d) + υr∗

)
≤ 0 for all

r∗ ∈ b−1i (x, d);
(ii) di > σi ⇒ U ′i (di) − c ′i

(
ℓr∗ (x, d) + υr∗

)
≥ 0 for all

r∗ ∈ b−1i (x, d).

Let s = (x, d) be a demand equilibrium and let ℓ−ir (x, d) :=∑
j∈N\{i}:r∈xj

dj denote the residual load of player i on some r ∈ R.
We then obtain

di ∈ argmax
d′i∈[σi,τi]

{Ui(d′i)− ci(ℓ−ir∗ (x, d)+ υr∗ + d′i)}.

for all r∗ ∈ b−1i (s). We proceed to investigate how a demand
equilibrium is adapted if the residual load on a resource changes.
Formally, for a fixed residual load α on a resource r , we are in-
terested in analyzing how the best-reply demand function di(α) :=
argmaxdi∈[σi,τi]{Ui(di)−ci(α+di)} depends on α. As for all α ∈ R≥0
the function f (y) := Ui(y) − ci(α + y) is continuous and strictly
concave in y and the maximum is taken over a compact set, the
above optimization problem has a unique solution, hence, the best
reply demand function is well defined.

Lemma 3.3. Let α, β ∈ R≥0. Then, α < β if and only if di(α)+ α <
di(β)+ β .

Proof. ‘‘⇒’’: Assume α < β and di(α) + α ≥ di(β) + β . This
implies di(α) > di(β). We obtain 0 ≤ U ′i (di(α)) − c ′i (α + di(α)) <
U ′i (di(β)) − c ′i (β + di(β)) ≤ 0. The first inequality follows from
di(α) > σi and Corollary 3.2. The second inequality follows from
di(α) > di(β) andU ′i beingmonotonically decreasing togetherwith
di(α)+ α ≥ di(β)+ β and ci being convex.

‘‘⇐’’: Assume di(α) + α < di(β) + β and α ≥ β . This implies
σi ≤ di(α) < di(β) and we obtain the same contradiction as before
by exchanging the roles of α and β . □

Given a strategy profile s = (x, d), we call a strategy s′i = (x′i, d
′

i)
a better reply of player i if πi(s′i, s−i) > πi(s). The following lemma
characterizes better replies to demand equilibria.

Lemma 3.4. Let s = (x, d) be a demand equilibrium. Player i has
a better reply s′i = (x′i, d

′

i) ∈ Si if and only if ℓ−ir (s) + υr >

maxt∈x′iℓ
−i
t (s)+ υt for some r ∈ b−1i (s).

Proof. ‘‘⇐’’: Since ℓ−ir (s)+υr > maxt∈x′iℓ
−i
t (s)+υt for some x′i ∈ Xi

and cost functions are strictly increasing (cf. Assumption 2.1),
player i improves her payoff deviating from si = (xi, di) to s′i =
(x′i, di).

‘‘⇒’’: Suppose ℓ−ir (s)+υr ≤ maxt∈x′iℓ
−i
t (s)+υt for all r ∈ b−1i (s).

For s′ = (s′i, s−i) we obtain

πi(s′) = Ui(d′i)− ci
(
max
t∈x′i
{ℓ−it (s′)+ υt} + d′i

)
≤ Ui(d′i)− ci

(
ℓ−ir (s)+ υr + d′i

)
≤ Ui(di)− ci

(
ℓ−ir (s)+ υr + di

)
= πi(s),

where we use for the first inequality that ℓ−ir (s) + υr ≤

maxt∈x′iℓ
−i
t (s)

+ υt = maxt∈x′iℓ
−1
t (s′) + υt and ci is non-decreasing. The second

inequality holds because s is a demand equilibrium and therefore
di is player i’s best reply demand.We conclude that s′i is not a better
reply. □

We obtain the following characterization of PNE as a direct
corollary.

Corollary 3.5. A strategy profile s = (x, d) is a PNE if and only if s is
a demand equilibrium and ℓ−ir (s) + υr ≤ maxt∈x′iℓ

−i
t (s) + υt for all

i ∈ N, x′i ∈ Xi and r ∈ b−1i (s).

4. Computing demand equilibria

Corollary 3.5 suggests that for computing a PNE we should
be able to compute a demand equilibrium. In this section, we
describe an algorithm for this purpose. First, we need the notion
of a distributed equilibrium. Let G = (N, S, π ) be a bottleneck
congestion game, M ⊆ N , and let r be a resource. We define the
restriction of G on M and r as the bottleneck congestion game
G|(M,r) = (M, S ′, π ′) with S ′i =

{
{r}

}
× [σi, τi] for all i ∈ M and

π ′i (x, d) = Ui(di)− ci(ℓr (x, d)+ υr ).

Definition 4.1 (Distributed Equilibrium). Let x ∈ X and Nr (x) :=
{i ∈ N : r ∈ xi}. A non-negative vector d̃ = (d̃i,r )i∈Nr (x),r∈R is called
a distributed equilibrium for x ∈ X if for all r ∈ R the strategy profile
(d̃i,r )i∈Nr (x) is a PNE of G|(Nr (x),r).

Every restricted game G|(Nr (x),r) is a concave game on a compact
action space, thus, by Kakutani’s fixed point theorem [15] for every
x ∈ X the existence of a distributed equilibrium is guaranteed.
For the computation of a distributed equilibrium, one can cast
the problem as a nonlinear complementarity problem, which can
be solved by sequential linearization methods similar to Lemke’s
algorithm (cf. [22]). For a distributed equilibrium d̃ with respect
to x ∈ X , we define ℓ̃r (x, d̃) :=

∑
i∈Nr (x)d̃i,r . As d̃ is a PNE for

the bottleneck games G|(Nr(x),r), r ∈ R, the optimality conditions of
Corollary 3.2 implyU ′i (d̃i,r )−c

′

i (ℓ̃r (x, d)+υr ) ≤ 0 for all i ∈ N, r ∈ R
with di,r < τi, and U ′i (d̃i,r )− c ′i (ℓ̃r (x, d)+ υr ) ≥ 0 for all i ∈ N and
r ∈ R with di,r > σi.

We use these optimality conditions to prove the following
lemma.

Lemma 4.2. Let x, x′ ∈ X and let d̃ and d̃′ be two respective
distributed equilibria. Then, d̃i,r ≤ d̃′i,r ′ for all r, r

′
∈ R with ℓ̃r (x, d̃)+

υr ≥ ℓ̃r ′ (x′, d̃′)+ υr ′ and all i ∈ Nr (x) ∩ Nr ′ (x′).

Proof. Assume by contradiction that there are two resources
r, r ′ ∈ R with ℓ̃r (x, d̃) + υr ≥ ℓ̃r ′ (x′, d̃′) + υr ′ and a player i ∈
Nr (x) ∩ Nr ′ (x′) with τi ≥ d̃i,r > d̃′i,r ′ ≥ σi. Thus,

0 ≥ U ′i (d̃
′

i,r ′ )− c ′i (ℓ̃r ′ (x
′, d̃′)+ υr ′ )

> U ′i (d̃i,r )− c ′i (ℓ̃r (x, d̃)+ υr ) ≥ 0,

where the first and the third inequality are due to the fact that d̃′
and d̃ are distributed equilibria for x′ and x, respectively. For the
second inequality, we use that utilities are strictly concave and that
costs are non-decreasing and convex. □

Using this lemma,we obtain the following immediate corollary.

Corollary 4.3 (Uniqueness). Let x, x′ ∈ X and let d̃ and d̃′ be two
respective distributed equilibria. Then, the following two statements
hold:

(i) ℓ̃r (x, d̃) ≤ ℓ̃r (x′, d̃′) for all r ∈ R with Nr (x) ⊆ Nr (x′).
(ii) ℓ̃r (x, d̃) = ℓ̃r (x′, d̃′) for all r ∈ R with Nr (x) = Nr (x′).

Proof. To prove (i), let us assume for a contradiction that there
is r ∈ R with Nr (x) ⊆ Nr (x′) and ℓ̃r (x, d̃) > ℓ̃r (x′, d̃′). We derive
the existence of a player i ∈ Nr (x) with d̃i,r > d̃′i,r . This gives a
contradiction to Lemma 4.2. The second statement follows directly
from the first one. □
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Algorithm 1: Computation of a demand equilibrium
Input: Bottleneck congestion game with elastic demands G and

x ∈ X
Output: Demand equilibrium (x, d) of G

1 initialize R′ ← R;
2 while R′ ̸= ∅ do
3 compute a distributed equilibrium d̃ for x;
4 choose index-minimal r ∈ argmaxr∈R′ ℓ̃r (x, d̃)+ υr ;
5 di ← d̃i,r ; σi ← di; τi ← di for all i ∈ Nr (x);
6 R′ ← R′ \ {r};

Given the above lemma, we derive that for every x ∈ X , the
corresponding distributed equilibrium d is unique. We proceed to
give a lemma that will be useful to compute demand equilibria.
Fix x ∈ X , a distributed equilibrium d̃, and a resource r∗ with
maximal load. The lemma states that when the demand of the
players i ∈ Nr∗ (x) is fixed to d̃i,r∗ , and a newdistributed equilibrium
d̃′ is recomputed, then the load of all resources does not increase.

Lemma 4.4. Let d̃ be a distributed equilibrium for x ∈ X and
r∗ ∈ argmaxr∈R′(x)ℓ̃r (x, d̃) + υr where R′(x) = {r ∈ R : ∃i ∈
Nr (x) with σi < τi}. Define a new game G′ that differs only in the fact
that τ ′i = σ

′

i = d̃i,r∗ for all i ∈ Nr∗ (x). Then, ℓ̃r (x, d̃′) ≤ ℓ̃(x, d̃) for all
r ∈ R and for all distributed equilibria d̃′ for x in G.

Proof. For a contradiction, let us assume there is r ∈ R with
ℓ̃r (x, d̃′) > ℓ̃r (x, d̃). This implies the existence of a player i ∈ Nr (x)
with τi ≥ d̃′i,r > d̃i,r ≥ σi. We distinguish two cases. If i ̸∈ Nr∗ (x),
we obtain a contradiction similar to the proof of Lemma 4.2 by
observing

0 ≥ U ′i (d̃i,r )− c ′i (ℓ̃r (x, d̃)+ υr ) > U ′i (d̃
′

i,r )− c ′i (ℓ̃r (x, d̃
′)+ υr ) ≥ 0,

where for the first and the last inequality we used the local op-
timality conditions of the distributed equilibria d̃ and d̃′, and the
strict concavity and convexity of the utility and cost functions.
If, on the other hand, i ∈ Nr∗ (x), we have d̃i,r∗ > d̃i,r as well
as ℓ̃r∗ (x, d̃) + υr∗ ≥ ℓ̃r (x, d̃) + υr by the choice of r∗. This is a
contradiction to Lemma 4.2 (applied for x = x′). □

We are now ready to propose an algorithm that takes as input
an allocation x ∈ X and computes a corresponding demand
equilibrium (x, d) ∈ S. The algorithm first computes a distributed
equilibrium d̃. Then, a resource r withmaximum load is chosen and
the demand of each player i ∈ Nr (x) is fixed to the demand d̃i,r .
We recompute a distributed equilibrium and reiterate. The formal
description is given in Algorithm 1.

Theorem 4.5. Algorithm 1 computes a demand equilibrium.

Proof. Let R = {1, . . . ,m} be such that for each k ∈ {1, . . . ,m} in
the kth iteration of the algorithm resource k is chosen in line 4. We
claim that ℓ1(x, d) + υ1 ≥ · · · ≥ ℓm(x, d) + υm. To see this, note
that in each iteration a resource r with maximum load is chosen
and the demand of its users is fixed. If r is such that σi = τi for
all i ∈ Nr (x), fixing the demands does not change the game when
recomputing the distributed equilibriumand distributed equilibria
are unique by Corollary 4.3. Otherwise, by Lemma 4.4, fixing the
demands does not increase the load of the other resources when
recomputing an equilibrium. We derive that for each player i the
bottleneck is attained at the resource r ∈ xi withminimal index. As
the algorithm fixes the demand of each player i the first time one
of the resources used by player i is considered (line 5), the demand
vector d computed by Algorithm 1 is a demand equilibrium.

Algorithm 2: Computation of a PNE
Input: Bottleneck congestion game with elastic demands G
Output: PNE (x, d) of G

1 (x, d′)← arbitrary strategy profile;
2 while true do
3 Compute a demand equilibrium (x, d) by Algorithm 1; Phase I
4 if there is a player i with a better reply to (x, d) then Phase II
5 (x′i, d

′

i)← best reply of player i to (x, d);
6 (x, d′)← (x′i, x−i, d

′

i, d−i);
7 else
8 return (x, d);

Remark 4.6. For a given input G and x, Algorithm 1 computes
a unique demand equilibrium (x, d). This follows since the dis-
tributed equilibria are unique (Corollary 4.3) and there is a fixed
tie-breaking rule employed that determines the order in which
resources are fixed (line 4).

5. An algorithm for computing PNE

In this section, we give an algorithm that computes a PNE. The
algorithm starts with an arbitrary strategy profile and computes
a demand equilibrium. Then, if a player can improve, we let this
player play a best reply (where necessarily the player’s resource set
changes), and recompute a demand equilibrium. The technically
involved part is to show that the algorithm terminates. To prove
this, we first derive several properties of intermediate strategy
profiles during the execution of the algorithm. We will prove that
b(s) = (bi(s))i∈N strictly decreases with respect to the sorted lex-
icographical order ≺lex that is defined as follows: For two vectors
u, v ∈ Rn

≥0 we say that u is sorted lexicographically smaller than v,
written u≺lexv, if there is an index k ∈ {1, . . . , n} such that uπ (i) =
vψ(i) for all i < k and uπ (k) < vψ(k) whereπ andψ are permutations
that sort u and v non-increasingly, i.e., uπ (1) ≥ uπ (2) ≥ · · · ≥ uπ (n)
and vψ(1) ≥ vψ(2) ≥ · · · ≥ vψ(n).

Lemma 5.1. Let s = (x, d) be a demand equilibrium computed (by
Algorithm 1) in Phase I of Algorithm 2. Let s′i = (x′i, d

′

i) be a better and
best reply of player i and let s′ = (x′, d′), where x′ = (x′i, x−i) and
d′ = (d′i, d−i). Denote by s̄ = (x′i, x−i, d̄) the demand equilibrium that
is computed in Algorithm 1 in Phase I in the following iteration. Then,
b(s̄) ≺ b(s).

Proof. We first prove

bi(s′) < bi(s). (1)

Let ri ∈ b−1i (s) and r ′i ∈ b−1i (s′). We show bi(s) = ℓri (s) + υri >
ℓr ′i

(s′) + υr ′i = bi(s′). Since player i strictly improves playing s′i ,
Lemma 3.4 implies ℓ−iri (s)+υri > ℓ−ir ′i

(s′)+υr ′i . Applying Lemma 3.3

with β := ℓ−iri (s)+ υri and α := ℓ
−i
r ′i
(s′)+ υr ′i yields

bi(s) = ℓri (s)+ υri
= ℓ−iri (s)+ di(β)+ υri
> ℓ−ir ′i

(s′)+ di(α)+ υr ′i
= ℓr ′i

(s′)+ υr ′i = bi(s′).

We show next that if bi(s̄) ≥ bi(s), then there is p ∈ N with
bp(s̄) < bp(s) and bi(s̄) ≤ bp(s̄). Let r̄i ∈ b−1i (s̄). By (1), we have
bi(s′) < bi(s) ≤ bi(s̄). Thus, there is p ∈ Nr̄i (x

′) with d̄p > d′p. If p = i,
we obtain a contradiction observing that 0 ≥ U ′i (d

′

i) − c ′i (bi(s
′)) >

U ′i (d̄i) − c ′i (bi(s̄)) ≥ 0, where for the first and the third inequality
we used that d′i and d̄i are best replies to s′ and s̄, respectively.
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(a) Underlying graph. (b) Private utility functions of four selected strategy profiles.

Fig. 1. Bottleneck congestion game with elastic demands that lacks a PNE. (a) The underlying graph. (b) The private utility functions for four selected strategy profiles as
discussed in the text.

If p ̸= i, we have d̄p > d′p = dp which gives the inequalities
0 ≥ U ′p(dp) − c ′p(bp(s)) and 0 ≤ U ′p(d̄p) − c ′p(bp(s̄)) as dp and d̄p
are best replies to s and s̄, respectively. With U ′p(dp) > U ′p(d̄p)
this implies bp(s̄) < bp(s), and since p ∈ Nr̄i (x

′), we also have
bp(s̄) ≥ bi(s̄).

Next, we show that for every j ∈ N \ {i}with bj(s̄) > bj(s), there
is p ∈ N with bp(s̄) < bp(s) and bj(s̄) ≤ bp(s̄). Suppose there is such j
with bj(s̄) > bj(s) and denote r̄j ∈ b−1j (s̄). Then, one of the following
two cases holds:

(a) there is p ∈ Nr̄j (x) with d̄p > dp;
(b) d̄p ≤ dp for all p ∈ Nr̄j (x) and i ∈ Nr̄j (x

′) with d̄i ≥ ℓr̄j (s̄) −
ℓr̄j (s) > 0.

For case (a), we again obtain 0 ≥ U ′p(dp) − c ′p(bp(s)) and 0 ≤
U ′p(d̄p)−c

′
p(bp(s̄)) as dp and d̄p are best replies to s and s̄, respectively.

With U ′p(dp) > U ′p(d̄p) this implies bp(s) > bp(s̄). Since p ∈ Nr̄j (x
′),

we also get bp(s̄) ≥ bj(s̄).
For case (b), we obtain bi(s̄) ≥ bj(s̄) since i ∈ Nr̄j (x

′). For the case
that bi(s̄) ≥ bi(s), we have already shown the existence of another
j′ ∈ N with bj′ (s̄) < bj′ (s) and bj′ (s̄) ≥ bi(s̄) ≥ bj(s̄). Hence, we may
assume bi(s̄) < bi(s) which implies the result with i = p.

In conclusion, we have shown that whenever bj(s̄) > bj(s) for a
player j, then there is another player pwith bp(s) > bp(s̄) ≥ bj(s̄) >
bj(s). If j = i, this holds even if bi(s̄) ≥ bi(s), and we may conclude
that b(s̄) ≺ b(s). □

We are now in a position to prove correctness of Algorithm 2.

Theorem 5.2. Algorithm 2 terminates and computes a PNE.

Proof of Theorem 5.2. Lemma 5.1 shows that the vector b(s)
strictly lexicographically decreases during the execution of Algo-
rithm 2. Since for a fixed x ∈ X the demand equilibrium computed
by Algorithm 1 in Phase I of Algorithm 2 is always the same
(Remark 4.6), no vector x ∈ X is visited twice during the execution
of Algorithm 2. Using that X contains only finitely many elements,
we conclude that the algorithm terminates. □

6. A counterexample for general convex costs

In this section, we show that the assumption that the cost
function of each player does not depend on the resource (up to a
resource-specific shift) is a necessary assumption that cannot be
dispensed with for the existence of a PNE. This is true, even if we
impose the additional assumption that for each of the resources
the cost functions of all players coincide, and that the strategies of
each player i correspond to the set of (ui, v)-paths in a network.

Theorem 6.1. There are bottleneck congestion games with elastic
demands and affine cost functions (which do not satisfy Assumption
(A3)) without a PNE.

Proof. Consider the graph shown in Fig. 1(a). There are two
players associated with the source–sink pairs (u1, v) and (u2, v)
and demands σ1 = σ2 = 1 and τ1 = τ2 = 2. Their utility functions
are U1(d1) = d1 + 10 for all d1 ∈ [1, 2] and U2(d2) = 3d2 + 10
for all d2 ∈ [1, 2]. When going clockwise, player 1 will use the
maximal demand d1 = 2 since the cost of (u1, v) is constant.
In contrast, when player 1 goes counterclockwise, for both edges
(u1, u2), (u2, v), the congestion increases at least with rate 3 and
the utility of player 1 increases only with rate 1. Thus, player 1 will
use the minimal demand d1 = 1. Equivalently, player 2 uses the
minimal demand when going counterclockwise and the maximal
demand going clockwise as in the latter case the bottleneck is
always attained at edge (u1, v). It can be checked that none of
these four strategy profiles is a PNE; see Fig. 1(b). The game does
not satisfy Assumption (A1) or Assumption (A2), but this can be
achieved by adding a small strictly concave or convex function to
the utility and cost functions, respectively. □

7. Conclusions

We studied bottleneck routing games where players vary both
their rate and their path. As our main result, we derived an al-
gorithm computing a PNE provided that cost functions are non-
decreasing, convex and equal up to resource-specific shifts in the
argument. This condition is met by the practically relevantM/M/1
delay functions with heterogeneous service rates, thus, our result
implies the existence of PNE for this model. Our algorithm is
centralized but mimics a decentralized dynamic in the following
sense. In TCP/IP networks, rate adaption takes place on a shorter
time scale than route adaption. In a similar vein, our algorithm first
restores a demand equilibrium (where no player has an incentive
to vary the demand) before changing a path of a player. Since the
choice of the player that adapts the path is arbitrary as long as the
path adaption increases the player’s utility, this step can be imple-
mented in a distributed manner. The question whether there is a
completely decentralized algorithm that allows for asynchronous
and concurrent updates is left for future research.
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